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Abstract: We make use of generalized iterations of the Sacks forcing to define cardinal-preserving 11

generic extensions of the constructible universe L in which the axioms of ZF hold and in addition 12

either 1) the parameter-free countable axiom of choice AC∗
ω fails, or 2) AC∗

ω holds but the full 13

countable axiom of choice ACω fails in the domain of reals. In another generic extension of L, we 14

define a set X ⊆ P(ω) , which is a model of the parameter-free part PA∗
2 of the 2nd order Peano 15

arithmetic PA2 , in which CA(Σ1
2) (Comprehension for Σ1

2 formulas with parameters) holds, yet an 16

instance of Comprehension CA for a more complex formula fails. 17

Treating the iterated Sacks forcing as a class forcing over Lω1 , we infer the following consistency 18

results as corollaries. If the 2nd order Peano arithmetic PA2 is formally consistent then so are the 19

theories: 1) PA2 + ¬AC∗
ω , 2) PA2 + AC∗

ω + ¬ACω , 3) PA∗
2 + CA(Σ1

2) + ¬CA . 20
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1. Introduction 38

Let PA2 be the second-order Peano arithmetic without the schema of (contable) Choice 39

in this paper. Discussing the structure and deductive properties of PA2 , Kreisel [1, § III, 40

page 366] wrote that the selection of subsystems “is a central problem”. In particular, 41

Kreisel notes, that 42

[...] if one is convinced of the significance of something like a given axiom schema, 43

it is natural to study details, such as the effect of parameters. 44

Recall that parameters in this context are free variables in various axiom schemata in PA, 45

PA2 , ZFC, and other similar theories. Thus the most obvious way to study “the effect of 46

parameters” is to compare the strength of a given axiom schema S with its parameter-free 47

subschema S∗ . (The asterisk will mean the parameter-free subschema in this paper.) 48

Some work in this direction was done in the early years of modern set theory. In 49

particular Levy [2] proved that the generic collapse of cardinals below ℵω (called the Levy 50

collapse, see Solovay [3]) results in a generic extension of L in which AC∗
ω fails, where AC∗

ω 51

is the parameter-free subschema of the (countable) choice schema ACω in the language of 52

PA2 . Later Guzicki [4] established that the Levy-style generic collapse below ℵω1 results in 53

a generic extension of L in which ACω (in the language of PA2 ) fails, but the parameter-free 54

subschema AC∗
ω holds, so that AC∗

ω is strictly weaker than ACω . This can be compared 55

with an opposite result for the dependent choice schema DC, in the language of PA2 , which 56

happens to be equivalent to its parameter-free subschema DC∗ by a simple argument given 57

for instance in [4]. 58

Some results related to parameter-free versions of the Separation and Replacement 59

axiom schemata in ZFC also are known from [5–7]. 60

This paper is devoted to further clarification of the role of parameters in the Choice 61

schema ACω and comprehension schema CA in PA2 . Special attention will be paid to the 62

evaluation of those proof theoretic tools used in the arguments. That is, we show that the 63

formal consistency of PA2 suffices. This is a crucial advantage comparably to some earlier 64

results, like e.g. the abovementioned results by by Levy [2] and Guzicki [4] which definitely 65

cannot be obtained on the base of the onsistency of PA2 . 66

The following theorems 1, 2, 3 are the main results of this paper. 67

Theorem 1. In ZF, let L be the constructible universe. Then : 68

(i) There is a cardinal-preserving generic extension of L in which ACω(OD) (that is, ACω for 69

ordinal-definable relations) holds, but the full ACω fails in the domain of reals. 70

(ii) If PA2 is consistent then PA2 + AC∗
ω does not prove ACω . 71

Theorem 1 is entirely new. Part (i) greatly surpasses the abovementioned result of 72

Guzicki [4] by the requirement of cardinal-preservation. This is a condicio sine qua non for 73

Claim (ii) to be derived as a consequence, because involvement of uncountable cardinals in 74

the arguments, as in [4], is definitely beyond the formal consistency of PA2 . 75

In the next theorem, PA∗
2 is the subtheory of PA2 in which the full schema CA is 76

replaced by its parameter-free version CA∗ , and the Induction principle is formulated as a 77

schema rather than one sentence. 78

Theorem 2. In ZF, let L be the constructible universe. Then : 79

(i) There is a cardinal-preserving generic extension of L , and a set M ⊆ P(ω) in this extension, 80

such that P(ω) ∩ L ⊆ M and M models PA∗
2 + CA(Σ1

2) + ¬CA. 81

(ii) If PA2 is consistent then PA∗
2 + CA(Σ1

2) does not prove CA. 82

This is a new result as well, appeared in our recent ArXiv preprint [8]. 83

The next theorem, albeit not entirely new, is added in for good measure as its proof 84

involves basically the same type of generic extensions. 85
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Theorem 3. In ZF, let L be the constructible universe. Then : 86

(i) There is a cardinal-preserving generic extension of L in which AC∗
ω fails. 87

(ii) If PA2 is consistent then PA2 does not prove AC∗
ω . 88

Part (i) of this theorem was essentially established by Enayat [9], where it is shown that 89

using the finite-support infinite product of Jensen’s minimal-∆1
3 -real forcing [10] results in 90

a permutation model of ZF with an infinite Dedekind-finite Π1
2 set of reals, which easily 91

yields the refutation of AC∗
ω . 92

The paper is organized as follows. After a short review of PA2 preliminaries in 93

