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Abstract—We formulate the problem of constructing a tree which is the nearest on average
to a given set of trees. The notion of “nearest” is formulated based on a conception of events
such that counting their number makes it possible to distinguish each of the given trees from
the desired one. These events are called divergence, duplication, loss, and transfer; other lists
of events can also be considered. We propose an algorithm that solves this problem in cubic
time with respect to the input data size. We prove correctness of the algorithm and a cubic
estimate for its complexity.
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The following problem is well known and has been studied for a long time in connection with
various applications (for instance, in species evolution theory [1–5]). There is given a collection of
trees Gi, where i ranges from 1 to some n, and it is required to find a tree S∗ which is the nearest
on average to each Gi. Usually it is assumed that the trees Gi, and then also S∗, are binary and
rooted. Below (see Remark 2), we discuss how one can pass from nonbinary and nonroot trees to
this simpler case. After specifying the italicized notions, the problem consists in finding the global
minimum of a functional on a tree space; below we specify this functional and the space. Discrete
optimization problems are known to rarely have an efficient and mathematically strict solution.
For the rather general problem in question, we propose a worst-case (with respect to input data)
solution algorithm of cubic complexity and prove that it strictly solves the described problem in
this time. On typical inputs, it works even faster. A computer program realizing the algorithm is
freely available at http://lab6.iitp.ru/ru/super3gl/, together with execution examples and a
user manual. As one of possible interpretations of the problem, we propose an evolution model,
which is formally described below and in [4] and, at a biological level, in [3, 5].

Thus, leaves of each tree Gi (“gene tree”) are labeled by pairs 〈k, l〉 of positive integers; the
first integer is referred to as a “gene,” and the second, as a “species.” In essence, this is a relation
“gene k occurs in species l,” which will be referred to as the “gene-species” relation. In a gene
tree, a species l can be accompanied by several genes 〈k1, l〉, 〈k2, l〉, . . . . In distinct gene trees Gi

and Gj , species can be the same. We denote by V0 the set of all species occurring in leaves of all
the trees Gi.

Let us agree that the root of any tree is “at the top.” Denote by e− and e+ the upper and
lower endpoints of an edge e. An edge is understood as a pair of vertices: starting point e− and
ending point e+. We denote an incoming edge of a vertex g by bg. Each tree is considered together
with its “root edge,” which is a specially added edge which goes up from the root and corresponds
to the time when the common ancestor of all genes or species that occur in the tree lived; the
upper endpoint of the root edge is referred to as a “superroot.” Edges of a species tree S are
called tubes (in particular, a root edge is referred to as a root tube); this term is introduced only
to distinguish between edges in S and edges in Gi. On vertices of any tree, we define the relation
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“below”: g1 < g2 if g1 �= g2 and there is a path from the superroot to g1 passing through g2;
throughout what follows, a “path” is understood as a shortest path with respect to the number of
edges. The relation “below” between edges of a tree is defined similarly. Distinct edges are said
to be incomparable if neither of them is below the other. Otherwise, the edges are comparable
and lie on a common path from a leaf to the superroot. Edges outgoing from one vertex and the
farthest from the root are said to be adjacent, as well as subtrees that have these edges as their
root edges; they form a pair of adjacent edges and, respectively, a pair of adjacent subtrees. On the
set of all vertices and tubes in S, we define a unified ordering relation y < x as follows: a vertex
or tube y is “below” a vertex or tube x in S if y �= x and there is a path from the superroot to y
passing through x; accordingly, “x is above y.” We denote y ≤ x if either y < x or y = x. Each
subtree (all that is below some vertex g) contains its root tree bg but does not contain its upper
endpoint. A clade Ms in a species tree is the set of species assigned to leaves that are below a
vertex s in S. A clade Mg (assumed: in on of the gene trees Gi) is the set of species assigned to
leaves that are below a vertex g in Gi. We call the vertices s and g the roots of the corresponding
clades. A clade Me is the set of species assigned to all leaves below an edge/tube e in a tree G
or S.

Let P be a fixed collection of sets of species including V0 and all of its one-element subsets but
not including the empty set. A tree space P consists of all species trees S such that their set of
leaves is in a one-to-one correspondence with the species in V0 and all clades belong to P . In this
sense, we call P a collection of clades. A standard collection P is the set of all clades in all initial
gene trees Gi extended by the set V0.

An embedding (with no transfers) of a tree G in a tree S is a mapping f of all vertices V (G)
of the gene tree G to vertices V (S) and tubes E(S) of the species tree S satisfying the following
conditions:

1. The superroot in G is mapped to the root tube in S; each leaf g in G is mapped to a leaf s in S
according to the gene-species relation;

2. Let g1 be a son of g: if f(g) is a vertex, then f(g1) < f(g); if f(g) is a tube, then f(g1) ≤ f(g);

3. Let g1 and g2 be sons of g: if f(g) is a vertex, then a path from f(g1) to f(g2) in S passes
through f(g).

Note that an embedding is everywhere defined but is not necessarily injective or surjective.

For a given embedding f , a duplication is a nonsuperroot vertex g in G for which f(g) is a tube.
A divergence is a vertex g for which f(g) is a nonleaf vertex. A loss is a pair 〈e, s〉 such that e is
an edge in G, s is a vertex in S, and f(e+) < s < f(e−).

Remark 1. These definitions are based on an intuitive conception of the process of “evolution
of a protogene in a protospecies” located in a root tube. This process can briefly be described as
follows. Figures 1 and 2 illustrate the notions of gene duplication and loss, and also the divergence.
Duplication of a gene is appearance of two its copies irrelative to a furcation in S; since duplication
corresponds to no vertex in S, it is drawn inside a tube. Divergence of a gene is appearance of two
its copies in a fork in S, where one copy (“life line”) goes to one—and the other, to the other—of
two tubes outgoing from this fork (to adjacent tubes), and both copies are not lost in them. A loss
of a gene happens when two copies appear in a fork in S and the copy is lost in one of the adjacent
tubes and is not lost in the other; in this case the life line is drawn only in the adjacent tube where
the copy is not lost. If both copies of a gene are lost in adjacent tubes, then the gene was already
lost before the furcation. A copy of a gene is also a gene. In the course of evolution, a gene as a
sequence changes; the more the time, the more.

