BOREL OD SETS OF REALS ARE OD-BOREL IN SOME SIMPLE MODELS

VLADIMIR KANOVEI AND VASSILY LYUBETSKY

(Communicated by Heike Mildenberger)

ABSTRACT. It is true in the Cohen, Solovay-random, and Sacks generic extensions that every ordinal-definable Borel set of reals has a Borel code in the ground model, and hence if non-empty, then has an element in the ground model.

1. INTRODUCTION

It is known from [9] that for each lightface Δ_1^1 set X, its Borel class is witnessed by a lightface Δ_1^1 code. This *effective Borel coding* property is not necessarily true for more general definability classes instead of Δ_1^1 . For instance there are models of **ZFC** in which there exists a countable, hence F_{σ} , lightface Π_2^1 non-empty set X of reals with no OD¹ elements [3,4], and such a set X definitely has no OD F_{σ} code. These models make use of very non-homogeneous forcing notions.² Therefore one may expect that homogeneous forcing notions generally yield opposite results. Working in this direction, we prove here the following theorem.

Theorem 1. Let a be either (A) a Cohen-generic real or (B) a Solovay-random real or (C) a Sacks real over the set universe \mathbf{V} . Then it is true in $\mathbf{V}[a]$ that if $X \subseteq 2^{\omega}$ is a Borel OD set, then it has a Borel code in \mathbf{V} of the same ordinal level.

One may expect such a theorem to be true for other suitably homogeneous generic models like e.g. the dominating forcing extensions. However it does not seem to be an easy task to manufacture a proof of sufficient generality because of various ad hoc arguments in the proofs below, lacking a common denominator.

2. Borel coding

We fix any reasonable system of Borel coding, which involves a Π_1^1 set $\mathbf{BC} \subseteq \omega^{\omega}$ of *Borel codes* and an assignment of a Borel set $\mathbf{B}_c \subseteq \omega^{\omega}$ for each $c \in \mathbf{BC}$, as e.g. in [6, 2.9] or [10, 3H]. This also includes a pair of Π_1^1 sets $S, S' \subseteq \omega^{\omega} \times \omega^{\omega}$ such that we have $x \in \mathbf{B}_c \iff \langle c, x \rangle \in S \iff \langle c, x \rangle \notin S'$ whenever $c \in \mathbf{BC}$ and $x \in \omega^{\omega}$ are

Received by the editors March 10, 2018, and, in revised form, June 14, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 03E35, 03E45.

The first author acknowledges partial support of RFFI grant 17-01-00705.

Vladimir Kanovei served as corresponding author.

The second author acknowledges partial support of Russian Scientific Fund grant 14-50-00150. ¹OD means *ordinal-definable*, that is, a set which can be defined by an \in -formula with ordinals as parameters. See Jech [1, Section 13] on this notion.

²The model in [4] involves the countable product of Jensen's minimal Δ_3^1 real forcing [2]. The model in [3] involves a shift-invariant version of Jensen's forcing, and it contains a countable Π_2^1 set $X \subseteq \omega^{\omega}$ of reals with no OD elements, and X is an E_0 -class.

arbitrary. If $1 \leq \xi < \omega_1$, then there is a Borel subset $\mathbf{BC}_{\xi} \subseteq \mathbf{BC}$ which canonically produces $\mathbf{\Pi}_{\xi}^0$ sets, so that $\{\mathbf{B}_c : c \in \mathbf{BC}_{\xi}\}$ is equal to the set of all boldface $\mathbf{\Pi}_{\xi}^0$ sets $X \subseteq \omega^{\omega}$.

