Canonization of Smooth Equivalence Relations on Infinite-Dimensional E₀-Large Products

Vladimir Kanovei and Vassily Lyubetsky

Abstract We propose a canonization scheme for smooth equivalence relations on \mathbb{R}^{ω} modulo restriction to E₀-large infinite products. It shows that, given a pair of Borel smooth equivalence relations E, F on \mathbb{R}^{ω} , there is an infinite E₀-large perfect product $P \subseteq \mathbb{R}^{\omega}$ such that either $F \subseteq E$ on P, or, for some $\ell < \omega$, the following is true for all $x, y \in P$: $x \in y$ implies $x(\ell) = y(\ell)$, and $x \upharpoonright (\omega \smallsetminus \{\ell\}) = y \upharpoonright (\omega \smallsetminus \{\ell\})$ implies $x \in y$.

1 Introduction

The canonization problem can be broadly formulated as follows. Given a class \mathcal{E} of mathematical structures E, and a collection \mathcal{P} of sets P considered as *large*, or *essential*, find a smaller and better structured subcollection $\mathcal{E}' \subseteq \mathcal{E}$ such that for any structure $E \in \mathcal{E}$ with the domain P there is a smaller set $P' \in \mathcal{P}$, $P' \subseteq P$, such that the restricted substructure $E \upharpoonright P'$ belongs to \mathcal{E}' . For instance, the theorem saying that every Borel real map is either a bijection or a constant on a perfect set, can be viewed as a canonization theorem, with $\mathcal{E} = \{\text{Borel maps}\}, \mathcal{E}' = \{\text{bijections and constants}\}, \text{ and } \mathcal{P} = \{\text{perfect sets}\}.$ We refer to Kanovei, Sabok, and Zapletal [7] as the background of the general canonization problem for Borel and analytic equivalence relations in descriptive set theory.

Among other results, it is established in [7, Section 9.3, Theorems 9.26 and 9.27] that if E belongs to one of two large families of analytic equivalence relations¹ on $(2^{\omega})^{\omega}$, then there is an infinite perfect product $P \subseteq (2^{\omega})^{\omega}$ such that $E \upharpoonright P$ is *smooth*, that is, there simply exists a Borel map $f : P \to 2^{\omega}$ satisfying $x \in y \iff f(x) = f(y)$ for all $x, y \in P$. The canonization problem for smooth equivalence relations themselves was not considered in [7].² Theorem 2.1, the main result of this note, contributes to this problem.

Received April 28, 2018; accepted November 26, 2018 First published online December 12, 2019 2010 Mathematics Subject Classification: Primary 03E15; Secondary 03E35 Keywords: canonization, smooth equivalences, infinite products, E_0 -large © 2020 by University of Notre Dame 10.1215/00294527-2019-0034 Kanovei and Lyubetsky

2 Large Products and the Main Theorem

Recall that the equivalence relation E_0 is defined on 2^{ω} so that $x \in [0, y]$ if and only if the equality x(n) = y(n) holds for all but finite n. If $X \subseteq 2^{\omega}$, then we define the E_0 -hull $[X]_{E_0} = \{y \in 2^{\omega} : y \in [0, x]\}$ of X. It is known that E_0 is not *smooth*; that is, there is no Borel map $f : \text{dom } f = 2^{\omega} \to 2^{\omega}$ satisfying $x \in [y] \iff f(x) = f(y)$ for all $x, y \in 2^{\omega}$. A Borel set $X \subseteq 2^{\omega}$ is E_0 -large if $E_0 \upharpoonright X$ is still not smooth. (See more on this in Zapletal [8], [9], Kanovei [6], [7], or elsewhere.)

An infinite *perfect product* is any set $P \subseteq (2^{\omega})^{\omega}$ such that $P = \prod_{\ell < \omega} P(\ell)$, where $P(\ell) = \{x(\ell) : x \in P\}$ is the *projection* on the ℓ th coordinate, and it is required that each set $P(\ell)$ be a perfect subset of 2^{ω} . Let **PP** be the set of all perfect products. If every factor $P(\ell)$ is an E_0 -large set, then say that P is an E_0 -large perfect product.

To set up a convenient notation, say that an equivalence relation E on $(2^{\omega})^{\omega}$:

captures $\ell \in \omega$ on $P \in PP$: if $x \in y$ implies $x(\ell) = y(\ell)$ for all $x, y \in P$; is reduced to $U \subseteq \omega$ on $P \in PP$: if $x \upharpoonright U = y \upharpoonright U$ implies $x \in y$ for all $x, y \in P$.

Theorem 2.1 If E, F are smooth Borel equivalence relations on $(2^{\omega})^{\omega}$, then there is an E₀-large perfect product $P \subseteq (2^{\omega})^{\omega}$ such that either $F \subseteq E$ on P, or, for some $\ell < \omega$, E captures ℓ on P and F is reduced to $\omega \setminus \{\ell\}$ on P.

The two options of the theorem are incompatible with perfect products. The result can be compared to canonization results related to *finite* products and equivalence relations defined on spaces $(2^{\omega})^m$, $m < \omega$. Theorem 9.3 in [7, Section 9.1] implies that every analytic equivalence relation on $(2^{\omega})^m$ coincides with one of the *multiequalities* D_U , $U \subseteq \{0, 1, ..., m-1\}$, on some E_0 -large perfect product $P \subseteq (2^{\omega})^m$, where $x D_U y$ if and only if $x \upharpoonright U = y \upharpoonright U$. One may ask whether such a result holds for equivalence relations on $(2^{\omega})^{\omega}$ and, accordingly, for infinite perfect products. This gives a negative answer, even for smooth equivalences.

Example 2.2 Let E be defined on $(2^{\omega})^{\omega}$ so that $x \in y$ if and only if x(0) = y(0), and also $x(\ell + 1) = y(\ell + 1)$ for all numbers ℓ such that $x(0)(\ell) = 0$. That E is smooth can be witnessed by the map sending each $x \in (2^{\omega})^{\omega}$ to $a = \vartheta(x) \in (2^{\omega})^{\omega}$ defined so that a(k) = x(k) whenever k = 0 or $k = \ell + 1$ and $x(0)(\ell) = 0$, and a(k)(n) = 0 for all other k and all $n < \omega$. That E is not equal (and even not Borel bireducible) to any D_U on any perfect product $P \subseteq (2^{\omega})^{\omega}$, is easy.

The proof of Theorem 2.1 is based on a splitting/fusion technique known in the theory of iterations and products of the perfect-set forcing (see, e.g., Baumgartner [1] and Kanovei [4], [5]), although the splitting construction for infinite E_0 -large products is different and way more complex than in the case of perfect-set products.

See Section 9 on applications of the theorem to the structure of the constructibility degrees in generic extensions via the forcing by E_0 -large products.

