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Abstract—We found a lower bound on the rank of a square matrix where every entry in the leading diagonal
is neither zero nor one and every entry outside the leading diagonal is either zero or one. The rank of this
matrix is at least half its order. Under an additional condition, the lower bound is higher by one. This condi-
tion means that some auxiliary system of linear equations has no binary solution. Some examples are provided
that show that the lower bound can be achieved. This lower bound on the matrix rank allows the problem of
finding a binary solution to a system of linear equations with a sufficiently large number of linearly indepen-
dent equations to be reduced to a similar problem in a smaller number of variables. Restrictions on the exis-
tence of a large set of solutions are found, each differing from the binary one by the value of one variable.
In addition, we discuss the possibility of certifying the absence of a binary solution to a large system of linear
algebraic equations. Estimates of the time required for calculating the matrix rank in the SymPy computer
algebra system are also provided. It is shown that the rank of a matrix over the field of residues modulo prime
number is calculated faster than it generally takes to calculate the rank of a matrix of the same order over the
field of rational numbers.
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1. INTRODUCTION

Suppose that  is a field computable in polynomial
time [1] the characteristic of which is either zero or an
odd prime number. A solution to a system of m equa-
tions in n variables is called an (0, 1)-solution if each
variable takes either of two values: 0 or 1. The solution
is called an almost-(0, 1)-solution if one variable is
neither 0 nor 1 and the other variables are 0 or 1.

A system of linear equations defines a subspace in
the ambient affine space with a fixed Cartesian coor-
dinate system. We identify points with lists of field ele-
ments or with matrix columns. Over an unordered
field, the concept of a polytope is not defined; how-
ever, we identify the set of vertices of the unit cube in
an n-dimensional space with the set of 2n points the
coordinates of which belong to the set {0, 1}. Two ver-
tices of this cube, i.e., two (0, 1)-points, are called
adjacent if they differ in one coordinate. For instance,
the (0, 1)-solution to the system of equations is a ver-
tex of this cube that belongs to this subspace; its
almost-(0, 1)-solution is a point in a straight line that
passes through two adjacent vertices of the unit cube
but does not coincide with the vertex. The point all

coordinates of which are 1/2 is the center of symmetry
of the unit cube.

The problem of recognizing the (0, 1)-solution is
equivalent to the problem of finding the relative posi-
tion of the subspace and vertices of the unit cube. This
problem is NP-complete. Using estimates of the rank
of a matrix of a special type, we propose a necessary
condition for the existence of a sufficiently large set of
almost-(0, 1)-solutions in the absence of (0, 1)-solu-
tions to the system of equations. The existence of
almost-(0, 1)-solutions is an obstacle to reducing the
dimension of the (0, 1)-solution recognition problem
by elimination of variables, i.e., by projection onto a
coordinate subspace. Hence, the violation of the pro-
posed condition implies the possibility of dimension-
ality reduction and, therefore, reduction in computa-
tional complexity. However, here, we do not consider
enumeration problems, which are more difficult than
problems of recognizing at least one solution [2, 3].

Recently, algorithms were proposed for recogniz-
ing (0, 1)-solutions to a system of linear equations with
integer coefficients: both heuristic ones under the low
density condition [4] or for a sufficiently large number
of equations [5, 6] and non-deterministic ones with
new upper bounds on computational complexity [7].
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Our new results hold for finite fields. Over a finite
field, elimination of variables is not accompanied by
the lengthening of coefficients of equations. There-
fore, various calculations are relatively easy to carry
out in computer algebra systems, with their bit com-
plexity being close to algebraic complexity. Moreover,
over a finite field with a fixed number of variables, the
exhaustive search is feasible [8].

The rank of a square matrix M is related to the
dimension of the affine hull L of the points corre-
sponding to the columns of the matrix. If L contains
the origin, then  = ; otherwise,
rank(M) =  + 1.