Section 2, we take some space to briefly describe the aforementioned cardinal-collapse 94

models by Levy [2] and Guzicki [4] in Sections 3 and 4. 95

The first claims of all three theorems will be established by means of a complex 96

iteration of the Sacks forcing which resembles the generalized iteration by Groszek and 97

Jech [11], but is carried out in a pure geometric way that avoids any machinery of forcing 98

iterations. We call this technique arboreal Sacks iterations. The associated coding by degrees 99

of constructibility is also involved, approximately along the lines discussed in [12, page 143]. 100

Our basic forcing notion Perf = P is introduced in Section 5; it consists of iterated 101

perfect sets. The structure of P-generic extensions L[G] of L is studied in Sections 6 and 7. In 102

particular, Theorem 5 contains several important results on the degrees of constructibility 103

of reals and the relation of true 6L -successor in the generic extensions considered. 104

The proof of Theorem 3(i) is carried out in Section 8 modulo an important lemma 105

established in Section 9. Basically, a generic extension that proves Theorem 3(i) will be 106

obtained as a certain subextension of a P-generic extension L[G] . 107

Claims (i) of Theorems 1 and 2 will be established in Sections resp. 10, 11, also via 108

different subextensions of a P-generic extension. 109

Finally Section 12 contains the proof of claims (ii) of all three theorems. To do this, we 110

will redo proofs of claims (i) in some uniform manner. 111

The paper ends with a usual conclusion-style material. 112

It remains to note that topics in subsystems of second order arithmetic remain of big 113

interest in modern studies, see e.g. [13], and our paper contributes to this research line. 114

2. Preliminaries 115

Following [1,14,15] we define the second order Peano arithmetic PA2 as a theory in 116

the language L(PA2) with two sorts of variables – for natural numbers and for sets of them. 117

We use j, k, m, n for variables over ω and x, y, z for variables over P(ω) , reserving capital 118

letters for subsets of P(ω) and other sets. The axioms are as follows in (1), (2), (3), (4): 119

(1) Peano’s axioms for numbers. 120

(2) The Induction schema: Φ(0) ∧ ∀ k (Φ(k) =⇒ Φ(k + 1)) =⇒ ∀ k Φ(k) , for every for- 121

mula Φ(k) in L(PA2) , and in Φ(k) we allow parameters, i. e., free variables other than 122

k . (We do not formulate Induction as one sentence here because the Comprehension 123

schema CA will not be assumed in full generality in Section 11.) 124

(3) Extensionality for sets of natural numbers. 125

(4) The Comprehension schema CA: ∃ x ∀ k (k ∈ x ⇐⇒ Φ(k)), for every formula Φ in 126

which x does not occur, and in Φ we allow parameters. 127

PA2 is also known as A−
2 (see e.g. an early survey [14]), as Z2 (see e.g. Simpson [15] and 128

Friedman [16]), az Z−
2 (in [17] or elsewhere). Note that the schema of Choice (see below) is 129

not included in PA2 . 130

The following schemata are not assumed to be parts of PA2 , yet they are often consid- 131

ered in the context of and in the connection with PA2 . 132

The Schema of Choice ACω : ∀ k ∃ x Φ(k, x) =⇒ ∃ x ∀ k Φ(k, (x)k)) , for every formula Φ , 133

where we allow parameters in Φ , and (x)k = { j : 2k(2j + 1)− 1 ∈ x} , as usual. 134
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We use ACω instead of AC, more common in PA2 studies, because AC is the general axiom 135

of choice in the ZFC context. 136

Dependent Choices DC: ∀ x ∃ y Φ(x, y) =⇒ ∃ x ∀ k Φ((x)k, (x)k+1)), for every formula 137

Φ , and in Φ we allow parameters. 138

We let CA∗ be the parameter-free sub-schema of CA (that is, Φ(k) contains no free 139

variables other than k). We define the parameter-free sub-schema AC∗
ω ⊆ ACω the same 140

way. The parameter-free sub-schema DC∗ ⊆ DC can be defined as well, but this does not 141

make much sense because DC∗ is known to be equivalent to DC by a simple argument, 142

see e.g. [4]. 143

In set-theoretic setting, ACω and DC can be considered in the assumption that Φ 144

is a set-theoretic binary relation on ω × P(ω), whose type can be restricted in this or 145

another way depending on the context. In particular, ACω(OD) assumes that Φ is an OD 146

(ordinal-definable) relation. (See [18] on ordinal definability.) In addition, say AC∗
ω(Π

1
3) 147

or ACω(Π1
3) means the restriction to the type of lightface Π1

3 (parameter-free) or resp. 148

boldface Π1
3 (with parameters in P(ω) allowed) formulas. 149

3. A cardinal-collapse model where the parameter-free AC∗
ω fails 150

Here we recall an old model by Levy [2] in which the parameter-free AC∗
ω fails for 151

a certain (lightface) Π1
2 relation. This is basically any model of ZF + (ℵ1 = ℵL

ω). To get 152

this model, Levy makes use of the collapse below ℵω , i. e., a Cohen-style generic sequence 153

f = ⟨ fn⟩n<ω of (generic) collapse maps fn : ω
onto−→ ℵL

n is adjoined to the Gödel constructible 154

universe L . Consider the set F = { fn : n < ω} and the class N = HOD(F) of all sets 155

hereditarily F-ordinal-definable in L[ f ] . Then N is a model of ZF + (ℵ1 = ℵL
ω) . 156

