Canonization of Smooth Equivalence Relations on Infinite-Dimensional E_{0}-Large Products

Vladimir Kanovei and Vassily Lyubetsky

Abstract

We propose a canonization scheme for smooth equivalence relations on \mathbb{R}^{ω} modulo restriction to E_{0}-large infinite products. It shows that, given a pair of Borel smooth equivalence relations E, F on \mathbb{R}^{ω}, there is an infinite E_{0}-large perfect product $P \subseteq \mathbb{R}^{\omega}$ such that either $\mathrm{F} \subseteq \mathrm{E}$ on P, or, for some $\ell<\omega$, the following is true for all $x, y \in P: x \mathrm{E} y$ implies $x(\ell)=y(\ell)$, and $x \upharpoonright(\omega \backslash\{\ell\})=y \upharpoonright(\omega \backslash\{\ell\})$ implies $x \mathrm{~F} y$.

1 Introduction

The canonization problem can be broadly formulated as follows. Given a class \mathcal{E} of mathematical structures E, and a collection \mathcal{P} of sets P considered as large, or essential, find a smaller and better structured subcollection $\mathcal{E}^{\prime} \subseteq \mathcal{E}$ such that for any structure $E \in \mathcal{E}$ with the domain P there is a smaller set $P^{\prime} \in \mathcal{P}, P^{\prime} \subseteq$ P, such that the restricted substructure $E \upharpoonright P^{\prime}$ belongs to \mathcal{E}^{\prime}. For instance, the theorem saying that every Borel real map is either a bijection or a constant on a perfect set, can be viewed as a canonization theorem, with $\mathcal{E}=\{$ Borel maps $\}$, $\mathcal{E}^{\prime}=\{$ bijections and constants $\}$, and $\mathcal{P}=\{$ perfect sets $\}$. We refer to Kanovei, Sabok, and Zapletal [7] as the background of the general canonization problem for Borel and analytic equivalence relations in descriptive set theory.

Among other results, it is established in [7, Section 9.3, Theorems 9.26 and 9.27] that if E belongs to one of two large families of analytic equivalence relations ${ }^{1}$ on $\left(2^{\omega}\right)^{\omega}$, then there is an infinite perfect product $P \subseteq\left(2^{\omega}\right)^{\omega}$ such that $\mathrm{E} \upharpoonright P$ is smooth, that is, there simply exists a Borel map $f: P \rightarrow 2^{\omega}$ satisfying x E $y \Longleftrightarrow f(x)=$ $f(y)$ for all $x, y \in P$. The canonization problem for smooth equivalence relations themselves was not considered in [7]. ${ }^{2}$ Theorem 2.1, the main result of this note, contributes to this problem.

2 Large Products and the Main Theorem

Recall that the equivalence relation E_{0} is defined on 2^{ω} so that $x \mathrm{E}_{0} y$ if and only if the equality $x(n)=y(n)$ holds for all but finite n. If $X \subseteq 2^{\omega}$, then we define the E_{0}-hull $\left[X \mathrm{E}_{0}=\left\{y \in 2^{\omega}: y \mathrm{E}_{0} x\right\}\right.$ of X. It is known that E_{0} is not smooth; that is, there is no Borel map $f: \operatorname{dom} f=2^{\omega} \rightarrow 2^{\omega}$ satisfying $x \mathrm{E} y \Longleftrightarrow f(x)=f(y)$ for all $x, y \in 2^{\omega}$. A Borel set $X \subseteq 2^{\omega}$ is E_{0}-large if $\mathrm{E}_{0} \upharpoonright X$ is still not smooth. (See more on this in Zapletal [8], [9], Kanovei [6], [7], or elsewhere.)

An infinite perfect product is any set $P \subseteq\left(2^{\omega}\right)^{\omega}$ such that $P=\prod_{\ell<\omega} P(\ell)$, where $P(\ell)=\{x(\ell): x \in P\}$ is the projection on the ℓ th coordinate, and it is required that each set $P(\ell)$ be a perfect subset of 2^{ω}. Let $\mathbf{P P}$ be the set of all perfect products. If every factor $P(\ell)$ is an E_{0}-large set, then say that P is an $\mathrm{E}_{0}-$ large perfect product.

To set up a convenient notation, say that an equivalence relation E on $\left(2^{\omega}\right)^{\omega}$:
captures $\ell \in \omega$ on $P \in \mathbf{P P}$: if $x \mathrm{E} y$ implies $x(\ell)=y(\ell)$ for all $x, y \in P$;
is reduced to $U \subseteq \omega$ on $P \in \mathbf{P P}$: if $x \upharpoonright U=y \upharpoonright U$ implies $x \mathrm{E} y$ for all $x, y \in P$.

Theorem 2.1 If E, F are smooth Borel equivalence relations on $\left(2^{\omega}\right)^{\omega}$, then there is an E_{0}-large perfect product $P \subseteq\left(2^{\omega}\right)^{\omega}$ such that either $\mathrm{F} \subseteq \mathrm{E}$ on P, or, for some $\ell<\omega, \mathrm{E}$ captures ℓ on P and F is reduced to $\omega \backslash\{\ell\}$ on P.

The two options of the theorem are incompatible with perfect products. The result can be compared to canonization results related to finite products and equivalence relations defined on spaces $\left(2^{\omega}\right)^{m}, m<\omega$. Theorem 9.3 in [7, Section 9.1] implies that every analytic equivalence relation on $\left(2^{\omega}\right)^{m}$ coincides with one of the multiequalities $\mathrm{D}_{U}, U \subseteq\{0,1, \ldots, m-1\}$, on some E_{0}-large perfect product $P \subseteq\left(2^{\omega}\right)^{m}$, where $x \mathrm{D}_{U} y$ if and only if $x \uparrow U=y \uparrow U$. One may ask whether such a result holds for equivalence relations on $\left(2^{\omega}\right)^{\omega}$ and, accordingly, for infinite perfect products. This gives a negative answer, even for smooth equivalences.

Example 2.2 Let E be defined on $\left(2^{\omega}\right)^{\omega}$ so that $x \mathrm{E} y$ if and only if $x(0)=$ $y(0)$, and also $x(\ell+1)=y(\ell+1)$ for all numbers ℓ such that $x(0)(\ell)=0$. That E is smooth can be witnessed by the map sending each $x \in\left(2^{\omega}\right)^{\omega}$ to $a=\vartheta(x) \in$ $\left(2^{\omega}\right)^{\omega}$ defined so that $a(k)=x(k)$ whenever $k=0$ or $k=\ell+1$ and $x(0)(\ell)=0$, and $a(k)(n)=0$ for all other k and all $n<\omega$. That E is not equal (and even not Borel bireducible) to any D_{U} on any perfect product $P \subseteq\left(2^{\omega}\right)^{\omega}$, is easy.

The proof of Theorem 2.1 is based on a splitting/fusion technique known in the theory of iterations and products of the perfect-set forcing (see, e.g., Baumgartner [1] and Kanovei [4], [5]), although the splitting construction for infinite E_{0}-large products is different and way more complex than in the case of perfect-set products.

See Section 9 on applications of the theorem to the structure of the constructibility degrees in generic extensions via the forcing by E_{0}-large products.

3 Large Sets

Here and in the next section, we reproduce some definitions and results from Golshani and the authors in [3] related to perfect and large trees; but here we consider sets rather than trees.

Strings. The set $2^{<\omega}$ contains all strings (finite sequences) of numbers 0,1 , including the empty string Λ. If $t \in 2^{<\omega}$ and $i=0,1$, then $t^{\wedge} i$ is the extension of t by i as the rightmost term. If $s, t \in 2^{<\omega}$, then $s \subseteq t$ means that the string t extends s (including the case $s=t$), while $s \subset t$ means proper extension. The length of s is $\operatorname{lh}(s)$, and $2^{n}=\left\{s \in 2^{<\omega}: \operatorname{lh}(s)=n\right\}$ (strings of length n).

