SHORT COMMUNICATIONS

On the Equality Relation Modulo a Countable Set

V. G. Kanovei^{1*} and V. A. Lyubetsky^{1**}

¹Institute for Information Transmission Problems of Russian Academy of Sciences (Kharkevich Institute), Moscow, 127051 Russia Received April 15, 2020; in final form, April 15, 2020; accepted May 14, 2020

DOI: 10.1134/S0001434620090357

Keywords: equality modulo a countable set, effective choice.

The equivalence relation E_{\aleph_0} (the equality relation modulo a countable set) is defined as follows:

 $X \in_{\aleph_0} Y$, if the symmetric difference $X \Delta Y$ is at most countable.

Here X and Y are sets in the Baire space ω^{ω} , although all that is stated below remains true for the real line and, in general, for any perfect Polish space. The axiom of choice AC allows us to choose a particular element in each E_{\aleph_0} -equivalence class; that is, there exists a function $s: \mathscr{P}(\omega^{\omega}) \to \mathscr{P}(\omega^{\omega})$ satisfying $s(X) \mathsf{E}_{\aleph_0} X$ for all sets $X \subseteq \omega^{\omega}$ and s(Y) = s(X) for all sets $X, Y \subseteq \omega^{\omega}$ satisfying $X \mathsf{E}_{\aleph_0} Y$. Such a function S is called a *selector* for the relation E_{\aleph_0} ; see [1, Section 12.D].

However, the application of the axiom of choice does not resolve the question of the existence of an *effectively defined* selector *s*, that is, the choice of a concrete well-defined set in every E_{\aleph_0} -class of point sets. The answer to this question depends on which point sets we consider. For instance, every class of E_{\aleph_0} -equivalence of *closed* sets $X \subseteq \omega^{\omega}$ contains a unique perfect set, which we can take as s(X), obtaining an effectively defined selector. The following theorem of ours extends this result to the much broader class Δ_2^0 of those sets that are simultaneously \mathbf{F}_{σ} and \mathbf{G}_{δ} .

Theorem. There is an effectively defined selector for the relation E_{\aleph_0} on the Δ_2^0 sets in the Baire space.

The theorem gives the best possible result, since already for the next (according to the volume of sets) Borel class \mathbf{F}_{σ} , there are generally no effectively definable selectors. This is a consequence of the result, recently obtained in [2, 5.5], that **ZFC** is not strong enough to define an effectively definable selector for the relation E_{\aleph_0} on the class of all \mathbf{F}_{σ} sets, which is wider than $\Delta_2^{0,1}$

The proof of the theorem uses the following Lemma.

As usual, \overline{X} denotes the topological closure of a set X.

Lemma. If X is a countable \mathbf{G}_{δ} set in a Polish space, then the closure \overline{X} of X is countable. Therefore, if the $\mathbf{\Delta}_{2}^{0}$ sets X and Y satisfy X $\mathsf{E}_{\aleph_{0}}$ Y, then $\overline{X} \mathsf{E}_{\aleph_{0}} \overline{Y}$.

Proof. Otherwise, X would be a countable dense \mathbf{G}_{δ} set in the uncountable Polish space \overline{X} , which is a contradiction.

^{*}E-mail: **kanovei@iitp.ru**

^{**}E-mail: lyubetsk@iitp.ru

¹To be more exact, the result in [2, 5.5] claims that the relation E_{\aleph_0} on the F_{σ} sets does not admit a Baire measurable selector. However, it is true in the well-known Solovay model [3] of **ZFC** that all **ROD** maps are Baire measurable. The class **ROD** (real-ordinal definable sets) consists of all sets definable by set-theoretic formulas with ordinals and points of ω^{ω} (that is, reals, in the terminology of modern descriptive set theory) as parameters. The class **ROD** contains, with a margin, all the sets that can be considered effectively definable in the broadest sense; see [4, Section 7]. Therefore, the relation E_{\aleph_0} on the F_{σ} sets has no **ROD** selectors in the Solovay model, and hence has no selectors effectively definable in any reasonable sense.

We also make use of the *difference hierarchy of* Δ_2^0 *sets*. It is well known (see [1, 22.E] or [5, Sec. 34.VI]) that every Δ_2^0 set A in a Polish space X can be represented in the following form:

$$A = \bigcup_{\eta < \vartheta} (F_{\eta} \setminus H_{\eta}),$$

where $\vartheta < \omega_1$ and $F_0 \supseteq H_0 \supseteq F_1 \supseteq H_1 \supseteq \cdots \supseteq F_\eta \supseteq H_\eta \supseteq \cdots$ is a decreasing sequence of closed sets in \mathbb{X} defined by transfinite induction so that

$$F_0 = \mathbb{X}, \qquad H_\eta = \overline{F_\eta \setminus A}, \qquad F_{\eta+1} = H_\eta \cap \overline{F_\eta \cap A},$$

and at the limit steps, the intersection is taken. It follows from separability that $F_{\vartheta} = \emptyset$ for some ordinal $\vartheta < \omega_1$, at which the construction is completed.