The rank of an  matrix over a field can be cal-
culated using a polynomial number of processors and
executing just  operations over this field on
each of them [9, 10]. On the other hand, the complex-
ity of calculating the rank [11] and characteristic poly-
nomial [12, 13] is close to the complexity of matrix
multiplication. In addition, there is a fast probabilistic
algorithm for calculating the Smith normal form of an
integer matrix [14]. The calculation of the rank over
rings without nontrivial zero divisors was considered
in [15]. For sparse symmetric matrices, the necessary
condition of nondegeneracy is convenient, which uses
the Newton polytope for the quadratic form [16].
Newton polytopes are also useful for solving other
problems [17].

However, in practice, calculating the rank of high-
order matrices is expensive. Hence, efficiently verifi-
able rank estimates can be useful in a variety of appli-
cations. Some results on the rank of matrices were
considered at the conference on computer algebra that
was dedicated to the memory of Marko Petkovšek
[18].

This paper is organized as follows. Section 2 pres-
ents new matrix rank estimates and related theoretical
results. Section 3 discusses results of calculations in
the SymPy computer algebra system. Section 4 pro-
vides a brief conclusion.

2. THEORETICAL RESULTS
Suppose that, for each 1 ≤ k ≤ n, a system of equa-

tions in  variables have an almost-(0, 1)-solution with
coordinate xk ∉ {0, 1}. Such solutions correspond to
the columns of a matrix where each entry in the lead-
ing diagonal is neither zero nor one and each entry
outside the leading diagonal is either zero or one. Esti-
mating the rank of this matrix makes it possible to esti-
mate the dimension of the affine subspace defined by
the system of equations.

Theorem 1. Suppose that we have an  matrix M
over field K where each entry in the leading diagonal is
neither zero nor one and each entry outside the leading
diagonal is either zero or one. Then, the rank of matrix M
is not less than .

rank( )M dim( )L
dim( )L

×n n

2
2( )logO n

n

×n n

/2n
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
Proof. If n = 2, then the rank of  matrix M is
not less than n/2 because rank(M) ≥ 1.

Suppose that, at some , the theorem holds for
all  matrices of order . Let us consider

 matrix M.
A column of matrix M corresponds to a point in a

straight line that passes through two adjacent (0, 1)-
points but does not coincide with these (0, 1)-points.
Affine transformations of form xk → 1 – xk map (0, 1)-
points to other (0, 1)-points and almost-(0, 1)-points
to other almost-(0, 1)-points. These transformations
preserve the dimension of the subspace. Transforma-
tion xk → 1 – xk means the replacement of all entries
in the kth row of the matrix. This allows us to pass from
matrix M to matrix  of the same type (in the last col-
umn of matrix , all entries, except for the entry in
the leading diagonal, are zero):

for some . Moreover, inequality  ≥
 – 1 holds. However, if the affine hull of the

columns of M contains the origin, then the rank of M
may be less than the rank of .

By elementary transformations of the columns of
, we obtain the matrix

of the same rank. Matrices  and  can differ only
in the bottom rows. The entries in the bottom row of

, except for the entry in the leading diagonal, are
zero.

By removing the last column and last row of , we
obtain an (n – 1) × (n – 1) matrix N of a lower rank.
By the induction hypothesis, rank(N) ≥ (n – 1)/2.
Therefore, inequality  ≥ n/2 holds.

Let us denote the affine hull of the columns of 
by L. There are two possible cases. If L passes through
the origin, then  = . In this case,

 ≥  =  ≥ n/2.
If L does not pass through the origin, then  ≥

 – 1 = . The affine hull of the col-
umns of matrix N does not pass through the origin.
We again apply transformations of form xk → 1 – xk to
matrix N and obtain matrix  of the same type: in the

×2 2

≥ 3n
×m m <m n

×n n
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last column of , all entries, except for the entry in the
leading diagonal, are zero. Moreover,  ≥

. By removing the last column and last row of
, we obtain an (n – 2) × (n – 2) matrix U of a lower

rank. By the induction hypothesis, its rank is bounded
from below:  ≥ (n – 2)/2. Then,  =

 + 1 ≥ n/2. Hence,  ≥  ≥
 ≥ n/2.

The following result shows that this lower bound
for the rank is accurate. In this case, the division by
two is used, which explains the assumption that the
characteristic of field K is not equal to two. By  we
denote the result of rounding to a larger integer.