To accordingly code *Borel maps* $F : \omega^{\omega} \to \omega^{\omega}$, we let **FC** be the lightface Π_1^1 set of all reals $h \in \omega^{\omega}$ such that $(h)_n \in \mathbf{BC}$, $\forall n$, where $(h)_n \in \omega^{\omega}$ is defined by $(h)_n(k) = h(2^n(2k+1)-1)$ for all k. If $h \in \mathbf{FC}$, then a Borel map $\vartheta_h : \omega^{\omega} \to \omega^{\omega}$ (a total map with the full domain ω^{ω}) is defined so that $\vartheta_h(x)(n) = k$ iff either $k \geq 1$ and $x \in \mathbf{B}_{(h)_n(k)} \setminus \bigcup_{1 \leq \ell \leq k} \mathbf{B}_{(h)_n(\ell)}$ or k = 0 and $x \notin \bigcup_{1 \leq \ell} \mathbf{B}_{(h)_n(\ell)}$.

Remark 2. There is another system of Borel codes of the form $c = \langle T_c, f_c \rangle$, where T_c is a well-founded tree and f_c maps terminal nodes of T into *Baire intervals* in ω^{ω} ; see e.g. [12]. If one assumes that T_c is a tree in $\omega^{<\omega}$, then this is fully equivalent to the above system of coding by B_c , $c \in \mathbf{BC}$.

But assuming that $T_c \subseteq \lambda^{<\omega}$, $\lambda < \omega_1$ leads to new insights, and then, as essentially proved in [12], our Theorem 1 is true also in the Solovay model (the Levy-collapse extension of **L**) in such a way that the codes $c = \langle T_c, f_c \rangle$ which witness the Borel class of Borel OD sets belong to **L**, but the trees T_c may not be countable in **L**.

As for the coding system by $B_c, c \in \mathbf{BC} \subseteq \omega^{\omega}$, Theorem 1 obviously fails in the Solovay model, the countable set $X = \omega^{\omega} \cap \mathbf{L}$ being a counterexample.

3. Cohen-generic reals, case A of Theorem 1

Let $\mathbf{Coh} = 2^{<\omega}$ be the Cohen forcing.

Proof of Theorem 1, case A. Let $a_0 \in 2^{\omega}$ be a real **Coh**-generic over the background set universe **V**. Assume that $1 \leq \xi < \omega_1 (= \omega_1^{\mathbf{V}})$, and know that in $\mathbf{V}[a_0]$ it is true that $X = \{x \in 2^{\omega} : \varphi(x)\} \subseteq 2^{\omega}$ is a $\mathbf{\Pi}_{\xi}^0$ set definable by a formula φ with sets in **V** as parameters; this includes the OD case. Suppose to the contrary that there is no Borel code $c \in \mathbf{BC}_{\xi}$ in **V** satisfying $X = \mathbf{B}_c$.

As X is Π_{ξ}^{0} , there is a code $d \in \mathbf{BC}_{\xi}$ in $\mathbf{V}[a_{0}]$ satisfying $X = \mathbf{B}_{d}$. Cohen extensions are known to satisfy the property of *Borel reading of names*; hence $d = \vartheta_{h}(a_{0})$, where $h \in \mathbf{FC}$ in \mathbf{V} . Thus $X = \mathbf{B}_{\vartheta_{h}(a_{0})}$. It follows that there is a condition $u \in \mathbf{Coh}$ which forces $\vartheta_{h}(\dot{\mathbf{a}}) \in \mathbf{BC}_{\xi}$ and $\{x \in 2^{\omega} : \varphi(x)\} = \mathbf{B}_{\vartheta_{h}(a_{0})}$, where $\dot{\mathbf{a}}$ is a canonical name for the Cohen generic real in 2^{ω} , and also forces that there is no Borel code $c \in \mathbf{BC}_{\xi}$ in \mathbf{V} satisfying $\{x \in 2^{\omega} : \varphi(x)\} = \mathbf{B}_{c}$.

