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Introduction. Origin of problems about constituents

Mathematicians working in the domain of set theory have always considered one of the

most important problems to be the relationship between the two simplest uncountable

cardinalities—the cardinality Kx of the set of all at most countable ordinals and the

cardinality of the continuum c. The attention of the experts was principally drawn to the

following fundamental problems:

Can one construct (with the use of the axiom of choice or without that axiom) a

one-to-one correspondence between the countable ordinals and all real numbers; that is,

can one prove Cantor's continuum hypothesis c = Nx (Cantor, Hubert, Luzin)?

Can one effectively construct (that is, without the axiom of choice—with the axiom of

choice the construction in the given case can be easily carried out) a set of cardinality Kx

consisting of real numbers; that is, can one effectively prove the inequality Xx < c

(Lebesgue, Luzin)?

These problems, which belong not only to set theory but also to the foundations of

mathematics in a broad sense, were considered by many leading mathematicians of the

beginning and the first half of the twentieth century. They aroused great interest, in

particular, in Ν. Ν. Luzin, who attempted to find an approach to their solution with the

help of methods of descriptive set theory. A penetrating analysis of this circle of problems

led Luzin to the remarkable idea of an analogy between points of the real line and Borel

sets of bounded order, in the light of which it was very natural to pose the following

questions (in [1], [2], Chapter III, and [3]-[7]):

The restricted (or narrow) continuum problem: Can one effectively partition the con-

tinuum of real numbers (or Baire space) into S j nonempty Borel sets of bounded order!
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The restricted (or narrow) Lebesgue problem: Can one effectively construct a sequence of

Sj pairwise distinct Borel sets of the real line {or Baire space) of uniformly bounded order!

The order (Luzin used the term "class") of a Borel set characterizes the complexity of

that set with respect to the Borel construction, that is, the least possible (finite or

denumerable) length of a construction of the set from open sets of the given space by

means of the operations of forming countable unions and taking complements. More

precisely, by the order of a Borel set X we mean the least ordinal number ξ such that X

belongs to the class Δ° of the Borel hierarchy. Let us remember that the classes Δο

ξ (where

1 < ξ < ωλ and ωϊ denotes the first uncountable ordinal) strictly increase as the index ξ

increases, and every Borel set occurs in one of these classes (and, therefore, in all classes

with larger indices). Everything that has been said refers to Borel sets of any perfect Polish

space (which is taken to mean a separable complete metric space without isolated points),

and, in particular, to sets of the real line and of Baire space.

A collection of Borel sets is said to be bounded with respect to order (or a collection of

bounded order) if all the sets of the collection have order less than some fixed ordinal

£o < ω ι ·

By the end of the 1920's, experts in descriptive set theory already knew ways of

effectively constructing sequences of Κχ Borel sets by means of the sieve operation that

had been developed by Luzin. Applying these constructions to the problems formulated

above, Luzin posed a series of more specific problems on the nature of constituents, the

complete solutions of which were found only many years later. The present paper is

devoted to these problems.

§1. Statement of the problems about constituents

Let us begin with several definitions connected with sieves. First of all, we agree to

consider as the basic space the Baire space Jf= ωω, consisting of all functions defined on

the set of natural numbers ω = {0,1,2,...} with values in ω (that is, the topological

product of ω copies of the set of natural numbers). This approach was introduced in

Luzin's "Lectures" [2] and is accepted in modern work in descriptive set theory (see, for

example, [17], [18] and [19]). In some publications of Luzin among those cited above (for

example, in [6]), the real line R is taken to be the basic space. However, it is not difficult to

show (which we shall not do here) that the spaces Jf and R (and, in general, all perfect

Polish spaces) are completely equivalent with respect to the problems that will be

discussed below.

The sieve operation, which has played an exceptional role in the development of

descriptive set theory, was introduced by Luzin in 1927, and then was perfected by him

(especially in [2]) and by other specialists. We shall present this operation in its most

convenient variant, occurring in the monographs [17] and [18]. (For more details about

sieves, see [20].) We denote by Q the set of all rational points of the line R. By a sieve (for

sifting sets of the Baire space JV) we mean any family C = ( c ? : ^ r e Q ) o f sets Cq<^ JV

of any kind. The sets Cq are said to be the elements of the sieve C. We shall call the sieve

C open {Borel) when all of its elements Cq are open (respectively, Borel) sets in J/~. In

general, if we are given any class Κ of sets of the space Jf, then we shall say that a sieve is

of class Κ if every element of the sieve belongs to the class K.
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Any sieve C = (Cq: q e Q) determines a partition of the space Jf into two sets, called
internal (or sifted) and external. To the external set [C] belong all points α e Jf for
which the "vertical cross-section" C/a = {q: a e Cq) is well-ordered in the sense of the
natural ordering of rational points. The remaining points are contained in the internal set
[C]*.

With every ordinal number ν < ω1( we associate the sets

[C]„ = {a e [ C ]: the order type of C/a is equal t o r } ;

[ C ] * „ = {a e [ C ] *: the order type of the largest well-ordered

initial segment of C/a is equal to ν},

which are called the νύι external and the cth internal constituents, respectively. The
external constituents are pairwise disjoint and yield the external set [C] as their union.
Similarly, the internal constituents are pairwise disjoint and yield [C]+ as their union.

If a sieve C is Borel (in particular, this holds for open sieves), then all the constituents
[C]v and [C]*,, are Borel sets (see [2], Chapter III, or [5]). Thus, with the help of a sieve
one can construct a sequence of S x pairwise distinct Borel sets: it is only necessary to
make sure that, among the internal or external constituents determined by the Borel sieve,
uncountably many are nonempty (and, therefore, also pairwise distinct)—and the desired
sequence is at hand. The external constituents are of particular interest in this connection,
since Luzin ([2], Chapter III) found a convenient criterion for having an uncountable
number of nonempty external constituents of a Borel sieve, consisting in the requirement
that the external set not be Borel. (For internal constituents, such a criterion is not
fulfilled.)

Considering the sequences of external constituents in connection with the problems
mentioned in the introduction, Luzin posed in his papers ([6], §1, and [7], §8) the
following series of four problems about external constituents.

PROBLEM I. Does there exist an open sieve C such that every constituent [C]v contains

exactly one point"]

PROBLEM II. Does there exist an open sieve C such that uncountably many of the

constituents [C\v are nonempty and every [C]v contains not more than a countable set of

points'}

PROBLEM III. Does there exist an open sieve C such that uncountably many of the

constituents [C]v are nonempty and all these constituents form a collection of Borel sets that

is of uniformly bounded order!

PROBLEM IV. Does there exist an open sieve C such that uncountably many of the

constituents [C]v are nonempty and all the constituents [C]v can be included in pairwise

disjoint Borel sets that are of bounded order!

The numbering of these four problems has been taken by us from Luzin's papers [6] and
[7], where each of the problems is printed in a separate paragraph, with the word
" problem" and the indicated number. With this numbering (identical in both of the cited
papers), Luzin essentially confers proper names on the formulated problems.

An increase in the number of the problem corresponds to a decrease in the strength of
the requirement imposed on the sieve C by the problem. In particular, the requirements
imposed by Problem III are weaker (at least in a nonstrict sense) than the requirements of
Problem II in view of the fact that every at most countable set (in general, every Fa)
belongs to the Borel class Δ° and, consequently, has order not higher than 3.
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Of the four problems formulated above, Problem III especially attracted the attention
of Luzin, and he turned to an analysis of that problem and some of its aspects in a
number of other publications in the 1930's, in addition to those already indicated (see, in
particular, [2], Chapter III, [3] and [4]). There Luzin posed several other questions about
the existence of sieves with certain requirements on the orders of the constituents. Two of
these questions are considered in the present paper. For the sake of unity of terminology
and reference, we shall formulate these questions under the names Problem Ilia and
Problem Illb, since, in a sense, they are variants of Problem III, although it is certain that
Luzin accorded less significance to these questions than to Problem III itself, and strictly
speaking, there is no basis for assigning to these questions the status of the above Luzin
problems.

PROBLEM Ilia (see [3], §1). Does there exist an open sieve C with uncountably many

nonempty constituents [C]p such that the orders of the nonempty sets [C]p do not converge to

ω1 (this means that there exists an ordinal ξ < ω1 for which the number of nonempty

constituents [C]r having order less than or equal to ξ is uncountable)!

PROBLEM Illb (see [4], §5). Does there exist an open sieve C such that all the constituents

[C], are nonempty and the orders of these constituents do not converge to the ordinal ωχ?

All six of the problems formulated above in this section are connected with the
Lebesgue problem and the restricted Lebesgue problem. On the other hand, the following
problem is related to the restricted continuum problem. This problem was posed by Luzin
in [5], §5, where he called it the "main problem of the theory of analytic sets" (without
providing it with a number). For lack of a more suitable alternative numbering, we shall
confer on this question the number 0.

PROBLEM 0. Does there exist an open sieve C such that, among the constituents [C]v and

[C]*v determined by it, uncountably many are nonempty (of at least one type) and all the

constituents [C]v and [C]*,, form a collection of bounded order!

Luzin's problems constantly appeared as important unsolved problems in Soviet surveys
of classical descriptive set theory (see, for example, [12], [13] and [15]). In connection with
the construction of uncountable sequences of Borel sets of bounded order, constituents are
discussed in Kuratowski's monograph [17] (§39, III). P. S. Novikov [10], [11], L. V.
Keldysh [14], A. A. Lyapunov [16], and E. A. Selivanovskii [34] turned to the study of
Luzin's problems, as did, later on in the 1960's and 1970's, foreign specialists, in
particular, Solovay [27], [28] and Stern [30], [31]. The paper [20] is especially devoted to
aspects of these problems connected with the philosophy and history of mathematics, and
therefore we shall not go into such matters specifically. We shall only present information
about the history of investigations of problems concerning constituents when that infor-
mation is essential for the succeeding exposition.

Luzin ([2], Chapter III) established that Problem II is equivalent to the problem of the
existence of an uncountable analytic complement (that is, a II}-set in modern terminol-
ogy) not having perfect subsets; that is, if there exists a sieve satisfying the requirements of
Problem II, then there exists (in the space Jf) an analytic complement of the indicated
form, and conversely.

In P. S. Novikov's paper [10] it was proved that Problem II is equivalent to a weak
variant of Problem I, where one requires that every constituent [C],, contain not more than
one point, and, in addition, that the number of nonempty constituents [C]v be uncounta-
ble. In another paper [11] by the same author, the following progress was achieved. It was
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discovered that, with the methods of the Zermelo-Fraenkel axiomatic set theory ZFC with
the axiom of choice (concerning this theory, see [19]; it is customary to assume that the
theory ZFC formalizes all known methods of mathematical reasoning), it is impossible to
prove the nonexistence of uncountable analytic complements which do not contain perfect
subsets, and, therefore, by what was said above, it is impossible to solve Problem II in the
negative (that is, to prove the nonexistence of sieves of the required form).