We may note that the set P(ω) ∩ N of all reals in N is equal to the set P(ω) ∩ 157⋃
n<ω L[ f0, f1, . . . , fn] . 158

To prove that ACω fails under ℵ1 = ℵL
ω , Levy considers the relation 159

R(n, f ) := n < ω , f ∈ ωω, and f codes a well-ordering of length ≥ ℵL
n . 160

Then, first, ACω fails for R under ℵ1 = ℵL
ω by obvious reasons, and second, R can be 161

presented as a lightface Π1
2 relation. 162

To prove the second claim, we may note, following Levy, that R(n, f ) is equivalent to 163

the following relation: 164

R′(n, f ) := n < ω , f ∈ ωω, f codes a well-ordering, whose length we denote by α , and, 165

for every countable transitive set X which models ZF minus the Power Set axiom, if 166

α ∈ X then it is true in ⟨X ; ∈⟩ that “there are at least n + 1 infinite cardinals ≤ α”. 167

To see that R′ is a Π1
2 relation, Levy uses well-founded relations on ω as a substitution for 168

countable transitive sets. Since the well-foundedness is a Π1
1 property, the definition of R′

169

can be converted to a Π1
2 form. 170

From a more modern perspective, we may note that R′ is a ΠHC
1 relation, where 171

HC = Hω1 is the transitive set of all hereditarily countable sets, and then make use of the 172

conversion theorem (see e.g. Theorem 25.25 in [18]) saying that ΠHC
1 relations on the reals 173

are the same as Π1
2 relations. 174

4. A cardinal-collapse model where the parameter-free AC∗
ω holds but the full ACω fails 175

The Guzicki model with such an effect appeared in [4]. It is similar to Levy’s model 176

of [2], yet it makes use of the Levy collapse below ℵω1 . To get such a model, we adjoin, 177

to the Gödel constructible universe L , a Cohen-style (finite-support) generic sequence 178

f = ⟨ fξ⟩ξ<ωL
1

of (generic) collapsing maps fξ : ω
onto−→ ℵL

ξ . Consider the set F = { f � β : 179

β < ωL
1 } and the class N of all sets hereditarily F-real-ordinal definable in L[ f ] . Then N is 180

a model of ZF + (ℵ1 = ℵL
ω1
) . 181

The set P(ω) ∩ N of all reals in N is equal to P(ω) ∩⋃
β<ωL

1
L[ f � β] . 182
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To check that ACω fails in N for a Π1
2 relation, let p ∈ N , p ⊆ ω code a strictly 183

increasing map g = gp : ω → ωL
1 whose range is cofinal in ωL

1 . Accordingly the sequence 184

of cardinals ℵL
g(n) ∈ N is cofinal in ℵL

ω1
). This allows to accomodate the arguments in 185

Section 3, with minor changes mutatis mutandis, and prove that ACω fails in N for a Π1
2 186

relation similar to R but defined with p as a parameter. 187

To see that the parameter-free AC∗
ω , and even ACω(OD) for all ordinal-definable 188

relations holds in N , let ϕ(k, x, γ) be an ∈-formula with an ordinal γ as the only parameter. 189

Assume that ∀ k ∃ x ⊆ ω ϕ(k, x, γ) holds in N . Then for every k there exist ordinals β < ωL
1 190

such that a set x ⊆ ω satisfying ϕ(k, x, γ) in N exists in L[ f � β] . Let βk be the least such an 191

ordinal. The sequence ⟨βn⟩n<ω immediately belongs to L[ f ] . Yet using the homogeneous 192

character of the product collapse forcing that yields f , one can prove that in fact the 193

sequence ⟨βn⟩n<ω in fact belongs to L . Therefore β = supn βn < ωL
1 , and accordingly for 194

any k there is a set x ⊆ ω , x ∈ L[ f � β] satisfying ϕ(k, x, γ) in N . It remains to note that 195

L[ f � β] ⊆ N . 196

5. Iterated perfect sets 197

Here we begin the proof of Theorems 1, 2, 3. The proof involves the engine of 198

generalized iterated Sacks forcing developed in [19,20] on the base of earlier papers [11,21, 199

22] and others. We consider the constructible universe L as the ground model. 200

Arguing in L in this section, we define, in L , the set

I = ω<ω
1 r {Λ} ; I ∈ L ;

of all non-empty tuples i = ⟨ξ0, . . . , ξn⟩ , n < ω , of ordinals ξk < ω1 , partially ordered by 201

the extension ⊂ of tuples. I is a tree without the minimal node Λ (the empty tuple), which 202

we exclude. 203

Our plan is to define a generic extension L[a] of L by an array a = ⟨ai⟩i∈I of reals 204

ai ⊆ ω , in which the structure of “sacksness” is determined by this set I , so that in 205

particular each ai is Sacks-generic over the submodel L[⟨aj⟩j⊂i] . Then Theorems 1, 2, 3 206

will be obtained via submodels of the basic model L[a] . 207

Let Ξ be the set of all countable and finite initial segments (in the sense of ⊂) ζ ⊆ I . 208