An embedding f of a collection of trees {Gi} in a tree S is a collection of embeddings f = {fi}
where each fi is an embedding of Gi in S.
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Fig. 1. Illustration of the notions of duplication, gene loss, and divergence. Gene tree G and species
tree S in leaves of which: gene a′ is taken from species a, etc.; two genes e′ and e′′ are taken from the
same species e. Species d is not represented in G.

Problem 1 is to find a global minimum point of the functional

c({Gi}, f, S) =
∑

i

(
cll(fi, Gi, S) + cdd(fi, Gi, S)

)
(1)

in the above-specified space P , where cl and cd are fixed nonnegative numbers and S and all the fi
are variables over which the global minimization is performed. Recall that P consists of trees with
the set V0 of leaves. In (1) we use the following notation: l(f,Gi, S) is the number of losses in Gi

under the embedding fi of Gi in S, and cl is the cost of a single loss; thus, cl
∑
i
l(fi, Gi, S) is the

total cost of all losses in all the Gi. Similarly, d(fi, Gi, S) is the number of duplications in Gi under
the embedding fi of Gi in S, and cd is the cost of a single duplication, so that cd

∑
i
d(fi, Gi, S) is

the total cost of all duplications in all the Gi. Thus, the “proximity” of each Gi and S is defined
through the embedding fi. We call an embedding f∗ = {f∗

i } a scenario for a collection of trees {Gi}
if it is a solution to problem (1). Then the value c∗ of the functional (1) at the global minimum
point 〈f∗, S∗〉 is referred to as the minimal cost (of the scenario), and S∗ itself is referred to as a
supertree for the collection {Gi}.

An intensional interpretation of a solution to problem (1) depends on the parameter P . Our
computer experiments have shown that in evolution problems it is reasonable to first take a standard
collection P and then extend it with differences of sets contained in P ; the role of such differences
is explained in [6].

A pair scenario h for one gene tree G and a given species tree S is an embedding of G in S which
minimizes the functional (1) where i takes precisely one value, i.e., n = 1 and G = G1. Here S is
fixed, and the only variable is h. If f∗ is a scenario for some collection {Gi} and S∗ is a supertree
corresponding to this collection, then all the f∗

i , clearly, are pair scenarios for each pair Gi and S∗.

For any G and S, a pair scenario h(G,S) is unique and even independent of the choice of fixed
nonnegative values of the costs cd and cl of a single duplication and single loss. This scenario h
is explicitly described in Lemma 1 below. Therefore, when finding a supertree S∗, into each term
on the right-hand side of (1) instead of fi we may substitute the corresponding unique scenario
h(Gi, S) = hi as a function of S, and then the functional (1) becomes independent of the variables fi.
In what follows, we assume that this substitution is made.
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Fig. 2. Illustration of the notions of duplication, gene loss, and divergence. Values of the embedding f
of G in S are shown by bold dots inside tubes of S, except for values on leaves in G that coincide
with the corresponding leaves in S. The value f(g1) is shown inside the tube (though formally it
equals this tube), and the vertex g1 corresponds to a duplication event by definition. The same for g3.
Values of f for all other interior vertices of G coincide with the corresponding interior vertices of S and
correspond to divergence events by definition. For the edge l = (g1, a

′), vertices s1 and s2 lie between
the values of f at the endpoints of l, and the pairs 〈l, s1〉 and 〈l, s2〉 by definition correspond to loss
events; losses are shown as legs with crossed ends. Similarly, the pairs 〈(g2, b′), s2〉, 〈(g3, e′), s4〉, and
〈(r, g3), s3〉 are losses.

We say that a set V from P is a basis set if it can be partitioned into two parts from P , then each
part, in turn, can be partitioned into two parts from P , etc., until one-elements sets representing
species are obtained. It is not known beforehand which sets from P are basis sets; in particular,
we do not know whether V0 itself is a basis set. However, if a solution S∗ to problem (1) exists,
then V0 is a basis set, since the required partitioning of V0 is defined by clades in S∗, which in this
case are contained in P by definition.

To describe our algorithm, we also need the following notions. Let f be an embedding; then an
edge e in G enters a tube b in S if f(e+) ≤ b < f(e−). It happens that the set of all edges entering
any tube b can be found efficiently for a pair scenario h(G,S). Namely, for any set of species M
we define Ed(M,G) as the set of edges e in G such that Me ⊆ M and there is no edge e′ > e with
this property. There can be several such edges e, and all of them are incomparable in G. Then, for
any tube b, the set of all edges entering b coincides with Ed(Mb, G); this is precisely the result of
Lemma 2 (a).

Recall that a subtree in G or S defined by a vertex g has root g, and bg is its root edge/tube.
In what follows, a collection P of sets and a collection {Gi} of trees are always fixed, and so usually
they are not mentioned explicitly.

Description of the algorithm. For each gene tree Gi and all sets V from P , the sets Ed(V,Gi)
can be constructed by direct search according to their definition.
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Then, using joint induction on the growing number of elements in V , we construct some specific
trees S(V ). More precisely, we compute some number, the “price” c(V ) of V , and then, using it,
trivially construct S(V ) for which all clades belong to P and precisely the species from V are
assigned to leaves. We refer to any tree of the form S(V ) as a basis tree.

Thus, let V be a basis set from P . Initial step: for V we take one-element sets from P , each
of them consisting of one species; the cost c(V ) is set to zero by definition, and the corresponding
tree S(V ) consists by definition of a single leaf to which this species is assigned.