Theorem 2. For any odd number n, there is an 
matrix M over field K such that each entry in its leading
diagonal is neither zero nor one, each entry outside its
leading diagonal is either zero or one, no (0, 1)-point lies
in the affine hull of the columns of , and equality

 =  holds.
Proof. Let us consider the  matrix

and denote the  submatrix obtained by
removing the first column and first row of M by N. The
ranks of the matrices are related as follows:  =

 + 1. Matrix N is a block-diagonal matrix with
2 × 2 blocks, each block being degenerate. Therefore,
its rank is equal to the number of blocks:  =
(n – 1)/2. Hence,  =  + 1 = (n +1)/2 =

.
Each column of matrix M is a solution to the system

of (n +1)/2 linearly independent equations

This system has no (0, 1)-solutions. Indeed, the
lower equations imply that the (0, 1)-solution should
have zero coordinates, except for the first one. How-
ever, this contradicts the first equation.

For instance, the 3 × 3 matrix

�N
rank( )N

�rank( )N
�N
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rank( )U rank( )M rank( )N
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has rank 2. Three columns correspond to three points
in straight line L, which is defined by the following
system of two equations:

This system has no -solutions.
The 4 × 4 matrix

has rank 3. Four columns correspond to points on a
plane defined by the system of two equations

This system has no (0, 1)-solutions.
For 2 × 2 matrices where each entry in the leading

diagonal is neither zero nor one and each entry outside
the leading diagonal is either zero or one, the rank is 1
only for the matrices

where . The columns correspond to points in a
straight line that passes through the origin and is defined
by equation x2 = αx1. Thus, if no (0, 1)-point belongs to
the line that passes through the points corresponding to
the columns of matrix M, then  = 2.

Theorem 3. Suppose that n is an even number and M
is an  matrix over field K with each entry in the lead-
ing diagonal being neither zero nor one and each entry
outside the leading diagonal being either zero or one.
If no -point lies in the affine hull of the columns of

, then the rank of M is not less than (n/2) + 1.
Proof. Transformations of form 

applied to the rows of the matrix, as in the proof of
Theorem 1, allows us to pass from matrix  to matrix

 of the same type (in the last column of , all
entries, except for the entry in the leading diagonal,
are zero):

for some . Since the affine hull of the col-
umns of M does not contain any (0, 1)-points, the
same is true for matrix . In this case, the rank does not
change. Hence,  =  =  + 1.
According to Theorem 1,  ≥ (n – 1)/2. There-
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fore, inequality  ≥ (n + 1)/2 holds. For even
n, this inequality is equivalent to  ≥ (n/2) + 1.

Theorem 4. Suppose that we have a system of  lin-
early independent linear equations in  variables that
has no (0, 1)-solutions. If m > (n + 1)/2, then, for some
1 ≤ k ≤ n, there is no almost-(0, 1)-solution in which

.
Proof. Suppose that, for each variable, there is an

almost-(0, 1)-solution that is neither zero nor one in
the value of this variable. Then, it is easy to construct
a matrix  where each entry in the leading diagonal is
neither zero nor one and each entry outside the lead-
ing diagonal is either zero or one. In the absence of
(0, 1)-solutions,  = n – m + 1. If n is odd,
then n – m + 1 ≥ n/2 by Theorem 1. If n is even, then n –
m + 1 ≥ (n/2) + 1 by Theorem 3. In any case, m ≤ (n +
1)/2. Thus, we arrive at the contradiction.

By  we denote the integer part of . The
geometric interpretation of Theorem 4 is as follows.
Suppose that s < . In the n-dimensional affine
space, for each s-dimensional subspace L that is not
incident to any vertex of the unit cube, there is a coor-
dinate-oblivious projection onto some coordinate
hyperplane whereby the image of subspace L is again
not incident to any vertex of the unit cube. The coor-
dinate-oblivious projection is easy to calculate. In this
case, there are, generally speaking, several such pro-
jections; however, the selection of a good projection is
nondeterministic and can have high computational
complexity. In this sense, the discussed method for
reducing the dimension of the problem resembles the
results from [7]. However, we do not use probabilistic
methods.