If $u \in 2^{<\omega}$, then let $\boldsymbol{I}_{u}=\left\{a \in 2^{\omega}: u \subset a\right\}$, a Cantor interval in 2^{ω}.
Trees and perfect sets. If $X \subseteq \omega^{\omega}$, then let tree $(X)=\left\{u \in 2^{<\omega}: X \cap \boldsymbol{I}_{u} \neq\right.$ $\varnothing\}$, the tree of X. If $u \in \operatorname{tree}(X)$, then define $X \upharpoonright_{u}=X \cap \boldsymbol{I}_{u}$, the truncated set. If card $X \geq 2$, then there is a longest string $s=\operatorname{stem}(X) \in 2^{<\omega}$ satisfying $X \subseteq \boldsymbol{I}_{s}$ (the stem of T). A string $u \in \operatorname{tree}(X)$ is a splitnode if both $u^{\wedge} 0$ and $u^{\wedge} 1$ belong to tree (X). A closed set $\varnothing \neq X \subseteq 2^{\omega}$ is perfect if and only if every string $u \in \operatorname{tree}(X)$ can be extended into a splitnode $v \in \operatorname{tree}(X), u \subset v$.

Action. Every string $s \in 2^{<\omega}$ acts on 2^{ω} in such a way that if $x \in 2^{\omega}$, then $(s \cdot x)(k)=x(k)+s(k)(\bmod 2)$ for $k<\operatorname{lh}(s)$, and $(s \cdot x)(k)=x(k)$ otherwise. If $X \subseteq 2^{\omega}$ and $s \in 2^{<\omega}$, then let $s \cdot X=\{s \cdot x: x \in X\}$. Similarly if $s, t \in 2^{m}$, then define a string $s \cdot t \in 2^{m}$ so that $(s \cdot t)(k)=t(k)+s(k)(\bmod 2)$ for $k<m$.

This action of strings on 2^{ω} induces the relation E_{0}, so that if $x, y \in 2^{\omega}$, then $x \mathrm{E}_{0} y$ is equivalent to $y=s \cdot x$ for a string $s \in 2^{<\omega}$.

Special E_{0}-large perfect sets. Following [8, Definition 2.3.28], a perfect set $X \subseteq 2^{\omega}$ is called special E_{0}-large if the following holds: for every splitnode $u \in$ $\operatorname{tree}(X)$, if $u_{0}, u_{1} \in \operatorname{tree}(X)$ are the minimal splitnodes in tree (X) satisfying $u^{\wedge} 0 \subseteq u_{0}$ and $u^{\wedge} 1 \subseteq u_{1}$, then $\operatorname{lh}\left(u_{0}\right)=\operatorname{lh}\left(u_{1}\right)$ and (the symmetry) $X \upharpoonright{ }_{u_{1}}=$ $\left(u_{1} \cdot u_{0}\right) \cdot X \upharpoonright{ }_{u_{0}}$. The symmetry condition is equivalent to $u_{0}{ }^{\wedge} a \in X \Longleftrightarrow u_{1} \wedge a \in$ X for all $a \in 2^{\omega}$, and we have $X \upharpoonright_{u}=X \upharpoonright_{u_{0}} \cup X \upharpoonright_{u_{1}}=X \upharpoonright_{u^{\prime} 0} \cup X \upharpoonright_{u^{\prime} 1}$ anyway.

Let SLS be the collection of all special E_{0}-large (perfect) sets.
Sets in SLS admit a special combinatorial representation. Suppose that $r \in 2^{<\omega}$, and suppose that $\left\langle q_{k}^{i}\right\rangle_{k<\omega, i=0,1}$ is a system of strings $q_{k}^{i} \in 2^{<\omega}$ such that $\operatorname{lh}\left(q_{k}^{0}\right)=$ $\operatorname{lh}\left(q_{k}^{1}\right) \geq 1$ and $q_{k}^{0}(0)=0, q_{k}^{1}(0)=1$ for all k. Let $\left[r,\left\{q_{k}^{i}\right\}\right]$ be the perfect set of all infinite strings of the form $a=r^{\wedge} q_{0}^{i_{0}} q_{1}^{i_{1}} \curvearrowleft q_{2}^{i_{2}} \frown \ldots \curvearrowleft q_{n}^{i_{n}} \curvearrowleft \ldots \in 2^{\omega}$, where $i_{k}=0,1$ for all k. One easily proves that every set of this form is special E_{0}-large, and conversely, every special E_{0}-large set has the form $\left[r,\left\{q_{k}^{i}\right\}\right]$ for suitable strings $r, q_{k}^{i} \in 2^{<\omega}$.

See Conley [2], [7, Section 7.1], and [6, Section 10.9] for details on these categories of sets.

Proposition 3.1 Every set $X=\left[r,\left\{q_{k}^{i}\right\}\right] \in \boldsymbol{S L S}$ is E_{0}-large. Conversely, every E_{0}-large Borel set $X \subseteq 2^{\omega}$ contains a special E_{0}-large subset.

Proof To prove the first claim note that the map sending each $a \in 2^{\omega}$ to $r \wedge q_{0}^{a(0)} \wedge q_{1}^{a(1)} \neg q_{2}^{a(2)} \wedge \ldots \wedge q_{n}^{a(n)} \wedge \ldots \in 2^{\omega}$ is an isomorphism between $\left\langle 2^{\omega} ; \mathrm{E}_{0}\right\rangle$ and $\left\langle X ; \mathrm{E}_{0}\right\rangle$. Regarding the second claim (which we will not use) see [8, Lemma 2.3.29].

We finally define splitting levels of sets $X=\left[r,\left\{q_{k}^{i}\right\}\right] \in \mathbf{S L S}$. Then $\operatorname{stem}(X)=r$, and the strings $q_{k}^{i}=q_{k}^{i}[X]$ are unique. If $n<\omega$, then we let

$$
\operatorname{spl}_{n}(X)=\operatorname{lh}(r)+\operatorname{lh}\left(q_{0}^{i_{0}}\right)+\operatorname{lh}\left(q_{1}^{i_{1}}\right)+\cdots+\operatorname{lh}\left(q_{n-1}^{i_{n-1}}\right)
$$

(independent of the values of $\left.i_{k}=0,1\right)$. In particular, $\operatorname{spl}_{0}(X)=\operatorname{lh}(r)$. Thus $\operatorname{spl}(X)=\left\{\operatorname{spl}_{n}(X): n<\omega\right\} \subseteq \omega$ is the set of all splitting levels of X.

Example 3.2 If $s \in 2^{<\omega}$, then $\boldsymbol{I}_{s}=\left\{a \in 2^{\omega}: s \subset a\right\}$ is special E_{0}-large; in fact, $\boldsymbol{I}_{s}=\left[s,\left\{q_{k}^{i}\right\}\right]$, where $q_{k}^{i}=q_{k}^{i}\left(\boldsymbol{I}_{s}\right)=\langle i\rangle$ for all k.

4 Splitting E_{0}-Large Sets

The simple splitting of a perfect set $X \subseteq 2^{\omega}$ consists of subsets $X(\rightarrow i)=\{x \in X$: $x(n)=i\}, i=0,1$, where $n=\operatorname{lh}(r)$ (the length of a string $r \in 2^{<\omega}$), and $r=\operatorname{stem}(X)$ is the largest string in $2^{<\omega}$ satisfying $r \subset x$ for all $x \in X$. Then $X=X(\rightarrow 0) \cup X(\rightarrow 1)$ is a disjoint partition of a perfect set $X \subseteq 2^{\omega}$ onto two perfect subsets. Splittings can be iterated. We let $X(\rightarrow \Lambda)=X$ for the empty string Λ, and if $s \in 2^{n}, s \neq \Lambda$, then we define

$$
X(\rightarrow s)=X(\rightarrow s(0))(\rightarrow s(1))(\rightarrow s(2)) \cdots(\rightarrow s(n-1)) .
$$

Lemma 4.1 If $X \subseteq 2^{\omega}$ is a special E_{0}-large set, $u \in \operatorname{tree}(X)$, and $s \in 2^{n}$, then the sets $X(\rightarrow s)$ and $X \upharpoonright_{u}$ belong to SLS, too.
Lemma 4.2 Let $X=\left[r,\left\{q_{k}^{i}\right\}\right] \in \operatorname{SLS}$, and let $s \in 2^{<\omega}$. Then $X(\rightarrow s)=$ $X \upharpoonright_{u[s]}$, where $u[s]=u[s, X]=r^{\wedge} q_{0}^{s(0)} \wedge q_{1}^{s(1)} \wedge \ldots \curvearrowleft q_{n-1}^{s(n-1)} \in T=\operatorname{tree}(X)$. Conversely, if $u \in T$, then there is a string $s=s[u] \in 2^{<\omega}$ such that $X \upharpoonright_{u}=$ $X(\rightarrow s)$.