3 Large Sets

Here and in the next section, we reproduce some definitions and results from Golshani and the authors in [3] related to perfect and large trees; but here we consider sets rather than trees. **Strings.** The set $2^{<\omega}$ contains all strings (finite sequences) of numbers 0, 1, including the *empty string* Λ . If $t \in 2^{<\omega}$ and i = 0, 1, then t^{i} is the extension of t by i as the rightmost term. If $s, t \in 2^{<\omega}$, then $s \subseteq t$ means that the string t extends s (including the case s = t), while $s \subset t$ means proper extension. The length of s is $\ln(s)$, and $2^{n} = \{s \in 2^{<\omega} : \ln(s) = n\}$ (strings of length n).

If $u \in 2^{<\omega}$, then let $I_u = \{a \in 2^{\omega} : u \subset a\}$, a *Cantor interval* in 2^{ω} .

Trees and perfect sets. If $X \subseteq \omega^{\omega}$, then let $\text{tree}(X) = \{u \in 2^{<\omega} : X \cap I_u \neq \emptyset\}$, the *tree* of X. If $u \in \text{tree}(X)$, then define $X \upharpoonright_u = X \cap I_u$, the *truncated* set. If $\text{card} X \ge 2$, then there is a longest string $s = \text{stem}(X) \in 2^{<\omega}$ satisfying $X \subseteq I_s$ (the *stem* of T). A string $u \in \text{tree}(X)$ is a *splitnode* if both $u^{\cap}0$ and $u^{\cap}1$ belong to tree(X). A closed set $\emptyset \neq X \subseteq 2^{\omega}$ is *perfect* if and only if every string $u \in \text{tree}(X)$ can be extended into a splitnode $v \in \text{tree}(X)$, $u \subset v$.

Action. Every string $s \in 2^{<\omega}$ acts on 2^{ω} in such a way that if $x \in 2^{\omega}$, then $(s \cdot x)(k) = x(k) + s(k) \pmod{2}$ for $k < \ln(s)$, and $(s \cdot x)(k) = x(k)$ otherwise. If $X \subseteq 2^{\omega}$ and $s \in 2^{<\omega}$, then let $s \cdot X = \{s \cdot x : x \in X\}$. Similarly if $s, t \in 2^m$, then define a string $s \cdot t \in 2^m$ so that $(s \cdot t)(k) = t(k) + s(k) \pmod{2}$ for k < m.

This action of strings on 2^{ω} induces the relation E_0 , so that if $x, y \in 2^{\omega}$, then $x E_0 y$ is equivalent to $y = s \cdot x$ for a string $s \in 2^{<\omega}$.

Special E₀-large perfect sets. Following [8, Definition 2.3.28], a perfect set $X \subseteq 2^{\omega}$ is called *special* E₀-*large* if the following holds: for every splitnode $u \in \text{tree}(X)$, if $u_0, u_1 \in \text{tree}(X)$ are the minimal splitnodes in tree(X) satisfying $u^{-0} \subseteq u_0$ and $u^{-1} \subseteq u_1$, then $1h(u_0) = 1h(u_1)$ and (the *symmetry*) $X \upharpoonright_{u_1} = (u_1 \cdot u_0) \cdot X \upharpoonright_{u_0}$. The symmetry condition is equivalent to $u_0^{-a} \in X \iff u_1^{-a} \in X$ for all $a \in 2^{\omega}$, and we have $X \upharpoonright_u = X \upharpoonright_{u_0} \cup X \upharpoonright_{u_1} = X \upharpoonright_{u^{-0}} \cup X \upharpoonright_{u^{-1}}$ anyway.

Let **SLS** be the collection of all special E_0 -large (perfect) sets.

Sets in **SLS** admit a special combinatorial representation. Suppose that $r \in 2^{<\omega}$, and suppose that $\langle q_k^i \rangle_{k < \omega, i=0,1}$ is a system of strings $q_k^i \in 2^{<\omega}$ such that $\ln(q_k^0) = \ln(q_k^1) \ge 1$ and $q_k^0(0) = 0$, $q_k^1(0) = 1$ for all k. Let $[r, \{q_k^i\}]$ be the perfect set of all infinite strings of the form $a = r \cap q_0^{i_0} \cap q_1^{i_1} \cap q_2^{i_2} \cap \cdots \cap q_n^{i_n} \cap \cdots \in 2^{\omega}$, where $i_k = 0, 1$ for all k. One easily proves that every set of this form is special E₀-large, and conversely, every special E₀-large set has the form $[r, \{q_k^i\}]$ for suitable strings $r, q_k^i \in 2^{<\omega}$.

See Conley [2], [7, Section 7.1], and [6, Section 10.9] for details on these categories of sets.

Proposition 3.1 Every set $X = [r, \{q_k^i\}] \in SLS$ is E_0 -large. Conversely, every E_0 -large Borel set $X \subseteq 2^{\omega}$ contains a special E_0 -large subset.

Proof To prove the first claim note that the map sending each $a \in 2^{\omega}$ to $r \circ q_0^{a(0)} \circ q_1^{a(1)} \circ q_2^{a(2)} \circ \cdots \circ q_n^{a(n)} \circ \cdots \in 2^{\omega}$ is an isomorphism between $\langle 2^{\omega}; \mathsf{E}_0 \rangle$ and $\langle X; \mathsf{E}_0 \rangle$. Regarding the second claim (which we will not use) see [8, Lemma 2.3.29].

We finally define splitting levels of sets $X = [r, \{q_k^i\}] \in SLS$. Then stem(X) = r, and the strings $q_k^i = q_k^i[X]$ are unique. If $n < \omega$, then we let

$$\operatorname{spl}_n(X) = \operatorname{lh}(r) + \operatorname{lh}(q_0^{i_0}) + \operatorname{lh}(q_1^{i_1}) + \dots + \operatorname{lh}(q_{n-1}^{i_{n-1}})$$

(independent of the values of $i_k = 0, 1$). In particular, $spl_0(X) = lh(r)$. Thus $spl(X) = \{spl_n(X) : n < \omega\} \subseteq \omega$ is the set of all *splitting levels* of X.

Example 3.2 If $s \in 2^{<\omega}$, then $I_s = \{a \in 2^{\omega} : s \subset a\}$ is special E₀-large; in fact, $I_s = [s, \{q_k^i\}]$, where $q_k^i = q_k^i(I_s) = \langle i \rangle$ for all k.

4 Splitting E₀-Large Sets

The simple splitting of a perfect set $X \subseteq 2^{\omega}$ consists of subsets $X(\rightarrow i) = \{x \in X : x(n) = i\}$, i = 0, 1, where n = 1h(r) (the length of a string $r \in 2^{<\omega}$), and r = stem(X) is the largest string in $2^{<\omega}$ satisfying $r \subset x$ for all $x \in X$. Then $X = X(\rightarrow 0) \cup X(\rightarrow 1)$ is a disjoint partition of a perfect set $X \subseteq 2^{\omega}$ onto two perfect subsets. Splittings can be iterated. We let $X(\rightarrow \Lambda) = X$ for the empty string Λ , and if $s \in 2^n$, $s \neq \Lambda$, then we define

$$X(\rightarrow s) = X(\rightarrow s(0))(\rightarrow s(1))(\rightarrow s(2))\cdots(\rightarrow s(n-1))$$

Lemma 4.1 If $X \subseteq 2^{\omega}$ is a special E_0 -large set, $u \in \mathsf{tree}(X)$, and $s \in 2^n$, then the sets $X(\rightarrow s)$ and $X \upharpoonright_u$ belong to **SLS**, too.