Theorem 5. Suppose that we have a system of m lin-
early independent linear equations in  variables over
field . If  and the system has no (0, 1)-solu-
tions but, for each 1 ≤ k ≤ n, there is an almost-(0, 1)-
solution in which , then point (1/2, …, 1/2),
each coordinate of which is equal to 1/2, is not a solution
to the system.

Proof. Suppose that point (1/2, …, 1/2) is a solu-
tion to the system. Then, the set of the remaining solu-
tions to this system splits into pairs of symmetric solu-
tions that pass one into another with the simultaneous
transformation of all coordinates xk → 1 – xk. Under
this transformation, the almost-(0, 1)-solution passes
into another almost-(0, 1)-solution in which the same
coordinate is neither zero nor one. However, point
(1/2, …, 1/2) remains fixed.

By substituting zero for the last variable xn = 0, we
obtain a new system of m equations that has no (0, 1)-
solutions; however, for each 1 ≤ k ≤ n – 1, there is an
almost-(0, 1)-solution in which xk ∉ {0, 1}. In the new
system, the number of linearly independent equations
is m, while the number of variables is n – 1 = 2m – 2.
Thus, we arrive at a contradiction with Theorem 4. 

rank( )M
rank( )M

m
n

∈ {0,1}kx
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 /2n /2n

 /2n

n
K −= 2 1n m
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The following result establishes the mutual depen-
dence of almost-(0, 1)-solutions.

Theorem 6. If straight line L intersects three lines
each of which contains two adjacent (0, 1)-points and
line L is not incident to any (0, 1)-point, then, at all
points in line L, the coordinates, except for some three
coordinates, take constant values from set {0, 1}.

Proof. Without loss of generality, we can assume
that line L intersects the first coordinate axis at point
A with coordinates , where all coordinates,
except for the first one, are zero and α ∉ {0, 1}. For
some k ≥ 2, line L passes through point W for which all
coordinates, except for the k th one, belong to set {0, 1}.

Line L consists of points , where t is a
parameter. If, among its coordinates except for the
first one, point W has two coordinates equal to one,
then, for any third point on L, these coordinates are
also neither zero nor one. However, by condition,
there is a third point on L that has exactly one coordi-
nate different from zero and one. Hence, point W can
have no more than three non-zero coordinates,
including the first one. Therefore, line L lies in a coor-
dinate subspace the dimension of which is no higher
than three.

3. IMPLEMENTATION AND DISCUSSION
The rank of a matrix is calculated faster over the

field  of residues modulo  than over the field of
rational numbers (cf. [19]). These calculations are
implemented in many computer algebra systems, e.g.,
in SymPy [20].

SymPy 1.12 calculates matrices the entries of which
are independently and uniformly distributed over a
finite set of values; for a finite field, over the set of all
elements of the field. The matrices were generated by
the randMatrix method. If the time it takes to cal-
culate the rank of one matrix was less than a minute,
then this calculation was repeated in five series. In that
case, as the calculation time, the minimum of five val-
ues was used, each of which was obtained by averaging
over one series of calculations. The length of a series
depended on the calculation time. If the time of one
calculation exceeded two seconds, then each series
consisted of one calculation. For each matrix order,
the median of calculations for 25 matrices was calcu-
lated.

Calculating the rank of an  matrix over field
 for p ≤ 11 and n ≤ 500 takes less than two min-

utes; for n ≤ 1000, it takes less than 15 minutes. In this
case, the median time for calculating the rank mono-
tonically increases with increasing matrix order as

, where the additive in the exponent varies on
interval 0.05 < ε < 0.09 depending on prime number p.
This median increases monotonically with increasing
modulus of p. The calculation results for p ∈ {3, 5, 7,
11} are shown in Table 1. For n = 500 at large values of

α …( ,0, ,0)

+ −(1 )tA t W

( )GF p p

×n n
( )GF p

+ε3( )c p n
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Table 1. Median time (in seconds) for calculating the rank of
a random n × n matrix over field  for p ∈ {3, 5, 7, 11}

100 0.4 0.5 0.6 0.7
200 3.2 4.6 5.1 5.9
300 11 16 18 21
400 27 39 45 51
500 53 78 91 102
600 95 137 158 177
700 151 220 251 280
800 227 327 376 421
900 324 468 538 595