Argue in the universe V. The set $I_u = \{x \in 2^{\omega} : u \subset x\}$ is a *Cantor interval*, clopen in 2^{ω} . The set $\{x \in I_u : \vartheta_h(x) \in \mathbf{BC}_{\xi}\}$ is comeager in I_u by the choice of u. It follows that there is a dense G_{δ} set $D \subseteq I_u$ such that $\vartheta_h(x) \in \mathbf{BC}_{\xi}$ for all $x \in D$. Consider the Borel set

$$P = \{ \langle x, y \rangle : x \in D \land y \in \boldsymbol{B}_{\vartheta_{b}(x)} \} \subseteq 2^{\omega} \times \omega^{\omega}$$

and the Π_1^1 equivalence relation $x \in x'$ iff $P_x = P_{x'}$, on D, where as usual $P_x = \{y : P(x, y)\}$. As a subset of $I_u \times I_u$, E has the Baire property, and so do all E -equivalence classes. Thus there is a condition $v \in \mathbf{Coh}$ which satisfies the requirements of one of the two cases below.

Case 1 (in **V**). All E-equivalence classes are meager on $I_v = \{x \in 2^{\omega} : v \subset x\}$. Then the Π_1^1 -set $W = \{\langle x, x' \rangle : x, x' \in I_v \cap D \land x \in x'\}$ is meager in $I_v \times I_v$ by Ulam–Kuratowski. Therefore W is covered by an F_{σ} meager set $F \subseteq I_v \times I_v$. Fix a transitive model \mathfrak{M} of a sufficiently large fragment of **ZFC** which contains the code h and codes for D, F and is an elementary submodel of the universe **V** w.r.t. all analytic formulas.

Lemma 3. There are reals $a, b \in I_v$, Cohen generic over \mathbf{V} , such that $\mathbf{V}[a] = \mathbf{V}[b]$ and the pair $\langle a, b \rangle$ is Cohen×Cohen generic over \mathfrak{M} .

Proof. The set $P = \{\langle x, x + 2y \rangle : x, y \in I_v\}$ is non-meager, hence so is the projection $Z = \{z \in 2^{\omega} : P^z \text{ non-meager}\}$ by Ulam–Kuratowski, where $P^z = \{x : \langle x, z \rangle \in P\}$ and $+_2$ is the componentwise addition mod2. Let, in $\mathbf{V}, z \in Z$ be Cohen generic over \mathfrak{M} . Then P^z is non-meager. Pick a real $a \in P^z$ Cohen over \mathbf{V} , hence over $\mathfrak{M}[z]$. The pair $\langle a, z \rangle$ belongs to P and is Cohen over \mathfrak{M} ; hence z is Cohen over $\mathfrak{M}[a]$. It follows that $b = z +_2 a$ is Cohen over $\mathfrak{M}[a]$; thus $\langle a, b \rangle$ is Cohen over \mathfrak{M} , and $a, b \in I_v$ by construction. Finally $b = z +_2 a$ is Cohen over \mathbf{V} since so is a while $z \in \mathbf{V}$, and clearly $\mathbf{V}[a] = \mathbf{V}[b]$. \Box (Lemma)

Consider such a pair of reals $a, b \in I_v$. Then $\langle a, b \rangle \notin F$ since F is a Borel meager set coded in \mathfrak{M} . It follows that $\langle a, b \rangle \notin W$, hence, $a \not\in b$, meaning that $\mathbf{B}_{\vartheta_h(b)} \neq \mathbf{B}_{\vartheta_h(a)}$. But on the other hand a, b are Cohen generic over \mathbf{V} , $\mathbf{V}[b] = \mathbf{V}[a]$, and we have $a, b \in I_v$ by construction. It follows that both $\mathbf{B}_{\vartheta_h(b)}$ and $\mathbf{B}_{\vartheta_h(a)}$ coincide in $\mathbf{V}[a]$ with one and the same (since φ has only parameters in \mathbf{V}) set $\{x : \varphi(x)\}$, which contradicts the above. Thus Case 1 is impossible.