Lemma 4.2 Let $X = [r, \{q_k^i\}] \in SLS$, and let $s \in 2^{<\omega}$. Then $X(\rightarrow s) = X \upharpoonright_{u[s]}$, where $u[s] = u[s, X] = r \cap q_0^{s(0)} \cap q_1^{s(1)} \cap \cdots \cap q_{n-1}^{s(n-1)} \in T = \text{tree}(X)$. Conversely, if $u \in T$, then there is a string $s = s[u] \in 2^{<\omega}$ such that $X \upharpoonright_u = X(\rightarrow s)$.

Proof To prove the converse, we put $s(k) = u(\operatorname{spl}_k(X))$ for all k such that $\operatorname{spl}_k(X) < \operatorname{lh}(u)$.

Lemma 4.3 Let $X \in SLS$, let $n < \omega$, and let $h = spl_n(X)$. Then

- (i) if $u, v \in \text{tree}(X) \cap 2^h$, then $X \upharpoonright_u = (u \cdot v) \cdot (X \upharpoonright_v)$;
- (ii) if $s, t \in 2^n$, then $X(\rightarrow s) = \sigma \cdot (X(\rightarrow t))$, where $\sigma = u[s, X] \cdot u[t, X]$;
- (iii) if $u, v \in \text{tree}(X) \cap 2^j$, $j < \omega$, then $X \upharpoonright_u = \sigma \cdot (X \upharpoonright_v)$ for some $\sigma \in 2^{<\omega}$.

Proof To prove (ii) use Lemma 4.2. To prove (iii) take the least number $h \in spl(X)$ with $j \leq h$. There is a unique pair of strings $u', v' \in 2^h$ satisfying $u \subseteq u'$, $v \subseteq v'$. Then $X \upharpoonright_u = X \upharpoonright_{u'}, X \upharpoonright_v = X \upharpoonright_{v'}$, and $X \upharpoonright_{u'} = (u' \cdot v') \cdot (X \upharpoonright_{v'})$. \Box

Definition 4.4 (Refinement) If $X, Y \subseteq 2^{\omega}$ are perfect sets and $n < \omega$, then define $X \subseteq_n Y$ if $X(\rightarrow s) \subseteq Y(\rightarrow s)$ for all $s \in 2^n$; $X \subseteq_0 Y$ is equivalent to $X \subseteq Y$. Clearly, $X \subseteq_{n+1} Y$ implies $X \subseteq_n Y$ (and $X \subseteq Y$).

If X, Y are special E₀-large sets and $n \ge 1$, then the relation $X \subseteq_n Y$ is equivalent to $\operatorname{stem}(X) = \operatorname{stem}(Y)$, $q_k^i[X] = q_k^i[Y]$ for all i = 0, 1 and k < n - 1, and $q_{n-1}^i[X] \subseteq q_{n-1}^i[Y]$ for all i = 0, 1.

Lemma 4.5 Assume that X, U are perfect sets, that $s_0 \in 2^n$, and that $U \subseteq X(\rightarrow s_0)$. Then the set $Y = A \cup \bigcup_{u \in 2^n, u \neq s} X(\rightarrow u)$ is perfect, $Y \subseteq_n X$, and $Y(\rightarrow s_0) = A$.

Lemma 4.6 If $X, U \in SLS$, $s_0 \in 2^n$, and $U \subseteq X(\rightarrow s_0)$, then there is a unique special E_0 -large set X' satisfying $X' \subseteq_n X$ and $X'(\rightarrow s_0) = U$. We have then

- (i) $X'(\rightarrow s) = u[s_0, X] \cdot u[s, X] \cdot X'(\rightarrow s_0)$ for all $s \in 2^n$;
- (ii) if U is clopen in $X(\rightarrow s_0)$, then X' is clopen in X.

Proof If $s \in 2^n$, then $X(\rightarrow s) = u[s_0, X] \cdot u[s, X] \cdot X(\rightarrow s_0)$ by Lemma 4.3. Put $U_s = u[s_0, X] \cdot u[s, X] \cdot U$ for all $s \in 2^n$, in particular, $U_{s_0} = U$. The set $X' = \bigcup_{u \in 2^n} U_s$ is as required.

The next lemma is a more complex version of \subseteq_n -refinement. For the proof (in terms of trees) see [3, Lemma 4.1(iv)].

Lemma 4.7 If $X, U, V \in SLS$, $s_0, s_1 \in 2^n$, $U \subseteq X(\rightarrow s_0 \ 0)$, $V \subseteq X(\rightarrow s_1 \ 1)$, and $[U]_{\mathsf{E}_0} = [V]_{\mathsf{E}_0}$, then there is a special E_0 -large set X' satisfying $X' \subseteq_{n+1} X$ and $X'(\rightarrow s_0 \ 0) \subseteq U$, $X'(\rightarrow s_1 \ 1) \subseteq V$.

Lemma 4.8 Let $\dots \subseteq_4 X_3 \subseteq_3 X_2 \subseteq_2 X_1 \subseteq_1 X_0$ be an infinite sequence of sets in SLS. Then $X = \bigcap_n X_n$ is a special \mathbb{E}_0 -large set and $X \subseteq_{n+1} X_n$, for all n.

Proof Note that $spl(X) = {spl_n(X_n) : n < \omega}$; this implies both claims. \Box

5 Splitting Perfect and Special E₀-Large Products

A perfect product *P* is a *special* E_0 -*large product*, $P \in SLP$ for brevity, if each factor $P(\ell)$, $\ell < \omega$, belongs to SLS. Thus $SLP = SLS^{\omega}$.

Now we extend the splitting technique to special E_0 -large products.

Definition 5.1 Fix once and for all a function $\phi : \omega \xrightarrow{\text{onto}} \omega$ taking each value infinitely many times, so that if $\ell < \omega$, then the following set is infinite:

$$\phi^{-1}(\ell) = \{k : \phi(k) = \ell\} = \{\mathbf{k}_{0\ell} < \mathbf{k}_{1\ell} < \mathbf{k}_{2\ell} < \dots < \mathbf{k}_{\ell\ell} < \dots\}.$$

If $m < \omega$, then let $v_{m\ell}$ be the number of indices $k < m, k \in \phi^{-1}(\ell)$.

Let $m < \omega$, and let $\sigma \in 2^m$ (a string of length m). If $\ell \in \phi^{"}m = \{\phi(k) : k < m\}$, then the set $\phi^{-1}(\ell)$ cuts in σ a substring $\sigma[\ell] \in 2^{\mathbf{v}_{m\ell}}$, of length $lh(\sigma[\ell]) = \mathbf{v}_{m\ell}$, defined by $(\sigma[\ell])(j) = \sigma(\mathbf{k}_{j\ell})$ for all $j < \mathbf{v}_{m\ell}$. Thus the string $\sigma \in 2^m$ splits into an array of strings $\sigma[\ell] \in 2^{\mathbf{v}_{m\ell}}$ ($\ell \in \phi^{"}m$) of total length $\sum_{\ell \in \phi^{"}m} \mathbf{v}_{m\ell} = m$.

