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An Effectively Computable Projective Invariant

Alexandr V. Seliverstov

Abstract. We consider a projective invariant of hypersurfaces over a field
of characteristic zero. The invariant can be computed in polynomial time
with generalized register machines. It has been computed for certain low-
dimensional hypersurfaces. One can effectively recognize some plane cubic
curves as well as some cubic surfaces. Our method allows to recognize some
cubic hypersurfaces with reducible Hessian.

The aim of this work is to introduce an effectively computable projective
invariant of hypersurfaces over the field of complex numbers. The simplest case of
hypersurface is a plane curve. Every plane cubic curve is projectively equivalent
to a curve whose affine part is given by a Weierstrass equation y2 = x3 + px+ q.
This curve is singular iff the discriminant of the right-hand univariate polynomial
vanishes, that is, −4p3− 27q2 = 0. Classification of cubic surfaces is more compli-
cated. A cubic surface is cyclic when there exists a Galois cover of degree 3 over
projective plane. A cyclic cubic surface is projectively equivalent to a surface de-
fined by a form of the type x3

0+x3
1+x3

2+x3
3+px1x2x3, where p is a parameter [1].

The general cubic surface depends on four parameters. It can be defined by the
Emch normal form [2]. But this normal form has been found earlier [3, 4].

Let us consider generalized register machines over a field of characteristic zero
(K, 0, 1,+,−,×). Each register contains an element of K. There exist index regis-
ters containing nonnegative integers. The running time is said polynomial, when
the total number of operations performed before the machine halts is bounded by a
polynomial in the number of registers occupied by the input. Initially, this number
is placed in the zeroth index register [5]. If a polynomial serves as an input, then
its coefficients are written into registers.

For n ≥ 2, let us consider a square-free form f(x0, . . . , xn) of degree d ≥ 2.
Let us fix a point U with homogeneous coordinates (u0 : · · · : un). Every straight
line passing through the point U consists of points with homogeneous coordinates
((x0−u0)t+u0s : · · · : (xn−un)t+uns), where (s : t) are homogeneous coordinates
inside the line. The restriction of the form f is a binary form denoted by r(s, t).
Let us denote by D[f, U ] the discriminant of the binary form r(s, t). If x0 = 1, then
the discriminant is a inhomogeneous polynomial in affine coordinates xk. In the

141

143



Alexandr V. Seliverstov

general case, its degree is equal to d2− d. If a straight line either is tangent to the
hypersurface or passes through a singular point, then the discriminant of the form
r(t, s) vanishes. So, if the point U is not any singular point of the hypersurface,
then the polynomial D[f, U ](x1, . . . , xn) defines a cone with U as a vertex. If U is
singular, then D[f, U ] vanishes identically.

The set of polynomials of the type D[f, U ] for all points U generates a linear
subspace Wf of the ambient linear space of all inhomogeneous polynomials of
degree d2− d in n variables. The dimension of the ambient linear space is equal to

w(n, d) =
(n+ d2 − d)!

n!(d2 − d)!
.

For every irreducible form f , the dimension dimWf is projectively invariant. If
d ≥ 3 and n is sufficiently large, then dimWf < w(n, d), that is, Wf is a proper
subspace of the ambient linear space. If the rank of a quadratic form f is equal
to n, then the equality dimWf = w(n, 2) holds. For given n and d, the dimension
dimWf considered as a function of coefficients of f is lower semi-continuous [6].
Thus, if there exists a form f(x0, . . . , xn) of degree d such that dimWf = w(n, d),
then for almost every form f(x0, . . . , xn) of degree d, the equality dimWf = w(n, d)
holds too.

Let be given a square-free polynomial f(x1, . . . , xn). In accordance with [6],
in the expansion of the polynomial D[f, U ] in powers of coordinates of the point U ,
each coefficient belongs to the linear subspace Wf . These polynomials in variables
x1,. . . , xn span whole linear subspace Wf . Thus, there exists a polynomial time
algorithm to compute the dimension of the linear subspace Wf .

It is sufficient to calculate the rank of a matrix whose order equals w(n, d). It
requires O(wω) multiplications, where ω denotes the matrix multiplication expo-
nent [7, 8]. In small dimensions, the rank can be calculated with computer algebra
system software.

