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BOREL OD SETS OF REALS ARE OD-BOREL

IN SOME SIMPLE MODELS

VLADIMIR KANOVEI AND VASSILY LYUBETSKY

(Communicated by Heike Mildenberger)

Abstract. It is true in the Cohen, Solovay-random, and Sacks generic exten-
sions that every ordinal-definable Borel set of reals has a Borel code in the
ground model, and hence if non-empty, then has an element in the ground
model.

1. Introduction

It is known from [9] that for each lightface Δ1
1 set X, its Borel class is witnessed

by a lightface Δ1
1 code. This effective Borel coding property is not necessarily true

for more general definability classes instead of Δ1
1. For instance there are models

of ZFC in which there exists a countable, hence F σ, lightface Π1
2 non-empty set

X of reals with no OD1 elements [3, 4], and such a set X definitely has no OD F σ

code. These models make use of very non-homogeneous forcing notions.2 Therefore
one may expect that homogeneous forcing notions generally yield opposite results.
Working in this direction, we prove here the following theorem.

Theorem 1. Let a be either (A) a Cohen-generic real or (B) a Solovay-random
real or (C) a Sacks real over the set universe V. Then it is true in V[a] that if
X ⊆ 2ω is a Borel OD set, then it has a Borel code in V of the same ordinal level.

One may expect such a theorem to be true for other suitably homogeneous
generic models like e.g. the dominating forcing extensions. However it does not
seem to be an easy task to manufacture a proof of sufficient generality because of
various ad hoc arguments in the proofs below, lacking a common denominator.

2. Borel coding

We fix any reasonable system of Borel coding, which involves a Π1
1 set BC ⊆ ωω

of Borel codes and an assignment of a Borel set Bc ⊆ ωω for each c ∈ BC, as e.g.
in [6, 2.9] or [10, 3H]. This also includes a pair of Π1

1 sets S, S′ ⊆ ωω×ωω such that
we have x ∈ Bc ⇐⇒ 〈c, x〉 ∈ S ⇐⇒ 〈c, x〉 /∈ S′ whenever c ∈ BC and x ∈ ωω are
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1OD means ordinal-definable, that is, a set which can be defined by an ∈-formula with ordinals

as parameters. See Jech [1, Section 13] on this notion.
2The model in [4] involves the countable product of Jensen’s minimal Δ1

3 real forcing [2]. The

model in [3] involves a shift-invariant version of Jensen’s forcing, and it contains a countable Π1
2

set X ⊆ ωω of reals with no OD elements, and X is an E0-class.
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arbitrary. If 1 ≤ ξ < ω1, then there is a Borel subset BCξ ⊆ BC which canonically
produces Π0

ξ sets, so that {Bc : c ∈ BCξ} is equal to the set of all boldface Π0
ξ sets

X ⊆ ωω.
To accordingly code Borel maps F : ωω → ωω, we let FC be the lightface Π1

1

set of all reals h ∈ ωω such that (h)n ∈ BC, ∀n, where (h)n ∈ ωω is defined by
(h)n(k) = h(2n(2k + 1)− 1) for all k. If h ∈ FC, then a Borel map ϑh : ωω → ωω

(a total map with the full domain ωω) is defined so that ϑh(x)(n) = k iff either
k ≥ 1 and x ∈ B(h)n(k) �

⋃
1≤�<k B(h)n(�) or k = 0 and x /∈

⋃
1≤� B(h)n(�).

Remark 2. There is another system of Borel codes of the form c = 〈Tc, fc〉, where
Tc is a well-founded tree and fc maps terminal nodes of T into Baire intervals in
ωω; see e.g. [12]. If one assumes that Tc is a tree in ω<ω, then this is fully equivalent
to the above system of coding by Bc, c ∈ BC.

But assuming that Tc ⊆ λ<ω, λ < ω1 leads to new insights, and then, as es-
sentially proved in [12], our Theorem 1 is true also in the Solovay model (the
Levy-collapse extension of L) in such a way that the codes c = 〈Tc, fc〉 which wit-
ness the Borel class of Borel OD sets belong to L, but the trees Tc may not be
countable in L.

As for the coding system by Bc, c ∈ BC ⊆ ωω, Theorem 1 obviously fails in the
Solovay model, the countable set X = ωω ∩ L being a counterexample.

3. Cohen-generic reals, case A of Theorem 1

Let Coh = 2<ω be the Cohen forcing.