Let *P* be a special E₀-large product. If $\sigma \in 2^m$, then define $P(\Rightarrow \sigma) \in \mathbf{SLP}$ so that $P(\Rightarrow \sigma)(\ell) = P(\ell)(\Rightarrow \sigma[\ell])$ for all ℓ . In particular, if $\ell \notin \phi^{m}$, then $P(\Rightarrow \sigma)(\ell) = P(\ell)$, because $\ln(\sigma[\ell]) = \mathbf{v}_{m\ell} = 0$ holds provided $\ell \notin \phi^{m}$.

Let $P, Q \in \mathbf{SLP}$. Define $P \subseteq_m Q$ if $P(\ell) \subseteq_{\mathbf{v}_{m\ell}} Q(\ell)$ for all ℓ . This is equivalent to $P(\Rightarrow \sigma) \subseteq Q(\Rightarrow \sigma)$ for all $\sigma \in 2^m$.

If $\sigma, \tau \in 2^m$, then let $\Delta[\sigma, \tau] = \omega \setminus \{\phi(i) : i < m \land \sigma(i) \neq \tau(i)\}.$

Lemma 5.2 Under the conditions of Definition 5.1, let $P \in SLP$. Then

- (i) if $\sigma \in 2^{<\omega}$, then $P(\Rightarrow \sigma) \in SLP$ and the set $P(\Rightarrow \sigma)$ is clopen in P;
- (ii) if $m < \omega$ and $\sigma, \tau \in 2^m$, then $P(\Rightarrow \sigma) \upharpoonright \Delta[\sigma, \tau] = P(\Rightarrow \tau) \upharpoonright \Delta[\sigma, \tau]$;
- (iii) if $x \in P$, and U is an open neighborhood of x, then there exists a string $\sigma \in 2^m$ satisfying $x \in P(\Rightarrow \sigma) \subseteq U$;
- (iv) if $m < \omega, \sigma \in 2^m$, and $U \in SLP$, $U \subseteq P(\Rightarrow \sigma)$, then there exists a unique set $Q \in SLP$ such that $Q \subseteq_m P$ and $Q(\Rightarrow \sigma) = U$, and then if U is clopen in $P(\Rightarrow \sigma)$, then Q is clopen in P.

Proof (i) and (ii). These are clear. (iii) We have $\{x\} = \bigcap_m [P(\Rightarrow a \mid m)]$ for a suitable sequence $a \in 2^{\omega}$. By compactness, there is *m* such that $P(\Rightarrow a \mid m) \subseteq U$.

(iv) If $\ell < \omega$, then $U(\ell) \subseteq P(\Rightarrow \sigma)(\ell) = P(\ell)(\Rightarrow s)$, where $s = \sigma[\ell]$. By Lemma 4.6, there is a set $S_{\ell} \in \mathbf{SLS}$ satisfying $S_{\ell} \subseteq_n P(\ell)$, where $n = \mathbf{v}_{m\ell} = 1h(s)$, and $S_{\ell}(\Rightarrow s) = U(\ell)$. Let $Q(\ell) = S_{\ell}$ for all ℓ . A version of Lemma 4.8 for special E_0 -large products is as follows.

Lemma 5.3 Let $\dots \subseteq_5 P_4 \subseteq_4 P_3 \subseteq_3 P_2 \subseteq_2 P_1 \subseteq_1 P_0$ be a sequence of special E_0 -large products. Then $Q = \bigcap_n P_n \in SLP$, $Q(\ell) = \bigcap_m P_m(\ell)$ for all $\ell < \omega$, and $Q \subseteq_{m+1} P_m$ for all m.

Proof Apply Lemma 4.8 componentwise.

Corollary 5.4 (see [7, Section 9.3, Proposition 9.31]) If $P \subseteq (2^{\omega})^{\omega}$ is a special E_0 -large product and $B \subseteq P$ is a Borel set, then there is a special E_0 -large product $Q \subseteq P$ such that $Q \subseteq B$ or $Q \cap B = \emptyset$.

Corollary 5.5 If $P \in SLP$ and $f : P \to 2^{\omega}$ is a Borel map, then there is a special E_0 -large product $Q \in SLP$ such that $Q \subseteq P$ and $f \upharpoonright Q$ is continuous.

Proof If $n < \omega$ and i = 0, 1, then let $B_{ni} = \{x \in P : f(x)(n) = i\}$. Using Corollary 5.4 and Lemma 5.2(iv), we get a sequence $\dots \subseteq_3 P_2 \subseteq_2 P_1 \subseteq_1 P_0 \subseteq P$ of special E₀-large products as in Lemma 5.3 such that if $m < \omega$ and $\sigma \in 2^m$, then $P_m(\Rightarrow \sigma) \subseteq B_{m0}$ or $P_m(\Rightarrow \sigma) \subseteq B_{m1}$. Then $Q = \bigcap_m P_m$ is as required. \square

6 Proof of the Main Theorem: Beginning

Beginning the proof of Theorem 2.1, we let Borel maps $e, f: 2^{\omega} \to 2^{\omega}$ witness the smoothness of the equivalence relations E, F, respectively, so that

 $x \in y \iff e(x) = e(y)$ and $x \in y \iff f(x) = f(y)$.

In fact, by Corollary 5.5, we can assume that e, f are *continuous*.

Lemma 6.1 If P is a special E_0 -large product, $U_0, U_1, \ldots \subseteq \omega$, and E is reduced to each U_k on P, then E is reduced to $U = \bigcap_k U_k$ on P. The same for F.

Proof For just two sets, if $U = U_0 \cap U_1$ and $x, y \in P$, $x \upharpoonright U = y \upharpoonright U$, then, using the product structure, find a point $z \in P$ with $z \upharpoonright U_0 = x \upharpoonright U_0$ and $z \upharpoonright U_1 = y \upharpoonright U_1$. Then e(x) = e(z) = e(y), and hence $x \vDash y$. The case of finitely many sets follows by induction. Therefore, we can assume that $U_0 \supseteq U_1 \supseteq U_2 \supseteq \cdots$ in the general case. Let $x, y \in P$, and let $x \upharpoonright U = y \upharpoonright U$. There exist points $x_k \in P$ satisfying $x_k \upharpoonright U_k = x \upharpoonright U_k$ and $x_k \upharpoonright (B \sim U_k) = y \upharpoonright (B \sim U_k)$. Then immediately $e(x_k) = e(x)$ for all k. On the other hand, clearly $x_k \to y$; hence, $e(x_k) \to e(y)$ as e is continuous. Thus e(x) = e(y), and hence $x \vDash y$.