This result of Novikov was supplemented by the American mathematician Solovay, who
found [28] that it is also impossible within ZFC to prove the existence of uncountable
analytic complements without a perfect kernel, and, thus, that it is also impossible to solve
Problem II in the affirmative. Thus, Problem II turns out to be undecidable: it is
impossible with ordinary mathematical arguments either to prove or to refute the existence
of a sieve satisfying the requirements of the problem. (Parenthetically, let us note that
many other problems of classical descriptive set theory turn out to be undecidable.
However, not all are undecidable; there are important exceptions, among problems about
constituents in particular.)

In [22], this result was extended to Problems III and IV. Namely, it was proved in [22]
that each of these two problems is equivalent to Problem II and is, therefore, undecidable.
(Two problems are equivalent if, from the assumption that one of them has a positive
solution, it follows that the other also has a positive solution.) However, it was established
in [22] that Problem 0 is decidable, and, indeed, in the negative; that is, one can prove the
nonexistence of sieves of the required form. In the present paper, we shall also determine
the status of Problems I, Ilia and Illb: the first of these, like Problem 0, is decidable in
the negative, but the two others, like Problems III and IV, are equivalent to Problem II
and undecidable.

All these results on undecidability and decidability of Luzin's problems will be obtained
at the end of the next section as corollaries of a general theorem (the main theorem of this
paper).

At the same time, it is clear that Luzin's problems that we are considering in no way
exhaust the list of possible problems of the same type about the existence of sieves with
given properties of their constituents. For example, analogues of Problems I-IV, for-
mulated for internal constituents, are essentially just as interesting as Problems I-IV
themselves. In the formulation of the problems, one can introduce certain changes and
obtain new variants. (Two variants of Problem III, Problems Ilia and Illb, were proposed
by Luzin himself.) Finally, one can consider sieves of a more general form than open
sieves. In this way, one obtains a rather long list of problems about the existence of sieves,
including Luzin's problems. The author undertook an attempt at systematization and
investigation of such problems, a result of which is the present paper.

§2. Classification of problems, formulation of the main theorem,
and the derivation therefrom of corollaries about the undecidability

and decidability of Luzin's problems

Each of the problems presented in the preceding section is a problem about the
existence of a sieve satisfying a certain requirement (more precisely, a complex of
requirements), connected with the class of the sieve (it is required that it be open) and with
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the constituents that it determines. As notation for these and similar requirements, we

shall agree to use five-termed symbols of the form [nij, p]T (Here, the subscript τ can

actually be omitted, as will be seen below; the absence of the subscript τ will be assumed

to be a special value of that subscript.) We shall explain the meaning which the symbols n,

i, j , ρ and τ bear.

The letter η refers to the requirement placed on the class of the sieve. As in Luzin's

problems of §1, we shall consider open sieves, assigning the value η = 0 of the letter η to

the requirement of openness; the value η = 1 is assigned to Borel sieves, and the value

η = 2 to sieves of the projective class A2

2. More complicated projective sieves will not be

considered here.

The subscript τ denotes the type of constituents to which the requirement [nij, ρ]τ

refers. The absence of any symbol in place of τ (that is, an expression of the form [nij, p])

will signify that the requirement refers only to external constituents (like, for example, the

requirements included in the statements of Luzin's Problems I, II, III, Ilia, Illb, and IV of

§1). The symbol * in place of τ refers to internal constituents, while the symbol + in

place of τ indicates that we are considering constituents of both types (as in the statement

of Problem 0).

The indicator / assumes the values 0 and 1. By / = 1 we mean the requirement that all

the constituents of type τ are nonempty (Problems I and Illb), and by i = 0 the weaker

requirement of nonemptiness of uncountably many constituents of type τ (the remaining

problems).

Finally, the meaning of the letter j (j = 0 or 1) and the letter ρ (ρ = Ι, II, III, IV).

One requires that the family of all nonempty constituents of type τ (for j — 1), or some

uncountable subfamily of that family (for j = 0), possesses, depending on the value of p,

the following property:

For ρ = I: every constituent of the indicated family (or of a subfamily—in accordance

with the value of j) contains exactly one point.

For ρ = II: every constituent of the indicated family (or subfamily) is at most

countable.

For ρ = III: the indicated family (or subfamily) is a collection of Borel sets of bounded

order.

For ρ = IV: the property of order-bounded pairwise separation: there exists an ordinal

number ξ < ω1 such that any two distinct constituents of the given family (or subfamily)

can be separated from each other by a Borel set of order at most ξ. (The set Ζ separates X

from Υ if X c Ζ and Υ η Ζ = 0.)

Thus, j = 1 for Problems I, II, III, IV, and 0, and y = 0 for Problems Ilia and Illb.

Problem I corresponds to the value ρ = I, Problem II to the value ρ = II, Problems III,

Ilia, Illb, and 0 to the value ρ = III, and the requirement corresponding to Problem IV

is, so to say, enclosed between ρ = III and ρ = IV.

An assertion of the existence of a sieve satisfying the complex of requirements [nij, p]T

will be abbreviated by 3[nij,p]T. All together, we have 3 · 2 · 2 · 4 · 3 = 144 different

symbols [nij, p]r (for the indicated values of the letters occurring in these symbols), and,

therefore, 144 assertions of the form 3[nij, p]T. From the point of view of their interrela-

tions with the system ZFC, these assertions can be divided into three large groups,

denoted here by the letters A, B and C. The division into groups is given by the following
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tables:

No subscript τ (external
constituents), ρ arbitrary

η

0

1

2

11

c
c
A

TABLE 1

01

A

A

A

10

A

A

A

00

A

A

A

η

0

1

2

TABLE 2

11

c
c
A

01

c
c
A

10

A

A

A

00

A

A

A

τ = * (internal constituents),
ρ arbitrary

TABLE 3 TABLE 4

η

0

1

2

•j

11

c
c

01

c
c

10

A

A

A

00

A

A

A

Ρ

I or II
III or IV

Β

A

τ = + , η = 2, j •

i arbitrary

τ - + (both types of
constituents), ρ arbitrary

The principal task of this paper is the proof of the following theorem, which determines

the status of assertions of groups A, B, and C in the axiomatic set theory ZFC.

M A I N THEOREM, (a) All 100 assertions of group A are equivalent to each other in ZFC

and are undecidable in ZFC.

(b) All four assertions of group Β are also pairwise equivalent and undecidable in ZFC.

Moreover, the assumption of the truth of any of these assertions implies the truth of all the

assertions of group A, but the converse is false.

(c) All 40 assertions of group C are false in ZFC; that is, from the axioms of ZFC one

can deduce the nonexistence of sieves of the required form.

Let us show how, from the Main Theorem, one can obtain the results presented in §1

about the undecidability and decidability of the various Luzin problems. It suffices to sort

out which symbols correspond to these problems in our system. As a typical example, let

us consider Problem I. It is obvious that the assertion contained in the statement of this

problem (that is, the assertion of the existence of an open sieve C such that every

constituent [C]v contains exactly one point) receives in our notation the symbolic

designation 3[011, I] and, thus, belongs to group C of Table 1. Therefore, this assertion is

false in ZFC by clause (c) of the Main Theorem, and Problem I has, as a consequence, a

negative solution (that is, a sieve of the desired form does not exist), as was claimed at the

end of §1.
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In exactly the same way, the assertions contained in the statements of Problems II, III,
Ilia, and Illb receive the designations 3[001, II], 3[001, III], 3[000, III], and 3[010, III],
respectively, belong to group A of Table I, and are undecidable and pairwise equivalent by
clause (a) of the Main Theorem.

The assertion about the existence of a sieve, contained in the statement of Problem IV,
is of a strength situated between assertions 3[001, III] and 3[001, IV], belonging to group
A of Table 1. Hence, by clause (a) of the Main Theorem, the assertion of Problem IV is
equivalent to all assertions of group A, and, in particular, to the assertions extracted from
Problems II, III, Ilia, and Illb, and so it is undecidable.

Thus, Problems II, III, Ilia, Illb, and IV are equivalent to each other (in the sense
indicated at the end of §1) and are undecidable.

Finally, the assertion of the existence of a sieve satisfying the requirements of Problem 0
receives the symbolic designation 3[001, III]+, belongs to group C of Table 3, and,
therefore, is false by clause (c) of the Main Theorem, whence Problem 0 itself receives a
negative solution: a sieve of the required form does not exist.

§3. Statement of five theorems,

from which the Main Theorem follows

Of course, in proving the Main Theorem, we will not deal separately with each of the
assertions in groups A, B and C. It is entirely sufficient to limit ourselves to the minimal
and maximal (with respect to the requirements imposed on the sieve) assertions in groups
A and Β and to the minimal assertions in group C. In particular, since the strength of the
requirement [nij, p]r decreases as (independently) η increases from 0 to 2, /' decreases
from 1 to 0, j decreases from 1 to 0, and ρ increases from I to IV, one may have left in
group A only the minimal assertions 3[200, IV], 3[200, IV]*, and 3[200, IV] +, and the
maximal assertions 3[001, I], 3[010, I], 3[211, I], 3[010, I]*, 3[211, I]*, 3[010, I] + , and
3[211, III]+, in group Β only the minimal assertion 3[201, II]+ and the maximal 3[211,1]+,
and, finally, in group C only the minimal assertions 3[111, IV], 3[101, IV]*, and

In order to more conveniently handle these remaining assertions, we shall use the
following two propositions (not connected with sieves and constituents, but well estab-
lished within axiomatic set theory (see, for example, [19c], §3)):

In these propositions, as usual, we denote by ω^ίπ] the first uncountable ordinal in the
class L[TT] of all sets that are constructible relative to w.

Both of these propositions do not contradict the axioms of ZFC, since they follow from
the (consistent, see [19a], Chapter 5) axiom of constructibility. Their negations also do not
contradict ZFC: this was proved by Levy [26] with the help of a model which was used
later in [28]. Thus, both propositions are undecidable in ZFC. Moreover, the first of them
is a trivial consequence of the second, but the second, on the contrary, is not derivable
from the first, since, in the simplest model of Cohen, refuting the continuum hypothesis
(model II in [24]), the first proposition is true, but the second is false.

In light of everything that has been said, for the proof of the Main Theorem it
completely suffices to prove the following five theorems:

THEOREM Al. If the proposition 3 π e ./F(a>f''rl = ωχ) is true (that is, if there exists a
point 77 e Jf satisfying the equality tofw = Wj), then the assertions 3[001, I], 3[010, I],
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3[211, I], 3[010, I]*, 3[211, I]*, 3[010, I ] + and 3[211, III] + are also true; that is, the

required sieves exist.