Proof of Theorem 1, case A. Let a0 ∈ 2ω be a real Coh-generic over the back-
ground set universe V. Assume that 1 ≤ ξ < ω1 (= ωV

1 ), and know that in V[a0]
it is true that X = {x ∈ 2ω : ϕ(x)} ⊆ 2ω is a Π0

ξ set definable by a formula ϕ with
sets in V as parameters; this includes the OD case. Suppose to the contrary that
there is no Borel code c ∈ BCξ in V satisfying X = Bc.

As X is Π0
ξ , there is a code d ∈ BCξ in V[a0] satisfying X = Bd. Cohen

extensions are known to satisfy the property of Borel reading of names ; hence
d = ϑh(a0), where h ∈ FC in V. Thus X = Bϑh(a0). It follows that there is

a condition u ∈ Coh which forces ϑh(
.
a) ∈ BCξ and {x ∈ 2ω : ϕ(x)} = Bϑh(a0),

where
.
a is a canonical name for the Cohen generic real in 2ω, and also forces that

there is no Borel code c ∈ BCξ in V satisfying {x ∈ 2ω : ϕ(x)} = Bc.

Argue in the universe V. The set Iu = {x ∈ 2ω : u ⊂ x} is a Cantor interval ,
clopen in 2ω. The set {x ∈ Iu : ϑh(x) ∈ BCξ} is comeager in Iu by the choice of
u. It follows that there is a dense Gδ set D ⊆ Iu such that ϑh(x) ∈ BCξ for all
x ∈ D. Consider the Borel set

P = {〈x, y〉 : x ∈ D ∧ y ∈ Bϑh(x)} ⊆ 2ω × ωω

and the Π1
1 equivalence relation x E x′ iff Px = Px′ , on D, where as usual Px = {y :

P (x, y)}. As a subset of Iu×Iu, E has the Baire property, and so do all E-equivalence
classes. Thus there is a condition v ∈ Coh which satisfies the requirements of one
of the two cases below.

Case 1 (in V). All E-equivalence classes are meager on Iv = {x ∈ 2ω : v ⊂ x}.
Then the Π1

1-set W = {〈x, x′〉 : x, x′ ∈ Iv ∩ D ∧ x E x′} is meager in Iv × Iv by
Ulam–Kuratowski. Therefore W is covered by an F σ meager set F ⊆ Iv × Iv.
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Fix a transitive model M of a sufficiently large fragment of ZFC which contains
the code h and codes for D,F and is an elementary submodel of the universe V
w.r.t. all analytic formulas.

Lemma 3. There are reals a, b ∈ Iv, Cohen generic over V, such that V[a] = V[b]
and the pair 〈a, b〉 is Cohen×Cohen generic over M.

Proof. The set P = {〈x, x+2 y〉 : x, y ∈ Iv} is non-meager, hence so is the pro-
jection Z = {z ∈ 2ω : P z non-meager} by Ulam–Kuratowski, where P z = {x :
〈x, z〉 ∈ P } and +2 is the componentwise addition mod2. Let, in V, z ∈ Z be
Cohen generic over M. Then P z is non-meager. Pick a real a ∈ P z Cohen over
V, hence over M[z]. The pair 〈a, z〉 belongs to P and is Cohen over M; hence z
is Cohen over M[a]. It follows that b = z +2 a is Cohen over M[a]; thus 〈a, b〉 is
Cohen over M, and a, b ∈ Iv by construction. Finally b = z +2 a is Cohen over V
since so is a while z ∈ V, and clearly V[a] = V[b]. � (Lemma) �

Consider such a pair of reals a, b ∈ Iv. Then 〈a, b〉 /∈ F since F is a Borel meager
set coded in M. It follows that 〈a, b〉 /∈ W , hence, a �E b, meaning that Bϑh(b) �=
Bϑh(a). But on the other hand a, b are Cohen generic over V, V[b] = V[a], and
we have a, b ∈ Iv by construction. It follows that both Bϑh(b) and Bϑh(a) coincide
in V[a] with one and the same (since ϕ has only parameters in V) set {x : ϕ(x)},
which contradicts the above. Thus Case 1 is impossible.

Case 2 (in V). At least one of the E-equivalence classes is not meager on Iv. Then,
in V, there is a condition w ∈ Coh such that v ⊆ w and comeager-many points
in Iw are E-equivalent. In other words there exists a particular Π0

ξ set A = Bc

with a code c ∈ BCξ in V such that Bϑh(x) = Bc for comeager-many x ∈ Iw.
Then w Cohen-forces over V that Bϑh(

.
a) = Bc. But this contradicts the contrary

assumption in the beginning of the proof, since u ⊆ w.