We argue in terms of Definition 5.1. The plan is to define a sequence of special E_0 -large products as in Lemma 5.3, with some extra properties. Let $m < \omega$. A special E_0 -large product $R \in SLP$ is *m*-good if the following hold (see the definitions in Section 2):

(1) E: if $\sigma \in 2^m$, then either (i) E is reduced to $\omega \setminus \{\phi(m)\}$ on $R(\Rightarrow \sigma)$, or (ii) there is no set $R' \in$ **SLP**, $R' \subseteq R(\Rightarrow \sigma)$ on which E is reduced to $\omega \setminus \{\phi(m)\}$;

(1) F: the same for F;

(2) E: if $\sigma, \tau \in 2^m$, then either (i) E is reduced on $R(\Rightarrow \sigma) \cup R(\Rightarrow \tau)$ to

$$\Delta[\sigma, \tau] = \omega \setminus \{\phi(i) : i < m \land \sigma(i) \neq \tau(i)\},\$$

122

or (ii) $e[R(\Rightarrow\sigma)] \cap e[R(\Rightarrow\tau)] = \emptyset^3$ —equivalently, the sets $R(\Rightarrow\sigma)$ and $R(\Rightarrow\tau)$ do not contain E-related points;

(2) F: the same for F.

7 The Key Lemma

Lemma 7.1 If $m < \omega$ and a special E_0 -large product R is m-good, then there is an (m + 1)-good special E_0 -large product $Q \subseteq_{m+1} R$.

Proof Consider a string $\sigma' \in 2^{m+1}$, and first define a special E_0 -large product $Q \subseteq_{m+1} R$, satisfying (1) E relative to this string only. Let $\ell' = \phi(m+1)$. If there exists $R' \in \mathbf{SLP}$, $R' \subseteq R(\Rightarrow \sigma')$ on which E is reduced to $\omega \setminus \{\ell'\}$, then let S_0 be such R'. If there is no such R', then put $S_0 = R(\Rightarrow \sigma')$. By Lemma 5.2(iv), there is a special E_0 -large product $Q \subseteq_{m+1} R$ such that $Q(\Rightarrow \sigma') = S_0$. Thus the set Q satisfies (1) E with respect to σ' . Now take Q as the "new" special E_0 -large product R, consider another string $\sigma' \in 2^{m+1}$, and do the same as above. Consider all strings in 2^{m+1} consecutively the same way. This ends with a special E_0 -large product $Q \subseteq_{m+1} R$, satisfying (1) E for all $\sigma' \in 2^{m+1}$.

Now take care of (2) E. Let $\ell = \phi(m)$, and let $B = \omega \setminus \{\ell\}$.

Step 1. We fulfill (2) E for one particular pair $\sigma' = \sigma \cap 0$, $\tau' = \sigma \cap 1$, where $\sigma \in 2^m$. Then $\Delta[\sigma', \tau'] = B$. The goal is to define $P \in \text{SLP}$, $P \subseteq_{m+1} Q$, satisfying (2) E relative to this pair σ', τ' .

If the relation E is reduced to B on $Q(\Rightarrow \sigma)$, then E is reduced to B on the set $Q(\Rightarrow \sigma') \cup Q(\Rightarrow \tau') = Q(\Rightarrow \sigma)$, and we are done. Thus, by (1)E for $Q(\Rightarrow \sigma)$, we assume that *there is no set* $Q' \in SLP$, $Q' \subseteq Q(\Rightarrow \sigma)$ on which E is reduced to B.

In particular, E is *not* reduced to B on $Q(\Rightarrow \sigma')$. But $Q(\Rightarrow \sigma') \upharpoonright B = Q(\Rightarrow \tau') \upharpoonright B$, since $B = \Delta[\sigma', \tau'] = \omega \smallsetminus \{\ell\}$. It follows that there are points $x_0 \in Q(\Rightarrow \sigma')$ and $y_0 \in Q(\Rightarrow \tau')$ such that $x_0 \upharpoonright B = y_0 \upharpoonright B$ and $e(x_0) \neq e(y_0)$; that is, we have $e(x_0)(k) = p \neq q = e(y_0)(k)$ for some k and $p, q = 0, 1, p \neq q$.

As e is continuous, there are strings $u, v \in 2^{<\omega}$ of equal length lh(u) = lh(v)such that $\sigma' \subset u, \tau' \subset v, x_0 \in X = Q(\Rightarrow u), y_0 \in Y = Q(\Rightarrow v)$, and e(x)(k) = p, e(y)(k) = q for all $x \in X, y \in Y$. We are going to define a special E₀-large product $P \subseteq_{n+1} Q$ such that $P(\Rightarrow \sigma') \subseteq X$ and $P(\Rightarrow \tau') \subseteq Y$. In this case we shall have $e[P(\Rightarrow \sigma')] \cap e[P(\Rightarrow \tau')] = \emptyset$ by construction, as required.

To carry out the construction of P, let $r_j = \sigma[j]$, $s_j = u[j]$, $t_j = v[j]$ for all j.

Consider any index $j \neq \ell$. Then $x_0(j) = y_0(j)$ (as $x_0 \upharpoonright B = y_0 \upharpoonright B$), and then easily $r_j \subset s_j = t_j$. It follows that the set $S_j = X(j) = Y(j) = Q(j)(\rightarrow s_j)$ belongs to **SLS** and satisfies $S_j \subseteq Q(j)(\rightarrow r_j)$. By Lemma 4.6, there is a set $P_j \in$ **SLS** satisfying $P_j \subseteq_{v_j} Q(j)$ and $P_j(\rightarrow r_j) = S_j$, where $v_j = v_{mj} = lh(r_j)$.

Now consider the index ℓ itself. The strings s_{ℓ} and t_{ℓ} are different (of the same length), but still satisfy $r_{\ell} \cap 0 = \sigma'[\ell] \subseteq s_{\ell}$, $r_{\ell} \cap 1 = \tau'[\ell] \subseteq t_{\ell}$. It follows that the sets $S_{\ell} = X(\ell)$, $V_{\ell} = Y(\ell)$ satisfy $S_{\ell} = H(\rightarrow s_{\ell}) \subseteq H(\rightarrow r_{\ell} \cap 0)$, $V_{\ell} = H(\rightarrow t_{\ell}) \subseteq H(\rightarrow r_{\ell} \cap 1)$, where $H = Q(\ell)$. And moreover, $[S_{\ell}]_{\mathsf{E}_0} = [V_{\ell}]_{\mathsf{E}_0}$ holds by Lemma 4.3(ii). Lemma 4.7 yields a set $H' \in \mathbf{SLS}$ satisfying $H' \subseteq_{\nu+1} H$, where $\nu_{\ell} = \mathbf{v}_{m\ell} = \ln(s)$, and $H'(\rightarrow s \cap 0) \subseteq S_{\ell}$, $H'(\rightarrow s \cap 1) \subseteq V_{\ell}$.

We finally define a special E₀-large product *P* such that $P(\ell) = H'$ and $P(j) = P_j$ for all $j \neq \ell$. Then by construction $P \subseteq_{m+1} Q$, $P(\Rightarrow \sigma') \subseteq X$, and $P(\Rightarrow \tau') \subseteq Y$, as required.

Step 2. Iterating the construction at Step 1, we obtain a special E₀-large product $R \subseteq_{m+1} Q$ which fulfills (2) E for all pairs $\sigma', \tau' \in 2^{m+1}$ of the form $\sigma' = \sigma \cap 0$, $\tau' = \sigma \cap 1$, where $\sigma \in 2^m$.