Induction step: we consider all possible partitions of the set V from P into two basis sets V1

and V2. Intuitively, this means checking whether a fork at the root of the further tree S(V ) will
be defined by a partition of V into V1 and V2. If there are no such partitions, the set V is marked
as “nonbasis”; all sets with fewer elements than in V are already marked as either “basis” or
“nonbasis.” If V0 is marked as “nonbasis,” the algorithm outputs the message “problem (1) has no
solution.” Below we consider the case where V is a basis set.

For any partition of a basis set V into basis sets V1 and V2, by the induction hypothesis we have
already computed the costs c(V1) and c(V2) and constructed the basis trees S(V1) and S(V2). For
each Gi, we set l(i) = |Ed(V1, Gi)| + |Ed(V2, Gi)| and d(i) = l(i) − |Ed(V,Gi)|; here, | · | denotes
the cardinality of a set. Now we look through all trees in the collection {Gi} in an arbitrary order,
and for each of them look through all vertices in Gi. For every such vertex, if an edge of one of
its sons belongs to Ed(V1, Gi) and an edge of another one belongs to Ed(V2, Gi), we reduce the
numbers l(i) by 2 and the numbers d(i) by 1. We denote the resulting numbers by l(V, V1, V2, Gi)
and d(V, V1, V2, Gi).

Now we find a partition of V into V ∗
1 and V ∗

2 for which the functional

c(V, V1, V2) =
∑

i

[
cll(V, V1, V2, Gi) + cdd(V, V1, V2, Gi)

]
+ c(V1) + c(V2) (2)

attains its minimum over all partitions of a fixed V into basis sets V1 and V2. By definition, let c(V )
be the value of the functional (2) at this minimal partition 〈V ∗

1 , V
∗
2 〉. We call the obtained c(V )

the cost of the set V . After that, the basis tree S(V ) is by definition obtained by adding a root to
the basis trees S(V ∗

1 ) and S(V ∗
2 ); the root corresponds to V , and its sons, to V ∗

1 and V ∗
2 . The costs

c(V1) and c(V2) of V1 and V2 are obtained inductively as values of the functional (2) at some of its
minimal partitions. The algorithm description is completed.

There can be several minimal partitions; it would be interesting to obtain a nontrivial bound
on their number.

To characterize all basis trees composing a collection {S(V ) : V is a basis set}, we have to
slightly extend Problem 1: find a global minimum of the functional (1) on the same tree space P
where summation over the trees Gi is extended by summation over all their subtrees G′ for which
edges from Ed(V,Gi) are root edges and V0 is replaced by V . We obtain a new functional

c({Gi}, f, S) =
∑

i

∑

G′

(
cll(fG′ , G′, S) + cdd(fG′ , G′, S)

)
. (3)

This extension of Problem 1 will be called Problem 2. If V = V0, then all G′ in Gi coincide with Gi,
and therefore the functional (3) coincides with (1) and Problem 2 coincides with Problem 1. For
any trees G′ and S, a unique (again, as will be seen from Lemma 1) pair scenario h(G′, S) can be
substituted for fG′ , and then minimization over variables fG′ in (3) is not needed, as well as in (1).
A solution S∗ to Problem 2 will also be referred to as a supertree (for a species set V ). In what
follows, we assume that this substitution of h(G′, S) instead of fG′ in (3) is made.
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Theorem. Let P be a collection of clades.

(a) The set V0 is a basis set if and only if the tree S(V0) found by the algorithm is a solution to
Problem 1.

(b) For any basis set V from P , the tree S(V ) found by the algorithm is one of solutions to
Problem 2. Conversely, any solution to Problem 2 is of the form S(V ) under an appropriate choice
of a sequence of minimal partitions.

(c) If P is a standard collection and the average number of leaves in the collection of gene
trees {Gi} is of order |V0|, then the algorithm finds the set {S(V ) : V is a basis set} in a number
of steps of order |P |3 + |P |2|V0|n ≤ Cn3|V0|3. In this time, the algorithm either outputs a solution
to Problem 1 or reports that it does not exist.

The proof of the theorem uses Lemmas 1–3 given below and will be presented after proving
them.

Vertices g and s are said to be matching if they are not superroots and also either (1) g and s
are leaves obeying the gene-species relation, or (2) two partitions of the set Mg coincide: the one
defined by a fork in g and the one defined by a fork in s. The latter means: (Mg1 ⊆ Ms1 and
Mg2 ⊆ Ms2) or (Mg1 ⊆ Ms2 and Mg2 ⊆ Ms1), where g1 and g2 are sons of g, and s1 and s2 are sons
of s. We denote by supM the vertex in S which is the least upper bound of the set M of leaves
(species) in S. Recall that bs denotes a tube in S with an endpoint at s. Denote by h(g) = h(G,S)
the following mapping of vertices g of G to vertices and tubes of S:

⎧
⎨

⎩

If g is a superroot in G, then h(g) is a root tube in S; otherwise:
if the vertices g and supMg are matching, then h(g) = supMg;
otherwise: h(g) = bs, where s = supMg.

(4)

Lemma 1. The map h(g) is an embedding with the following property: for any embedding f
of G in S, f �= h, the numbers of duplications and losses for f are not less than these numbers
for h, and at least one of these numbers for f is strictly greater than that for h.

This immediately implies that for any nonnegative costs cl and cd the embedding h is a unique
pair scenario for G and S.

Proof. Let us check that h is an embedding. Property 1 holds trivially. The nonstrict inequality
in property 2 follows from the fact that supMg1 ≤ supMg. The strict inequality in property 2:
the vertices g and supMg are matching; therefore, h(g1) ≤ bs1 or h(g1) ≤ bs2, i.e., h(g1) < s.
Property 3: similarly to the aforesaid, h(g1) ≤ bs1 and h(g2) ≤ bs2 (or symmetrically); i.e., h(g1)
and h(g2) belong to different adjacent subtrees.