THEOREM A2. If at least one of the assertions 3[200, IV], 3[200, IV]* or 3[200, IV] + is

true, then the proposition 3 π e ^"(wf'"' = ω ^ « α/so

THEOREM Bl. // the proposition 3 π e JV(JVQ L[K\) is true, then the assertion

3[211,1]+ also holds.

THEOREM B2. If the assertion 3[201, I I ] + holds, then the proposition 3 77 e Jf{Jfc^ L[-n\)

is true.

THEOREM C. The propositions 3[111, IV], 3[101, IV]*, W 3[101, IV] + are false; that is,

no sieve satisfying the requirements of any of these assertions exists.

The entire remaining part of the paper consists of the proof of these theorems. In the

following fourth section, after some remarks having to do with different hierarchies, we

shall formulate and prove two propositions about sieves, one of which shows the

connection between the class of a sieve and the class of its cross-section function, while the

meaning of the second is that Borel sieves do not yield anything new with respect to the

properties of constituents under consideration, in comparison with open sieves. After this,

we shall prove Theorems Al and Bl in §5, using the apparatus of constructible sets

together with some rather subtle constructions (in particular, we shall use a method

introduced by Hausdorff and Luzin for partitioning the continuum into S x nonempty sets

of the class Π") . The following section, §6, includes definitions and some simple facts

concerning the encoding of Borel sets, as well as a proof, based upon a result of Louveau,

of a theorem on IlJ-expression for separability. In the first appoximation, this theorem

then opens up the possibility of expressing the fact of II°+p-separation (where ρ < ω1 is

given) of two Ej-sets by means of a IlJ-formula, containing as variables parameters from

J/~ occurring in the definitions of the given sets. In §7 we shall prove two key lemmas on

separation, which will provide a procedure for proving Theorems A2, B2, and C. The

proofs themselves of these theorems are located in the last two sections.

§4. Reference information and some auxiliary propositions

about the projective hierarchy, analytic formulas, and sieves

All the main set-theoretic definitions and notation will be taken from [19]. Below, we

shall denote points of Baire space JT by the letters a, β, γ, δ, ε, 77 only, while ordinals

(that is, natural numbers and transfinite ordinals) will be denoted by the letters ξ, η, μ, ρ,

ρ, λ, κ. As usual, ω^ will denote the £th infinite cardinal (ω 0 = ω).

By a transitive model of ZFC we shall mean any transitive set or proper class which

satisfies all the axioms of ZFC. If Μ is such a model and ξ e Μ is an ordinal, then by ω™

we shall denote the £th infinite cardinal in M.

We shall use the standard notation Σ£, Π° and Δ°£ (where 1 *ς £ < ωχ) for Borel classes

and the standard notation Σ*, Π* and Δ1,, (where n e ω) for projective classes. We shall

also use the notation Σ*1", Υί];π and Δ1^" (where IT e ^V) for the effective subclasses of the

corresponding projective classes Σ*, Π], and Δ1,,. Definitions and elementary information

about these classes may be found in [19b] and [23], Chapter 7.

For definitions of projective sets lying in spaces of the form JVm X u>k (m, k e ω), it is

convenient to use formulas of the language of second-order arithmetic. This language

contains two types of variables: variables ranging over ω (denoted by the letters /, j , k, I,

m) and variables ranging over J/~ (the letters α, β, γ, δ, ε, π). Elementary formulas are
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those of the form k + / = m, kl = m, k = I, and a(k) = I. Formulas of this language are
said to be analytic, and, if an analytic formula does not contain bound variables over Jf,
then it is called arithmetic.

The collection of 1\-formulas (where η ^ 1) is to contain all analytic formulas of the
form 3ax Va2Ba3 · · · Οαηφ, where ψ is an arithmetic formula, and the symbol D denotes
the quantifier V for even η and Ξ for odd n. The collection of analytic H\-formulas is
introduced in exactly the same way, except that the left-most quantifier must be the
quantifier V and the value of D must change accordingly.

In a somewhat wider sense, by a 2j,-formula we shall mean any analytic formula for
which one can construct an equivalent 2j,-formula in the sense of the strict definition just
given. The construction of equivalent formulas can be carried out with the help of the
well-known devices for transforming analytic formulas (see [23], Chapter 7). For example,
if φ(α), ψ(α), and Φ(ε, α) are 2}-formulas and Ψ(ε, α) is a II}-formula, then the formula

Ξενα((φ(α) -> *(ε,α)) Λ(ψ(α) -+ -πΦ(ε,α)))

will be considered a Sj-formula. We shall interpret in a similarly wide sense the concept
of a Π \-formula.

Among projective classes, their effective subclasses, and the corresponding classes of
analytic formulas, there is the following simple connection. If η > 1 and π e JV, then the
class 2j," consists precisely of those sets of the spaces of the form / " Χ ω * which can be
defined by Σ^-formulas not containing parameters in JV other than the parameter π.

Analytic formulas of the second level obey the following remarkable proposition (for a
proof, see [19c], p. 305).

THE SHOENFIELD ABSOLUTENESS PRINCIPLE. Let Μ be a transitive model of ZFC
containing all countable ordinals, and let ψ be a closed ^.-formula or Yll

2-formula with

parameters from M. Then φ is absolute for M; that is, the truth of the formula in the

universe of all sets implies its truth in M, and conversely.

Analytic formulas are not entirely suitable for the description of sets arising in the
course of transfinite constructions. Here it is more advantageous to use formulas of the
set-theoretic e-language. The definition of the classes of Σ η-formulas and Π,,-formulas
of this language may be found in [19], Chapter 5, §4; moreover, we shall sometimes
interpret such formulas in an extended sense, analogous to that presented above for
2j,-formulas.

If Ρ c X is an arbitrary set, then Σ*(Ρ) will be understood to denote the collection of
all sets Υ c X which can be defined in X by means of Σ,,-formulas with parameters from
P. Similar meaning is to be given to the notation n*(P) and Δχ

η(Ρ) = Σ*(Ρ) Π Π*(/>).
In the important special cases where Ρ = 0 or Ρ = X, we shall write Σ ^ and Ση(Χ),
respectively, instead of Σ*(Ρ), and likewise for Π and Δ.

Analytic definability is connected with G -definability in the set HC of all hereditarily
countable sets. (By hereditarily countable sets we mean sets whose transitive closures are at
most countable.) The connection is given by the following well-known lemma, which is
proved, for example, in [19c], §9.

TRANSLATION LEMMA. Assume η > 1, ττ e Jf, and X c jV. Then X e Σ"α({ π}) ;/and
only if X e Σ ^ 1 ( and similarly for Π and A classes.

Now a few words about cross-section functions of sieves. It is clear that the elements Cq

of any given sieve C = (Cq: q e Q) are uniquely determined if we are given the
cross-section function of the sieve C; that is, the function which associates with each point
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a e JV the corresponding cross-section C/a = { ^ e Q : a e C ( } ( m fact, Cq = {a e ̂ /F:
q e C/α} for any index q). Below, we shall construct and analyze sieves that are given, as
a rule, by means of their cross-section functions, and not in the form of an indexed set of
elements as in §1. Keeping this in mind, we now formulate a proposition that connects the
class of a sieve (in the sense of §1) with the class of its cross-section function, mapping Jf
into the space ^(Q) of all subsets of Q. Before stating it, let us agree on the following.
First, the topology of ^(Q) is the topology of the Cantor discontinuum, the subbase of
which consists of all sets of the form { g c Q : q ^ Q} (where q e Q) and the comple-
ments of such sets. Second, a function F, mapping JV into ^(Q) is said to be Borel (or,
in general, a function of some class Κ) if its graph (as a set of pairs lying in the product

is a Borel set (or, respectively, a set of the class K).

PROPOSITION 1. To continuous cross-section functions correspond clopen {open-closed)

sieves; that is, sieves with elements that are clopen in Jf. More precisely, a sieve is clopen if

and only if its cross-section function is continuous.

To Borel cross-section functions correspond Borel sieves. Finally, sieves of the class Δχ

2

correspond to cross-section functions of the class £^C

The assertion is perfectly obvious for continuous functions and clopen seives. Let us

consider Borel functions and sieves. If a sieve C = (Cq: q e Q) is Borel (this means that

all the sets Cq are Borel), then the cross-section function α -> C/a is also Borel, since

Q = C/a <-> Vq e Q(q e Q <H> « e Cq).

Conversely, if the cross-section function of a sieve C is Borel, then each of the elements Cq

of this sieve will also be a Borel set, since

C,= { α : 3 β ( β = Ο / α Λ ? ε β ) } = {a: VQ(Q = C/a -> q e Q)}.

Just such an argument (plus the Translation Lemma) enables us also to prove that sieves
of the class A*2 correspond to cross-section functions of the class t^c{^V).

To conclude this section, we state a proposition whose general meaning is that Borel
sieves do not give us anything fundamentally new, in comparison with open sieves, as to
the realization of the properties of constituents dealt with in §2.

PROPOSITION 2. Let the letters i, j , ρ and τ assume any of the values indicated in §2.

Then the existence of a sieve satisfying the requirements [lij, p]T implies the existence of a

sieve satisfying [Oij, p]T.

We shall present the proof only for the cases in which this proposition is used in the
present paper (see §5.2); that is, for the cases where ρ = I and either / = 1 and j = 0 or,
conversely, / = 0 and 7 = 1.

So, assume the sieve C satisfies the requirements [lij, p]T, and, in particular, is Borel.
According to Proposition 1, the graph Ρ of the cross-section function of the sieve is a
Borel set in the space Jfy. ^(Q). From a classical theorem of descriptive set theory (see
[2], Chapter II (= [9], p. 108) or [17], Chapter II, §31.11), the set P, after deletion of an at
most countable subset, turns out to be a continuous one-to-one image of the Baire space.
In other words, there exists a set P' c Ρ such that the difference D = Ρ - Ρ' is at most
countable and there is a continuous one-to-one mapping F of Jf onto P'.

If β &JV and F(y3) = (a,Q) e P', then we define G(j8) = a and S/β = Q. The
function β -» S/β (from Jf into ^(Q)) is continuous, and the function G: JV^> JV is
one-to-one and also continuous, where the full image of G is obtained by removing from



502 V. G. KANOVEI

Jf an at most countable set X = {a: (a,C/a) ε ΰ ) . Finally, it is obvious that
S/β = C/G(/}) for any point β. From everything that has been said, it follows that the
sieve S given by its cross-section function β ·-> S/β is open (and even clopen, by
Proposition 1). Moreover, for any index ν < ω1, the equations

[ S ] , = G- 1 M ([C], - X), [ S ] , , = G-i'ilS]., - X)

hold. Thus, since X is countable and G is one-to-one, if the sieve C satisfies the
requirements [101, I]T (for any fixed τ), then the sieve S satisfies the requirements
[001,1]T, which is what we need.