Step 3. We claim that R satisfies (2) E for all pairs $\sigma', \tau' \in 2^{m+1}$ of any form. Indeed, let $\sigma' = \sigma^{\hat{i}}, \tau' = \tau^{\hat{k}}$ be any pair in 2^{m+1} , where $\sigma, \tau \in 2^m$ and $i, k \in \{0, 1\}$. By (2) E for the pair σ, τ , either E is reduced to $U = \mathbf{\Delta}[\sigma, \tau]$ on $R(\Rightarrow \sigma) \cup R(\Rightarrow \tau)$, or $\mathbf{e}[R(\Rightarrow \sigma)] \cap \mathbf{e}[R(\Rightarrow \tau)] = \emptyset$. In the second case, $\mathbf{e}[R(\Rightarrow \sigma')] \cap \mathbf{e}[R(\Rightarrow \tau')] = \emptyset$. Thus, we can assume without loss of generality that E is reduced to U on $R(\Rightarrow \sigma) \cup R(\Rightarrow \tau) \cup R(\Rightarrow \tau)$. Let $U' = \mathbf{\Delta}[\sigma', \tau']$. If i = k or $\ell \notin U$, then U = U', so that (2) E relative to σ', τ' follows from (2) E relative to σ, τ . Thus, we can assume without loss of generality that $\theta' = \sigma^{\hat{i}}, \tau' = \tau^{\hat{i}}, and \ell \in U$. Then $U' = U \setminus \{\ell\} = U \cap B$, of course.

Because of the achievement at Step 2, we have two cases.

Case 3.1: E is reduced to *B* on $R(\Rightarrow\sigma') \cup R(\Rightarrow\sigma'_1)$, where $\sigma'_1 = \sigma^{-1}$. Prove that E is reduced to *U'* on $R(\Rightarrow\sigma') \cup R(\Rightarrow\tau')$, so that (2)E(i) holds for σ' , τ' . Indeed, assume that $x \in R(\Rightarrow\sigma')$, $y \in R(\Rightarrow\tau')$, $x \upharpoonright U' = y \upharpoonright U'$. Let $x' \in (2^{\omega})^{\omega}$ be defined so that $x' \upharpoonright B = x \upharpoonright B$ but $x'(\ell) = y(\ell)$. Thus, if $j \neq \ell$, then $x'(j) = x(j) \in R(\Rightarrow\sigma')(j) = R(\Rightarrow\sigma'_1)(j)$ (because $R(\Rightarrow\sigma') \upharpoonright B = R(\Rightarrow\sigma'_1) \upharpoonright B$). While for ℓ itself we have $x'(\ell) = y(\ell) \in R(\Rightarrow\tau') = R(\Rightarrow\sigma'_1)$ (because now we have $\ell \in U = \Delta[\tau', \sigma'_1]$). It follows that $x' \in R(\Rightarrow\sigma'_1)$. Therefore, by the Case 3.1 hypothesis, we have e(x) = e(x'). On the other hand, $x' \upharpoonright U = y \upharpoonright U$; therefore, e(y) = e(x') without loss of generality, as assumed above. Thus e(x) = e(y), as required.

Case 3.2: $e[R(\Rightarrow \sigma')] \cap e[R(\Rightarrow \sigma'_1)] = \emptyset$. However, E is reduced to $U = \Delta[\sigma, \tau]$ on $R(\Rightarrow \sigma) \cup R(\Rightarrow \tau)$ without loss of generality as assumed above and, hence, on the smaller set $R(\Rightarrow \sigma'_1) \cup R(\Rightarrow \tau')$ as well, while $R(\Rightarrow \sigma'_1) \upharpoonright U = R(\Rightarrow \tau') \upharpoonright U$ (since the equality $U = \Delta[\sigma'_1, \tau'] = \Delta[\sigma, \tau]$ holds). We conclude that $e[R(\Rightarrow \sigma'_1)] = e[R(\Rightarrow \tau')]$. It follows that $e[R(\Rightarrow \sigma')] \cap e[R(\Rightarrow \tau')] = \emptyset$; hence, *R* satisfies (2)E(ii) for σ', τ' .

Thus, indeed, we have got a special E_0 -large product $R \subseteq_{m+1} Q$ satisfying (2) E for all $\sigma', \tau' \in 2^{m+1}$ (and still satisfying (1)E).

It remains to repeat the same procedure for F.

8 Proof of the Main Theorem: Conclusion

We come back to the proof of Theorem 2.1. Lemma 7.1 yields an infinite sequence $\cdots \leq_3 Q_2 \leq_2 Q_1 \leq_1 Q_0$ of special E₀-large products Q_m such that each Q_m is *m*-good. The limit special E₀-large product $P = \bigcup_m Q_m \in \mathbf{SLP}$ satisfies $P \subseteq_{m+1} Q_m$ for all *m* by Lemma 5.3. Therefore, *P* is *m*-good for every *m* and, hence, we can freely use (1)E, F and (2)E, F for *P* in the following final argument.

Case 1: if $m < \omega$, $\sigma, \tau \in 2^m$, and $e[P(\Rightarrow \sigma)] \cap e[P(\Rightarrow \tau)] = \emptyset$, then we have $f[P(\Rightarrow \sigma)] \cap f[P(\Rightarrow \tau)] = \emptyset$. Prove that $F \subseteq F$ on P in this case, as required by the "either" option of Theorem 2.1. Let $x, y \in P$ and $x \in y$ fails, that is, $e(x) \neq e(y)$; show that $f(x) \neq f(y)$. Pick $a, b \in 2^\omega$ satisfying $\{x\} = \bigcap_m P(\Rightarrow a \upharpoonright m)$ and $\{y\} = \bigcap_m P(\Rightarrow b \upharpoonright m)$. As $x \neq y$, we have $e[Q(\Rightarrow a \upharpoonright m)] \cap e[Q(\Rightarrow b \upharpoonright m)] = \emptyset$ for some m by continuity and compactness. Then by the Case 1 assumption,

 $f[P(\Rightarrow a \upharpoonright m)] \cap f[P(\Rightarrow b \upharpoonright m)] = \emptyset$ holds, hence $f(x) \neq f(y)$, and $x \vDash y$ fails.

Case 2 = not Case 1. Then there is a number $m < \omega$ and a pair of strings $\sigma' = \sigma^{-}i, \tau' = \tau^{-}k \in 2^{m+1}$ such that $e[P(\Rightarrow\sigma')] \cap e[P(\Rightarrow\tau')] = \emptyset$, but $f[P(\Rightarrow\sigma')] \cap f[P(\Rightarrow\tau')] \neq \emptyset$; hence, the relation F is reduced to $U' = \Delta[\sigma', \tau']$ on $Z' = P(\Rightarrow\sigma') \cup P(\Rightarrow\tau')$ by (2)F. Assume that *m* is the least possible witness of this case. We are going to prove that the special E₀-large product $P(\Rightarrow\sigma)$ satisfies the "or" option of Theorem 2.1, with the number $\ell = \phi(m)$; that is, (*) F is reduced to $\omega \setminus \{\ell\}$ on $P(\Rightarrow\sigma)$, and (**) E captures ℓ on $P(\Rightarrow\sigma)$.