Up to the end of the proof, let f be different from h, i.e., f �= h.

For any vertex g in G we have

f(g) ≥ h(g). (5)

Indeed, by property 2 we have f(g) ≥ supMg. If f(g) = supMg, then property 3 implies that g
and supMg are matching vertices, whence we get f(g) = h(g). If f(g) > supMg, then f(g) ≥ h(g).

If f(g) > supMg, then f(g) is a tube. (6)

Assume that f(g) is some vertex s. There exists a son s1 of s for which s1 ≥ supMg does not hold.
By property 3, for sons g1 and g2 of g we have Mg1 ⊆ Ms1 or Mg2 ⊆ Ms1, which contradicts the
condition f(g) > supMg.

From (5) and (6) we have the following:

For any vertex g, if h(g) is a tube, then f(g) is a tube. (7)
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Hence, the number of duplications for f is not less than the number of duplications for h. Let us
prove the same for losses.

Let 〈e, s〉 be a loss for h. Let f(e+) < s. Then 〈e, s〉 is a loss for f , taking (5) into account.
Otherwise, since f(e+) ≥ h(e+) < s, we have s = f(e+) or s < f(e+). The former is impossible,
since f(e+) is a tube according to (6). Let s < f(e+). Let us show that a path from e+ to any
leaf l contains an edge e′ such that 〈e′, s〉 is a loss for f ; thus, to an initial loss 〈e, s〉 for h there
corresponds a set consisting of at least two distinct losses of the form 〈e′, s〉 for f . Indeed, h(e+) < s
means supMe+ < s. Consider any vertex g on the path from e+ to l; let us show that f(g) �= s.
If this is not the case, then supMg ≤ supMe+ < f(g) = s and f(g) is a tube according to (6),
a contradiction. By property 2 we have f(l) ≤ f(g) ≤ f(e+); furthermore, we have f(l) < s < f(e+)
(the first inequality holds by the condition, and the second, due to f(l) = h(l) ≤ h(e+) < s). Hence,
in this path there are neighboring vertices k+ and k− for which f(k+) < s < f (k−), i.e., the edge
〈k+, k−〉 and the vertex s form a loss for f . Thus, to each loss for h there corresponds either the
same loss for f (“first case”; consider it as a one-element set) or a set of losses for f of cardinality
strictly greater than one (“second case”). Let us prove that these sets are disjoint. Let 〈e1, s1〉
and 〈e2, s2〉 be two losses for h. The corresponding losses for f are of the form 〈e′1, s1〉 and 〈e′2, s2〉.
If s �= s1, these pairs are distinct. Otherwise, we have s1 = s2 and e1 �= e2. By the definition of a
loss, the edges e1 and e2 are incomparable in G, and therefore e′1 and e′2 are distinct. Hence, the
number of losses for f is not less than the number of losses for h.

Now assume that the number of duplications for f and h is the same. Let us show that then
the second case occurs at least once (i.e., s < f(e+)), and therefore the number of losses for f is
strictly greater than the number of losses for h. Since f �= h, there exists a vertex g in G such
that f(g) > h(g), i.e., f(g) > supMg, and f(g) is a tube according to (6). By (7) and by the
assumption, we have

{k | h(k) is a tube} = {k | f(k) is a tube}; (8)

then h(g) is a tube. Consider a vertex s for which h(g) < s < f(g). Consider a path in G from g to
the superroot. For any vertex g′ in it, we have h(g′) �= s. If this is not the case, then h(g′) = s, and
by property 2 we have f(g′) ≥ f(g) > s = h(g′) = supMg′ , f(g

′) is a tube by (6), and we obtain a
contradiction to (8). Hence, in this path there are two neighboring vertices g′ (maybe, equal to g)
and g′′ (maybe, equal to the superroot) such that h(g′) < s < h(g′′), i.e., the edge e = (g′′, g′) and
the vertex s form a loss for h. By property 2 we have f(e+) ≥ f(g), and by the choice of g and s
we have f(g) > s; hence, f(e+) > s, i.e., the second case takes place. �

For any tube b, the set of all edges entering b and the set Ed(Mb, G) are related as follows.

Lemma 2. If h is a pair scenario for G and S, then:

(a) The tube b in S is entered by precisely the edges from Ed(Mb, G);

(b) If a tube b1 is a son of a tube b, then for any edge e in G entering b1 there exists precisely
one edge e′ ≥ e entering b.

Proof. (a) Let e be an edge from Ed(Mb, G). Then supMe+ ≤ b+ and supMe− ≥ b−. By
the definition (4) of a pair scenario h, we conclude that e enters b. Conversely, if e enters b, then
supMe+ ≤ b+ and supMe− ≥ b−, i.e., e belongs to Ed(Mb, G).

(b) Consider a path from e to the root edge. Let e1 be the first edge in this path for which
b− ≤ h(e−1 ). Then either e+1 coincides with the upper endpoint of the edge preceding e1 in this
path or e1 = e. In both cases h(e+1 ) ≤ b, and hence e1 enters b. Since only one of two comparable
edges may enter a tube, no other edge in this path enters b. �

For any gene tree G and species tree S and the corresponding pair scenario h(G,S), define the
“locus” of each evolution event: the locus of a duplication g is the tube h(g), and the locus of a loss
〈e, s〉 is the tube bs, which is technically more convenient than what was said in Remark 1. Recall
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THE TREE NEAREST ON AVERAGE TO A GIVEN SET OF TREES 281

that a supertree for V is a tree minimizing the functional C(V, S) given by (3), and a minimal
partition is a partition minimizing another functional c(V, V1, V2) given by (2).

We say that a nonleaf vertex g in a gene tree is paralogical if the clade Mg consists of a single
species. For any pair scenario, a paralogical vertex is a duplication in a leaf tube, and vice versa:
any duplication in a leaf tube is a paralogical vertex. Terms in (1) that correspond to paralogical
vertices can be discarded, since their sum is a constant, having no effect on minimization.