In the case where / = 1 and j = 0, the indicated construction may not give the required
result, since some of the constituents of type τ of the sieve S may turn out to be empty
(when all points of the corresponding constituent of the sieve C belong to the deleted set
X). Therefore, the construction becomes somewhat more complicated. We divide the
space Jf into clopen Baire intervals Um= {β: β(0) = m) (where m e ω). The set Uo is
homeomorphic to the whole space Jf, and, therefore, the construction of functions S and
G can be performed so that they are defined only on Uo, and not on all of Jf. In addition,
since the set X is at most countable, let X = [alt a2,...}. We introduce a new cross-sec-
tion function S', setting

ΙΞ/β
Ξ'/β=Ι

/P \ C/am when β e Um and m > 1.

This function is continuous together with S, and the corresponding sieve is open. In
addition, the requirements contained in the values / = 1 and j = 0 of the letters / and j
go over (for ρ = I and arbitrary τ) from the sieve C to the sieve S".

§5. Proof of Theorems Al and Bl; construction

of sieves with the help of the apparatus of constructible sets

The assertions about the existence of sieves that occur in the indicated theorems divide
up, from the point of view of their methods of construction, into three groups (where the
third entirely consists of one assertion). Let us consider these groups in turn, beginning
with the easiest.

5.1. Construction of sieves satisfying requirements [211, I ] + , [211, I], and [211, I]*. The

proposed construction is based on the following fact of the theory of construcible sets: if
π e JT, then there exists a well-ordering < v of the set HC[w] = HC η L[-n] (= L^Jw]),
satisfying the "bounded quantifier lemma": if a set P c HC[w]3 belongs to the class
A?ctwl({>}), then the set

{(y,z) e HCM2: V* <wy((x, y,z) e P)}
also has class A?q>rl({ir}); see [19c], §8.

We begin with the construction of a sieve of the form [211,1]+ (that is, a sieve C of class
Δ^ such that any of the constituents [C]p and [C]*,, where ν < ω1; contains exactly one
point) under the assumption that there exists a point m e Jf satisfying JVC, L[TT]. This
will yield a proof of Theorem Bl.

We partition the space Jf into two sets X = {a e Ji: a(0) = 0} and X* = Jf— X.
For every ordinal ν < ω1( we denote by av and <*„,„ the i>th (with respect to the order
< m) points of the sets X and Χφ, respectively. By Qv we denote the < ^-least of the

well-ordered sets Q c Q of order type v. Finally, by Q * „ we denote the < w-least of the
sets Q c Q which are not well-ordered but have maximal well-ordered initial segments of
type v. The sequences of points av, α*ν and sets Qv, Q*v have class 2"C({TT}); for
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example,

α = ap «-» 3/(/ is a function Λ dom/= ν + \ /\ f(v) = α Λ

AVj8 < Μμ)(β ^Χ^βε {/(ξ): ξ < μ}))),

and the required result is yielded by the bounded quantifier lemma.
We give the required sieve C by means of its cross-section function, setting C/ap = Qv

and C/a.*v = Q + p for all ν < ων By what was said above about the sequences of points
<*„ and a*,, and of sets {?„ and β*,, this cross-section function will belong to the class
2X

HC({•π}), since

Q=C/a~3 v((a = ar A Q = Qr) V(a = «„„ Λ Q = Qm,)),

and, therefore, it also belongs to the class Δ"α({ π}), since

Q = C/a~ VQ'(Q> = C/a-*Q= Q').

Hence, the sieve C has class Δχ

2 by Proposition 1 of §4. Finally, it is clear that
[C]r= {<*„} and [C]+, = {a*,,} for any ν < ων Thus, the sieve C that we have
constructed satisfies the requirements [211,1]+.

Now let us turn to the construction of sieves of the forms [211, I] and [211, I]*. In
accordance with the hypothesis of Theorem Al, assume that we have a point π e Jf such
that ω\[7r] = ω1. It is known that the existence of such a point implies the existence of an
uncountable set I c / of class Tl\·" which does not have perfect subsets; see [25], [27],
or [19c], §11. All points of this set must belong to L[w] (see [19c], §16.7). Hence, by the
absoluteness principle of §4, one can conclude that X e L[v] and X e Π}" in L[v}. We
claim now that I e A f ( { i } ) and l e i f 1 ' 1 ^ } ) . The first relation is obtained
immediately by the Translation Lemma of §4, and for the proof of the second it suffices to
apply the same lemma, because the hypothesis cof[π1 = ο>1 implies the equality

HC[ w] = { x e L [ w ] : i t i s true in L [ m ] that χ is hereditarily countable}.

For every ν < ω1, we denote by a,, the »<th point of the set X, in the sense of the
ordering < w. Arguing as in the preceding construction and taking into account the fact
that l e A"ci*'({ir)), one can show that the sequence {av: ν < ωλ) has class
2Ηα["1({ 77·}). Let us verify that this sequence also belongs to the class 2"c({77}). Assume

a = av~ 3/e HC[v]fp(a,v,f),

where φ is a A0-formula (that is, it does not have unbounded quantifiers; see [19a], p. 408)
with the parameter tr. We have

a = a, <-> 3 / e H C ( / e HC[TT] Λ φ(α,

This yields the required fact about the class of the sequence of points av, since
HQTT] e ~Z?c({m}) (see [19c], p. 300).

By precisely the same kind of arguments, one can verify that the sequence, defined
above, of sets Qv (ν < ωγ) has class 2" c({ 77}). Therefore (see the construction above of a
sieve of the form [211, I]+) the sieve C, whose cross-section function is given by the
conditions C/av = Qv for ν < ωλ and C/a = Q for α <£ X, will have class Ax

2. Moreover,
it is obvious that [C]v = {ap} for any index v; that is, the sieve C satisfies the
requirements [211,1].
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One constructs a sieve of the form [211,1]* in exactly the same way: it is only necessary

to define C/av = Q*v and C/a = 0 for α £ X.

5.2. Construction of sieves of the forms [001, I], [010, I], [010, I]* and [010, I ] + . By

Proposition 2 of §4, one can limit oneself to the construction of Borel sieves with the

necessary properties of constituents; that is, sieves of the forms [101, I], [110, I], [110, I]*

and [110, I ] + . Keeping in mind the hypothesis of Theorem Al, we fix a point π e Jf

satisfying tof'"1 = ων

Let us denote by Τ the theory containing all axioms of ZFC except the power-set

axiom, and also the axiom V = L[TT] and the axiom that every set is at most countable. By

a T-model we shall mean any transitive set that satisfies all axioms of Τ (and, naturally,

contains IT). The set HC[w] = LUi[n] forms a natural Γ-model (here it is important that

wfM = W l ) . i n addition, there exist uncountably many ordinals ν < ω : such that the set

LV[TT] is a Γ-model. For £ < ω ΐ 5 we shall denote by v^ the £th such ordinal (in increasing

order), and let us set Γ = [v^. ξ < ω χ}.

For every limit index ξ, we define μ ? = sup m e < J f i + m and we denote by Ξ the set of all

such ordinals μζ. We shall construct a sieve C of the form [101,1] such that, for μ e Ξ, the

constituent [C]^ will contain exactly one point, and all the remaining external constituents

will be empty.

Let α e Jf, and define

M[a] = ω υ { ω + k: a(2k) = 1};

e « = {(ij)- ' e 7 ' e " } υ { ( ; , ω + k): a(4(2 ' · 3*) + l) = l }

υ { ( ω + k,u + / ) : a(4(2 ' · 3*) + 3) = l } .

We wish to consider sets of the form M[a] (with the corresponding relations e a , which

are understood to be present everywhere below, but are not explicitly mentioned) as

(nonstandard) models of the theory T. Here a certain inconvenience arises, connected with

the fact that the sets M[a] clearly do not formally contain, say, the points of Jf.

However, if the ordinal i) = ω + λ e Λί[α] is such that it is true in Μ [a] that "η is a

function from ω into ω", then one can assume that the point β e Jf given by the

condition "/J(/t) = / when (k, l) e η is true in M[a]" actually belongs to M[a\. In this

case, we remove the ordinal η from Μ [a] and insert instead the indicated point β,

changing the relation e a in the appropriate way. One can deal in similar fashion with the

case where η is a rational number or a set consisting of rational numbers in M[a]. In

what follows, we understand by Μ [a] and e a (for a given point a) the result of such

reconstructions, carried out for all TJ of M[a] that represent in M[a] points of Jf,

rational numbers, and sets of rational numbers.

We shall say that a point α is a π-model point if w e Μ [a], all axioms of Τ hold in

M[a], and the natural number sequence of M[a] coincides with the "genuine" set of

natural numbers ω. By a -n-model we mean a structure M[a] (with relation e a ) such that

α is a 7r-model point. Every ττ-model M[a] has an "internal" well-ordering ( < , 7 ) Λ / [ α 1 ,

which we shall denote by < TO and which may or may not be a well-ordering from the

"external" point of view. If, however, < πα actually well-orders M[a] (in such a case the

π-model Μ [α] will be said to be grounded), then there exists a unique ordinal ν e Γ such

that the model M[a] is isomorphic to the Γ-model Lv[-n]; moreover, the corresponding

isomorphism (which is also unique) transforms < πα into the relation < π \ £,,[π]. Let us
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consider the set

W = {a e */F: Vm[(a) m is a ir-model point A(a)m e At[(a)m + 1] A

(the following two propositions are true in Μ [(α) TO+ J :

1) there exists a largest transitive T-model and this model is isomorphic

t o M [ ( a ) J , a n d

2) (a) m is constructible relative to π, and there is no point /?s e JV such

that β < n(a)m and the model Μ[β] is isomorphic to Af[(a)m])] Λ

(it is true in Μ [(α)0] that there is no largest transitive Γ-model)}.

(In this definition, we denote, as usual, by (a)m the point of JV satisfying for each k the
equality (a)m(k) = a(2m(2k + 1) - 1).)

Let us take a point a e W. For every natural number m, reasoning in M[(a)m + 1], we
denote by Qm the < ,,-least well-ordered (in M[(a)m + 1]) subset Q of the interval
[m, m + 1) such that Q c Q, Q e M[(a)m+1], and the 77-model M[(a)m] is isomorphic
to the set L^ir] (where we denote by μ the order type of Q in the model M[(a)m + 1]).
Finally, we set S/a = U m e i o g m .

We specify the sieve S by defining its cross-section function α >-» S/a as indicated
above for a e W, while for « i If we set S/a = Q. The truth of any formulas in the
model Μ [β] can be expressed by arithmetic formulas with the variable β. Therefore, the
set W and the mapping α ·-» S/a from Jf into ^(Q) are Borel. By Proposition 1 of §4,
this implies that our sieve S is Borel.

Now we come to the analysis of the constituents [S]v. It is not difficult to verify the
following. Assume a point α e W is such that all the ττ-models M[(a)m] are grounded.
Then there exists a unique limit index ξ < ωχ such that, for any m, the model M[(a)m] is
isomorphic to Lv + [IT]. In that case, for any m, the point (a)m coincides with the
< ^-least point β satisfying the condition that Lv [77] and Μ[β] be isomorphic; that is,

there is a one-to-one correspondence between points of W of the indicated form and the
ordinals which occupy limit positions in Γ. Finally, in this case, the set S/a c Q has
order type μ^.