� (Theorem 1, case A) �

4. Solovay-random reals, case B of Theorem 1

Let λ be the standard probability Lebesgue measure on 2ω. The Solovay-random
forcing Rand consists of all trees T ⊆ 2<ω with no endpoints and no isolated
branches and such that the set [T ] = {x ∈ 2ω : ∀n (x�n ∈ T )} has positive measure
λ([T ]) > 0. The forcing Rand depends on the ground model, so that “random
over a model M” will mean “(Rand ∩M)-generic over M”.

Unlike the Cohen-generic case, a random pair of reals is not a (Rand×Rand)-
generic pair. The notion of a random pair is rather related to forcing by closed
sets in 2ω × 2ω (or trees which generate them or equivalently Borel sets) of positive
product measure (non-null). We’ll make use of the following well-known character-
ization of Solovay-random pairs.

Proposition 4. Let M be a transitive model of a large fragment of ZFC, and let
a, b ∈ 2ω. Then the following three assertions are equivalent:

(1) the pair 〈a, b〉 is a random pair over M ;
(2) a is random over M, and b is random over M[a] ;
(3) b is random over M, and a is random over M[b] .
(4) 〈a, b〉 avoids any (λ× λ)-null Borel set Q ⊆ 2ω × 2ω coded in M.
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Sketch of proof. Regarding the equivalence 1 ⇐⇒ 4, see e.g. [1, Lemma 26.4] or
V.4.19, V.4.20 in [8], where the 1-dimensional version of the equivalence is estab-
lished, saying that a ∈ 2ω is random over M iff a avoids any λ-null Borel set Q ⊆ 2ω

coded in M.
To prove that (1) implies (2), suppose that (2) fails.
If a is not random over M, then by the same Lemma 26.4 in [1], a belongs to

a null Borel set X coded in M. Then 〈a, b〉 belongs to the (λ× λ)-null Borel set
X × 2ω still coded in M, so 〈a, b〉 is not random.

If b is not random over M[a], then b belongs to a λ-null set X coded in M[a]. By
Borel reading of names, X has a Borel code of the form f(a), where f : 2ω → 2ω is a
Borel map coded by some p ∈ 2ω∩M, that is, a Δ1

1(p) map. This results in a Δ1
1(p)

set P ⊆ 2ω → 2ω such that 〈a, b〉 ∈ P and the cross-section Pa = {b′ : 〈a, b′〉 ∈ P } (it
contains b!) is λ-null. Therefore 〈a, b〉 belongs to P ′ = {〈a′, b′〉 ∈ P : λ(Pa′) = 0},
which is a Π1

1 (p) set (because being null is a Π1
1 property in this context by e.g.

2.2.3 in [7]) and a (λ× λ)-null set by Fubini. Covering P ′ by a Borel null set coded
in M, we conclude that 〈a, b〉 is not random.

To prove that conversely (2) implies (1), suppose that (1) fails, that is, by (4),
〈a, b〉 ∈ P , where P ⊆ 2ω × 2ω is a (λ× λ)-null Δ1

1(p) set, p ∈ 2ω ∩M. Consider
the partition P = P ′ ∪ P ′′ of P into the Π1

1 (p) set P
′ = {〈a′, b′〉 ∈ P : λ(Pa′) = 0}

and the Σ1
1(p) set P ′′ = P � P ′. Now if 〈a, b〉 ∈ P ′, then b belongs to the λ-null

Π1
1 (p, a) set P ′

a, and hence b is not random over M[a] (by covering P ′
a by a Borel

null set coded in M[a]). If 〈a, b〉 ∈ P ′′, then a belongs to the projection

dom(P ′′) = {a′ : ∃ b′ (〈a′, b′〉 ∈ P )} = {a′ : λ(Pa′) > 0},

which is a Σ1
1(p) set, λ-null by Fubini (as P is null), so a is not random. �

Proof of Theorem 1, case B. Similarly to case A, the contrary assumption leads to
an ordinal 1 ≤ ξ < ω1, a code h ∈ FC in V, and a condition T0 ∈ Rand in V which
Rand-forces, over V, that ϑh(

.
a) ∈ BCξ and {x ∈ 2ω : ϕ(x)} = Bϑh(

.
a), where

.
a is

a canonical name for the random real and also forces that there is no Borel code
c ∈ BCξ in V, satisfying {x ∈ 2ω : ϕ(x)} = Bc in V[

.
a].