If ζ ∈ Ξ then ISζ is the set of all initial segments of ζ . 209

Greek letters ξ, η, ζ, ϑ will denote sets in Ξ . 210

Characters i, j are used to denote elements of I . 211

For any i ∈ ζ ∈ Ξ, we consider initial segments ζ[⊂i] = { j ∈ ζ : j ⊂ i} and 212

ζ[ ̸⊆i] = { j ∈ ζ : j ̸⊆ i}, and ζ[⊆i], ζ[ ̸⊂i] defined analogously. 213

We consider P(ω) as identic to 2ω, so that both P(ω) and P(ω)ξ for ξ ∈ Ξ are 214

homeomorphic Polich compact spaces. Points of P(ω) will be called reals. 215

Assume that η ⊆ ξ ∈ Ξ . If x ∈ P(ω)ξ then let x�η ∈ P(ω)η denote the usual 216

restriction. If X ⊆ P(ω)ξ then let X�η = {x�η : x ∈ X} . To save space, let X�⊂i mean 217

X� ξ[⊂i] , X� ̸⊆i mean X� ξ[ ̸⊆i] , etc. 218

But if Y ⊆ P(ω)η then we put Y�−1 ξ = {x ∈ P(ω)ξ : x�η ∈ Y} . 219

To describe the idea behind the definition of iterated perfect sets, recall that the Sacks 220

forcing consists of perfect subsets of P(ω) , that is, sets of the form H ”P(ω) = {H(a) : 221

a ∈ P(ω)} , where H : P(ω)
onto−→ X is a homeomorphism. 222

To get a product Sacks model, with two factors (the case of a two-element unordered set 223

as the length of iteration), we have to consider sets X ⊆ P(ω)2 of the form X = H ”P(ω)2
224

where H is any homeomorphism defined on P(ω)2 so that it splits in obvious way into a 225

pair of one-dimentional homeomorphisms. 226

To get an iterated Sacks model, with two stages of iteration (the case of a two-element 227

ordered set as the length of iteration), we have to consider sets X ⊆ P(ω)2 of the form X = 228

H ”P(ω)2 , where H is any homeomorphism defined on P(ω)2 such that if H(a1, a2) = 229

⟨x1, x2⟩ and H(a′1, a′2) = ⟨x′1, x′2⟩ then a1 = a′1 ⇐⇒ x1 = x′1 . 230

The combined product/iteration case results in the following definition. 231
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Definition 1 (iterated perfect sets, [19,20]). For any ζ ∈ Ξ, Perfζ is the collection of all sets

X ⊆ P(ω)ζ such that there is a homeomorphism H : P(ω)ζ onto−→ X satisfying

x0� ξ = x1� ξ ⇐⇒ H(x0)� ξ = H(x1)� ξ

for all x0, x1 ∈ dom H and ξ ∈ Ξ , ξ ⊆ ζ . Homeomorphisms H satisfying this requirement 232

will be called projection–keeping. In other words, sets in Perfζ are images of P(ω)ζ via 233

projection–keeping homeomorphisms. 234

We put Perf =
⋃

ξ∈Ξ Perfξ . 235

Remark 1. Note that ∅, the empty set, formally belongs to Ξ , and then P(ω)∅ = {∅} , 236

and we easily see that 1 = {∅} is the only set in Perf∅ . 237

For the convenience of the reader, we now present five lemmas on sets in Perfζ 238

established in [19,20]. 239

Lemma 1 (Proposition 4 in [20]). Let ζ ∈ Ξ . Every set X ∈ Perfζ is closed and satisfies the 240

following properties : 241

1. If i ∈ ζ and z ∈ X�⊂i then DXz(i) = {x(i) : x ∈ X ∧ x�⊂i = z} is a perfect set in 242

P(ω) . 243

2. If ξ ∈ ISζ , and a set X′ ⊆ X is open in X (in the relative topology) then the projection X′� ξ 244

is open in X� ξ . In other words, the projection from X to X� ξ is an open map. 245

3. If ξ, η ∈ ISζ , x ∈ X� ξ , y ∈ X� η , and x� (ξ ∩ η) = y� (ξ ∩ η), then x ∪ y ∈ X� (ξ ∪ η) . 246

Proof (sketch). Clearly P(ω)ζ satisfies P-1, P-2, P-3, and one easily shows that projection– 247

keeping homeomorphisms preserve the requirements. 248

Lemma 2 (Lemma 5 in [20]). Suppose that ξ, ζ, ϑ ∈ Ξ , ξ ∪ ζ ⊆ ϑ , W ∈ Perfϑ , C ⊆ W� ζ is 249

any set, and U = W ∩ (C�−1 ϑ) . Then U� ξ = (W� ξ) ∩ (C� (ξ ∩ ζ)�−1 ξ) . 250

Lemma 3 (Lemma 6 in [20]). If ζ ∈ Ξ , X ∈ Perfζ , ξ ∈ ISζ , then X� ξ ∈ Perfξ . 251

Lemma 4 (Lemma 8 in [20]). If ζ ∈ Ξ , X ∈ Perfζ , a set U ⊆ X is open in X, and x0 ∈ U, 252

then there is a set X′ ∈ Perfζ , X′ ⊆ U, clopen in X and containing x0 . 253

Lemma 5 (Lemma 9 in [20]). Suppose that ζ ∈ Ξ , η ∈ ISζ , X ∈ Perfζ , Y ∈ Perfη , and 254

Y ⊆ X� η . Then Z = X ∩ (Y�−1 ζ) belongs to Perfζ . 255

In particular Y�−1 ζ ∈ Perfζ , since obviously P(ω)ζ ∈ Perfζ . 256

Corollary 1. Assume that ξ, η ∈ Ξ , ϑ = ξ ∪ η , X ∈ Perfξ , Y ∈ Perfη , and X� (ξ ∩ η) = 257