If at least one of the 77-models M[(a)m] is not grounded, then it is evident that the set
S/a cannot be well-ordered. If, in general, α £ W, then, by our construction, S/a = JV
is again not a well-ordered set.

Taking into account what has been said, we see that, for any ordinal μ = μζ e Ξ, the
constituent [5"]μ contains a unique point, namely, that point α which corresponds, in the
sense indicated above, to the ordinal νζ e Γ. But all the constituents [S]v with ν <£ Ξ will
be empty sets. Thus, all the conditions of [101, I] hold for the sieve 5 that has been
constructed, which is what was required.

For the construction of a sieve satisfying [110, I], we make a small change in the
construction just carried out so that every constituent [S]v with index c i Ξ will turn out
to be nonempty. We note that the sets g c Q can be indexed by subscripts γ e ^V in
such a way that every Q c Q receives at least one index and the mapping γ >-» Qy is
continuous (see the proof of Theorem 1 in §6). Let us consider the (Borel, like W) set

U = {a € W: the point (a)0 is a 77-model point A(a)l e Λ/[(α)0]
Λ (it is true in Μ [(a)0] that Q(a) is not order-isomorphic

to any ordinal of the collection Ξ)}.
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For α e U, we set S/a = Q(a)i- It is obvious that for α e U the set S/a cannot be
well-ordered with an order type from Ξ, while, at the same time, for any ordinal ν e Ξ
there exists a point α e U such that the order type of S/a is equal to v. Hence, keeping
the definition of S/a for α e W from the preceding construction and defining S/a = JV
for all points a £ W U U, we obtain a Borel sieve S such that all constituents [5]μ are
nonempty and uncountably many of them are singletons (all those corresponding to
indices μ e Ξ); that is, a sieve satisfying the requirements [110,1].

Making obvious minor changes in this construction, one can also construct (assuming,
as before, that ω{1π] = ωχ) sieves of the forms [110, I]* and [110, I] + . We will not carry
out these constructions here.

5.3. Construction of a sieve satisfying [211, III]+. This construction is based on a
construction, first carried out by Hausdorff in [33] and then perfected by Luzin in [8], that
gives a (noneffective) decomposition of the continuum into S x nonempty Borel sets of
bounded order. This construction consists in the following. With the help of the axiom of
choice, one can construct two transfinite sequences (*„: ν < ωλ) and (y/. ν < ωχ) of sets
xv, yv £ ω, possessing the following properties:

1) If ν < μ, then the differences xv - χμ and yv — yfl are finite, while the reverse
differences χμ — xv and γμ - yv are infinite.

2) For any ν < ω^ the intersection xv η yv is finite.
3) There does not exist any set ζ c ω such that all the differences xv — ζ and all the

intersections yv η ζ are finite.
The nature of the construction of these sequences is such that, under the assumption

<of["' = toj, by choosing at each step ν < ωι the pair (xv, yv) to be the < ^-least of the
pairs (x, y) which are related in a certain way (see the cited papers) to the already
constructed sequences (χ μ : μ < ν) and (^μ: μ < ν), one can ensure the fulfillment of
another condition:

4) The sequences (xv: ν < Wj) and {yv: ν < ωχ) belong to the class Sfc({w}).
Having sequences with properties l)-4), we define

Yv= ( α e Jf: at least one of the sets xv+l - \a
o r y*+1 η ΙαI i s infinite, where \a\ = {m: a(m) = 0}}

for every ν < ωχ. By properties 1) and 2), the sets Yv increase with increasing v; moreover,
every Yv is strictly bigger than Όμ<νΥμ (for example, by using the characteristic function
of the set xr). Thanks to property 3), the union of the sets Yv coincides with the whole
space JT. In addition, it is not difficult to verify that every Yv has class Π° (that is, Gs).
Thus, we have obtained a partition of the space JV into Sj nonempty Borel up-
sets—namely, the sets Zv = Υν — Όμ<ν Υμ. This is the content of Hausdorffs construc-
tion.

Let us observe that every set Zv contains both points α with a(0) = 0 and points α with
a(0) > 0, since, in general, membership of α in a fixed Zv is unchanged by changing
finitely many values of a. Therefore, for ν < ων the sets

i , = { « 6 Z , : « ( 0 ) = 0}, X*V = ZV-XV

are nonempty, and all these sets belong to Π \ by preceding results.
Choosing sets Qv, QHv c Q for each ν < ωι as indicated in §5.1 (so, both sequences of

sets belong to the class Σ^€({π}); see §5.1), we introduce a sieve C by specifying its
cross-section function by the equalities C/a = Qv for α e Xv and C/a = Q*v for
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α ε I, , , . By arguing as in §5.1, one can show that C is a sieve of class Δ^. In addition, it
is obvious that [C]v = Xv and [C]mu = X*v for all ν < ωχ; that is, all external and
internal constituents of C are nonempty sets of class 11° (and, therefore, of order at most
4, since Π3 c Δ 4). Thus, the sieve that has been constructed satisfies the requirements
[211, III]+.

§6. Borel codes and a theorem on Π {-expression for separation

This section begins the proof of Theorems A2, B2, and C of §3. The principal task to be
carried out here consists in the effective separation (under certain conditions) of two sets
of the Baire space Jf, about which it is known that they can be separated by means of a
Borel set of a given order. We shall turn directly to that task in the next section. This
section contains only the definition and exposition of the elementary properties of
encodings of Borel sets, as well as the proof of a theorem on n}-expression for separation
that will be very important in what follows. This proof uses an effective separation
theorem of Louveau [32]. We note that the theorem on Il}-expression enables us here to
avoid using the principle of Borel determinacy [29], which played an essential role in the
author's preceding paper [22] devoted to the Luzin problems.

However, let us proceed to the subject of the present section. The idea of encoding the
construction of a Borel set by means of grounded trees is well known, and it is only
necessary to agree on the method of obtaining the initial sets and on the form of the
intermediate operations. We shall use here almost without change the realization of this
idea which was introduced in [22], in which one takes as a basis the operation of
complementation of a countable union.

For every ordinal λ, we denote by Seqx the set of all finite sequences of ordinals less
than λ (including the finite sequence Λ of length 0). We set Seq = υ λ ε θ Γ <ι^ες λ (as usual,
Ord is the class of all ordinals). The expression u c ν means that the finite sequence ν is a
proper extension of the finite sequence u. If u e Seq and £ e Ord, then we agree to
denote by ξ Au and u A£ the finite sequences obtained by attaching the term ξ to the left
or the right, respectively, of the terms of the finite sequence u. By a tree we mean any
nonempty set Τ c Seq that possesses the property that, for u e Seq and ν e T, u e Τ
follows from u c v. We say that a tree Τ is grounded if there is no infinite path
«0 c u, c «2 c ·•· consisting of finite sequences uk e T. In such a case, to each u e Τ
one can assign a unique ordinal \u\T so that

\u\T= sup ( M r + 1).

Let us define \T\ = \K\T (the height of the tree T), and let us denote by sup Γ the least
ordinal λ such that Τ c Seqx.

By a Borel code we mean any pair (T, d) consisting of a grounded tree Τ c Seq and
any set d c Tx Seq ,̂. If (T, d) is such a pair, then to every finite sequence u <= Τ we
can associate, by induction on \u\T, a set [T, d,u]CjV by means of the following system
of equalities:

[7\</,u] = -, U -K f o r | « | r = 0 ,
(u,w) ed
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where Jfw = {α e JT: w c a} is a Baire interval for every finite sequence w e Seq^, and
the symbol —, denotes the complementation operation, that is, —,Χ = Jf— X;

[T,d,u] = -, U [T,d,uA£] f o r | « | r > l .

We also define [T, d] = [T, d, Λ] (the finite sequence Λ belongs to any tree T).
It is obvious that, if sup Γ < ωχ (in general, if the tree Τ is at most countable), then

[T, d] is a Borel set of class Π°+ |Γ |. The converse is also true, where, for the construction
of all IIf+p-sets in the form [T, d], one can (for a fixed ρ < ω^ restrict oneself entirely to
one tree Tp, varying only the sets d. The trees Tp are given by a very simple construction
by induction on p. Namely, To = {Λ}, and, if ρ Js 1 and all the trees T£ with indices
ξ < ρ have already been constructed, then

Tp = {Λ} υ{(ωξ + λ:)Λκ: ξ < ρ Λ λ: e ω Λ κ e Γ{}.

The reader will have no difficulty in proving the following lemma:

LEMMA 1. Assume ρ < ων Then Tp is a grounded tree satisfying \Tp\ — ρ and supTp = ωρ.

In addition, for every TL°+p-set X C jV, there is a set d C Tp X Seq^, such that X = [Tp, d\.

Before stating another lemma which will be needed in §7, we associate with every pair
m e JV, ρ e Ord the collection Kpn of all Borel codes (T,d) e L[w] such that sup Γ <
ωρ

[π] and \T\ < p, and by [Κρπ] we denote the family of all sets of the form [T, d], where
(T, d) is a code in Kpv. The author found the idea of the following lemma in a paper by
Stern [30].

LEMMA 2. Assume that ρ e Ord, π e jV, (T,d) e L[w] is a Borel code, and \T\ < p.

PROOF. Reasoning in L[ir], we construct from every code (T,d) e L[w] another code
(Γ ' , d') e ΛΓ|7> such that in the universe of all sets the equality [T1, d'\ = [T, d] holds.
The construction is carried out by induction on \T\. If |Γ| = 0, then Τ = {Λ} and we
simply take (T',d') = (T,d).

Now we construct (T',d') for a code (T,d), assuming that ρ = \T\ > 0 and that the
required construction already has been carried out for all codes with trees of height < p.
We set U = {ξ e Ord: (ξ) e Τ) ((ξ) is the finite sequence with a single element ξ), and

Τξ= {u: | A « e T), d { = {(u,w): (^u,w) e rf}

for every ξ e i/. It is clear that |T |̂ < ρ for any ξ e i/, and so for every £ e t/ the code
(Tt',d$ of the collection K<p^ = U x < p ATXw such that [Γ{) J£] = [Γ/, ί/|] is already
constructed. However, the collection Κ<ρπ has cardinality κ = ω^1"1 in L[v]; that is,
there exists a function / e L[TT], /: κ —> Κ< , such that the family of all codes of the
form ( Τ/{η), d'j(n)j (where TJ < κ) exactly coincides with the family of all code
(ξ e U). Now, defining

T'= {Λ} υ { η Λ

Μ : 7,<κΛ we Γ/,,};

rf' = {(τ)Λι/,νν): τ, < κ Λ (u.w) e ί/;(Ι|)},

we obtain (Τ',ά') ^ Κρπ and, in addition,

[r.d'] = -. U [^,,,^,,Ι = -π U [rt,rff] = [r.rf].