Proof To prove the converse, we put $s(k)=u\left(\operatorname{sp} 1_{k}(X)\right)$ for all k such that $\operatorname{spl}_{k}(X)<\operatorname{lh}(u)$.

Lemma 4.3 Let $X \in \boldsymbol{S L S}$, let $n<\omega$, and let $h=\operatorname{spl}_{n}(X)$. Then
(i) if $u, v \in \operatorname{tree}(X) \cap 2^{h}$, then $X \upharpoonright_{u}=(u \cdot v) \cdot\left(X \upharpoonright_{v}\right)$;
(ii) if $s, t \in 2^{n}$, then $X(\rightarrow s)=\sigma \cdot(X(\rightarrow t))$, where $\sigma=u[s, X] \cdot u[t, X]$;
(iii) if $u, v \in \operatorname{tree}(X) \cap 2^{j}, j<\omega$, then $X \upharpoonright_{u}=\sigma \cdot\left(X \upharpoonright_{v}\right)$ for some $\sigma \in 2^{<\omega}$.

Proof To prove (ii) use Lemma 4.2. To prove (iii) take the least number $h \in$ $\operatorname{spl}(X)$ with $j \leq h$. There is a unique pair of strings $u^{\prime}, v^{\prime} \in 2^{h}$ satisfying $u \subseteq u^{\prime}$, $v \subseteq v^{\prime}$. Then $X \upharpoonright_{u}=X \upharpoonright_{u^{\prime}}, X \upharpoonright_{v}=X \upharpoonright_{v^{\prime}}$, and $X \upharpoonright_{u^{\prime}}=\left(u^{\prime} \cdot v^{\prime}\right) \cdot\left(X \upharpoonright_{v^{\prime}}\right)$.

Definition 4.4 (Refinement) If $X, Y \subseteq 2^{\omega}$ are perfect sets and $n<\omega$, then define $X \subseteq_{n} Y$ if $X(\rightarrow s) \subseteq Y(\rightarrow s)$ for all $s \in 2^{n} ; X \subseteq_{0} Y$ is equivalent to $X \subseteq Y$. Clearly, $X \subseteq_{n+1} Y$ implies $X \subseteq_{n} Y$ (and $X \subseteq Y$).

If X, Y are special E_{0}-large sets and $n \geq 1$, then the relation $X \subseteq_{n} Y$ is equivalent to $\operatorname{stem}(X)=\operatorname{stem}(Y), q_{k}^{i}[X]=q_{k}^{i}[Y]$ for all $i=0,1$ and $k<n-1$, and $q_{n-1}^{i}[X] \subseteq q_{n-1}^{i}[Y]$ for all $i=0,1$.

Lemma 4.5 Assume that X, U are perfect sets, that $s_{0} \in 2^{n}$, and that $U \subseteq$ $X\left(\rightarrow s_{0}\right)$. Then the set $Y=A \cup \bigcup_{u \in 2^{n}, u \neq s} X(\rightarrow u)$ is perfect, $Y \subseteq_{n} X$, and $Y\left(\rightarrow s_{0}\right)=A$.

Lemma 4.6 If $X, U \in \boldsymbol{S L S}, s_{0} \in 2^{n}$, and $U \subseteq X\left(\rightarrow s_{0}\right)$, then there is a unique special E_{0}-large set X^{\prime} satisfying $X^{\prime} \subseteq_{n} X$ and $X^{\prime}\left(\rightarrow s_{0}\right)=U$. We have then
(i) $X^{\prime}(\rightarrow s)=u\left[s_{0}, X\right] \cdot u[s, X] \cdot X^{\prime}\left(\rightarrow s_{0}\right)$ for all $s \in 2^{n}$;
(ii) if U is clopen in $X\left(\rightarrow s_{0}\right)$, then X^{\prime} is clopen in X.

Proof If $s \in 2^{n}$, then $X(\rightarrow s)=u\left[s_{0}, X\right] \cdot u[s, X] \cdot X\left(\rightarrow s_{0}\right)$ by Lemma 4.3. Put $U_{s}=u\left[s_{0}, X\right] \cdot u[s, X] \cdot U$ for all $s \in 2^{n}$, in particular, $U_{s_{0}}=U$. The set $X^{\prime}=$ $\bigcup_{u \in 2^{n}} U_{s}$ is as required.
The next lemma is a more complex version of \subseteq_{n}-refinement. For the proof (in terms of trees) see [3, Lemma 4.1(iv)].
Lemma 4.7 If $X, U, V \in \boldsymbol{S L S}, s_{0}, s_{1} \in 2^{n}, U \subseteq X\left(\rightarrow s_{0}{ }^{\wedge} 0\right), V \subseteq$ $X\left(\rightarrow s_{1} 11\right)$, and $[U]_{\mathrm{E}_{0}}=[V]_{\mathrm{E}_{0}}$, then there is a special E_{0}-large set X^{\prime} satisfying $X^{\prime} \subseteq_{n+1} X$ and $X^{\prime}\left(\rightarrow s_{0} \wedge 0\right) \subseteq U, X^{\prime}\left(\rightarrow s_{1}{ }^{\wedge} 1\right) \subseteq V$.
Lemma 4.8 Let $\cdots \subseteq_{4} X_{3} \subseteq_{3} X_{2} \subseteq_{2} X_{1} \subseteq_{1} X_{0}$ be an infinite sequence of sets in SLS. Then $X=\bigcap_{n} X_{n}$ is a special E_{0}-large set and $X \subseteq_{n+1} X_{n}$, for all n.
Proof Note that $\operatorname{spl}(X)=\left\{\operatorname{spl}_{n}\left(X_{n}\right): n<\omega\right\}$; this implies both claims.

5 Splitting Perfect and Special $\mathrm{E}_{\mathbf{0}}$-Large Products

A perfect product P is a special E_{0}-large product, $P \in \mathbf{S L P}$ for brevity, if each factor $P(\ell), \ell<\omega$, belongs to SLS. Thus $\mathbf{S L P}=\mathbf{S L S}{ }^{\omega}$.

Now we extend the splitting technique to special E_{0}-large products.
Definition 5.1 Fix once and for all a function $\phi: \omega \xrightarrow{\text { onto }} \omega$ taking each value infinitely many times, so that if $\ell<\omega$, then the following set is infinite:

$$
\phi^{-1}(\ell)=\{k: \phi(k)=\ell\}=\left\{\mathbf{k}_{0 \ell}<\mathbf{k}_{1 \ell}<\mathbf{k}_{2 \ell}<\cdots<\mathbf{k}_{\ell \ell}<\cdots\right\}
$$

If $m<\omega$, then let $\boldsymbol{v}_{m \ell}$ be the number of indices $k<m, k \in \phi^{-1}(\ell)$.
Let $m<\omega$, and let $\sigma \in 2^{m}$ (a string of length m). If $\ell \in \phi " m=\{\phi(k): k<m\}$, then the set $\phi^{-1}(\ell)$ cuts in σ a substring $\sigma[\ell] \in 2^{v_{m \ell}}$, of length $\operatorname{lh}(\sigma[\ell])=\boldsymbol{v}_{m \ell}$, defined by $(\sigma[\ell])(j)=\sigma\left(\mathbf{k}_{j \ell}\right)$ for all $j<\boldsymbol{v}_{m \ell}$. Thus the string $\sigma \in 2^{m}$ splits into an array of strings $\sigma[\ell] \in 2^{\boldsymbol{v}}{ }^{m \ell}\left(\ell \in \phi^{\prime \prime} m\right)$ of total length $\sum_{\ell \in \phi " m} \boldsymbol{v}_{m \ell}=m$.

Let P be a special E_{0}-large product. If $\sigma \in 2^{m}$, then define $P(\Rightarrow \sigma) \in \mathbf{S L P}$ so that $P(\Rightarrow \sigma)(\ell)=P(\ell)(\rightarrow \sigma[\ell])$ for all ℓ. In particular, if $\ell \notin \phi " m$, then $P(\Rightarrow \sigma)(\ell)=P(\ell)$, because $\operatorname{lh}(\sigma[\ell])=v_{m \ell}=0$ holds provided $\ell \notin \phi " m$.