Y� (ξ ∩ η) . Then Z = (X�−1 ϑ) ∩ (Y�−1 ϑ) ∈ Perfϑ . 258

Proof. The bigger set X′ = X �−1 ϑ belongs to Perfϑ by Lemma 5. In addition, X′�η = 259

X� (ξ ∩ η) �−1 η by Lemma 2 (with C = X , W = P(ω)ϑ ). It follows that Y ⊆ X′�η , 260

because Y� (ξ ∩ η) = X� (ξ ∩ η). We conclude that X′ ∩ (Y �−1 ϑ) ∈ Perfϑ by Lemma 5. 261

Finally, we have X′ ∩ (Y�−1 ϑ) = Z by construction. 262

Corollary 2. Assume that ξ0, ξ1, ξ2, · · · ∈ Ξ are pairwise disjoint, ϑ =
⋃

k ξk , and Xk ∈ Perfξk 263

for each k. Then the set Z =
⋂

k(Xk �−1 ϑ) belongs to Perfϑ , Z� ξk = Xk and Z 6 Xk for all k. 264

Proof. For each k , there exists a projection–keeping homeomorphism Hk : P(ω)ξk
onto−→ Xk . 265

Define H : P(ω)ϑ → P(ω)ϑ by H(x)� ξk = Hk(x� ξk) for all k . Then H is projection– 266

keeping and H : P(ω)ϑ onto−→ Z . 267
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Still arguing in L , we let Π be the group of all permutations π of the index set I , i. e. 268

all bijections π : I onto−→ I such that i ⊂ j ⇐⇒ π(i) ⊂ π(j) . Any such a permutation π ∈ Π 269

induces a transformation acting on several types of objects as follows. 270

• If ξ ∈ Ξ , or generally ξ ⊆ I , then πξ = π ”ξ = {π(i) : i ∈ ξ} . 271

• If ξ ⊆ I and x ∈ P(ω)ξ then πx ∈ P(ω)πξ is defined by πx(π(i)) = x(i) for all 272

i ∈ ξ . That is, formally πx = x ◦ π−1 , the superposition. 273

• If ξ ⊆ I and X ⊆ P(ω)ξ then πX = {πx : x ∈ X} . 274

• If G ⊆ Perf then πG = {πX : X ∈ G} . 275

The following lemma is obvious. 276

Lemma 6. If X ∈ Perfξ then πX ∈ Perfπξ . 277

Moreover π is an order preserving automorphism of Perf . 278

6. The forcing notion and the basic extension 279

This section introduces the forcing notion we consider and the according generic 280

extension called the basic extension. 281

We continue to argue in L. Recall that a partially ordered set I ∈ L is defined in 282

Section 5, and Ξ is the set of all at most countable initial segments ξ ⊆ I in L . For any 283

ζ ∈ Ξ, let Pζ = (Perfζ)
L . 284

The set P = PI =
⋃

ζ∈Ξ Pζ ∈ L will be the forcing notion. 285

To define the order, we put ∥X∥ = ζ whenever X ∈ Pζ . Now we set X 6 Y (i. e. X is 286

stronger than Y) iff ζ = ∥Y∥ ⊆ ∥X∥ and X� ζ ⊆ Y . 287

Remark 2. We may note that the set 1 = {∅} as in Remark 1 belongs to P and is the 6- 288

largest (i. e., the weakest) element of P. 289

Now let G ⊆ P be a P-generic set (filter) over L . 290

Remark 3. If X ∈ Pζ in L then X is not even a closed set in P(ω)ζ in L[G] . However we 291

can transform it to a perfect set in L[G] by the closure operation. Indeed the topological 292

closure X# of such a set X in P(ω)ζ taken in L[G] belongs to Perfζ from the point of view 293

of L[G] . 294

It easily follows from Lemma 4 that there exists a unique array a[G] = ⟨ai[G]⟩i∈I , all 295

ai[G] being elements of P(ω) , such that a[G]� ξ ∈ X# whenever X ∈ G and ∥X∥ = ξ ∈ Ξ . 296

Then L[G] = L[⟨ai[G]⟩i∈I ] = L[a[G]] is a P-generic extension of L , which we call the basic 297

extension. 298

For the sake of convenience, let aΛ[G] = ∅. 299

Theorem 4 (Thm 24 in both [19] and [20]). Every cardinal in L remains a cardinal in L[G] . 300

Every ai[G] is Sacks generic over the model L[a[G]�⊂i] . 301

Proof (idea). The forcing Perf has the following property in L , common with the ordinary 302

one-step Sacks forcing: 303

(∗) if sets Dn ⊆ Perf are open dense in Perf , and X ∈ Perf , then there is a stronger 304

condition Y ∈ Perf , Y 6 X , and finite sets D′
n ⊆ Dn pre-dense in Perf below Y , in the 305

sense that any stronger Z ∈ Perf , Z 6 Y , is compatible with some Z′ ∈ Dn . 306

This property, established in [19], [20] by means of a splitting/fusion technique, easily 307

implies the preservation of all L-cardinals in P-generic extensions of L . 308

Here follow several lemmas on reals in P-generic models L[G] , established in [19]. In 309

the lemmas, we let G ⊆ P be a set P-generic over L . 310
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Lemma 7 (Lemma 22 in [19]). Suppose that sets η, ξ ∈ Ξ satisfy ∀ j ∈ η ∃ i ∈ ξ (j ⊆ i) . Then 311

a[G]� η ∈ L[a[G]� ξ] . 312

Lemma 8 (Lemma 26 in [19]). Suppose that K ∈ L is an initial segment in I , and i ∈ I \ K . 313