Lemma 3. (a) Let S0 be a species tree with a leaf set V0, and let S be its subtree with a leaf
set V . The total cost Z(S) of events (duplications and losses) occurring in S in pair scenarios for
all Gi and a given S0 equals C(V, S).

(b) If V1, V2 is a partition at the root of any tree S with leaf set V and if subtrees at the root
are of the form S(V1) and S(V2), then c(V, V1, V2) = C(V, S).

If, moreover, S is a minimal tree, then the partition V1, V2 is minimal.

(c) Let S be an arbitrary tree with leaf set V , and let S1 be any its proper subtree with leaf
set V1. If [S, S2/S1] is the result of replacing the subtree S1 in S with a subtree S2 having the same
leaves as S1, and C(S2) ≤ C(S1), then C([S, S2/S1]) ≤ C(S).

Proof. (a) Let us show the following: the total cost Z of these events for a single Gi equals
one term C(Gi, V, S) in the sum from C({Gi}, V, S) corresponding to this Gi. Let G

′ be a subtree
in Gi whose root edge belongs to Ed(V,Gi). In what follows, G stands for Gi.

The formulated statement follows from a more general one: any event occurring under a pair
scenario for G′ and S is an event in S under the pair scenario for G and S0, and conversely, any
event occurring in S under the pair scenario for G and S0 is an event under the pair scenario for G′

and S, for a unique G′.

By the definition (4) of a pair scenario h, we have the following: if a vertex g belongs to
a subtree G′, then hG′(g) under the pair scenario for G′ and S coincides with h1(g) under the
pair scenario for G and S0, and conversely: if h1(g) belongs to S, then there exists a unique G′

containing g and hG′(g) = h1(g). Indeed, the clade of h1(g) in S is contained in V , and then, by
the above-mentioned definition, the clade of g is contained in V ; thus, moving upwards from g, we
find a root edge of the desired unique G′.

Check: if there is a duplication or loss in S under the pair scenario h1, then it remains the
same event for precisely one pair scenario hG′ for G′ and S, and vice versa. For a duplication, this
immediately follows from the preceding paragraph.

Let 〈e, s〉 be a loss under the pair scenario h1 for G and S0, and let bs belong to S. Then e+

belongs to some G′. If e is not a root edge in G′, then 〈e, s〉 is a loss under the pair scenario hG′ ,
since the images of e+ and e− do not change. If e is a root edge in G′, then 〈e, s〉 is also a loss
under the pair scenario hG′ , since the image of e+ remains the same and hG′(e−) equals the root
tube of S; i.e., hG′(e+) < s < hG′(e−).

Let 〈e, s〉 be a loss for hG′ . If e is not a root edge in G′, then 〈e, s〉 is a loss under the pair
scenario h1 too, since the images of e+ and e− do not change. If e is a root edge in G′, then 〈e, s〉
is also a loss for h1, since hG′(e+) = h1(e

+) and hG′(e−) < h1(e
−).

Summing the terms C(Gi, V, S) over i, we obtain assertion (a).

(b) The second claim of this item immediately follows from the first: if this partition is not
minimal, we pass to trees over a minimal partition and obtain a tree over V with a strictly smaller
cost C, which is impossible.

We check the first claim by induction. If S consists of a single leaf, then V consists of a single
species, and C(V, S) = 0 by (a) (we omit terms corresponding to paralogical vertices), so c(V ) = 0
by definition.
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Induction step: by the induction assumption, for the trees S(V1) and S(V2) we have the following:
c(V1) = C(V1, S(V1)), by (a) we have c(V1, S(V1)) = Z(S(V1)), and similarly c(V2) = C(V2, S(V2)) =
Z(S(V2)). Then

c(V, V1, V2) =
∑

i

[
cll(V, V1, V2, Gi) + cdd(V, V1, V2, Gi)

]
+ Z(S(V1)) + Z(S(V2));

below we show that the first term for each Gi is the cost of events at the root tube of S under a
pair scenario for Gi and for an arbitrary S0 with leaf set V0 that contains S as a subtree. Therefore,
the right-hand side is the cost of events in all tubes of this tree, i.e., Z(S(V )). According to (a),
this equals C(V, S). Denote by b the root tube of S, and by b1 and b2, the tubes outgoing from b.

By Lemma 2 (a), for each gene tree G the tubes b, b1, and b2 are entered by edges of G, respec-
tively, from Ed(V,G), Ed(V1, G), and Ed(V2, G). By definition, the sets Ed(V1, G) and Ed(V2, G)
are disjoint, and any two edges from their union M are incomparable in G. By Lemma 2 (b), each
edge e in G entering b1 or b2 has a unique ancestor, namely, an edge e′ ≥ e entering b. In vertices
of G lying on the path from e to e′ there are duplications in b, and in the first vertex of the path
or on the edge e there is, respectively, a divergence or loss. The edge e′ from Ed(V,G) generates a
subtree in G with a root at the ending point of e′ and leaves at starting points of edges from M .
For edges from Ed(V,G), we obtain a forest of such trees, their number being |Ed(V,G)|; edges
from M bijectively correspond to leaves, and edges from Ed(V,G) are root edges. These trees
contain d(G) = |Ed(V1, G)|+ |Ed(V2, G)| − |Ed(V,G)| vertices of G. Under the pair scenario for Gi

and S0, each of them is mapped either to a tube b, and then is a duplication, or to a vertex r (fork
at the root) and then is a divergence. Conversely: if the image of a vertex is b or r, then it is one of
these d(G) vertices, since, when moving from this vertex along any path in G, we necessarily come
to an edge from M . Of these d(G) vertices, divergences are those for which the edge of one son
belong to Ed(V1, G), and the edge of the other, to Ed(V2, G). All other vertices are duplications.
For any edge e from M , a pair 〈e, r〉 is a loss if and only if e is not a son of a divergence. Con-
versely: any loss of the form 〈e, r〉 corresponds to the edge e from M . Thus, we have shown that
l(V, V1, V2, Gi) is the number of losses at the fork, and d(V, V1, V2, Gi) is the number of duplications
in b.