Case 2 (in V). At least one of the E-equivalence classes is not meager on I_v . Then, in V, there is a condition $w \in \mathbf{Coh}$ such that $v \subseteq w$ and comeager-many points in I_w are E-equivalent. In other words there exists a particular Π^0_{ξ} set $A = B_c$ with a code $c \in \mathbf{BC}_{\xi}$ in V such that $B_{\vartheta_h(x)} = B_c$ for comeager-many $x \in I_w$. Then w Cohen-forces over V that $B_{\vartheta_h(\mathbf{a})} = B_c$. But this contradicts the contrary assumption in the beginning of the proof, since $u \subseteq w$.

$$\Box$$
 (Theorem 1, case A)

4. Solovay-random reals, case B of Theorem 1

Let λ be the standard probability Lebesgue measure on 2^{ω} . The Solovay-random forcing **Rand** consists of all trees $T \subseteq 2^{<\omega}$ with no endpoints and no isolated branches and such that the set $[T] = \{x \in 2^{\omega} : \forall n \ (x \upharpoonright n \in T)\}$ has positive measure $\lambda([T]) > 0$. The forcing **Rand** depends on the ground model, so that "random over a model \mathfrak{M} " will mean "(**Rand** $\cap \mathfrak{M}$)-generic over \mathfrak{M} ".

Unlike the Cohen-generic case, a random pair of reals is **not** a (**Rand** × **Rand**)generic pair. The notion of a random pair is rather related to forcing by closed sets in $2^{\omega} \times 2^{\omega}$ (or trees which generate them or equivalently Borel sets) of positive product measure (non-null). We'll make use of the following well-known characterization of Solovay-random pairs.

Proposition 4. Let \mathfrak{M} be a transitive model of a large fragment of **ZFC**, and let $a, b \in 2^{\omega}$. Then the following three assertions are equivalent:

- (1) the pair $\langle a, b \rangle$ is a random pair over \mathfrak{M} ;
- (2) a is random over \mathfrak{M} , and b is random over $\mathfrak{M}[a]$;
- (3) b is random over \mathfrak{M} , and a is random over $\mathfrak{M}[b]$.
- (4) $\langle a, b \rangle$ avoids any $(\boldsymbol{\lambda} \times \boldsymbol{\lambda})$ -null Borel set $Q \subseteq 2^{\omega} \times 2^{\omega}$ coded in \mathfrak{M} .

Sketch of proof. Regarding the equivalence $1 \iff 4$, see e.g. [1, Lemma 26.4] or V.4.19, V.4.20 in [8], where the 1-dimensional version of the equivalence is established, saying that $a \in 2^{\omega}$ is random over \mathfrak{M} iff a avoids any λ -null Borel set $Q \subseteq 2^{\omega}$ coded in \mathfrak{M} .

To prove that (1) implies (2), suppose that (2) fails.

If a is not random over \mathfrak{M} , then by the same Lemma 26.4 in [1], a belongs to a null Borel set X coded in \mathfrak{M} . Then $\langle a, b \rangle$ belongs to the $(\lambda \times \lambda)$ -null Borel set $X \times 2^{\omega}$ still coded in \mathfrak{M} , so $\langle a, b \rangle$ is not random.

If b is not random over $\mathfrak{M}[a]$, then b belongs to a λ -null set X coded in $\mathfrak{M}[a]$. By Borel reading of names, X has a Borel code of the form f(a), where $f: 2^{\omega} \to 2^{\omega}$ is a Borel map coded by some $p \in 2^{\omega} \cap \mathfrak{M}$, that is, a $\Delta_1^1(p)$ map. This results in a $\Delta_1^1(p)$ set $P \subseteq 2^{\omega} \to 2^{\omega}$ such that $\langle a, b \rangle \in P$ and the cross-section $P_a = \{b': \langle a, b' \rangle \in P\}$ (it contains b!) is λ -null. Therefore $\langle a, b \rangle$ belongs to $P' = \{\langle a', b' \rangle \in P : \lambda(P_{a'}) = 0\}$, which is a $\Pi_1^1(p)$ set (because being null is a Π_1^1 property in this context by e.g. 2.2.3 in [7]) and a ($\lambda \times \lambda$)-null set by Fubini. Covering P' by a Borel null set coded in \mathfrak{M} , we conclude that $\langle a, b \rangle$ is not random.