This concludes the proof of Lemma 2.
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Borel codes will occur below in many calculations. In particular, they occur in the proof

of the following theorem about a Il}-expression for the concept of separation of E}-sets.

Before stating it, let us say that a set Xx c Jf is H.x + p-separable from X2<^JV (where

ρ < ωχ) if there exists a set Ζ c ^ of class Π ° + ρ such that Xx c Ζ and X2 η Ζ = 0 .

THEOREM 1. Let φ^β,α) and ψ2(β,ά) be a pair of ^-formulas with parameters from

some transitive model Μ of the theory ZFC, and let ρ < ω^. Then there exists a Yl\-formula

θ(β) with parameters from Μ such that, in any transitive model of ZFC that is an extension

of Μ {in particular, in Μ itself and in the universe of all sets), the following is true:

VyS e^T(6»(y8) <-> the set {a e / : φχ{β,α)} is

Hx + p-separable from the set {α: ψ2(β,α))).

We begin the proof of this theorem with some definitions connected with the formula-

tion of a result from [32]. In what follows, a fixed recursive enumeration Q = {qk:

k e ω} of the set Q of all rational numbers is presupposed. We introduce the collection

WO of all points y e / such that the set Qy = {qk: y(k) = 0} is well-ordered. For

γ e WO, we denote by οιρ(γ) the order type of the set Qy, and we set WOV = {γ e WO:

otp(y) = v) when ν < ccx. We regard points of WOV as codes of ordinal v.

Let us fix a point γ e WOap. By means of γ, we associate with each natural number k

of the set Qy the ordinal £k that is equal to the order type of the set {q e Qy: q < qk);

here, the equality {£,k: k e Qy] = {ξ: ξ < ωρ) holds.

We also fix a recursive (and, in particular, a member of M) enumeration Seq ĵ = {wn:

η G ω} of the set Seq^ such that w0 = Λ. If the finite sequence wn corresponding to a

given index η is made up only of numbers in Qy, then we denote by un the finite sequence

obtained from wn by replacing each of its terms k by the corresponding ordinal £k. For

any other n, we define wn = A. Then, u0 = Λ and {«„: η e ω} = Seq^.

In order to make the notation less cumbersome, let us agree in what follows to assume

that the formulas <px and φ 2 in the hypothesis of the theorem contain just one parameter

i r e M n Jf. Without restricting generality, one may assume that the point γ and the sets

S = {m:um^Tp}, S o = {m^S:\um\Tf = 0}, S1 = S - So,

S2 = [T • 3m • 5k: u, = um

A ik), S3 = {2" · 3' · 5 H - ( l ) : η e ω A i < domwn)

are all recursive relative to 77. Under this assumption, all of the following reasoning does

not depend upon the specific choice of the point γ e WOup, in view of which we shall

write the index ρ instead of γ in the following definition. If ε e JV, then we set

(thus, dp7re ^TpX Seq J and Wpnc = [Tp, dp^]. By Lemma 1, the family of all sets of the

form Wpnc, where ε e JT, exactly coincides with the class of all II°+p-sets of the space JV.

The idea of [32] consists in taking not all, but only hyperarithmetic points ε. More

precisely, for any β e JT, we introduce the collection ITf"^ of all sets of the form Wpnt,

where ε e Jf is a point of class Δ1^·β.

THEOREM 2 (effective separation theorem [32]). Assume that β e Jf and Xx, X2 c Jf is

a pair of disjoint sets of class Sj 7 7 '^ such that the first is Ylx + p-separable from the second.

Then Xx can be separated from X2 by a set of class IIf+^.
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In order to use this theorem (which is accepted here without proof) in the proof of
Theorem 1, we construct a 2j-formula Φ(ε,α) and a Il}-formula Φ(ε,α), both with
parameters from Μ (actually, with the single parameter π) such that, in any model of
ZFC which is an extension of M,

VeVa(a e W^t ~ Φ(ε,α) <-> Ψ(ε,α)).

As Φ (ε, α) one can take the formula

3g: ω^ {0,l}(g(0) = 1 Λ [v»i e So(g(m) = 1 ~ V«(e(2m • 3") = 0 -+ α € ^ W J )

AVm e ^ ( m ) = 1 ~ VA:V/ e 5(«,. = um
A£k - g(,) = 0))]).

(The sets S, So, Sx, are defined above; the meaning of the formula in square brackets
consists in the fact that

Of course, the proposed formula, as it is written, is not only not a Ej-formula but not even
an analytic formula. However, it is not hard to transform it into an equivalent formula of
the required form, using the characteristic functions of the sets S, So, Slr S2, and S3 (the
last set is used to express the relation a £ Jf by means of the formula 3 / <
domtv>(0 Φ wn(i))).

As Ψ(ε, a) one can take the formula Vg: ω -» {0,1} ( [ · · · ] -» g(0) = 1), transformed
in a similar manner, where, in the square brackets, we put the same expression as in Φ.

To complete the proof of Theorem 1, we denote by θ (β) the formula

Bee Α\ΐ^α((Ψι(β,α) - Ψ(ε,α)) Λ(φ2(β,α) -» -,Φ(β,α))).

By Theorem 2, this formula does, in fact, express separation in the required way (see the
hypothesis of Theorem 1). Furthermore, the expression inside the outer parentheses is a
II}-formula with parameters from M, by virtue of the way the formulas φ1 ( <ρ2, Φ, and Ψ
were chosen. The quantifier Va does not alter this class. Finally, it is known that a
quantifier 3 ε e Δ\, applied to a IlJ-formula, yields a formula of the same class and with
the same set of parameters (see, for example, [19c], p. 288).

§7. Separation of sets of class Σχ(HC)

Constituents determined by sieves of a class not higher than Δ:

2 (and only such sieves
are considered in the present paper) are sets of class Σ 2 (see §8), and, therefore, also of
class 2j(HC) by the Translation Lemma of §4. In this connection, it is necessary to carry
out an investigation of the phenomenon of separation of sets of the indicated class by
means of Borel sets of a fixed order. This is the aim of the present section. The first
lemma, however, is not directly connected with separation. Before stating it, for any triple
π e Jf, ρ e Ord, and X c jV, we denote by (X)pv the intersection of all sets of the
collection [K^J (see §6) which include X. It is clear that X c (Χ)ρπ.

LEMMA 3. In the situation just described, if ω^1"1 < ωχ and X e Σ^€(ω1 U {π}), then

PROOF. Let us show that the family Kpv(X) of all codes (T,d) e Κρπ such that
X c [T, d] belongs to the class L[m]. The lemma is easily obtained from this. In L[w\, let
us index the indicated family: Κρπ(Χ) = {(Τ^, d^)\ ξ < κ}, where κ is some ordinal. By
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definition of Kp7r, every tree Γ£ satisfies the inequality |7^| < p. In this situation, reasoning
in Σ[π], we can easily construct from the codes ( r { , d^) a Borel code (T,d) e L[TT] such
that \T\ < ρ and [T, d] = n { < . [ r t , d(]; that is, [Γ, </] = (X)pw. However, [Γ, rf] e [tfpfr]
by Lemma 2 of §6, which is what we required.

Beginning the proof of the relation Kpw(X) e L[IT], we assume, to make it less
cumbersome, that the Σ formula which defines our set X in HC contains only one
ordinal ν < ωλ as a parameter. In that case, there exists a set Ρ c ul X Jf of class
Σ ^ τ τ } ) such that X= {a: (v,a) ePJ.Theset

?' = {<γ,α>: y & WO A (οιρ(γ),α) e P)

also belongs to the class E"C({T7}), and, therefore (by the Translation Lemma of §4), it
also belongs to the class Σ!,'*. Using a construction from the standard proof of the
theorem on the partition of a Sj-set into Sj sets of class Σ{ (see, for example, [19b], p.
794), one can select a Σί-formula φ(γ, α, δ) with parameter π, satisfying the equivalence

νγν«((γ ,α> ε ? Ό 3 { ε WO(p(y,a,8)).

In particular, if γ e WOy, then X = {a: 3 δ e WO<p(y, α, δ)}.
The next step of the proof of Lemma 3 involves the use of the method of forcing with

the set Seqx, where λ = max{ v, ωρ

[π]}, as the set of forcing conditions. The order on Seqx

is assumed to be reverse of inclusion: ρ < q when q c p. The expression ρ < q means
that the forcing condition q is more informative (that is, forces more formulas) than p.
The condition Λ (the empty sequence) is maximal and the least informative.

As the initial model (to be extended), we shall consider the universe V of all sets, in
which Lemma 3 is proved, as well as its part L[<n] = Lv[m] consisting of all sets χ e V
that are constructive in V relative to π. Usually the technique of forcing "over" the
universe V is realized in the form of Boolean-valued models. Here, for the purpose of
greater clarity, we shall assume that the universe V is a countable model in some larger
universe V+. Then, for any condition ρ e Seqx, in V+ there exist sets G c Seqx,
containing ρ and Seqx-generic over V. However, the translation of all our reasoning into a
well-defined language of Boolean-valued models does not present any difficulties.

All the terminology used below, having to do with forcing and generic extensions, is
taken from [19a].

Assume (T, d) e Kp7I. The idea is to prove the equivalence of the inclusion X c [T, d]
in V and the relation Λ II- F*(T,d), where IK denotes forcing corresponding to the
initial model L[-n] and the set of forcing conditions Seqx, and F*(T, d) is the following
formula:

Vy e ΗΌ,,,νδ e WOVa(<p*(y,a,d) -> α e [T*,d*]).

(In the system of [19a], Chapter 4, x* = Seqx Χ χ is the term corresponding to the set χ
in the language of forcing with Seqx as the set of forcing conditions. By φ* we denote the
formula obtained from φ by replacing w by π*.) We claim that

X £ [T, d] in V** A U- F*(T,d) (1)

for any code (T,d} e Κρπ. From this equivalence it directly follows that Kp^(X) e L[-n],
since the forcing relation II- (over L[ir]) is expressible in the initial model L[m].

For the proof of the implication from left to right in (1), assume X c [T, d], that is, it is
true in V that

V y e WOyS e WOVa(<p(y,a,S) -> α <= [T,d]),
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which we shall denote by F(T, d). Assume the contrary: Λ II- F*(T, d) does not hold.
Then there is a condition ρ e Seqx which forces ^F*(T,d). Let us consider any set
G e V+ such that G is Seqx-generic over V (and, therefore, also over L[v]), G c Seqx,
and G contains p. By the choice of p, the formula F(T,d) will be false in L[TT][G].