(c) Arbitrarily extend S to some species tree S0 with leaf set V0. Let us show that we have the
following:

If C(S2) ≤ C(S1), then C([S0, S2/S1]) ≤ C(S0), and
if C(S2) < C(S1), then C([S0, S2/S1]) < C(S0).

(9)

Consider a pair scenario for any particular Gi and S0 and compare the related events in S0 before
replacing the subtree S1 with S2 in S0 and after this replacement, when we obtain a tree S3 instead
of S0. According to (a), the total cost of events occurring in S2 is not greater than the total cost of
events occurring in S1. Now it suffices to show that events in the part of S0 that was not changed
remain the same.

Let us check that each event occurring in the complement of S2 in S3 occurs in the complement
of S1 in S0, and vice versa. If 〈g, h(g)〉 is a duplication in the complement of S2 in S3 after the
replacement, then, by the definition (4), h(g) is the same tube before the replacement, and therefore
〈g, h(g)〉 is a duplication before the replacement too. If 〈e, s〉 is a loss in the complement of S2

in S3 after the replacement, then h(e−) does not lie in S2 (now our subtree does not include the
superroot), and by (4) it did not lie in S1 before the replacement. If h(e+) either does not lie
in S2, it has not changed under the replacement, and therefore 〈e, s〉 was also a loss before the
replacement. If h(e+) lies in S2, then by (4) it lied in S1 before the replacement and, since s does
not lie in S2, we had h(e+) < s < h(e−) before the replacement too, and hence 〈e, s〉 was also a
loss before the replacement. Thus, claim (9) is proved.
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Now (9) immediately implies (c). Indeed, from the condition we have C([S0, S2/S1]) ≤ C(S0).
Assume that (c) does not hold; then C(S) < C([S, S2/S1]), and by the second part of (9) we obtain
C(S0) < C([S0, S2/S1]), a contradiction. �

Proof of the theorem. (a) One implication in this statement follows from (b), since the set
Ed(V0, Gi) consists of the root edge of the gene tree Gi. The other implication is obvious.

(b) We use induction on the cardinality of V . For any basis set V , consider a minimal tree S∗

with leaf set V and with all clades from P . Let V1 and V2 at the root fork in S∗ correspond to
subtrees S1 and S2; by the induction hypothesis, S(V1) and S(V2) are minimal. Choose S∗ so
that the subtrees S1 and S2 coincide with S(V1) and S(V2). To this end, replace S1 with S(V1),
then by Lemma 3 (c) the value of the functional C(V, S) does not change; make the same for S2.
By Lemma 3 (b), this partition of V into V1 and V2 is minimal, and conversely, to any minimal
partition there corresponds a minimal tree. Therefore, S∗ = S(V ), as is claimed in item (b) of the
theorem. The last assertion in (b) can easily be proved by induction.

(c) For each element from P we look through at most |P | variants of its partition, and for each
variant we look through all vertices in all gene trees, which corresponds to time of order |P |2|V0|n.
Preliminary construction of the sets Ed(M,Gi) for all sets M in P requires time of order |P ||V0|n.
Preliminary constriction of inclusion and intersection relations for the sets from P requires time
of order |P |2|V0|. Preliminary construction of all variants of partitioning sets from P into two sets
from P requires time of order |P |3 (for each triple P1, P2, P3 we must check that P2 and P3 are
disjoint and |P2|+ |P3| = |P1|). Hence follows the aggregate time estimate of order

|P |3 + |P |2|V0|n ≤ Cn3|V0|3. �

Remark 2. (1) If gene trees are not binary, then the described algorithm should be modified as
follows. Instead of the number of edges in Ed(V,Gi), one should consider the number of vertices
such that at least one of their filial edges belongs to Ed(V,Gi). The same for Ed(V1, Gi) and
Ed(V2, Gi). Instead of looking through divergences, i.e., vertices such that one of their filial edges
belongs to Ed(V1, Gi) and the other to Ed(V2, Gi), one should look through vertices such that among
their filial edges there is at least one edge from Ed(V1, Gi) and at least one edge from Ed(V2, Gi).

(2) If gene trees are not rooted, the following procedure is used for rooting. Let each leaf be
assigned a label, the name of a taxonomic group to which the species represented in this leaf
belongs. We call this label a taxon. From a given collection of gene trees, trees with a single
taxon are deleted. For the remaining trees, taxons are partially ordered with respect to the age
(in ascending order); such information is usually available from biological data. Formally, one can
take any arrangement of these labels and any ordering defined on them. For each tree G, find the
number k of the oldest taxons. For example, let us describe the procedure for the cases of k = 1
or k = 2, which usually take place in biological data. The general case can be treated similarly.
Let M(G) consist of the oldest taxon if k = 1, and of two most old taxons if k = 2 and the total
number of taxons is at least three; otherwise, M(G) consists of one of the oldest taxons (no matter
which particular one). We compute p(G), the “density” of M(G) in G, as follows. First, for each
edge {u, v} (unordered pair) of G we compute a parameter d. Let bu be the number of leaves with
a taxon from M(G) in the part U of the partition of G by this edge that is adjacent to u, and bv,
in the part V that is adjacent to v. Let lu be the total number of leaves in U , and lv, in V . Then
du = bu/lu is the fraction of leaves with a taxon from M(G) among all leaves in U , and dv = bv/lv ,
in V . Put d = (

√
du −

√
dv)

2. Find an edge e(G) with the largest value of d (denote this value
by dmax). If there are several such leaves, put dpmax = dmax. Otherwise, let dpmax be the second
largest value of d. Put p =

√
dmax −

√
dpmax + (dmax)

2. In the collection of gene trees, retain only
trees with p greater than a predetermined threshold. For each of such trees G, define a root at the
middle of the edge e(G). Now we can apply our algorithm to this collection of trees.
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The obtained algorithm provided good results for collections of binary and nonbinary, rooted and
nonrooted trees. A computer program for constructing a supertree, as well as execution examples
and a user manual, is freely available at http://lab6.iitp.ru/ru/super3gl/.