To prove that conversely (2) implies (1), suppose that (1) fails, that is, by (4), $\langle a, b \rangle \in P$, where $P \subseteq 2^{\omega} \times 2^{\omega}$ is a $(\lambda \times \lambda)$ -null $\Delta_1^1(p)$ set, $p \in 2^{\omega} \cap \mathfrak{M}$. Consider the partition $P = P' \cup P''$ of P into the $\Pi_1^1(p)$ set $P' = \{\langle a', b' \rangle \in P : \lambda(P_{a'}) = 0\}$ and the $\Sigma_1^1(p)$ set $P'' = P \smallsetminus P'$. Now if $\langle a, b \rangle \in P'$, then b belongs to the λ -null $\Pi_1^1(p, a)$ set P'_a , and hence b is not random over $\mathfrak{M}[a]$ (by covering P'_a by a Borel null set coded in $\mathfrak{M}[a]$). If $\langle a, b \rangle \in P''$, then a belongs to the projection

$$\operatorname{dom}(P'') = \{a' : \exists b' (\langle a', b' \rangle \in P)\} = \{a' : \lambda(P_{a'}) > 0\},\$$

which is a $\Sigma_1^1(p)$ set, λ -null by Fubini (as P is null), so a is not random.

n leads t

Proof of Theorem 1, case B. Similarly to case A, the contrary assumption leads to an ordinal $1 \leq \xi < \omega_1$, a code $h \in \mathbf{FC}$ in V, and a condition $T_0 \in \mathbf{Rand}$ in V which **Rand**-forces, over V, that $\vartheta_h(\mathbf{\dot{a}}) \in \mathbf{BC}_{\xi}$ and $\{x \in 2^{\omega} : \varphi(x)\} = B_{\vartheta_h(\mathbf{\dot{a}})}$, where $\mathbf{\dot{a}}$ is a canonical name for the random real and also forces that there is no Borel code $c \in \mathbf{BC}_{\xi}$ in V, satisfying $\{x \in 2^{\omega} : \varphi(x)\} = B_c$ in $\mathbf{V}[\mathbf{\dot{a}}]$.

Argue in the universe V. There exists a closed non-null set $D \subseteq [T_0]$ such that $\vartheta_h(x) \in \mathbf{BC}_{\xi}$ for all $x \in D$. Consider the Borel set

$$P = \{ \langle x, y \rangle : x \in D \land y \in \boldsymbol{B}_{\vartheta_{h}(x)} \} \subseteq 2^{\omega} \times \omega^{\omega}$$

and the Π_1^1 equivalence relation $x \in x'$ iff $P_x = P_{x'}$, on D, where $P_x = \{y : P(x, y)\}$. Then E is λ -measurable, and so are all E -equivalence classes. Thus there is a condition $T_1 \in \mathbf{Rand}$ in \mathbf{V} which satisfies $[T_1] \subseteq D$ and satisfies the requirements of one of the two cases:

Case 1 (in **V**). All E-equivalence classes in $[T_1]$ are λ -null sets. Then the Π_1^1 -set $W = \{\langle x, x' \rangle : x, x' \in [T_1] \land x \in x'\}$ is λ^2 -null by Fubini. Therefore W is covered by a G_{δ} null set $G \subseteq [T_1] \times [T_1]$. Fix a transitive model $\mathfrak{M} \in \mathbf{V}$ of a sufficiently large fragment of **ZFC** which contains h, T_1 , and a code G and is an elementary submodel of the universe \mathbf{V} w.r.t. all analytic formulas.