Let us consider a common extension V[G] of the models V and L[77-][G]. Let us verify
that F(T,d) is true in V[G]. By the absoluteness principle of §4 and the assumption of
the truth of F(T,d) in V, it suffices to construct a Il^-formula with parameters from V
that is equivalent to F(T, d) in V and in V[G\ For the construction of such a formula, we
observe that the tree Τ satisfies in V the inequality sup Γ < ω ΐ5 since ωρ

1π] < ω1 by the
hypothesis of Lemma 3, while (T, d) e Κρπ. In this situation, there exists a 2}-formula
Φ(α) with parameters from V such that \ta(a e [T, d] <H> Φ(α)) is true in V and in V[G]
(see the construction of Φ in §6). As the required Ilj-formula one can take the
proposition

VyV8Va(eq(y,y') Λ wo(5) Λ φ(γ,α,δ) -» Φ(α)),

where γ' e F Π WO, is arbitrary, the 2}-formula eq(y, γ') expresses in the canonical way
the order-isomorphism of the sets Qy and Qy, (that is, the membership of γ in WO,,), and
the nj-formula wo(S) expresses in the canonical way the membership of 8 in WO.

Thus, F(T,d) is true in V[G]. However, exactly the same kind of reasoning, but
starting from the falseness of F(T,d) in L[w][G], can show that this formula is, at the
same time, false in V[G], which yields the desired contradiction. (The inequality sup Τ <
wf'""c', which is necessary for the construction of the required formula Φ with parame-
ters from L[w][G], follows here from the choice of λ and the inequality λ < wf W [ G I . The
latter is obtained from the characteristic property of the "collapsing" set of forcing
conditions Seqx: the function UG belongs to L[TT][G] and maps ω onto λ, see, for
example, [24], §18).

This proves the implication from left to right in (1). The reverse implication is proved in
an entirely analogous way.

The principal contribution to the proof of Theorems A2, B2, and C is made by the
following lemma, which the author proved earlier in certain special cases (in [19c], §16,
and in [22]). It should be noted that the idea of the argument, permitting us to analyze the
phenomenon of separation of sets of the class Σ " ε ( ω 1 υ {77}) by means of Borel sets of a
definite order, is due to Stern (see his note [30], where this idea is used to study transfinite
sequences of Borel sets of bounded order in the Levy-Solovay models).

LEMMA 4. Assume that π e Jf, ρ < «of'"', and Xx, X2 Q -^ is a pair of disjoint sets of
the class Ύ,^^γ U {π}) such that the first is Ti\+p-separablefrom the second. Then Χγ can
be separated from X2 by a set of the family [Kpm]. In particular, by Lemma 3, the set {Χχ)ρπ

will separate Xr from X2.

PROOF. AS in the proof of the preceding lemma, one can select a pair of ordinals vt < ωχ

(here and below in the proof, the subscript / assumes the values 1 and 2) and a pair of
Sj-formulas <ρ,(γ, α, δ) with unique parameter π, satisfying the equalities

Ι ι = { α ε ^ : 3 δ ε Η Ό φ , ( γ , , α , ί ) } (2)

for any choice of γ, e WOr. Let us denote by Ω the first uncountable ordinal ω: = ω^οί
the universe V in which Lemma 4 is proved. We set λ = max{ νλ, ν2, Ω} and we consider a
set G c Seqx that is Seqx-generic over V (and belongs to the larger universe V+; see the
proof of Lemma 3).
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By Φ,(γ, α, δ) (where i = 1,2) we denote the 2j-formula

3γ'38'(βς(γ',γ) Λ Is(S',5) Λ φ,(γ',α,δ')),

in which eq(y', γ) and Is(5', δ) are 2j-formulas which, in canonical fashion, respectively
express the order-isomorphism of the sets Qy and Qy (that is, the equality οιρ(γ') =
οιρ(γ), when y ' , y e WO) and the order-isomorphism of the set Qs. with some initial
segment of the set Qs that is distinct from Qs itself (that is, the inequality οιρ(δ') <
οίρ(δ)).

By Theorem 1 of §6, there exists a Il}-formula 0(γΐ5 γ2,δ) with parameters from V
which is equivalent in V and in V[G] to the assertion of the n°+p-separation of the set {a:
Φ^ΥΧ,α,δ)} from {α: Φ2(γ2,α,δ)} (the theorem is applied in the universe V[G] to the
model Μ = V).

For what follows, we fix a pair of points γ; e WOV Π V. By what has just been said, the
proposition ν δ ^ ο ( δ ) —> #(Yi,y2,5)) is a IlJ-formula with parameters from V, and this
proposition is true in V by virtue of (2). Hence, it is true also in V[G] by Shoenfield's
principle in §4.

SUBLEMMA. There exists a set d e L[7r][G], d c Tp X Seq,̂  (the construction of the tree
Tp may be found in §6), such that the following is true in V\G\. for any δ e WOa, the set
[Tp,d] separates the set {α: Φι(γ1,α,δ)} from {α: Φ2(γ2,α, δ)}.

REMARK ON THE SUBLEMMA. The ordinal Ω is at most countable in the class V[G] and
even in L[w][G], since Ω < λ by our choice of λ, and λ < wfM C ] (see the proof of
Lemma 3). Thus, the set WOa is nonempty in V[G] and in L[7r][G]. By similar reasoning,
the sets WOV are nonempty in L[7r][G]. This fact is used in the proof of the sublemma.

PROOF OF THE SUBLEMMA. We choose in arbitrary fashion γ/ e WOV η L[TT][G] and
δ' e WOQ Π L[w][G]. As we saw above, 0(γ1( γ2, δ') is true in V[G]. By the content of the
formulas Φ,, this implies that 6(y{, γ2,δ') is also true in V[G]; that is, it is true in V[G]
that the set {α: Φ^γί, α, δ')} is Π^,,-separable from {α: Φ2(γ2',«, δ')}- Here, Theorem 2
of §6 enables us to select a separating set in the form [Tp, d], where d = dpme for a suitable
point e of class A1,·17·*'·̂ ·*'. The point ε must belong to L[v][G], since π, γ/, δ' e L[TT][G}.

Hence, d e L[?r][G]. Finally, again by virtue of the content of the formulas Φ,, one can
conclude that the set [Tp,d] separates {α: Φ1(γ1,α,δ)} from (α: Φ2(γ2,α,δ)}, which is
what was required.

Continuing the proof of Theorem 4, we consider the set d given by the sublemma. This
set belongs to the generic extension L[77][G] of the class L[m\ Hence, there exists a set
t e L[TT], / c Seqx X (Tp X SeqJ, such that

d = IG{t)= {(u,W):3p^ G{(p,u,w) e i ) }

(see [19a], Chapter 4, Lemma 2.5). Denoting by II- the forcing that now corresponds to
the initial model V and the set of forcing conditions Seqx, we find a condition p0 e G
such that

p0 Ik ν δ e WOQ. (the set [τ*, t] separates

(α: Φ*(γ*,α,δ)} from {α: Φ*(γ*, α, δ)}). (3)

(Here, as in the proof of Lemma 3, x* = Seqx Χ χ for every χ e V, and Φ* is obtained
from Φ, by replacing the parameter π by π*.) For every pair u e Tp, ρ e Seqx, we define

Zup= { a e / ( l V: ρ \\- a* e [T*,t,u*]}.
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Using classical lemmas on the forcing of formulas of various logical structures ([19a],

Chapter 4, §2), together with the definition of the sets [T, d, u] in §6, it is not hard to

obtain the following system of equalities, relating the sets Zup in the universe V:

Z«P = -< U Λ ς for | M | r , = 0, ( 4 )
w£Sup

where Sup = {w e Seq u : 3q, r e S e q x ( r < p, q A (q,u,w) e t)};

ZUP = ^ U Z H * t . , f o r | « | r p > l . (5)

Since < ε Κ , these equalities incidentally show that the indexed family of sets Zup belongs

to V. We shall deduce one more important assertion:

The set ZApo separates Xx from X2 in the universe V. (6)

In fact, assume α e A .̂ To verify that a e ZApo, we fix any set Η that contains p 0 and

is Seqx-generic over V, and we shall prove that α e [Tp, IH(t)] in V[H]. By (2) and the

choice of the points γ, e WOr. Π V, there exists a point 8' e WO η V such that the

proposition <Pi(yx, α, δ') is true in V. Then, by Shoenfield's principle in §4, this proposition

turns out to be true in V[H] also. We select in an arbitrary way a point 8 e V[H] η WOQ.

We have otp(5) = Ω and, at the same time, οιρ(δ') < Ω, since 8' e V, and Ω = ωλ

ν.

Hence, <bx{yx,a,8) is true in V[H]. However, p0 e H, and so by (3) we must obtain

α e [Τ, IH(t)] in V[H], which is what was required.

This argument proves the inclusion Λ̂  c ZApo. In a similar way, one proves that

x2nzApo=0.
The set ί ε L[?r] and the family of sets Zup, which belongs to V and satisfies in the

universe V the requirements (4), (5) and (6)—this is all that we need to complete the proof

of Lemma 4. From this point on, all the reasoning is carried out within the universe V of

Lemma 4. By (6), it actually suffices to verify that ZApo e [Κρπ\. To this end, we construct

in L[m], by induction on the ordinal |w| = I M ^ , a family of Borel codes (Tup, dup) e L[<n]

(where u e Γρ and ρ e Seqx) with trees Tup such that \Tup\ = \u\, and satisfying the

equalities Zup = [Tup, dup] in V. From this, for u = Λ and ρ = p0, Lemma 2 of §6

enables us to obtain the required result.

If |M| = 0, then we take Tup = {Λ} and dup= {(Λ,νν): w e Sup}; the equality

Zup = [Tup,dup] follows from (5).

If | w| > 1, then, fixing a bijection / of the set

E= {(ς,ξ): ? e S e q , A ? < ? A i e O r d A « Λ ξ ε Τρ)

on some ordinal κ (/ e L[w]), we define

Tup=

(qA) e Ε Λ (v,w) e du»

(Remark: if ιιΑξ<ΞΤρ, then \u Λ | | < |«|.) The required equality Zup = [Tup,dup] is

guaranteed by the inductive hypothesis and (5). This concludes the proof of Lemma 4.

The proofs of Lemmas 3 and 4 presented here leave a somewhat strange impression

through their use of the method of forcing, not for consistency proofs, but for the

derivation of " positive" assertions about sets. Certain parallels between these arguments
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and constructions in the proof of Theorem 2 of §6 in Louveau's paper [32] indicate that a

search for proofs of Lemmas 3 and 4 without use of the method of forcing would be

promising.

Now, from the lemmas that were just proved, we shall obtain two corollaries that are

directly connected with the proofs of Theorems A2, B2, and C.

COROLLARY 1. Assume π e JT, ρ < ω1 ? and ω^|"' < ων Then every family consisting of

sets lying in Jf that arepairwise Π° + ^-separable and are in the class Σ^ Ι €(ω 1 U {w}) is at

most countable.