In conclusion, let us state a mathematical problem, which in our opinion is one of key problems
in mathematical description of evolution. We start with several definitions.

First, it is necessary to introduce a conception of lead time of evolution events. Maybe, to
this end we should pass to a continuous description of the discrete picture described below. We
proposed the following description of discrete time [3,4]. We distinguish between an initial species
tree S0 and a new species tree S obtained from S0 by dividing some tubes in S0 into serial parts
(“new tubes”). As a result, tubes with a single son appear in S. An algorithm for passing from S
to S0 is proposed in [3]. In the case of an embedding with no transfers, we have S = S0. “Time
slices” are a partition of the set of all tubes in S into disjoint sets enumerated from 1 to m; each
set is one “time slice”; they must satisfy the following: For any tube b in the ith slice, its son b1
belongs to the (i + 1)st slice. The first slice contains the root tube of S, and the last (mth) slice
consists of all tubes incoming to leaves of S. Then the ith slice consists of all tubes that have an
incoming path of i tubes including the root tube. We write b1 ∼ b2 if b1 �= b2 and the tubes b1
and b2 belong to the same slice. Intuitively, tubes collected in one slice belong to the same time
period, and simultaneous events among them are possible. By a partition of a tree G we call a
tree G′ obtained from G by dividing some its edges into serial parts, which results in appearance of
“new edges” having a single son. In the case of an embedding with no transfers, we have G′ = G.

Second, we have to describe the evolution event of a horizontal gene transfer [3, 4]. We have
done this as follows. An embedding (with transfers) is a mapping f from all vertices V (G′) of some
partition G′ of G to vertices V (S) and tubes E(S) of S satisfying the following conditions:

1. The superroot of G′ is mapped to the root tube of S; each leaf g in G′ is mapped to a leaf s
in S subject to the gene-species relation.

In what follows, g, g1, and g2 are vertices in G′;

2. Let g1 be a son of g: if f(g) is a vertex, then f(g1) < f(g), and if f(g) is a tube, consider the
following two cases. If g2 is another son of g, then either f(gi) ≤ f(g) for both sons or we have
f(gi) ≤ f(g) for one son and f(g) ∼ f(gj) for the other; here f(gi) is a vertex or tube and f(gj)
is a tube, i, j = 1, 2. If g with a parent g′ has only one son g1, then either f(g1) ≤ f(g) ∼ f(g′)
or f(g) ∼ f(g1); here in the first expression f(g1) is a vertex or a tube and f(g′) is a tube, and
in the second expression, f(g1) is a tube;

3. Let g1 and g2 be sons of g: if f(g) is a vertex, then a path in S from f(g1) to f(g2) passes
through f(g); if g has only one son, then f(g) is a tube.

Now a duplication of a gene is a vertex g in G′ with two sons g1 and g2 for which f(g) is a tube
in S and for both sons we have f(gi) ≤ f(g), i = 1, 2. A divergence is a vertex g in G′ for which
f(g) is a vertex in S and each of the vertices g and f(g) has two sons. A gene loss is a pair 〈e, s〉 for
which e is an edge in G′, s is a vertex in S having two sons, and f(e+) < s < f(e−). A preserving
horizontal transfer is a vertex g in G′ with two sons g1 and g2 such that f(g) is a tube in S and we
have f(g) ∼ f(gi) for precisely one of the sons gi. A nonpreserving horizontal transfer is a vertex g
in G′ with a single son g1 such that f(g) is a tube and f(g) ∼ f(g1). Usually, a nonpreserving
transfer is considered as a series of two events: a preserving transfer and a gene loss at the source.
Figures 3 and 4 illustrate an embedding with losses and transfers.

An analog of Problem 1, a scenario (with a transfer), pair scenario (with a transfer), etc., can
be defined as above using a functional generalizing the functional (1):

ctrans({Gi}, f, S) =
∑

i

(
cll(fi, Gi, S) + cdd(fi, Gi, S) + c+t t

+(fi, Gi, S) + c−t t
−(fi, Gi, S)

)
. (10)
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G′ :: r S R
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Fig. 3. Illustration of the notion of a horizontal transfer: gene tree G′ and species tree S; notation at
the leaves is the same as in Figs. 1 and 2. Vertices with a single son added to, respectively, G and S
are marked with bold dots. In the ith slice of S there are tubes to which a path of i tubes leads from
the superroot.

Here f = {fi}, t+(f,G, S) is the number of preserving transfers for f , c+t is the cost of one
preserving transfer, t−(f,G, S) is the number of nonpreserving transfers for f , and c+t is the cost
of one nonpreserving transfer.

Note that, unlike Lemma 1, there exist gene trees G and species trees S and values of costs of
a single event for which a pair scenario (with transfers) is not unique.

Example. Let G = ((a, c), b), S = ((a, b), (c)), and assume that to species a, b, and c in G there
are assigned genes whose names are not given. The notation (c) indicates that a tube in S that
joins the root with leaf c is divided into two serial parts. Here we have three time slices; at the ith
slice there are tubes to which a path of i tubes leads from the superroot. Vertices in G and S are
denoted in the same way as their clades, the root tube is denoted by r, and an edge/tube in G or S
incoming to a leaf is denoted by the name of this leaf. Costs of event are as follows: cl = 1, cd = 2,
c+t = 3, and c−t = 4. Then there are two pair scenarios: (1) scenario f∗ without transfers, where
f∗({a, c}) = {a, b, c} and f∗({a, b, c}) = r, which corresponds to one duplication {a, b, c} and two
losses 〈b, {a, b, c}〉 and 〈b, {a, b}〉; (2) scenario f∗ with transfers, where G′ is obtained from G by
adding a new vertex g′ to the edge a and where f({a, c}) = c, f({a, b, c}) = {a, b, c}, and f(g′) = a,
which corresponds to one preserving transfer {a, c} and one loss 〈b, {a, b}〉. If we increase the cost
of a preserving loss, then only one scenario remains, the first embedding; if we reduce this cost,
then again only one scenario remains, the second embedding.