Argue in the universe V. There exists a closed non-null set D ⊆ [T0] such that
ϑh(x) ∈ BCξ for all x ∈ D. Consider the Borel set

P = {〈x, y〉 : x ∈ D ∧ y ∈ Bϑh(x)} ⊆ 2ω × ωω

and the Π1
1 equivalence relation x E x′ iff Px = Px′ , on D, where Px = {y :

P (x, y)}. Then E is λ-measurable, and so are all E-equivalence classes. Thus
there is a condition T1 ∈ Rand in V which satisfies [T1] ⊆ D and satisfies the
requirements of one of the two cases:

Case 1 (in V). All E-equivalence classes in [T1] are λ-null sets. Then the Π1
1-set

W = {〈x, x′〉 : x, x′ ∈ [T1] ∧ x E x′} is λ2-null by Fubini. Therefore W is covered
by a Gδ null set G ⊆ [T1] × [T1]. Fix a transitive model M ∈ V of a sufficiently
large fragment of ZFC which contains h, T1, and a code G and is an elementary
submodel of the universe V w.r.t. all analytic formulas.

Lemma 5 (= Lemma 3.3 in [5]). There are reals a, b ∈ [T1], separately random
over V, such that V[a] = V[b] and the pair 〈a, b〉 is random over M.
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Proof. The set P = {〈x, x+2 y〉 : x, y ∈ [T1]} is non-null; hence, by Fubini, so is
the projection Z = {z ∈ 2ω : λ(P z) > 0}. Then follow the proof of Lemma 3, using
Proposition 4 in treatment of the random pairs involved. � (Lemma) �

The lemma leads to a contradiction similarly to Case 1 in Section 3.

Case 2 (in V). At least one of the E-equivalence classes in [T1] is not λ-null. Then,
in V, there is a condition T ⊆ T1 such that all points x ∈ [T ] are E-equivalent. In
other words there exists a particular Π0

ξ set A = Bc with a code c ∈ BCξ in V

such that Bϑh(x) = Bc for all x ∈ [T ]. Then T forces over V that Bϑh(
.
a) = Bc.

But this contradicts the contrary assumption in the beginning of the proof, since
T ⊆ T0 by construction.

� (Theorem 1, case B) �

5. Sacks reals, case C of Theorem 1

The Sacks forcing Perf consists of all perfect trees T ⊆ 2<ω (no endpoints and
no isolated branches).

Proof of Theorem 1, case C. As above, the contrary assumption leads to an ordinal
1 ≤ ξ < ω1, a code h ∈ FC in V, and a condition T0 ∈ Perf in V which Perf-
forces, over V, that ϑh(

.
a) ∈ BCξ and {x ∈ 2ω : ϕ(x)} = Bϑh(

.
a), where

.
a is a

canonical name for the Sacks-generic real, and also forces that there is no Borel
code c ∈ BCξ in V satisfying {x ∈ 2ω : ϕ(x)} = Bc in V[

.
a].

Argue in the universe V. There exists a condition T1 ∈ Perf, T1 ⊆ T0, such
that ϑh(x) ∈ BCξ for all x ∈ [T1]. Consider the Borel set

P = {〈x, y〉 : x ∈ [T1] ∧ y ∈ Bϑh(x)} ⊆ 2ω × ωω

and theΠ1
1 equivalence relation x E x′ iff Px = Px′ , on [T1]. By the Silver dichotomy

theorem,3 there is a condition T ∈ Perf in V which satisfies T ⊆ T1 and satisfies
the requirements of one of the two cases:

Case 1 (in V). The reals in [T ] are pairwise E-inequivalent. Then using any home-

omorphism g : [T ]
onto−→ [T ] coded in V and satisfying g(x) �= x for all x, we easily

get a pair of reals a �= b in [T ] Sacks generic over V and satisfying V[a] = V[b];
basically, b = g(a). Then on the one hand, a �E b (since a �= b), thus Pa �= Pb,
that is, Bϑh(a) �= Bϑh(b), but on the other hand it is true in V[a] = V[b] that the
sets Bϑh(a) and Bϑh(b) are equal to one and the same set {x : ϕ(x)}, which is a
contradiction. Thus Case 1 is impossible.

Case 2 (V). The reals in [T ] are pairwise E-equivalent. Then, in V, there is a
particular Π0

ξ set A = Bc with a code c ∈ BCξ in V such that Bϑh(x) = Bc for

all x ∈ [T ]. Then T forces over V that Bϑh(
.
a) = Bc. But this contradicts the

contrary assumption in the beginning of the proof, since T ⊆ T0 by construction.

� (Theorem 1, case C) �

3Silver’s theorem [11] claims that if E is a Π1
1 equivalence relation on a Borel set X, then either

there exist at most countably many E-equivalence classes inside X or there is a perfect set Y ⊆ X
of pairwise E-inequivalent elements.
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