PROOF. Let F be a family of the indicated form. By Lemma 4, all sets of the form

(Χ)ρπ, where X e F, are pairwise distinct, and by Lemma 3 all such sets belong to the

collection [Κρπ]. However, as can easily be seen, the latter has cardinality ω^Ι"1 in L[ir];

that is, by the hypothesis of the corollary, it is countable in the universe of all sets. From

this the desired result is obvious.

COROLLARY 2. Assume that IT e JV and the set X c Jf has class Δ " € ( ω 1 U {77}). Then

XQ L[ir].

PROOF. Both of the sets X and Υ = Jf- X belong to Σ?€(ω1υ {π}); moreover, the

second is Il^-separable from the first. Applying Lemma 4 with ρ = 1, we find a Borel

code (T,d) e KXv such that the set [T, d] separates Υ from X; that is, it actually

coincides with Y. By the definition of Kpm in §6, the inequality |Γ | < 1 holds; moreover,

one may assume that \T\ = 1, since the case \T\ = 0 corresponds to the case where the set

X is open, and, therefore, by virtue of its countability, empty. Under this assumption,

denoting by U the set of all ordinals ξ such that (ξ) e T, and defining

for every ξ e U, we obtain X = U i e ( 7 X ( . It remains to verify that X^ c L[TT] for any ξ.

To this end we note that, by the definition of Kpv, d e L[ir], and so 5 ξ e L[w]. This

implies that every ΑΓξ is, by virtue of the countability of X, a countable set of class Πι 1 " '

for a suitable ττ£ e JV(~\ L[TT]. (One can take as ιτ^, say, the characteristic function of the

set {n e ω: wn G 5ξ}, where wn denotes the nth element of the set Seqw with respect to

some fixed recursive enumeration of that set.) In this case, as is well known (see, for

example, [19c], Corollary 4.12), the set A^ consists only of points of the class Δ 1 ^, and

thus the inclusion Xt c L[ir] holds.

§8. Proof of Theorems A2 and B2

In order to apply the results of the preceding section to the study of the constituents of

sieves of class Δ^, it is necessary to evaluate the definability of constituents. To this end,

we shall prove the following lemma.

LEMMA 5. Let C be a sieve of class Δ^. Then there exists a point m e JT such that all the

constituents [C]y and [C]*p of C have class A " c ( « ! U {w}).

PROOF. Let us recall that, by Proposition 2 of §4, the cross-section function α >-> C/a of

the sieve C is a function of class A"C(^T). Hence, there exists a point 77- e jV such that

this function has class Δ"°({ w}).
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Let us introduce the following three formulas:

^i(f, μ, X) <-» μ is an ordinal Λ X c Q Λ / is an order-

preserving bijection of μ onto A';

* 2 ( l J ) « I c Υ c Q Λ Χ is an initial segment of Y;

%(X, Y) <-* X c Υ c Q Λ the difference Υ - X is nonempty and

has a least element.

It is obvious that these formulas are bounded (or A0-formulas (see [19a], p. 408); that is,
these formulas can be rewritten so that all their quantifiers have the form 3 χ e y or
\fx e y). Now the lemma is yielded by the following easily verifiable equivalences:

a e [C]p~3f%{f,v,C/a)±* V/VJTVju

<ν(Ψ1(/,μ,Χ)ΑΨ2(ΧΧ/α)

->(μ = ν Λ Χ= C/a) ν(μ < ν Λ Y3(*>C/a)));

,X) Λ *2(*,C/a) A(C/a - * # 0) Λ -,¥3(jr,C/a))

(%(/,μ, Χ) Λ *2(*,C/a)

-»(/*= ν siC/a-ΧΦ 0) A-,*3(*,C/a))

vi^rA^C/a))).

The quantifiers Ξ/, 3 X, V/ and V I in these formulas can clearly be restricted to the
set HC.

By means of Lemma 5 and the results of §7, the proof of Theorems A2 and B2 does not
present any difficulties. In general, Theorem B2 follows automatically from Corollary 2 of
§7, since the union of the external and internal constituents gives all points of Ji.

Let us turn to Theorem A2. If we assume that there exists a sieve that ensures the truth
of one of the assertions referred to in that theorem, then, by Corollary 1 of §7 and Lemma
5, there would exist a point π e Jf and an ordinal ρ < ωχ such that ω^1\] > ων On the
other hand, it is known [26] that if the inequality ω^[7τ] < ωλ holds for all IT e Jf, then for
all π and for all ξ < ω1 the inequality ω^'"' < ωχ also will hold, which would contradict

It is clear that our argument can be applied not only to the study of sequences of
constituents of sieves of class Δ^, but also to the larger class of 21(HC)-definable
sequences. (Naturally, any sequence {Xv: ν < ωχ) of sets Xv c JV is said to be E^HC)-
definable if the set {{v, a): ν < ωλ Λ α e Xv) belongs to the class 2X(HC). Such are, by
Lemma 5, all sequences of constituents of sieves of class Δ .̂) Here it is actually proved
that the existence of a point π e JT satisfying the equality cofw = ω1 follows from the
existence of a 21(HC)-definable sequence from whose terms one can select a subfamily of
nonempty sets possessing the property of order-bounded pairwise separation (see §2).

§9. Proof of Theorem C

The initial form of the proof of this theorem, presented in [19c], §19, and in [22], was
connected with the principle of Borel determinacy. Here we shall present another method
of proof, based on the theorem about Π {-expression in §6. Let us assume the contrary:
there exists a sieve satisfying one of the requirements [111, IV], [111, IV]* or [111, IV]+;
we shall show that this yields a contradiction.
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We shall begin with a derivation of a contradiction from the assumption of the existence
of a sieve of the form [111, IV]. So, assume that ρ < ωι and all constituents [C]v given by
a Borel sieve C = (Cq: q e Q) are nonempty and pairwise Π°+p-separable. Having in
mind some recursive enumeration Q = {qk: k ^ ω} oi the set Q of all rational numbers,
let us consider the set {(α, έ) : « e Cqk)· ^ m s s e t *s B°rel m t n e space JVX ω, since all
Cq are Borel sets. Therefore, one can select a point π e Jf as well as a S}-formula
φ (α, k) and a n}-formula ψ (α, k), both with π as sole parameter, so that

V a V J t ( o e C , t « ? ( a , t ) « * ( a , t ) ) . (7)

We set λ = ω^|"1' and fix a set G c Seqx (see the proof of Lemma 3 in §7) that is
Seqx-generic over V (that is, over the universe in which Theorem C is proved). We
introduce an analogue C* of the sieve C in the model F[G], setting

C * = {α:φ(α,*)} = {α:ψ(α,*)}

in V[G] for every k (that this is well defined is guaranteed by the fact that (7) holds in the
universe V and by Shoenfield's principle in §4).

Let us define wf = u>\^G\ To obtain the desired contradiction, it suffices to verify that
the sieve C* has in V[G] the same property that the sieve C has in V; that is, that all
constituents [C*],,, ν < cof, are nonempty and pairwise n°+p-separable. In fact, if this
property of C is proved, then, by Lemma 5 of §8, the constituents [C*]p (constructed in
F[G]) form in V[G] an uncountable family of nonempty pairwise n°+p-separable sets of
class 2f iC(io1 U { π}), in view of which ω ^ 1 > ω? by Corollary 1 of §7. However, by the
definition of λ and the choice of G, we have exactly the reverse inequality ω ^ 1 = λ < cof.

The proof of the indicated property of the sieve C* in V[G] consists in expressing this
property by a special Il^-formula with parameters from V, whose truth in V[G] will be
obtained by means of Shoenfield's principle. First of all, there is a 2j-formula Φ (γ, α)
with parameter π such that the assertion

VaVye WO(a e [C] o t p ( Y ) « Φ(γ,α)),

is true in the universe V, and the analogous assertion for C* is true in F[G]. (We can
take, for example, a 2j-formula that canonically expresses the existence of an order-iso-
morphism of the sets C/a and Qy; the occurrence of C/a in this formula can be
eliminated by means of the formulas φ and ψ that were introduced above. On the
construction of such formulas, see [22], §2.) By Theorem 1 of §6, there exists a IlJ-formula
0(Vi>Y2) ^ h parameters from V that expresses in V and in V[G] the assertion of the
II°+p-separability of the set (α: Φ(γι,α)} from the set {α: Φ(γ2,a)}. Now the Ilj-pro-
position

Vy(wo(y) -> ΞαΦ(γ,α))

o(Vi) Λ wo(y2) Λ

with parameters from V (concerning the formulas wo and eq, see the proof of Lemma 3 in
§7) is equivalent in V to the assertion of the nonemptiness and pairwise n°+p-separability
of all constituents [C]v, ν < ωλ, and is equivalent in V[G] to the analogous assertion
about the constituents [C*],,, where ν < ω*, of the sieve C*.

But by our choice of C this proposition is true in V. Hence it is also true in V[G] by
Shoenfield's absoluteness principle of §4, which is what was required.
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The derivation of a contradiction from the assertion of the existence of a sieve of the
form [101, IV], differs from the preceding argument only in that it is necessary (when
proving the truth in V[G]) to express by a n^-formula not an assertion of the nonempti-
ness of all [C*]r, but rather an assertion of the uncountability of the set of all nonempty
internal constituents [C*],_ (under the assumption that this assertion holds in V for the
sieve C). In order to construct the desired Ilj-formula, we introduce a IlJ-formula Ψ(α)
with parameter π that canonically expresses the fact that the set C/a is well-ordered in V,
or that the set C#/a is well-ordered in V[G]. We also introduce a 2j-formula Φ*(γ, α)
with parameter π that canonically expresses the existence of an order-isomorphism of the
set Qy onto some initial segment of the set C/a (or the set C*/a). Thus, the relations

Va(a e [C]* <-> -,Ψ(α))

and

»>otp(Y)

(a) Λ Φ*(γ,α)),

are true in the universe V, while analogous relations are true for C* in V[G]. Now the
desired Ilj-formula can be written as follows:

VY(WO(Y) -> 3α(~,Ψ(«) Λ Φ*(γ,α))).

Finally, to derive a contradiction from the assertion of the existence of a sieve satisfying
the requirements [101, IV]+, it suffices to show that such a sieve, if it existed, would also
have to satisfy [101, IV]», which is impossible by the argument that has just been
presented. In turn, to prove the implication [101, IV]+ -» [101, IV]*, it is sufficient to
verify that, if a Borel sieve C has uncountably many nonempty external constituents, then
the number of nonempty internal constituents [C]+v also will be uncountable.

Let us prove this. If [C]v Φ 0 for uncountably many indices v, then, by the criterion
mentioned in §1, the set [C] will not be Borel. Its complement [C], = Ji— [C] will also,
naturally, not be Borel. However, [C]+ coincides with the union of all internal constituents
[C]*,, and each of the latter is a Borel set (see the reference in §1). Obviously, this yields
what is required.
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