Let $P, Q \in \mathbf{S L P}$. Define $P \subseteq_{m} Q$ if $P(\ell) \subseteq_{v_{m \ell}} Q(\ell)$ for all ℓ. This is equivalent to $P(\Rightarrow \sigma) \subseteq Q(\Rightarrow \sigma)$ for all $\sigma \in 2^{m}$.

If $\sigma, \tau \in 2^{m}$, then let $\boldsymbol{\Delta}[\sigma, \tau]=\omega \backslash\{\phi(i): i<m \wedge \sigma(i) \neq \tau(i)\}$.
Lemma 5.2 Under the conditions of Definition 5.1, let $P \in \boldsymbol{S L P}$. Then
(i) if $\sigma \in 2^{<\omega}$, then $P(\Rightarrow \sigma) \in \boldsymbol{S L P}$ and the set $P(\Rightarrow \sigma)$ is clopen in P;
(ii) if $m<\omega$ and $\sigma, \tau \in 2^{m}$, then $P(\Rightarrow \sigma) \uparrow \boldsymbol{\Delta}[\sigma, \tau]=P(\Rightarrow \tau) \uparrow \boldsymbol{\Delta}[\sigma, \tau]$;
(iii) if $x \in P$, and U is an open neighborhood of x, then there exists a string $\sigma \in 2^{m}$ satisfying $x \in P(\Rightarrow \sigma) \subseteq U$;
(iv) if $m<\omega, \sigma \in 2^{m}$, and $U \in \boldsymbol{S L P}, U \subseteq P(\Rightarrow \sigma)$, then there exists a unique set $Q \in \operatorname{SLP}$ such that $Q \subseteq_{m} P$ and $Q(\Rightarrow \sigma)=U$, and then if U is clopen in $P(\Rightarrow \sigma)$, then Q is clopen in P.
Proof (i) and (ii). These are clear. (iii) We have $\{x\}=\bigcap_{m}[P(\Rightarrow a \upharpoonright m)]$ for a suitable sequence $a \in 2^{\omega}$. By compactness, there is m such that $P(\Rightarrow a \upharpoonright m) \subseteq U$.
(iv) If $\ell<\omega$, then $U(\ell) \subseteq P(\Rightarrow \sigma)(\ell)=P(\ell)(\rightarrow s)$, where $s=\sigma[\ell]$. By Lemma 4.6, there is a set $S_{\ell} \in \mathbf{S L S}$ satisfying $S_{\ell} \subseteq_{n} P(\ell)$, where $n=\boldsymbol{v}_{m \ell}=$ $\operatorname{lh}(s)$, and $S_{\ell}(\rightarrow s)=U(\ell)$. Let $Q(\ell)=S_{\ell}$ for all ℓ.

A version of Lemma 4.8 for special E_{0}-large products is as follows.
Lemma 5.3 Let $\cdots \subseteq_{5} P_{4} \subseteq_{4} P_{3} \subseteq_{3} P_{2} \subseteq_{2} P_{1} \subseteq_{1} P_{0}$ be a sequence of special E_{0}-large products. Then $Q=\bigcap_{n} P_{n} \in \boldsymbol{S L P}, Q(\ell)=\bigcap_{m} P_{m}(\ell)$ for all $\ell<\omega$, and $Q \subseteq_{m+1} P_{m}$ for all m.

Proof Apply Lemma 4.8 componentwise.
Corollary 5.4 (see [7, Section 9.3, Proposition 9.31]) If $P \subseteq\left(2^{\omega}\right)^{\omega}$ is a special E_{0}-large product and $B \subseteq P$ is a Borel set, then there is a special E_{0}-large product $Q \subseteq P$ such that $Q \subseteq B$ or $Q \cap B=\varnothing$.

Corollary 5.5 If $P \in \operatorname{SLP}$ and $f: P \rightarrow 2^{\omega}$ is a Borel map, then there is a special E_{0}-large product $Q \in \boldsymbol{S L P}$ such that $Q \subseteq P$ and $f \upharpoonright Q$ is continuous.

Proof If $n<\omega$ and $i=0,1$, then let $B_{n i}=\{x \in P: f(x)(n)=i\}$. Using Corollary 5.4 and Lemma 5.2(iv), we get a sequence $\cdots \subseteq_{3} P_{2} \subseteq_{2} P_{1} \subseteq_{1} P_{0} \subseteq P$ of special E_{0}-large products as in Lemma 5.3 such that if $m<\omega$ and $\sigma \in 2^{m}$, then $P_{m}(\Rightarrow \sigma) \subseteq B_{m 0}$ or $P_{m}(\Rightarrow \sigma) \subseteq B_{m 1}$. Then $Q=\bigcap_{m} P_{m}$ is as required.

6 Proof of the Main Theorem: Beginning

Beginning the proof of Theorem 2.1, we let Borel maps $\boldsymbol{e}, \boldsymbol{f}: 2^{\omega} \rightarrow 2^{\omega}$ witness the smoothness of the equivalence relations E, F, respectively, so that

$$
x \mathrm{E} y \Longleftrightarrow \boldsymbol{e}(x)=\boldsymbol{e}(y) \quad \text { and } \quad x \mathrm{~F} y \Longleftrightarrow \boldsymbol{f}(x)=\boldsymbol{f}(y) .
$$

In fact, by Corollary 5.5, we can assume that $\boldsymbol{e}, \boldsymbol{f}$ are continuous.
Lemma 6.1 If P is a special E_{0}-large product, $U_{0}, U_{1}, \ldots \subseteq \omega$, and E is reduced to each U_{k} on P, then E is reduced to $U=\bigcap_{k} U_{k}$ on P. The same for F.

Proof For just two sets, if $U=U_{0} \cap U_{1}$ and $x, y \in P, x \upharpoonright U=y \upharpoonright U$, then, using the product structure, find a point $z \in P$ with $z \upharpoonright U_{0}=x \upharpoonright U_{0}$ and $z \upharpoonright U_{1}=$ $y \upharpoonright U_{1}$. Then $\boldsymbol{e}(x)=\boldsymbol{e}(z)=\boldsymbol{e}(y)$, and hence $x \mathrm{E} y$. The case of finitely many sets follows by induction. Therefore, we can assume that $U_{0} \supseteq U_{1} \supseteq U_{2} \supseteq \cdots$ in the general case. Let $x, y \in P$, and let $x \uparrow U=y \upharpoonright U$. There exist points $x_{k} \in P$ satisfying $x_{k} \upharpoonright U_{k}=x \upharpoonright U_{k}$ and $x_{k} \upharpoonright\left(B \backslash U_{k}\right)=y \upharpoonright\left(B \backslash U_{k}\right)$. Then immediately $\boldsymbol{e}\left(x_{k}\right)=\boldsymbol{e}(x)$ for all k. On the other hand, clearly $x_{k} \rightarrow y$; hence, $\boldsymbol{e}\left(x_{k}\right) \rightarrow \boldsymbol{e}(y)$ as \boldsymbol{e} is continuous. Thus $\boldsymbol{e}(x)=\boldsymbol{e}(y)$, and hence $x \mathrm{E} y$.

We argue in terms of Definition 5.1. The plan is to define a sequence of special $\mathrm{E}_{0^{-}}$ large products as in Lemma 5.3, with some extra properties. Let $m<\omega$. A special E_{0}-large product $R \in \mathbf{S L P}$ is m-good if the following hold (see the definitions in Section 2):
(1) E : if $\sigma \in 2^{m}$, then either (i) E is reduced to $\omega \backslash\{\phi(m)\}$ on $R(\Rightarrow \sigma)$, or (ii) there is no set $R^{\prime} \in \mathbf{S L P}, R^{\prime} \subseteq R(\Rightarrow \sigma)$ on which E is reduced to $\omega \backslash\{\phi(m)\}$;
(1) F : the same for F ;
(2) E : if $\sigma, \tau \in 2^{m}$, then either (i) E is reduced on $R(\Rightarrow \sigma) \cup R(\Rightarrow \tau)$ to

$$
\boldsymbol{\Delta}[\sigma, \tau]=\omega \backslash\{\phi(i): i<m \wedge \sigma(i) \neq \tau(i)\},
$$

or (ii) $\boldsymbol{e}[R(\Rightarrow \sigma)] \cap \boldsymbol{e}[R(\Rightarrow \tau)]=\varnothing^{3}$-equivalently, the sets $R(\Rightarrow \sigma)$ and $R(\Rightarrow \tau)$ do not contain E-related points;
(2) F : the same for F .