Lemma 8.1 The relation E is

(A) reduced to $U = \Delta[\sigma, \tau]$ on the set $Z = P(\Rightarrow \sigma) \cup P(\Rightarrow \tau)$,

(B) not reduced to $U' = \mathbf{\Delta}[\sigma', \tau']$ on $Z' = P(\Rightarrow \sigma') \cup P(\Rightarrow \tau')$,

(C) not reduced to $\omega \setminus \{\ell\}$ on any special E_0 -large product $P' \subseteq P(\Rightarrow \sigma)$.

In addition, (D) $U \neq U'$, hence $\ell \in U$ and $U' = U \setminus \{\ell\}$.

Proof (A) Otherwise we have $e[P(\Rightarrow \sigma)] \cap e[P(\Rightarrow \tau)] = \emptyset$ by (2) E, and hence $f[P(\Rightarrow \sigma)] \cap f[P(\Rightarrow \tau)] = \emptyset$ by the choice of *m*; then $f[P(\Rightarrow \sigma')] \cap f[P(\Rightarrow \tau')] = \emptyset$ as well, contrary to the fact that F is reduced to U' on $P(\Rightarrow \sigma') \cup P(\Rightarrow \tau')$, because $P(\Rightarrow \sigma') \upharpoonright U' = P(\Rightarrow \tau') \upharpoonright U'$ by Lemma 5.2(ii).

(B) The otherwise assumption contradicts $e[P(\Rightarrow \sigma')] \cap e[P(\Rightarrow \tau')] = \emptyset$.

(D) This follows from (A) and (B).

(C) Otherwise E is reduced to $\omega \setminus \{\ell\}$ on $P(\Rightarrow \sigma)$ by (1)E. Then E is reduced to U' on $P(\Rightarrow \sigma)$ by Lemma 6.1 since $U' = U \setminus \{\ell\}$ by (D).

Claim 8.2 The relation E is reduced to U' on Z.

Proof Let $x, y \in Z = P(\Rightarrow \sigma) \cup P(\Rightarrow \tau)$, and let $x \upharpoonright U' = y \upharpoonright U'$. As the equality $P(\Rightarrow \sigma) \upharpoonright U = P(\Rightarrow \tau) \upharpoonright U$ holds by Lemma 5.2(ii), there are $x', y' \in P(\Rightarrow \sigma)$ with $x \upharpoonright U = x' \upharpoonright U$ and $y \upharpoonright U = y' \upharpoonright U$. We have $x \vDash x'$ and $y \vDash y'$ by (A), and $x' \vDash y'$ since \vDash is reduced to U' on $P(\Rightarrow \sigma)$. We conclude that $x \vDash y$. \Box

It follows that E is reduced to U' on $Z' \subseteq Z$ as well. But this contradicts (B). The contradiction proves the lemma.

Now, as $U' = U \setminus \{\ell\} \subseteq \omega \setminus \{\ell\}$, the special E₀-large product $P(\Rightarrow \sigma')$ witnesses that F is reduced to $\omega \setminus \{\ell\}$ on $P(\Rightarrow \sigma)$ by (1)F. Thus we have (*).

To check (**), let $x, y \in P(\Rightarrow \sigma)$, and let $x \in y$; prove $x(\ell) = y(\ell)$. Indeed, $\{x\} = \bigcap_n P(\Rightarrow a \upharpoonright n)$ and $\{y\} = \bigcap_n P(\Rightarrow b \upharpoonright n)$, where $a, b \in 2^{\omega}$, $\sigma \subset a$, $\sigma \subset b$. Let $U = \bigcap_n \Delta[a \upharpoonright n, b \upharpoonright n]$. Then $x \upharpoonright U = y \upharpoonright U$, since

$$P(\Rightarrow a \upharpoonright n) \upharpoonright \mathbf{\Delta}[a \upharpoonright n, b \upharpoonright n] = P(\Rightarrow b \upharpoonright n) \upharpoonright \mathbf{\Delta}[a \upharpoonright n, b \upharpoonright n]$$

for all *n*. Thus it suffices to check $\ell \in \Delta[a \upharpoonright n, b \upharpoonright n]$ for all *n*.

Suppose to the contrary that $\ell = \phi(m) \notin \mathbf{\Delta}[a \upharpoonright n, b \upharpoonright n]$ for some *n*. Then n > m because $a \upharpoonright m = b \upharpoonright m = \sigma$. However, the relation E is reduced to $\mathbf{\Delta}[a \upharpoonright n, b \upharpoonright n]$ on $P(\Rightarrow a \upharpoonright n)$ by (2)E, since $x \in y$. Yet we have $\ell \notin \mathbf{\Delta}[a \upharpoonright n, b \upharpoonright n]$; therefore,

 $\Delta[a \upharpoonright n, b \upharpoonright n] \subseteq \omega \smallsetminus \{\ell\}.$ It follows that E is reduced to $\omega \smallsetminus \{\ell\}$ on $P(\Rightarrow a \upharpoonright n)$. But this contradicts Lemma 8.1(C) with $P' = P(\Rightarrow a \upharpoonright n)$.

To conclude Case 2, we have checked (*) and (**).

 \Box (Theorem 2.1)

9 An Application to Degrees of Constructibility

Consider the set $SLP = SLS^{\omega}$ of all special E_0 -large products as a forcing notion, over the background set universe V. Thus SLP adjoins an SLP-generic sequence $\vec{a} = \langle a_k \rangle_{k < \omega} \in (2^{\omega})^{\omega}$, of SLS-generic reals, to V.

Lemma 9.1 The forcing **SLP** preserves \aleph_1 and admits continuous reading of names for reals.⁴

Proof Arguing in the background set universe **V**, note that if sets $D_n \subseteq$ **SLP** $(n < \omega)$ are open dense in **SLP**, then by Lemma 5.2(iv), for any $P \in$ **SLP** there is a sequence $\cdots \subseteq_4 P_3 \subseteq_3 P_2 \subseteq_2 P_1 \subseteq_1 P_0$ as in Lemma 5.3 such that $P_0 \subseteq P$ and for all m, if $\sigma \in 2^m$, then $P_m(\Rightarrow \sigma) \in D_m$. This implies both claims of the lemma, by standard arguments.

Theorem 9.2 Let a sequence $\vec{a} = \langle a_k \rangle_{k < \omega} \in (2^{\omega})^{\omega}$ be SLS-generic over V. Assume that $x, y \in 2^{\omega}$ are reals in $V[\vec{a}]$. Then either $x \in V[y]$ or there is an index ℓ such that $a_{\ell} \in V[x]$ and $y \in V[\langle a_k \rangle_{k \neq \ell}]$.

