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Abstract. Let us consider the generic-case complexity. The machine halts at
every input and gives a meaningful answer at almost every input, but it can
abandon the calculation using explicit notification, that is, there exists the
vague halting state. A generic-case polynomial-time algorithm is proposed to
recognize systems of linear equations without any binary solution, when the
number of equations is close to the number of unknowns.

A sequence is called binary when it belongs to the set {0, 1}∗. Let us consider
the problem whether there exists a binary solution to a system of inhomogeneous
linear equations with integer coefficients. The problem is NP-complete and can be
reduced to its particular case containing only one linear equation [1]. Furthermore,
a binary solution to one linear equation can be found using a pseudopolynomial-
time algorithm [1, 2]. Without any restriction on the coefficients, Horowitz and
Sahni [3] had introduced the meet-in-the-middle approach and gave an exact
O∗(2n/2) time and space algorithm. A few years later, Schroeppel and Shamir [4]
improved the space complexity to O∗(2n/4). There is also known a polynomial
upper bound on the average-case complexity of the multidimensional knapsack
problem [5].

By means of eliminating variables, searching for a binary solution to a system
of m linearly independent linear equations in n unknowns is reduced to a parallel
check whether a binary solution to a subsystem in n−m unknowns can be extended
to a binary solution to the whole system of equations in n unknowns. Hence,
the initial problem is polynomial-time solvable when the difference between the
number of unknowns and the number of linearly independent equations is bounded
by a function of the type n − m = O(log n). Let us consider the case when the
difference between the number of unknowns n and the number of equations m is
bounded by a function of the type n −m = O(

√
n). So, the previously obtained

estimates are improved, although the proposed method is generally useless for one
equation.
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An easy generalization of this problem is searching for binary solutions to
a system of linear equations over an arbitrary field (K, 0, 1,+,−,×, ()−1,=) of
characteristic zero. Let us define 0−1 = 0. In contrast to previous works [5, 6],
we consider not only ordered fields but also arbitrary fields of characteristic zero,
including the field of complex numbers. Let us use either generalized register ma-
chines [7] or BSS-machines over reals [8]. These machines over an algebraic exten-
sion of the field of rational numbers naturally correspond to the idea of symbolic
computations. Every register contains an element of K. The machine also has
index registers containing non-negative integers. The running time is polynomial
when the total number of operations performed by the machine is bounded by a
polynomial in the number of registers containing the input. Initially, this number
is written in the zeroth index register.

A predicate holds almost everywhere when it holds on every instance x sat-
isfying an inequality of the type f(x) 6= 0, where f denotes a nonzero polynomial.
This restriction is more rigorous than any upper bound on the measure. Let us
consider so-called generic generalized register machines over K. The machine halts
at every input and gives a meaningful answer at almost every input, but it can
abandon the calculation using explicit notification, that is, there exists the vague
halting state [6]. More precisely, a generalized register machine over K is called
generic when two conditions hold: (1) the machine halts at every input and (2) for
every positive integer k and for almost all inputs, each of which occupies exactly k
registers, the machine accepts or rejects the input, but does not halt in the vague
state. Generic machines that compute non-trivial output in registers are defined
similarly. If the machine halts in the vague state, then the output recorded in
the registers is considered meaningless. Note that the machine does not make any
error. For detailed description of generic computation on classical computational
models refer to [9, 10].

Without loss of generality, let us consider systems of linear equations of the
type xj = `j(1, x1, · · · , xn−m), where j > n −m and every `j(x0, x1, · · · , xn−m)
denotes a linear form over K.
Theorem 1. Given two positive integers n and m satisfying the inequality

2n ≥ (n−m+ 1)(n−m+ 2).

For almost every m-tuple of linear forms `j(x0, · · · , xn−m), where j > n−m, there
exist a set of coefficients λk such that the equality

n−m∑
k=1

λkxk(xk − x0) +
n∑

j=n−m+1

λj`j(`j − x0) = x20

holds. Moreover, for every n there exists a polynomial of degree at most 2n in
coefficients of all the linear forms `j such that if the set of coefficients λj does not
exist, then the polynomial vanishes.

Proof. The quest is a solution to an inhomogeneous system of linear equations in n
unknowns λ1, . . . , λn. The system contains only one inhomogeneous equation. Let
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us denote by r the number of all the equations, i.e., r = 1
2 (n−m+1)(n−m+2) ≤ n.

The sufficient condition for the solvability is the full rank of a r × n matrix.
If r = n, then it is sufficient that the determinant does not vanish. If r < n,

then it is sufficient that some r × r minor does not vanish. For example, let us
pick up the leading principal minor. In any case, it is a polynomial of degree r in
matrix entries. Every entry is a polynomial of degree at most two in coefficients of
some `j . Thus, the minor is a polynomial of degree at most 2r ≤ 2n. To complete
the proof, we only need to show that this polynomial does not vanish identically,
cf. [6]. �

Theorem 2. There exists a polynomial time generic generalized register machine
over K such that for all positive integers n and m satisfying the inequality

2n ≥ (n−m+ 1)(n−m+ 2),

and for almost every m-tuple of linear forms `j(x0, · · · , xn−m), where j > n−m,
if the machine accepts the input, then there exists no binary solution to the system
of all equations of the type xj = `j(1, x1, · · · , xn−m). Moreover, for every n there
exists a polynomial of degree at most 2n in coefficients of all the linear forms `j
such that if the machine halts in vagues halting state, then the polynomial vanishes.

Proof. If 2n < (n−m+ 1)(n−m+ 2), then the machine rejects the input. Else,
in accordance with Theorem 1, some polynomial time generic machine calculates
numbers λ1, . . . , λn such that the equality

n−m∑
k=1

λkxk(xk − 1) +

n∑
j=n−m+1

λj`j(`j − 1) = 1

holds. On the other hand, if there exists a binary solution to the system of all the
equations xj = `j(1, x1, · · · , xn−m), then the left-hand polynomial vanishes at the
binary solution. Therefore, an affirmative answer confirms that there is no binary
solution to the system. Otherwise, the machine halts in the vague halting state.
The estimate for the degree of a polynomial that vanishes in these cases coincides
with the estimate from Theorem 1. �

Remark. Over the field of rational numbers, not only the arithmetic complexity
but also the bit complexity is polynomial because the rank can be easily com-
puted [1]. So, there is a polynomial-time generic-case algorithm. Moreover, the
rank of a sparse matrix can be computed faster [11]. On the other hand, the rank
can be computed in O(log2 n) operations over an arbitrary field using a polynomial
number of processors [12].
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