Proof of the theorem. It suffices to check that if two Δ_2^0 sets $A, B \subseteq \omega^{\omega}$ satisfy $A \mathsf{E}_{\aleph_0} B$, then the corresponding decreasing sequences of closed sets

$$\begin{array}{l} F_0^A \supseteq H_0^A \supseteq F_1^A \supseteq H_1^A \supseteq \cdots \supseteq F_\eta^A \supseteq H_\eta^A \supseteq \cdots \\ F_0^B \supseteq H_0^B \supseteq F_1^B \supseteq H_1^B \supseteq \cdots \supseteq F_\eta^B \supseteq H_\eta^B \supseteq \cdots \end{array} \right\} \qquad (\eta < \vartheta = \vartheta^A = \vartheta^B),^2$$

which satisfy the equalities $A = \bigcup_{\eta < \vartheta} (F_{\eta}^A \setminus H_{\eta}^A)$ and $B = \bigcup_{\eta < \vartheta} (F_{\eta}^B \setminus H_{\eta}^B)$, satisfy also the relation

$$F^A_\eta \mathsf{E}_{\aleph_0} F^B_\eta$$
 and $H^A_\eta \mathsf{E}_{\aleph_0} H^B_\eta$ for all $\eta < \vartheta$. (1)

If this is established, then the perfect kernels³ $\mathbf{PK}(F_{\eta}^{A})$ and $\mathbf{PK}(F_{\eta}^{B})$ of the sets F_{η}^{A} and F_{η}^{B} are equal to each other: $\mathbf{PK}(F_{\eta}^{A}) = \mathbf{PK}(F_{\eta}^{B})$, and similarly $\mathbf{PK}(H_{\eta}^{A}) = \mathbf{PK}(H_{\eta}^{B})$. We conclude that the sets

$$s(A) = \bigcup_{\eta < \vartheta} (\mathbf{PK}(F_{\eta}^{A}) \setminus \mathbf{PK}(H_{\eta}^{A})) \quad \text{and} \quad s(B) = \bigcup_{\eta < \vartheta} (\mathbf{PK}(F_{\eta}^{B}) \setminus \mathbf{PK}(H_{\eta}^{B}))$$

are equal to each other (under the assumption that A and B are Δ_2^0 sets satisfying $A \in_{\aleph_0} B$). In addition, we have $A \in_{\aleph_0} s(A)$ for each Δ_2^0 set A. Therefore, s is a required selector, which completes the proof of the theorem.

The proof of relation (1) itself is performed by induction.

We have $F_0^A = F_0^B = \omega^{\omega}$; this is the base case of induction.

Suppose that $F_{\eta}^{A} \mathsf{E}_{\aleph_{0}} F_{\eta}^{B}$. Then

$$(F^A_\eta \setminus A) \mathsf{E}_{\aleph_0} (F^B_\eta \setminus B)$$

holds as well. (Because it is assumed that $A \mathsf{E}_{\aleph_0} B$.) Therefore, $H^A_\eta \mathsf{E}_{\aleph_0} H^B_\eta$ by the lemma. And then we similarly obtain $F^A_{\eta+1} \mathsf{E}_{\aleph_0} F^B_{\eta+1}$, which completes the induction step $\eta \to \eta + 1$.

The limit step in the proof of (1) does not raise any questions.

FUNDING

This research was supported in part by the Russian Foundation for Basic Research under grant 18-29-13037.

REFERENCES

- 1. A. Kechris, *Classical Descriptive Set Theory* (Springer, New York, 1995).
- S. Müller, P. Schlicht, D. Schrittesser, and T. Weinert, Lebesgue's Density Theorem and Definable Selectors for Ideals, arXiv: 1811.06489 (2018).
- 3. R. M. Solovay, Ann. of Math. (2) 92, 1 (1970).
- 4. V. G. Kanovei and V. A. Lyubetsky, Russian Math. Surveys 58 (5(353)), 839 (2003).
- 5. K. Kuratowski, Topology (Academic Press, New York-London, 1966), Vol. 1.

²If necessary, the shorter of these two decreasing sequences is extended by empty sets to the length of the longer sequence. ³The perfect kernel $\mathbf{PK}(X)$ is the largest perfect subset of a given closed set X.