Then ai[G] ̸∈ L[a[G]�K] . 314

Lemma 9 (Corollary 27 in [19]). If i ̸= j then ai[G] ̸= aj[G] and even L[ai[G]] ̸= L[aj[G]] . 315

Lemma 10 (Lemma 29 in [19]). If K ∈ L is an initial segment of I , and r ∈ P(ω) ∩ L[G] , 316

then either r ∈ L[a[G]�K] or ai[G] ∈ L[r] for some i ∈ I r K . 317

7. Structure of the basic extension 318

We apply the lemmas above in the proof of the next theorem. Let 6L denote the Gödel 319

wellordering on P(ω), so that x 6L y iff x ∈ L[y] . Let x <L y mean that x 6L y but 320

y ̸6L x , and x ≡L y mean that x 6L y and y 6L x . 321

Say that y is a true 6L -successor of x (where x, y ∈ P(ω)) iff x <L y and any real 322

z ∈ P(ω) satisfies z <L y =⇒ z 6L x . 323

Theorem 5. Let G ⊆ P be a set P-generic over L , and i ∈ I . Then we have the following : 324

(i) if j ∈ I and j ⊆ i then aj[G] 6L ai[G] ; 325

(ii) if j ∈ I and j ̸⊆ i then aj[G] ̸6L ai[G] ; 326

(iii) if r ∈ L[G] ∩P(ω) and r 6L ai[G] then r ∈ L or r ≡L aj[G] for some j ∈ I , j ⊆ i ; 327

(iv) if i ∈ I , γ < ωL
1 , then aiaγ[G] is a true 6L -successor of ai[G] ; 328

(v) if i ∈ I , and y ∈ P(ω) ∩ L[G] is a true 6L -successor of ai[G] , then there is γ < ωL
1 such 329

that y ≡L aiaγ[G] ; 330

(vi) if γ < ωL
1 , then a⟨γ⟩[G] is a true 6L -successor of aΛ[G] ; 331

(vii) if y ∈ P(ω) ∩ L[G] is a true 6L -successor of aΛ[G] , then there is γ < ωL
1 such that 332

x ≡L a⟨γ⟩[G] . 333

Proof. (i) Apply Lemma 7 with η = { j} and ξ = {i} . 334

(ii) Apply Lemma 8 with K = [⊆ i] . 335

(iii) If there are elements j ∈ I , j ⊆ i , such that aj[G] ∈ L[r] , then let j be the largest 336

such one. Let ξ = [⊆ j] (a finite initial segment of I ). By Lemma 10, either r ∈ L[a[G]� ξ] , 337

or there is i′ ̸∈ ξ such that ai′ [G] ∈ L[r] . In the “either” case, we have r ∈ L[aj[G]] by (i), 338

so that L[r] = L[aj[G]] by the choice of j . In the “or” case we have ai′ [G] ∈ L[ai[G]] , hence 339

i′ ⊆ i by (ii). But this contradicts the choice of j and i′ . 340

Finally if there is no j ∈ I , j ⊆ i , such that aj[G] ∈ L[r] , then the same argument with 341

ξ = ∅ gives r ∈ L . 342

(iv) The relation ai[G] <L aiaγ[G] is implied by Lemmas 7 and 8. If now z <L aiaγ[G] 343

then z ∈ L or z ≡L aj[G] for some j ⊆ iaγ by (iii), and in the latter case in fact j ⊂ iaγ , 344

hence j ⊆ i , and then z 6L ai[G] . 345

(v) As y ̸6L ai[G], by Lemma 10 there is j ∈ I such that j ̸⊆ i and aj[G] 6L y . If 346

aj[G] <L y strictly then aj[G] 6L ai[G] by the true 6L -successor property, hence j ⊆ i by 347

(ii), contrary to the choice of j . Therefore in fact aj[G] ≡L y . Then we have i ⊂ j still by the 348

true 6L -successor property and (i), (ii). This implies j = iaγ for some γ < ωL
1 , because if 349

say j = iaγaδ then z = aiaγ[G] is strictly between ai[G] and aj[G] , contrary to the true 350

6L -successor property. 351

(vi) Similar to (iv). Recall that aΛ[G] = ∅ ∈ L . This implies aΛ[G] 6L a⟨γ⟩[G] . On the 352

other hand, a⟨γ⟩[G] ̸6L aΛ[G] holds by Lemma 8 with K = ∅. If now z <L a⟨γ⟩[G] then 353

z ∈ L or z ≡L aj[G] for some j ⊆ ⟨γ⟩ by (iii), and in the latter case in fact j = ⟨γ⟩, hence 354

then z ≡L a⟨γ⟩[G] , contrary to the choice of z . 355
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(vii) As y ̸6L aΛ[G] ∈ L , by Lemma 10 (with K = ∅) there is j ∈ I such that 356

aj[G] 6L y . If aj[G] <L y strictly then aj[G] 6L aΛ[G] by the true 6L -successor property, 357

hence aj[G] ∈ L , contrary to Lemma 8 with K = ∅. Therefore in fact aj[G] ≡L y . This 358

implies j = ⟨γ⟩ for some γ < ωL
1 , because if say j = ⟨γ, δ⟩ then y = a⟨γ⟩[G] is strictly 359

between aΛ[G] and y ≡L aj[G] , contrary to the true 6L -successor property. 360

Now consider the following formula: 361

A(n, #”x ) := #”x = ⟨x0, x1, . . . , xn⟩ is a tuple of reals xk ⊆ ω such that x0 = ∅ and each xk 362