Problem. Prove a statement similar to the theorem for a more complicated functional (10).

Remark 3. Let us eliminate a misunderstanding concerning the algorithm from [3, 4], which is
closely related to the algorithm of the present paper. The first phrase in [4, Section 3] reads: “The
run time of the algorithms is proportional to the product of the number of edges in the gene tree
and the number of tubes in the species tree already divided into time slices.” In [7], the first of
these numbers is denoted by |G|, and the second, by |S′|. Then the run time of the algorithm
from [3,4] is O(|S′||G|). This estimate is proved in [3], and a little more formally, in [4]. Precisely
the same estimate is claimed to be the main result of [7] (the end of the second paragraph on p. 94),
though [7] contains references to both papers [3, 4].

Despite some evolutionary terminology, whose biological meaning is irrelevant for the present
paper, the theorem and this problem have a pure mathematical content.
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R
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s6 s7
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f(g3)
f(n1)

f(n2)
f(n3)

a b c d e f g h l

Fig. 4. Illustration of the notion of a horizontal transfer: embedding f of G′ in S (for the trees shown
in Fig. 3). Values of the embedding f of G′ in S are shown by bold dots inside tubes of S, except
for values on leaves in G′ that coincide with the corresponding leaves in S. The value f(g3) is shown
inside a tube (though formally it equals this tube), and the vertex g3 corresponds by definition to a
preserving transfer event. An arrow is drawn from f(g3) to f(n1), where n1 is the corresponding son
of g3. The value f(n2) is shown inside a tube (though formally it equals this tube), and the vertex n2

corresponds by definition to a nonpreserving transfer event. An arrow is drawn according to the same
rule. A loss is shown as a leg with crossed end. Divergences: R = f(r), s1 = f(g1), s2 = f(g2),
s4 = f(g4), s5 = f(g6), s6 = f(g5), and s7 = f(g7). The vertex s3 is not a value of f .

APPENDIX

Example of executing the algorithm. We illustrate the algorithm by an artificial example
where we have ten gene trees Gi presented in Fig. 5. These trees are chosen so that it is easy to
find a supertree S∗ for them, which is given in the same figure. Let P be a standard collection, the
loss cost be 2, and the duplication cost be 3. Here V0 = {a, b, c, d, e}. Using the collection {Gi},
let us compute costs of all ten two-element sets V . Partitions V = {x} ∪ {y} and their costs
computed according to formula (2) are presented in a table. The table also shows the number t of
gene trees Gi where V is not a clade. Each of these trees generates two losses and 0 duplications,
so their contribution to c(V, V1, V2) equals the number of such trees multiplied by four. The other
trees give zero contributions to c(V, V1, V2). As a result, we find that the sets {a, b} and {c, d} have
the minimal cost; i.e., for them we have c(V ) = 24.

Now consider the three-element set V = {c, d, e}. Methodologically, we call its partition that
coincides with the partition in S∗ a standard partition, and say that all others are nonstandard.
Of course, our algorithm does not use S∗ but looks through all partitions. Here, a standard
partition is only the partition of V = {c, d, e} into V1 = {c, d} and V2 = {e}. Let us compute
the value c(V, V1, V2) of the functional (2) on it. For that, we consider three cases: (1) {c, d} is a
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Fig. 5. Supertree S∗ and ten gene trees that are input to the algorithm.

Table

V = {x, y} t c(V ) V = {x, y} t c(V )

a, b 6 24 b, d 8 32

c, d 6 24 a, e 9 36

a, c 8 32 b, e 9 36

a, d 8 32 c, e 9 36

b, c 8 32 d, e 9 36

clade and {c, d, e} not a clade for two gene trees; (2) {c, d, e} is a clade and {c, d} not a clade for
two gene trees; (3) {c, d} and {c, d, e} are not clades for four gene trees. Finally, for the standard
partition we obtain c(V, V1, V2) = 8 + 10 + 24 + c({c, d}) + c({e}) = 42 + 24 + 0 = 66, since by
induction we have c({c, d}) = 24 and c({e}) = 0. Now consider a nonstandard partition of the
same set V into V1 = {c, e} and V2 = {d}, one of two symmetric partitions. Let us compute
c(V, V1, V2). Again we consider three cases: (1) {c, d} is a clade and {c, d, e} not a clade for
two trees; (2) {c, d, e} is a clade and {c, e} not a clade for three trees; (3) neither of the sets
{c, d}, {c, e}, and {d, e} is a clade for four trees. Finally, for the nonstandard partition we obtain
c(V, V1, V2) = 4 + 15 + 24 + c({c, e}) + c({d}) = 43 + 36 + 0 = 79, since by induction we had
c({c, e}) = 36 and c({d}) = 0. We have examined all cases of partitioning V into two parts from P ,
and we choose the partition with the smallest value (equal to 66) of the functional (2); in our
case, this is the standard partition. Therefore, the tree S({c, d, e}) coincides with a subtree in S∗.
Similarly, we compute c(V0, V1, V2) for the set V0 = {a, b, c, d, e} of all species and its standard
partition into V1 = {a, b} and V2 = {c, d, e} (it equals 128) and for its nonstandard partitions (the
smallest of these values is 143). Thus, the algorithm outputs the tree S(V0) with cost 128, which
coincides with S∗.
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