Lemma 5 (= Lemma 3.3 in [5]). There are reals $a, b \in [T_1]$, separately random over **V**, such that $\mathbf{V}[a] = \mathbf{V}[b]$ and the pair $\langle a, b \rangle$ is random over \mathfrak{M} .

Proof. The set $P = \{\langle x, x +_2 y \rangle : x, y \in [T_1]\}$ is non-null; hence, by Fubini, so is the projection $Z = \{z \in 2^{\omega} : \lambda(P^z) > 0\}$. Then follow the proof of Lemma 3, using Proposition 4 in treatment of the random pairs involved. \Box (Lemma)

The lemma leads to a contradiction similarly to Case 1 in Section 3.

Case 2 (in V). At least one of the E-equivalence classes in $[T_1]$ is not λ -null. Then, in V, there is a condition $T \subseteq T_1$ such that all points $x \in [T]$ are E-equivalent. In other words there exists a particular Π_{ξ}^0 set $A = B_c$ with a code $c \in \mathbf{BC}_{\xi}$ in V such that $B_{\vartheta_h(x)} = B_c$ for all $x \in [T]$. Then T forces over V that $B_{\vartheta_h(\mathbf{\dot{a}})} = B_c$. But this contradicts the contrary assumption in the beginning of the proof, since $T \subseteq T_0$ by construction.

$$\Box$$
 (Theorem 1, case B) \Box

5. Sacks reals, case C of Theorem 1

The Sacks forcing **Perf** consists of all perfect trees $T \subseteq 2^{<\omega}$ (no endpoints and no isolated branches).

Proof of Theorem 1, case C. As above, the contrary assumption leads to an ordinal $1 \leq \xi < \omega_1$, a code $h \in \mathbf{FC}$ in \mathbf{V} , and a condition $T_0 \in \mathbf{Perf}$ in \mathbf{V} which \mathbf{Perf} -forces, over \mathbf{V} , that $\vartheta_h(\mathbf{\dot{a}}) \in \mathbf{BC}_{\xi}$ and $\{x \in 2^{\omega} : \varphi(x)\} = \mathbf{B}_{\vartheta_h(\mathbf{\dot{a}})}$, where $\mathbf{\dot{a}}$ is a canonical name for the Sacks-generic real, and also forces that there is no Borel code $c \in \mathbf{BC}_{\xi}$ in \mathbf{V} satisfying $\{x \in 2^{\omega} : \varphi(x)\} = \mathbf{B}_c$ in $\mathbf{V}[\mathbf{\dot{a}}]$.

Argue in the universe V. There exists a condition $T_1 \in \text{Perf}$, $T_1 \subseteq T_0$, such that $\vartheta_h(x) \in \mathbf{BC}_{\xi}$ for all $x \in [T_1]$. Consider the Borel set

$$P = \{ \langle x, y \rangle : x \in [T_1] \land y \in \boldsymbol{B}_{\vartheta_h(x)} \} \subseteq 2^{\omega} \times \omega^{\omega}$$

and the Π_1^1 equivalence relation $x \in x'$ iff $P_x = P_{x'}$, on $[T_1]$. By the Silver dichotomy theorem,³ there is a condition $T \in \mathbf{Perf}$ in \mathbf{V} which satisfies $T \subseteq T_1$ and satisfies the requirements of one of the two cases:

Case 1 (in V). The reals in [T] are pairwise E-inequivalent. Then using any homeomorphism $g: [T] \xrightarrow{\text{onto}} [T]$ coded in V and satisfying $g(x) \neq x$ for all x, we easily get a pair of reals $a \neq b$ in [T] Sacks generic over V and satisfying $\mathbf{V}[a] = \mathbf{V}[b]$; basically, b = g(a). Then on the one hand, $a \not\in b$ (since $a \neq b$), thus $P_a \neq P_b$, that is, $\mathbf{B}_{\vartheta_h(a)} \neq \mathbf{B}_{\vartheta_h(b)}$, but on the other hand it is true in $\mathbf{V}[a] = \mathbf{V}[b]$ that the sets $\mathbf{B}_{\vartheta_h(a)}$ and $\mathbf{B}_{\vartheta_h(b)}$ are equal to one and the same set $\{x:\varphi(x)\}$, which is a contradiction. Thus Case 1 is impossible.