(0 < k ≤ n) is a true 6L -successor of xk−1 . 363

Thus A(n, #”x ) separates tuples of true successor iterations, of length n . 364

Remark 4. A(n, #”x ) is a Π1
3 relation, absolute for any transitive model of ZF containing the 365

true ω1 , and componentwise ≡L-invariant in the argument #”x = ⟨x0, x1, . . . , xn⟩ . Indeed to see 366

that A is Π1
3 note that ‘being a true 6L -successor’ is Π1

3 by direct estimation. To see the 367

absoluteness note that both ‘being a true 6L -successor’ and A are relativized to the lower 368

6L-cone of the arguments. The invariance is obvious. 369

Corollary 3 (of Theorem 5). Let G ⊆ P be a set P-generic over L . 370

(i) If i = ⟨γ1, γ2, . . . , γn⟩ ∈ I , dom i = n ≥ 1, and

a⊆i[G] = ⟨aΛ[G], a⟨γ1⟩[G], a⟨γ1,γ2⟩[G], . . . , a⟨γ1,γ2,...,γn⟩[G]⟩, (1)

then A(n, a⊆i[G]) holds in L[G] . 371

(ii) Conversely if #”x = ⟨x0, x1, . . . , xn⟩ ∈ L[G] and A(n, #”x ) holds in L[G] then there is 372

i = ⟨γ1, γ2, . . . , γn⟩ ∈ I such that #”x ≡L a⊆i[G] componentwise, that is, x0 ≡L aΛ[G] , 373

x1 ≡L a⟨γ1⟩[G] , x2 ≡L a⟨γ1,γ2⟩[G] , . . . , xn ≡L a⟨γ1,γ2,...,γn⟩[G] . 374

8. A model in which the parameter-free AC∗
ω fails 375

Here we prove Theorem 3(i). Let us fix a set G ⊆ P, P-generic over L and consider the 376

according P-generic array a[G] = ⟨ai[G]⟩i∈I and the P-generic extension L[G] = L[a[G]] . 377

The goal is to define a sub-extension of L[G] in which the parameter-free AC∗
ω fails. 378

• Let Ω ∈ L be the set of all finite or L-countable initial segments ξ ⊆ I such that there 379

is a number n < ω satisfying dom i < n for all i ∈ ξ . 380

• Let W[G] ∈ L[G] be the set of all restrictions of the form a[G]� ξ , ξ ∈ Ω , of the generic 381

array a[G] . 382

• Let OD(W[G])L[G] be the class of all sets W[G]-ordinal-definable in L[G] . Thus x ∈ 383

OD(W[G])L[G] iff x is definable in L[G] by a set-theoretic formula with parameters in 384

W[G] ∪ Ord. 385

Here Ord is the class of all ordinals, as usual. See [18], [23] on ordinal definability. 386

• Let MG = HOD(W[G])L[G] be the class of all sets x ∈ L[G] , hereditarily W[G]-ordinal- 387

definable in L[G] , i. e., it is required that x itself, all elements of x , all elements of 388

elements of x , etc., belong to the above defined class OD(W[G])L[G] in L[G] . 389

Theorem 6. If a set G ⊆ P is P-generic over L then MG is a model of ZF in which the 390

parameter-free AC∗
ω(Π

1
3) fails. 391

It follows that MG ∩P(ω) is a model of PA2 + ¬AC∗
ω(Π

1
3) . 392

Proof. That classes of the form HOD(X) model ZF see [18], Chapter 13. 393

Note that if i ∈ I then ai[G] ∈ MG = HOD(W[G])L[G] via the initial segment ξ = [⊆ 394

a] = { j ∈ I : j ⊆ i} ∈ Ω , and hence a⊆i[G] ∈ MG as well. It follows by Corollary 3(i) that 395
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∃ x A(m, x) is true in MG , where m = dom i . Our goal will be to show that the parameter- 396

free formula ∃ x ∀mA(m, (x)m), the right-hand side of ACω , fails in MG , meaning that 397

AC∗
ω fails in MG for the formula A. 398

Suppose to the contrary that there is x ∈ MG satisfying ∀mA(m, (x)m). This obvi- 399

ously results in a sequence ⟨ #”y m⟩m<ω ∈ MG of tuples #”y m = ⟨ym
0 , ym

1 , . . . , ym
m⟩ ∈ MG of 400

reals ym
k ⊆ ω satisfying A(k, #”y k), that is, ym

0 = ∅ and each yk (0 < k ≤ m) is a true 401

6L -successor of yk−1 . 402

By definition there is an ∈-formula ϕ(m, k, y, a[G]� ξ) with free variables m, k, y , a 403

parameter of the form a[G]� ξ , where ξ ∈ Ω , and some ordinals as parameters — such that 404

if k ≤ m < ω and y ∈ MG ∩P(ω) then ϕ(m, k, y, a[G]� ξ) is true in L[G] iff y = ym
k . (The 405

case of several parameters of the form a[G]� ξ , ξ ∈ Ω , can be easily reduced to the case of 406

one parameter.) 407

As ξ ∈ Ω , there is a number 1 ≤ m < ω such that dom i < m for all i ∈ ξ . Fix this 408