7 The Key Lemma

Lemma 7.1 If $m<\omega$ and a special E_{0}-large product R is m-good, then there is an $(m+1)$-good special E_{0}-large product $Q \subseteq_{m+1} R$.

Proof Consider a string $\sigma^{\prime} \in 2^{m+1}$, and first define a special E_{0}-large product $Q \subseteq_{m+1} R$, satisfying (1)E relative to this string only. Let $\ell^{\prime}=\phi(m+1)$. If there exists $R^{\prime} \in \mathbf{S L P}, R^{\prime} \subseteq R\left(\Rightarrow \sigma^{\prime}\right)$ on which E is reduced to $\omega \backslash\left\{\ell^{\prime}\right\}$, then let S_{0} be such R^{\prime}. If there is no such R^{\prime}, then put $S_{0}=R\left(\Rightarrow \sigma^{\prime}\right)$. By Lemma 5.2(iv), there is a special E_{0}-large product $Q \subseteq_{m+1} R$ such that $Q\left(\Rightarrow \sigma^{\prime}\right)=S_{0}$. Thus the set Q satisfies (1) E with respect to σ^{\prime}. Now take Q as the "new" special E_{0}-large product R, consider another string $\sigma^{\prime} \in 2^{m+1}$, and do the same as above. Consider all strings in 2^{m+1} consecutively the same way. This ends with a special E_{0}-large product $Q \subseteq_{m+1} R$, satisfying (1) E for all $\sigma^{\prime} \in 2^{m+1}$.

Now take care of (2)E. Let $\ell=\phi(m)$, and let $B=\omega \backslash\{\ell\}$.
Step 1. We fulfill (2)E for one particular pair $\sigma^{\prime}=\sigma^{\wedge} 0, \tau^{\prime}=\sigma^{\wedge} 1$, where $\sigma \in 2^{m}$. Then $\boldsymbol{\Delta}\left[\sigma^{\prime}, \tau^{\prime}\right]=B$. The goal is to define $P \in \mathbf{S L P}, P \subseteq_{m+1} Q$, satisfying (2) E relative to this pair $\sigma^{\prime}, \tau^{\prime}$.

If the relation E is reduced to B on $Q(\Rightarrow \sigma)$, then E is reduced to B on the set $Q\left(\Rightarrow \sigma^{\prime}\right) \cup Q\left(\Rightarrow \tau^{\prime}\right)=Q(\Rightarrow \sigma)$, and we are done. Thus, by (1)E for $Q(\Rightarrow \sigma)$, we assume that there is no set $Q^{\prime} \in \boldsymbol{S L P}, Q^{\prime} \subseteq Q(\Rightarrow \sigma)$ on which E is reduced to B.

In particular, E is not reduced to B on $Q\left(\Rightarrow \sigma^{\prime}\right)$. But $Q\left(\Rightarrow \sigma^{\prime}\right) \upharpoonright B=$ $Q\left(\Rightarrow \tau^{\prime}\right) \upharpoonright B$, since $B=\Delta\left[\sigma^{\prime}, \tau^{\prime}\right]=\omega \backslash\{\ell\}$. It follows that there are points $x_{0} \in Q\left(\Rightarrow \sigma^{\prime}\right)$ and $y_{0} \in Q\left(\Rightarrow \tau^{\prime}\right)$ such that $x_{0} \upharpoonright B=y_{0} \upharpoonright B$ and $\boldsymbol{e}\left(x_{0}\right) \neq \boldsymbol{e}\left(y_{0}\right)$; that is, we have $\boldsymbol{e}\left(x_{0}\right)(k)=p \neq q=\boldsymbol{e}\left(y_{0}\right)(k)$ for some k and $p, q=0,1, p \neq q$.

As \boldsymbol{e} is continuous, there are strings $u, v \in 2^{<\omega}$ of equal length $\operatorname{lh}(u)=\operatorname{lh}(v)$ such that $\sigma^{\prime} \subset u, \tau^{\prime} \subset v, x_{0} \in X=Q(\Rightarrow u), y_{0} \in Y=Q(\Rightarrow v)$, and $\boldsymbol{e}(x)(k)=$ $p, \boldsymbol{e}(y)(k)=q$ for all $x \in X, y \in Y$. We are going to define a special E_{0}-large product $P \subseteq_{n+1} Q$ such that $P\left(\Rightarrow \sigma^{\prime}\right) \subseteq X$ and $P\left(\Rightarrow \tau^{\prime}\right) \subseteq Y$. In this case we shall have $\boldsymbol{e}\left[P\left(\Rightarrow \sigma^{\prime}\right)\right] \cap \boldsymbol{e}\left[P\left(\Rightarrow \tau^{\prime}\right)\right]=\varnothing$ by construction, as required.

To carry out the construction of P, let $r_{j}=\sigma[j], s_{j}=u[j], t_{j}=v[j]$ for all j.

Consider any index $j \neq \ell$. Then $x_{0}(j)=y_{0}(j)\left(\right.$ as $\left.x_{0} \upharpoonright B=y_{0} \upharpoonright B\right)$, and then easily $r_{j} \subset s_{j}=t_{j}$. It follows that the set $S_{j}=X(j)=Y(j)=Q(j)\left(\rightarrow s_{j}\right)$ belongs to SLS and satisfies $S_{j} \subseteq Q(j)\left(\rightarrow r_{j}\right)$. By Lemma 4.6, there is a set $P_{j} \in$ SLS satisfying $P_{j} \subseteq_{v_{j}} Q(j)$ and $P_{j}\left(\rightarrow r_{j}\right)=S_{j}$, where $v_{j}=\boldsymbol{v}_{m j}=\operatorname{lh}\left(r_{j}\right)$.

Now consider the index ℓ itself. The strings s_{ℓ} and t_{ℓ} are different (of the same length), but still satisfy $r_{\ell}{ }^{\wedge} 0=\sigma^{\prime}[\ell] \subseteq s_{\ell}, r_{\ell}{ }^{\wedge} 1=\tau^{\prime}[\ell] \subseteq t_{\ell}$. It follows that the sets $S_{\ell}=X(\ell), V_{\ell}=Y(\ell)$ satisfy $S_{\ell}=H\left(\rightarrow s_{\ell}\right) \subseteq H\left(\rightarrow r_{\ell}{ }^{\wedge} 0\right)$, $V_{\ell}=$ $H\left(\rightarrow t_{\ell}\right) \subseteq H\left(\rightarrow r_{\ell} \wedge 1\right)$, where $H=Q(\ell)$. And moreover, $\left[S_{\ell}\right]_{\mathrm{E}_{0}}=\left[V_{\ell}\right]_{\mathrm{E}_{0}}$ holds by Lemma 4.3 (ii). Lemma 4.7 yields a set $H^{\prime} \in \mathbf{S L S}$ satisfying $H^{\prime} \subseteq_{v+1} H$, where $v_{\ell}=v_{m \ell}=1 \mathrm{~h}(s)$, and $H^{\prime}\left(\rightarrow s^{\wedge} 0\right) \subseteq S_{\ell}, H^{\prime}\left(\rightarrow s^{\wedge} 1\right) \subseteq V_{\ell}$.

We finally define a special E_{0}-large product P such that $P(\ell)=H^{\prime}$ and $P(j)=$ P_{j} for all $j \neq \ell$. Then by construction $P \subseteq_{m+1} Q, P\left(\Rightarrow \sigma^{\prime}\right) \subseteq X$, and $P\left(\Rightarrow \tau^{\prime}\right) \subseteq Y$, as required.

Step 2. Iterating the construction at Step 1, we obtain a special E_{0}-large product $R \subseteq_{m+1} Q$ which fulfills (2)E for all pairs $\sigma^{\prime}, \tau^{\prime} \in 2^{m+1}$ of the form $\sigma^{\prime}=\sigma^{\wedge} 0$, $\tau^{\prime}=\sigma^{\wedge} 1$, where $\sigma \in 2^{m}$.