Proof By Lemma 9.1, there exist continuous functions $e, f: (2^{\omega})^{\omega} \to 2^{\omega}$, coded in **V**, such that $x = e(\vec{a})$, $y = f(\vec{a})$. Argue in **V**. Define $\vec{x} \in \vec{y}$ if and only if $e(\vec{x}) = e(\vec{y})$, and $\vec{x} \in \vec{y}$ if and only if $f(\vec{x}) = f(\vec{y})$, for $\vec{x}, \vec{y} \in (2^{\omega})^{\omega}$. The set *D* of all special E₀-large products $P \in SLP$ such that either $F \subseteq E$ on *P*, or, for some $\ell < \omega$, E captures ℓ on *P* and F is reduced to $\omega \setminus \{\ell\}$ on *P*, is dense in **SLP** by Theorem 2.1. Therefore, \vec{a} belongs to a set $P \in D$ (or, to be more exact, to the topological closure of $P \in V$ in $V[\vec{a}]$).

Case 1: $F \subseteq E$ on *P* in **V**. This means that $f(\vec{x}) = f(\vec{y}) \implies e(\vec{x}) = e(\vec{y})$ for all \vec{x} , \vec{y} in *P*, in **V**, and hence, by Shoenfield, $f(\vec{x}) = f(\vec{y}) \implies e(\vec{x}) = e(\vec{y})$ for all \vec{x} , \vec{y} in (the closure of) *P*, in **V**[\vec{a}]. It follows that there is an analytic function *h*, coded in **V**, such that $e(\vec{x}) = h(f(\vec{x}))$ for all \vec{x} , \vec{y} in (the closure of) *P*, in **V**[\vec{a}]. In particular, a = h(b), and hence $a \in \mathbf{V}[b]$.

Case 2: $\ell < \omega$, and it is true in **V** that E captures ℓ on *P* and F is reduced to $\omega \setminus \{\ell\}$ on *P*. The first part of this condition ensures us that, in **V**, $e(\vec{x}) = e(\vec{y}) \Longrightarrow \vec{x}(\ell) = \vec{y}(\ell)$ for all \vec{x} , \vec{y} in *P*. Similarly to Case 1, this leads to an analytic function *h*, coded in **V**, such that $\vec{x}(\ell) = h(e(\vec{x}))$ for all $\vec{x} \in P$, in **V**[\vec{a}], and hence $a_{\ell} = \vec{a}(\ell) = h(e(\vec{a})) = h(\vec{a}) \in \mathbf{V}[\vec{a}]$. Similarly using the second part of the Case 2 hypothesis, we get another analytic function *g*, coded in **V**, such that $b = g(\langle a_k \rangle_{k \neq \ell}) \in \mathbf{V}[\langle a_k \rangle_{k \neq \ell}]$, as required.

Corollary 9.3 Let a sequence $\vec{a} = \langle a_k \rangle_{k < \omega} \in (2^{\omega})^{\omega}$ be SLS-generic over V, and let $X = \{a_k : k < \omega\}$. Assume that $a, b \in 2^{\omega}$ are reals in $V[\vec{a}]$. Then $a \in V[b]$ if and only if $X \cap V[a] \subseteq X \cap V[b]$.

One may ask whether, under the conditions of Corollary 9.3, it is true in $\mathbf{V}[\vec{a}]$ that for every set $U \subseteq \omega$ there is a real $a \in 2^{\omega}$ satisfying $X \cap \mathbf{V}[a] = \{a_k : k \in U\}$. The answer is positive for sets $U \in \mathbf{V}$, but generally the answer is negative; for instance, take $U = \{k + 1 : a_0(k) = 0\}$ (see Example 2.2).

Notes

- 1. The first family consists of equivalence relations classifiable by countable structures, the second of those Borel reducible to an analytic P-ideal.
- 2. "We avoid any attempt at organizing the very complicated class of smooth equivalence relations" [7, p. 232].
- 3. Given a function h and $X \subseteq \text{dom } h$, the set $h[X] = \{h(x) : x \in X\}$ is the h-image of X.
- 4. As noted by the anonymous referee, the forcing **SLP**, and basically **SLS** itself, does not necessarily preserve cardinals bigger than \aleph_1 . This is essentially due to the same reasons as for the Sacks forcing and its countable-support products, although the splitting constructions behind the result are different and essentially more complex for **SLS** than for the Sacks forcing.

References

- Baumgartner, J. E., and R. Laver, "Iterated perfect-set forcing," Annals of Mathematical Logic, vol. 17 (1979), pp. 271–88. Zbl 0427.03043. MR 0556894. DOI 10.1016/ 0003-4843(79)90010-X. 118
- [2] Conley, C. T., "Canonizing relations on nonsmooth sets," *Journal of Symbolic Logic*, vol. 78 (2013), pp. 101–12. Zbl 1361.03045. MR 3087064. DOI 10.2178/jsl.7801070. 119
- [3] Golshani, M., V. Kanovei, and V. Lyubetsky, "A Groszek-Laver pair of undistinguishable E₀ classes," *Mathematical Logic Quarterly*, vol. 63 (2017), pp. 19–31. MR 3647830. DOI 10.1002/malq.201500020. 118, 121
- [4] Kanovei, V., "Non-Glimm-Effros equivalence relations at second projective level," *Fun-damenta Mathematicae*, vol. 154 (1997), pp. 1–35. Zbl 0883.03034. MR 1472849. DOI 10.4064/fm-154-1-1-35. 118
- [5] Kanovei, V., "On non-wellfounded iterations of the perfect set forcing," *Journal of Symbolic Logic*, vol. 64 (1999), pp. 551–74. Zbl 0930.03062. MR 1777770. DOI 10.2307/ 2586484. 118
- [6] Kanovei, V., Borel Equivalence Relations: Structure and Classification, vol. 44 of University Lecture Series, American Mathematical Society, Providence, 2008. Zbl 1155.03035. MR 2441635. DOI 10.1090/ulect/044. 118, 119
- Kanovei, V., M. Sabok, and J. Zapletal, *Canonical Ramsey Theory on Polish Spaces*, vol. 202 of *Cambridge Tracts in Mathematics*, Cambridge University Press, Cambridge, 2013. Zbl 1278.03001. MR 3135065. DOI 10.1017/CBO9781139208666. 117, 118, 119, 122, 127
- [8] Zapletal, J., "Descriptive set theory and definable forcing," *Memoirs of the American Mathematical Society*, vol. 167 (2004), no. 793. Zbl 1037.03042. MR 2023448. DOI 10.1090/memo/0793. 118, 119
- [9] Zapletal, J., Forcing Idealized, vol. 174 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2008. Zbl 1140.03030. MR 2391923. DOI 10.1017/ CB09780511542732. 118

Kanovei and Lyubetsky

Acknowledgments

We are grateful to the anonymous referee for a number of valuable remarks which helped to substantially improve the text. Kanovei's work was partially supported by Russian Foundation for Basic Research (RFBR) grant 17-01-00705. Lyubetsky's work was partially supported by RFBR grant 18-29-13037.

Kanovei Laboratory 6 Institute for Information Transmission Problems Russian Academy of Sciences Moscow Russia kanovei@googlemail.com

Lyubetsky Laboratory 6 Institute for Information Transmission Problems Russian Academy of Sciences Moscow Russia Iyubetsk@iitp.ru