We have computed dimWf for certain plane curves (n = 2). In this case, the
linear subspace Wf can be improper. But it is small for the Fermat type curves,
where F2 = xd

0 + xd
1 + xd

2.

d 2 3 4 5 6 7 8 9 10
w(2, d) 6 28 91 231 496 946 1653 2701 4186
dimWF2 6 26 82 207 446 856 1506 2477 3862

If f(x0, x1, x2) defines a singular curve, then the strict inequality dimWf < w(2, d)
holds. For almost every f of degree d ≤ 7, the equality dimWf = w(2, d) holds.
For all d ≤ 7, the equality max

f(x0,x1,x2)
dimWf = w(2, d) holds. In particular, the

equality holds at forms of the type f = xd
0 + xd

1 + xd
2 + (x0 + x1 + x2)

d. We guess
that it holds for every larger degree too.

Let us consider cubic forms of the Fermat type Fn = x3
0 + · · · + x3

n. The
polynomial D[Fn, U ](x1, . . . , xn) is equal to the discriminant of a binary form of
the type at3+bt2s+pts2+qs3 whose coefficients are sums of univariate polynomials,
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that is, a = a1(x1)+· · ·+an(xn), b = b1(x1)+· · ·+bn(xn), p = p0+p1x1+· · ·+pnxn,
and q is a constant. So, every monomial of D[Fn, U ] depends on at most four
variables. Thus, dimWFn = O(n4).

For n ≤ 9, the equation dimWFn = 1
4n

4 + 5
6n

3 + 9
4n

2 + 8
3n+ 1 holds.

We have also computed dimWf for certain cubic hypersurfaces. For n ≤ 3,
this result found by symbolic computations with parameters, where every param-
eter can be considered as a transcendental number.
For n ≥ 4, dimWf was only computed for certain cubic forms. They provide
the lower bound on the maximum value of dimWf for given n. For cubic forms
f(x0, . . . , xn), we guess that the maximum dimension is

max
f

dimWf = n+ dimWFn =
1

12
(n+ 1)(3n3 + 7n2 + 20n+ 12)

n 2 3 4 5 6 7 8 9
w(n, 3) 28 84 210 462 924 1716 3003 5005

maxf dimWf 28 75 ≥ 169 ≥ 336 ≥ 608 ≥ 1023 ≥ 1625
dimWFn

26 72 165 331 602 1016 1617 2455

Let us consider cubic curves. In the general case, dimWf = 28 except the
Fermat type curves and all singular curves. We computed the determinant of a
matrix composed by coefficients of polynomials generating the linear space Wf .
For the Weierstrass normal form f = x2

2x0 + x3
1 + px1x

2
0 + qx3

0, the determinant is
proportionate to the expression p4(4p3+27q2)8. If p = 0 and q 6= 0, then the curve
is projectively equivalent to a curve of the Fermat type. If 4p3+27q2 = 0, then the
curve is singular, else it is smooth. For the Fermat cubic curve, dimWF2

= 26. In
this case, the Hessian curve is the union of three straight lines. For an irreducible
cubic curve with a node, dimWf = 25. For a cubic curve with a cusp, dimWf = 21.
Therefore, one can distinguish between nodal and cuspidal curves.

For the general cubic surface, dimWf = 75. For the general cyclic cubic
surface, dimWf = 74. For the Fermat cubic surface, dimWF3 = 72. So, if the
Hessian surface contains a plane, then dimWf is small. These results found by
symbolic computations with parameters, where every parameter can be considered
as a transcendental number. For some singular surfaces, the equality dimWf = 75
holds too. For example, it holds for f = x3

0+px2
0x1+x3

1+x0x
2
2+(x2

0+x2
1+x2

2)x3,
where p is transcendental; the point (0 : 0 : 0 : 1) is singular. Therefore, the
approach does not allow one to decide whether a given cubic surface is smooth.

If f = x3
0 + px2

0x1 + x3
1 + x0x

2
2 + x1x2x3, where p is transcendental, then

dimWf = 73; the point (0 : 0 : 0 : 1) is singular too. If f = x3
0 + px2

0x1 + x3
1 +

x0x
2
2 + x2

0x3, where p is transcendental, then dimWf = 48; the point (0 : 0 : 0 : 1)
is singular too.

Conjecture. For every cubic form g with reducible Hessian, the inequality
holds dimWg < maxf dimWf . Moreover, the more factors exists in Hessian, the
more gap is between two values dimWg and maxf dimWf .

The computational results show that one can easily verify smoothness of
almost every plane quartic curve as well as almost every quartic surface in P3 by
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means of computing dimWf . The method is also applicable to other plane curves.
On the other hand, the same problem for cubic surfaces is hard enough because the
proposed projective invariant is useless in this case. Nevertheless, one can recognize
singularities of some types. We also assume that our method allows to recognize
cubic hypersurfaces with reducible Hessian in deterministic polynomial time.

Acknowledgments. The reported study was funded by RFBR according to
the research project no. 18-29-13037.
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