Step 3. We claim that R satisfies (2) E for all pairs $\sigma^{\prime}, \tau^{\prime} \in 2^{m+1}$ of any form. Indeed, let $\sigma^{\prime}=\sigma^{\wedge} i, \tau^{\prime}=\tau^{\wedge} k$ be any pair in 2^{m+1}, where $\sigma, \tau \in 2^{m}$ and $i, k \in\{0,1\}$. By (2) E for the pair σ, τ, either E is reduced to $U=\boldsymbol{\Delta}[\sigma, \tau]$ on $R(\Rightarrow \sigma) \cup R(\Rightarrow \tau)$, or $\boldsymbol{e}[R(\Rightarrow \sigma)] \cap \boldsymbol{e}[R(\Rightarrow \tau)]=\varnothing$. In the second case, $\boldsymbol{e}\left[R\left(\Rightarrow \sigma^{\prime}\right)\right] \cap \boldsymbol{e}\left[R\left(\Rightarrow \tau^{\prime}\right)\right]=\varnothing$. Thus, we can assume without loss of generality that E is reduced to U on $R(\Rightarrow \sigma) \cup R(\Rightarrow \tau)$. Let $U^{\prime}=\Delta\left[\sigma^{\prime}, \tau^{\prime}\right]$. If $i=k$ or $\ell \notin U$, then $U=U^{\prime}$, so that (2) E relative to $\sigma^{\prime}, \tau^{\prime}$ follows from (2) E relative to σ, τ. Thus, we can assume without loss of generality that $\sigma^{\prime}=\sigma^{\wedge} 0, \tau^{\prime}=\tau^{\wedge} 1$, and $\ell \in U$. Then $U^{\prime}=U \backslash\{\ell\}=U \cap B$, of course.

Because of the achievement at Step 2, we have two cases.
Case 3.1: E is reduced to B on $R\left(\Rightarrow \sigma^{\prime}\right) \cup R\left(\Rightarrow \sigma_{1}^{\prime}\right)$, where $\sigma_{1}^{\prime}=\sigma^{\wedge} 1$. Prove that E is reduced to U^{\prime} on $R\left(\Rightarrow \sigma^{\prime}\right) \cup R\left(\Rightarrow \tau^{\prime}\right)$, so that (2) $\mathrm{E}(\mathrm{i})$ holds for $\sigma^{\prime}, \tau^{\prime}$. Indeed, assume that $x \in R\left(\Rightarrow \sigma^{\prime}\right), y \in R\left(\Rightarrow \tau^{\prime}\right), x \upharpoonright U^{\prime}=y \upharpoonright U^{\prime}$. Let $x^{\prime} \in\left(2^{\omega}\right)^{\omega}$ be defined so that $x^{\prime} \upharpoonright B=x \upharpoonright B$ but $x^{\prime}(\ell)=y(\ell)$. Thus, if $j \neq \ell$, then $x^{\prime}(j)=$ $x(j) \in R\left(\Rightarrow \sigma^{\prime}\right)(j)=R\left(\Rightarrow \sigma_{1}^{\prime}\right)(j)$ (because $\left.R\left(\Rightarrow \sigma^{\prime}\right) \upharpoonright B=R\left(\Rightarrow \sigma_{1}^{\prime}\right) \upharpoonright B\right)$. While for ℓ itself we have $x^{\prime}(\ell)=y(\ell) \in R\left(\Rightarrow \tau^{\prime}\right)=R\left(\Rightarrow \sigma_{1}^{\prime}\right)$ (because now we have $\left.\ell \in U=\boldsymbol{\Delta}\left[\tau^{\prime}, \sigma_{1}^{\prime}\right]\right)$. It follows that $x^{\prime} \in R\left(\Rightarrow \sigma_{1}^{\prime}\right)$. Therefore, by the Case 3.1 hypothesis, we have $\boldsymbol{e}(x)=\boldsymbol{e}\left(x^{\prime}\right)$. On the other hand, $x^{\prime} \upharpoonright U=y \upharpoonright U$; therefore, $\boldsymbol{e}(y)=\boldsymbol{e}\left(x^{\prime}\right)$ without loss of generality, as assumed above. Thus $\boldsymbol{e}(x)=\boldsymbol{e}(y)$, as required.

Case 3.2: $\boldsymbol{e}\left[R\left(\Rightarrow \sigma^{\prime}\right)\right] \cap \boldsymbol{e}\left[R\left(\Rightarrow \sigma_{1}^{\prime}\right)\right]=\varnothing$. However, E is reduced to $U=\boldsymbol{\Delta}[\sigma, \tau]$ on $R(\Rightarrow \sigma) \cup R(\Rightarrow \tau)$ without loss of generality as assumed above and, hence, on the smaller set $R\left(\Rightarrow \sigma_{1}^{\prime}\right) \cup R\left(\Rightarrow \tau^{\prime}\right)$ as well, while $R\left(\Rightarrow \sigma_{1}^{\prime}\right) \upharpoonright U=R\left(\Rightarrow \tau^{\prime}\right) \upharpoonright U$ (since the equality $U=\boldsymbol{\Delta}\left[\sigma_{1}^{\prime}, \tau^{\prime}\right]=\boldsymbol{\Delta}[\sigma, \tau]$ holds $)$. We conclude that $\boldsymbol{e}\left[R\left(\Rightarrow \sigma_{1}^{\prime}\right)\right]=$ $\boldsymbol{e}\left[R\left(\Rightarrow \tau^{\prime}\right)\right]$. It follows that $\boldsymbol{e}\left[R\left(\Rightarrow \sigma^{\prime}\right)\right] \cap \boldsymbol{e}\left[R\left(\Rightarrow \tau^{\prime}\right)\right]=\varnothing$; hence, R satisfies (2) E (ii) for $\sigma^{\prime}, \tau^{\prime}$.

Thus, indeed, we have got a special E_{0}-large product $R \subseteq_{m+1} Q$ satisfying (2) E for all $\sigma^{\prime}, \tau^{\prime} \in 2^{m+1}$ (and still satisfying (1)E).

It remains to repeat the same procedure for F.

8 Proof of the Main Theorem: Conclusion

We come back to the proof of Theorem 2.1. Lemma 7.1 yields an infinite sequence $\cdots \leq_{3} Q_{2} \leq_{2} Q_{1} \leq_{1} Q_{0}$ of special E_{0}-large products Q_{m} such that each Q_{m} is m-good. The limit special E_{0}-large product $P=\bigcup_{m} Q_{m} \in \mathbf{S L P}$ satisfies $P \subseteq_{m+1}$ Q_{m} for all m by Lemma 5.3. Therefore, P is m-good for every m and, hence, we can freely use (1) E, F and (2) E, F for P in the following final argument.

Case 1: if $m<\omega, \sigma, \tau \in 2^{m}$, and $\boldsymbol{e}[P(\Rightarrow \sigma)] \cap \boldsymbol{e}[P(\Rightarrow \tau)]=\varnothing$, then we have $f[P(\Rightarrow \sigma)] \cap f[P(\Rightarrow \tau)]=\varnothing$. Prove that $\mathrm{F} \subseteq \mathrm{F}$ on P in this case, as required by the "either" option of Theorem 2.1. Let $x, y \in P$ and $x \mathrm{E} y$ fails, that is, $\boldsymbol{e}(x) \neq \boldsymbol{e}(y)$; show that $f(x) \neq f(y)$. Pick $a, b \in 2^{\omega}$ satisfying $\{x\}=\bigcap_{m} P(\Rightarrow a \upharpoonright m)$ and $\{y\}=\bigcap_{m} P(\Rightarrow b \upharpoonright m)$. As $x \neq y$, we have $\boldsymbol{e}[Q(\Rightarrow a \upharpoonright m)] \cap \boldsymbol{e}[Q(\Rightarrow b \upharpoonright m)]=\varnothing$ for some m by continuity and compactness. Then by the Case 1 assumption,
$f[P(\Rightarrow a \upharpoonright m)] \cap f[P(\Rightarrow b \upharpoonright m)]=\varnothing$ holds, hence $f(x) \neq f(y)$, and x F y fails.