Case 2 (V). The reals in [T] are pairwise E-equivalent. Then, in V, there is a particular Π_{ξ}^{0} set $A = B_{c}$ with a code $c \in \mathbf{BC}_{\xi}$ in V such that $B_{\vartheta_{h}(x)} = B_{c}$ for all $x \in [T]$. Then T forces over V that $B_{\vartheta_{h}(\mathbf{\hat{a}})} = B_{c}$. But this contradicts the contrary assumption in the beginning of the proof, since $T \subseteq T_{0}$ by construction.

 \Box (Theorem 1, case C) \Box

³Silver's theorem [11] claims that if E is a $\mathbf{\Pi}_1^1$ equivalence relation on a Borel set X, then either there exist at most countably many E-equivalence classes inside X or there is a perfect set $Y \subseteq X$ of pairwise E-inequivalent elements.

Acknowledgment

The authors thank the anonymous referee for a number of valuable remarks which helped to improve the text.

References

- Thomas Jech, Set theory, The third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. MR1940513
- Ronald Jensen, Definable sets of minimal degree, Mathematical logic and foundations of set theory (Proc. Internat. Colloq., Jerusalem, 1968), North-Holland, Amsterdam, 1970, pp. 122– 128. MR0306002
- [3] Vladimir Kanovei and Vassily Lyubetsky, A definable E₀ class containing no definable elements, Arch. Math. Logic 54 (2015), no. 5-6, 711–723, DOI 10.1007/s00153-015-0436-9. MR3372617
- [4] V. G. Kanovel and V. A. Lyubetskii, A definable countable set containing no definable elements (Russian, with Russian summary), Mat. Zametki 102 (2017), no. 3, 369–382, DOI 10.4213/mzm10842; English transl., Math. Notes 102 (2017), no. 3-4, 338–349. MR3691702
- [5] Vladimir Kanovei and Vassily Lyubetsky, Countable OD sets of reals belong to the ground model, Arch. Math. Logic 57 (2018), no. 3-4, 285–298, DOI 10.1007/s00153-017-0569-0. MR3778960
- [6] Vladimir Kanovei, Borel equivalence relations, Structure and classification, University Lecture Series, vol. 44, American Mathematical Society, Providence, RI, 2008. MR2441635
- [7] Alexander S. Kechris, Measure and category in effective descriptive set theory, Ann. Math. Logic 5 (1972/73), 337–384, DOI 10.1016/0003-4843(73)90012-0. MR0369072
- [8] Kenneth Kunen, Set theory, Studies in Logic (London), vol. 34, College Publications, London, 2011. MR2905394
- [9] Alain Louveau, A separation theorem for Σ¹₁ sets, Trans. Amer. Math. Soc. 260 (1980), no. 2, 363–378, DOI 10.2307/1998008. MR574785
- [10] Yiannis N. Moschovakis, *Descriptive set theory*, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR561709
- [11] Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28, DOI 10.1016/0003-4843(80)90002-9. MR568914
- [12] Jacques Stern, On Lusin's restricted continuum problem, Ann. of Math. (2) 120 (1984), no. 1, 7–37, DOI 10.2307/2007070. MR750715

INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS, RUSSIAN ACADEMY OF SCIENCES *Email address:* kanovei@googlemail.com

INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS, RUSSIAN ACADEMY OF SCIENCES *Email address*: lyubetsk@iitp.ru