1000 447 644 737 832

( )GF p

n (3)GF (5)GF (7)GF (11)GF

Table 2. Ratios of the interquartile range  to the
median time required for calculating the rank of a random
n × n matrix over field  for p ∈ {3, 5, 7, 11}

100 0.06 0.09 0.10 0.06

200 0.03 0.07 0.07 0.07

300 0.05 0.03 0.03 0.03

400 0.04 0.03 0.02 0.02

500 0.02 0.02 0.02 0.03

600 0.03 0.02 0.02 0.02

700 0.01 0.01 0.01 0.01

800 0.02 0.02 0.01 0.02

900 0.01 0.01 0.01 0.02

1000 0.02 0.01 0.01 0.01

−3 1( )Q Q

( )GF p

n (3)GF (5)GF (7)GF (11)GF

Table 3. Median time (in seconds) for calculating the rank
of a random n × n matrix with integer entries independently
and uniformly distributed over the interval from zero to 
for k ∈ {1, 2, 3, 4, 5}

100 0.184 0.262 0.345 0.426 0.513
200 2.20 3.64 5.11 6.71 8.48
300 10.5 18.3 27.0 36.5 47.2
400 32.9 60.2 91.2 126 164
500 83.9 155 237 332 439
600 178 340 526 743 990
700 341 662 1040 1480 1980
800 609 1190 1880 2700 3630
900 1010 2000 3190 4600 6220

1000 1610 3200 5140 7440 10100

10k

n = 1k = 2k = 3k = 4k = 4k
p ∈ {31, 101, 307, 1009, 3001}, the time required for
calculating the rank depends slightly on p. Table 2
shows the ratios of the interquartile range (Q3 – Q1) to
the median for the same data.

For matrices over the field of rational numbers (in
SymPy, it corresponds to the QQ domain), the time
required for calculating the rank increases faster with
increasing matrix order, and it also depends on the
binary length of matrix entries. The entries of the gen-
erated matrices were independently and uniformly
distributed over the set of integers from zero to  for
k ∈ {1, 2, 3, 4, 5}. In this case, the median time
required for calculating the rank monotonically
increases with increasing matrix order as ,
where the additive in the exponent varies on interval
0 < ε < 0.4 depending on k. For  and n = 1000,
the time it takes to calculate the rank of an  matrix
does not exceed half an hour; for k = 5, it is approxi-
mately three hours. The results are shown in Table 3.

The calculations were carried out on a computer
with Intel® Core i7-5820K 3.30GHz and 32 GB
RAM.

The discussed reduction in the number of variables
when searching for the (0, 1)-solution can be
explained through the dialogue between the user with
low computational capabilities and the web service
with high computational capabilities. The user
receives instructions in the form of short messages;
however, the user does not trust the service and wants
to verify the presence or absence of the (0, 1) solution
to the system of linear equations. If the (0, 1)-solution
exists, then it is returned, and it is easy to verify
whether the given sequence of zeros and ones is a solu-
tion. Otherwise, the key is to select variables that can
be eliminated so that the new system still does not have
(0, 1)-solutions. This elimination is easy to perform.
By Theorem 4, the number of variables can be reduced
if the original system has sufficiently many linearly
independent equations. Thus, the system is sometimes
reduced to a single equation. If the further reduction is
not possible, then the user is provided with a set of
almost-(0, 1)-solutions. Then, it is easy to verify that
the system cannot be further simplified. Theorem 2
suggests that there are obstacles to this simplification.
In the worst case, the problem remains computation-
ally complex.

4. CONCLUSIONS

The reported results are consistent with the gener-
ally accepted hypothesis about the high computational
complexity of (0, 1)-solution recognition problems for
systems of linear equations, because changing the
problem by elimination of variables encounters the
obstacle in the worst case. However, the obtained esti-
mates leave room for certain reduction in computa-
tional complexity over finite fields. On the other hand,

10k

+ε4( )c k n

= 1k
×n n
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computer algebra systems allow one to quickly calcu-
late the matrix rank and the dimension of the affine
subspace over the field of residue modulo a prime
number.
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