Case $2=$ not Case 1. Then there is a number $m<\omega$ and a pair of strings $\sigma^{\prime}=\sigma^{\wedge} i, \tau^{\prime}=\tau^{\wedge} k \in 2^{m+1}$ such that $\boldsymbol{e}\left[P\left(\Rightarrow \sigma^{\prime}\right)\right] \cap \boldsymbol{e}\left[P\left(\Rightarrow \tau^{\prime}\right)\right]=\varnothing$, but $\boldsymbol{f}\left[P\left(\Rightarrow \sigma^{\prime}\right)\right] \cap \boldsymbol{f}\left[P\left(\Rightarrow \tau^{\prime}\right)\right] \neq \varnothing$; hence, the relation F is reduced to $U^{\prime}=\boldsymbol{\Delta}\left[\sigma^{\prime}, \tau^{\prime}\right]$ on $Z^{\prime}=P\left(\Rightarrow \sigma^{\prime}\right) \cup P\left(\Rightarrow \tau^{\prime}\right)$ by (2)F. Assume that m is the least possible witness of this case. We are going to prove that the special E_{0}-large product $P(\Rightarrow \sigma)$ satisfies the "or" option of Theorem 2.1, with the number $\ell=\phi(m)$; that is, (*) F is reduced to $\omega \backslash\{\ell\}$ on $P(\Rightarrow \sigma)$, and $(* *) \mathrm{E}$ captures ℓ on $P(\Rightarrow \sigma)$.

Lemma 8.1 The relation E is

(A) reduced to $U=\Delta[\sigma, \tau]$ on the set $Z=P(\Rightarrow \sigma) \cup P(\Rightarrow \tau)$,
(B) not reduced to $U^{\prime}=\boldsymbol{\Delta}\left[\sigma^{\prime}, \tau^{\prime}\right]$ on $Z^{\prime}=P\left(\Rightarrow \sigma^{\prime}\right) \cup P\left(\Rightarrow \tau^{\prime}\right)$,
(C) not reduced to $\omega \backslash\{\ell\}$ on any special E_{0}-large product $P^{\prime} \subseteq P(\Rightarrow \sigma)$.

In addition, (D) $U \neq U^{\prime}$, hence $\ell \in U$ and $U^{\prime}=U \backslash\{\ell\}$.
Proof (A) Otherwise we have $\boldsymbol{e}[P(\Rightarrow \sigma)] \cap \boldsymbol{e}[P(\Rightarrow \tau)]=\varnothing$ by (2)E, and hence $f[P(\Rightarrow \sigma)] \cap f[P(\Rightarrow \tau)]=\varnothing$ by the choice of m; then $f\left[P\left(\Rightarrow \sigma^{\prime}\right)\right] \cap f\left[P\left(\Rightarrow \tau^{\prime}\right)\right]=$ \varnothing as well, contrary to the fact that F is reduced to U^{\prime} on $P\left(\Rightarrow \sigma^{\prime}\right) \cup P\left(\Rightarrow \tau^{\prime}\right)$, because $P\left(\Rightarrow \sigma^{\prime}\right) \upharpoonright U^{\prime}=P\left(\Rightarrow \tau^{\prime}\right) \upharpoonright U^{\prime}$ by Lemma 5.2(ii).
(B) The otherwise assumption contradicts $\boldsymbol{e}\left[P\left(\Rightarrow \sigma^{\prime}\right)\right] \cap \boldsymbol{e}\left[P\left(\Rightarrow \tau^{\prime}\right)\right]=\varnothing$.
(D) This follows from (A) and (B).
(C) Otherwise E is reduced to $\omega \backslash\{\ell\}$ on $P(\Rightarrow \sigma)$ by (1) E . Then E is reduced to U^{\prime} on $P(\Rightarrow \sigma)$ by Lemma 6.1 since $U^{\prime}=U \backslash\{\ell\}$ by (D).

Claim 8.2 The relation E is reduced to U^{\prime} on Z.
Proof Let $x, y \in Z=P(\Rightarrow \sigma) \cup P(\Rightarrow \tau)$, and let $x \uparrow U^{\prime}=y \upharpoonright U^{\prime}$. As the equality $P(\Rightarrow \sigma) \upharpoonright U=P(\Rightarrow \tau) \upharpoonright U$ holds by Lemma 5.2(ii), there are $x^{\prime}, y^{\prime} \in$ $P(\Rightarrow \sigma)$ with $x \upharpoonright U=x^{\prime} \upharpoonright U$ and $y \upharpoonright U=y^{\prime} \upharpoonright U$. We have $x \mathrm{E} x^{\prime}$ and $y \mathrm{E} y^{\prime}$ by (A), and $x^{\prime} \mathrm{E} y^{\prime}$ since E is reduced to U^{\prime} on $P(\Rightarrow \sigma)$. We conclude that $x \mathrm{E} y$.

It follows that E is reduced to U^{\prime} on $Z^{\prime} \subseteq Z$ as well. But this contradicts (B). The contradiction proves the lemma.

Now, as $U^{\prime}=U \backslash\{\ell\} \subseteq \omega \backslash\{\ell\}$, the special E_{0}-large product $P\left(\Rightarrow \sigma^{\prime}\right)$ witnesses that F is reduced to $\omega \backslash\{\ell\}$ on $P(\Rightarrow \sigma)$ by (1) F . Thus we have $\left(^{*}\right)$.

To check (**), let $x, y \in P(\Rightarrow \sigma)$, and let $x \mathrm{E} y$; prove $x(\ell)=y(\ell)$. Indeed, $\{x\}=\bigcap_{n} P(\Rightarrow a \upharpoonright n)$ and $\{y\}=\bigcap_{n} P(\Rightarrow b \upharpoonright n)$, where $a, b \in 2^{\omega}, \sigma \subset a$, $\sigma \subset b$. Let $U=\bigcap_{n} \Delta[a \upharpoonright n, b \upharpoonright n]$. Then $x \upharpoonright U=y \upharpoonright U$, since

$$
P(\Rightarrow a \upharpoonright n) \upharpoonright \Delta[a \upharpoonright n, b \upharpoonright n]=P(\Rightarrow b \upharpoonright n) \upharpoonright \Delta[a \upharpoonright n, b \upharpoonright n]
$$

for all n. Thus it suffices to check $\ell \in \boldsymbol{\Delta}[a \upharpoonright n, b \upharpoonright n]$ for all n.
Suppose to the contrary that $\ell=\phi(m) \notin \Delta[a \upharpoonright n, b \upharpoonright n]$ for some n. Then $n>$ m because $a \upharpoonright m=b \upharpoonright m=\sigma$. However, the relation E is reduced to $\Delta[a \upharpoonright n, b \upharpoonright n]$ on $P(\Rightarrow a \upharpoonright n)$ by (2) E, since $x \mathrm{E} y$. Yet we have $\ell \notin \Delta[a \upharpoonright n, b \upharpoonright n]$; therefore,
$\Delta[a \upharpoonright n, b \upharpoonright n] \subseteq \omega \backslash\{\ell\}$. It follows that E is reduced to $\omega \backslash\{\ell\}$ on $P(\Rightarrow a \upharpoonright n)$. But this contradicts Lemma 8.1(C) with $P^{\prime}=P(\Rightarrow a \upharpoonright n)$.

To conclude Case 2, we have checked $\left(^{*}\right)$ and $\left({ }^{* *}\right)$.
(Theorem 2.1)

9 An Application to Degrees of Constructibility

Consider the set $\mathbf{S L P}=\mathbf{S L S}^{\omega}$ of all special E_{0}-large products as a forcing notion, over the background set universe V. Thus SLP adjoins an SLP-generic sequence $\vec{a}=\left\langle a_{k}\right\rangle_{k<\omega} \in\left(2^{\omega}\right)^{\omega}$, of SLS-generic reals, to \mathbf{V}.

Lemma 9.1 The forcing SLP preserves $\boldsymbol{\aleph}_{1}$ and admits continuous reading of names for reals. ${ }^{4}$

Proof Arguing in the background set universe \mathbf{V}, note that if sets $D_{n} \subseteq$ SLP ($n<\omega$) are open dense in SLP, then by Lemma 5.2(iv), for any $P \in \mathbf{S L P}$ there is a sequence $\cdots \subseteq_{4} P_{3} \subseteq_{3} P_{2} \subseteq_{2} P_{1} \subseteq_{1} P_{0}$ as in Lemma 5.3 such that $P_{0} \subseteq P$ and for all m, if $\sigma \in 2^{m}$, then $P_{m}(\Rightarrow \sigma) \in D_{m}$. This implies both claims of the lemma, by standard arguments.

Theorem 9.2 Let a sequence $\vec{a}=\left\langle a_{k}\right\rangle_{k<\omega} \in\left(2^{\omega}\right)^{\omega}$ be SLS-generic over \boldsymbol{V}. Assume that $x, y \in 2^{\omega}$ are reals in $V[\vec{a}]$. Then either $x \in V[y]$ or there is an index ℓ such that $a_{\ell} \in \boldsymbol{V}[x]$ and $y \in \boldsymbol{V}\left[\left\langle a_{k}\right\rangle_{k \neq \ell}\right]$.

Proof By Lemma 9.1, there exist continuous functions $\boldsymbol{e}, \boldsymbol{f}:\left(2^{\omega}\right)^{\omega} \rightarrow 2^{\omega}$, coded in \mathbf{V}, such that $x=\boldsymbol{e}(\vec{a}), y=\boldsymbol{f}(\vec{a})$. Argue in \boldsymbol{V}. Define $\vec{x} \mathrm{E} \vec{y}$ if and only if $\boldsymbol{e}(\vec{x})=\boldsymbol{e}(\vec{y})$, and $\vec{x} \mathrm{~F} \vec{y}$ if and only if $\boldsymbol{f}(\vec{x})=\boldsymbol{f}(\vec{y})$, for $\vec{x}, \vec{y} \in\left(2^{\omega}\right)^{\omega}$. The set D of all special E_{0}-large products $P \in \mathbf{S L P}$ such that either $\mathrm{F} \subseteq \mathrm{E}$ on P, or, for some $\ell<\omega, \mathrm{E}$ captures ℓ on P and F is reduced to $\omega \backslash\{\ell\}$ on P, is dense in SLP by Theorem 2.1. Therefore, \vec{a} belongs to a set $P \in D$ (or, to be more exact, to the topological closure of $P \in \mathbf{V}$ in $\mathbf{V}[\vec{a}]$).

Case 1: $\mathrm{F} \subseteq \mathrm{E}$ on P in \mathbf{V}. This means that $\boldsymbol{f}(\vec{x})=\boldsymbol{f}(\vec{y}) \Longrightarrow \boldsymbol{e}(\vec{x})=\boldsymbol{e}(\vec{y})$ for all \vec{x}, \vec{y} in P, in \mathbf{V}, and hence, by Shoenfield, $\boldsymbol{f}(\vec{x})=\boldsymbol{f}(\vec{y}) \Longrightarrow \boldsymbol{e}(\vec{x})=\boldsymbol{e}(\vec{y})$ for all \vec{x}, \vec{y} in (the closure of) P, in $\mathbf{V}[\vec{a}]$. It follows that there is an analytic function h, coded in \mathbf{V}, such that $\boldsymbol{e}(\vec{x})=h(\boldsymbol{f}(\vec{x}))$ for all \vec{x}, \vec{y} in (the closure of) P, in $\mathbf{V}[\vec{a}]$. In particular, $a=h(b)$, and hence $a \in \mathbf{V}[b]$.

Case 2: $\ell<\omega$, and it is true in \mathbf{V} that E captures ℓ on P and F is reduced to $\omega \backslash\{\ell\}$ on P. The first part of this condition ensures us that, in $\mathbf{V}, \boldsymbol{e}(\vec{x})=\boldsymbol{e}(\vec{y}) \Longrightarrow \vec{x}(\ell)=\vec{y}(\ell)$ for all \vec{x}, \vec{y} in P. Similarly to Case 1 , this leads to an analytic function h, coded in \mathbf{V}, such that $\vec{x}(\ell)=h(\boldsymbol{e}(\vec{x}))$ for all $\vec{x} \in P$, in $\mathbf{V}[\vec{a}]$, and hence $a_{\ell}=\vec{a}(\ell)=h(\boldsymbol{e}(\vec{a}))=h(\vec{a}) \in \mathbf{V}[\vec{a}]$. Similarly using the second part of the Case 2 hypothesis, we get another analytic function g, coded in \mathbf{V}, such that $b=g\left(\left\langle a_{k}\right\rangle_{k \neq \ell}\right) \in \mathbf{V}\left[\left\langle a_{k}\right\rangle_{k \neq \ell}\right]$, as required.

Corollary 9.3 Let a sequence $\vec{a}=\left\langle a_{k}\right\rangle_{k<\omega} \in\left(2^{\omega}\right)^{\omega}$ be SLS-generic over \boldsymbol{V}, and let $X=\left\{a_{k}: k<\omega\right\}$. Assume that $a, b \in 2^{\omega}$ are reals in $\boldsymbol{V}[\vec{a}]$. Then $a \in \boldsymbol{V}[b]$ if and only if $X \cap \boldsymbol{V}[a] \subseteq X \cap \boldsymbol{V}[b]$.

One may ask whether, under the conditions of Corollary 9.3, it is true in $\mathbf{V}[\vec{a}]$ that for every set $U \subseteq \omega$ there is a real $a \in 2^{\omega}$ satisfying $X \cap \mathbf{V}[a]=\left\{a_{k}: k \in U\right\}$. The answer is positive for sets $U \in \mathbf{V}$, but generally the answer is negative; for instance, take $U=\left\{k+1: a_{0}(k)=0\right\}$ (see Example 2.2).

Notes

1. The first family consists of equivalence relations classifiable by countable structures, the second of those Borel reducible to an analytic P-ideal.
2. "We avoid any attempt at organizing the very complicated class of smooth equivalence relations" [7, p. 232].
3. Given a function h and $X \subseteq \operatorname{dom} h$, the set $h[X]=\{h(x): x \in X\}$ is the h-image of X.
4. As noted by the anonymous referee, the forcing SLP , and basically SLS itself, does not necessarily preserve cardinals bigger than \aleph_{1}. This is essentially due to the same reasons as for the Sacks forcing and its countable-support products, although the splitting constructions behind the result are different and essentially more complex for SLS than for the Sacks forcing.

References

[1] Baumgartner, J. E., and R. Laver, "Iterated perfect-set forcing," Annals of Mathematical Logic, vol. 17 (1979), pp. 271-88. Zbl 0427.03043. MR 0556894. DOI 10.1016/ 0003-4843(79)90010-X. 118
[2] Conley, C. T., "Canonizing relations on nonsmooth sets," Journal of Symbolic Logic, vol. 78 (2013), pp. 101-12. Zbl 1361.03045. MR 3087064. DOI 10.2178/js1.7801070. 119
[3] Golshani, M., V. Kanovei, and V. Lyubetsky, "A Groszek-Laver pair of undistinguishable E_{0} classes," Mathematical Logic Quarterly, vol. 63 (2017), pp. 19-31. MR 3647830. DOI 10.1002/malq. 201500020. 118, 121
[4] Kanovei, V., "Non-Glimm-Effros equivalence relations at second projective level," Fundamenta Mathematicae, vol. 154 (1997), pp. 1-35. Zbl 0883.03034. MR 1472849. DOI 10.4064/fm-154-1-1-35. 118
[5] Kanovei, V., "On non-wellfounded iterations of the perfect set forcing," Journal of Symbolic Logic, vol. 64 (1999), pp. 551-74. Zbl 0930.03062. MR 1777770. DOI 10.2307/ 2586484. 118
[6] Kanovei, V., Borel Equivalence Relations: Structure and Classification, vol. 44 of University Lecture Series, American Mathematical Society, Providence, 2008. Zbl 1155.03035. MR 2441635. DOI 10.1090/ulect/044. 118, 119
[7] Kanovei, V., M. Sabok, and J. Zapletal, Canonical Ramsey Theory on Polish Spaces, vol. 202 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2013. Zbl 1278.03001. MR 3135065. DOI 10.1017/CBO9781139208666. 117, 118, 119, 122, 127
[8] Zapletal, J., "Descriptive set theory and definable forcing," Memoirs of the American Mathematical Society, vol. 167 (2004), no. 793. Zbl 1037.03042. MR 2023448. DOI 10.1090/memo/0793. 118, 119
[9] Zapletal, J., Forcing Idealized, vol. 174 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2008. Zbl 1140.03030. MR 2391923. DOI 10.1017/ CBO9780511542732. 118

Acknowledgments

We are grateful to the anonymous referee for a number of valuable remarks which helped to substantially improve the text. Kanovei's work was partially supported by Russian Foundation for Basic Research (RFBR) grant 17-01-00705. Lyubetsky's work was partially supported by RFBR grant 18-29-13037.

Kanovei
Laboratory 6
Institute for Information Transmission Problems
Russian Academy of Sciences
Moscow
Russia
kanovei@googlemail.com
Lyubetsky
Laboratory 6
Institute for Information Transmission Problems
Russian Academy of Sciences
Moscow
Russia
lyubetsk@iitp.ru