m and consider the tuple #”y m = ⟨ym
0 , ym

1 , . . . , ym
m⟩ ∈ MG = HOD(W[G])L[G] . By Corollary 409

3(ii), there is a tuple j = ⟨γ1, γ2, . . . , γm⟩ ∈ I , such that #”y m ≡L a⊆j[G] componentwise, 410

that is, ym
k ≡L aj[G] = a⟨γ1,γ2,...,γk⟩[G] for all k ≤ m . 411

Note that j /∈ ξ by the choice of m . There is a number n ≤ m such that still i0 =
⟨γ1, γ2, . . . , γn−1, γn⟩ /∈ ξ but the shorter tuple i = ⟨γ1, γ2, . . . , γn−1⟩ belongs to ξ , and
hence a⊆i[G] ∈ HOD(W[G])L[G] . Then by Corollary 3 the L-degree [ai0 [G]]L = {a ⊆ ω :
a ≡L ai0 [G]} is definable in L[G] by the next formula, in which (a[G]� ξ)(i) = ai[G] .

ψ(a, a[G]� ξ) := a ⊆ ω is a true 6L -successor of (a[G]� ξ)(i).

To conclude, i0 /∈ ξ ∈ Ω and the L-degree [ai0 [G]]L is definable in L[G] by an ∈-formula 412

with a[G]� ξ and ordinals as parameters. But this contradicts Lemma 11 that follows in the 413

next Section. The contradiction refutes the contrary assumption above. 414

We finally note that A is a Π1
3 formula by Remark 4. 415

9. The non-definability lemma 416

Here we prove the following lemma. 417

Lemma 11. If a set G ⊆ P is P-generic over L , ξ ∈ Ξ , and i0 ∈ I r ξ then the L-degree 418

[ai0 [G]]L = {a ⊆ ω : a ≡L ai0 [G]} cannot be defined in L[G] by an ∈-formula with a[G]� ξ and 419

ordinals as parameters. 420

Proof. Suppose to the contrary that ψ(x, a[G]� ξ) is a formula as indicated, and it holds
in L[G] that [ai0 [G]]L = {x ⊆ ω : ψ(x, a[G]� ξ)} . Then there is a “condition” X0 ∈ G such
that

X0 ∥− [ai0 [G]]L = {x ⊆ ω : ψ(x, a[G]� ξ)}, (2)

where ∥− is the P-forcing relation over L , and G is the canonical P-name for the generic 421

filter G . Let ζ = ∥X0∥ , so that X0 ∈ Pζ . 422

We argue in L . Thus X ∈ Perfζ . See Section 5 on permutations of I . 423

As ξ, ζ are countable initial segments of I , it does not take much effort to define, in L , 424

a permutation π ∈ Π satisfying the following: 425

(A) π� ξ is the identity; 426

(B) π(i0) ̸= i0 , and if i ∈ (ζ r ξ) then π(i) /∈ ζ r ξ . 427

Coming back to (2) above, we put Y0 = πX0 , j0 = π(i0). Note that Y0 ∈ Pζ ′ by
Lemma 6, where ζ ′ = πζ = π ”ζ . We claim that

Y0 ∥− [aj0
[G]]L = {x ⊆ ω : ψ(x, a[G]� ξ)} (3)

To prove the claim, let H′ ⊆ P be P-generic over L , and Y0 ∈ H′ . We have to check that, in 428

L[H′] , [aj0
[H′]]L = {x ⊆ ω : ψ(x, a[H′]� ξ)} . 429
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The set H = π−1H′ is P-generic over L and obviously X0 ∈ H . It follows from 430

(2) that [ai0 [H]]L = {x ⊆ ω : ψ(x, a[H]� ξ)} in L[H] . Yet L[H] = L[H′] (since π ∈ L), 431

a[H′]� ξ = a[H]� ξ by (A), and finally aj0
[H′] = ai0 [H] by construction. Thus, indeed 432

[aj0
[H′]]L = {x ⊆ ω : ψ(x, a[H′]� ξ)} in L[H′] , as required. This completes the proof of (3). 433

The next step is to establish 434

(C) X0 and Y0 are compatible in P. 435

We check this claim arguing in L , so that X0 ∈ Perfζ and Y0 ∈ Perfζ ′ , where ζ ′ = πζ = π ”ζ . 436

It follows from (A), (B) that the set η = ζ ∩ ξ ∈ Ξ satisfies η = ζ ′ ∩ ξ = ζ ′ ∩ ζ , and in 437

addition X0�η = Y0�η . Let ϑ = ζ ∪ ζ ′ . Then Z = (X0 �−1 ϑ) ∪ (Y0 �−1 ϑ) belongs to Perfϑ 438

by Corollary 1. Thus Z ∈ P, hence (C) holds. This implies (3) since Z 6 X0, Y0 is obvious. 439

But it follows from (2) and (3) that X0 and Y0 force contradictory statements (because 440

i0 ̸= j0 , and hence [ai0 [G]]L ̸= [aj0
[G]]L ). The contradiction obtained completes the proof 441

of the lemma. This accomplishes the proof of Theorem 6 as well. 442

10. A model in which the parameter-free AC∗
ω holds but the full ACω fails 443

Here we prove Theorem 1(i). The model will be a modification of the model studied 444

in Section 8. We still fix a set G ⊆ P, P-generic over L and consider the P-generic array 445

a[G] = ⟨ai[G]⟩i∈I and the P-generic extension L[G] = L[a[G]]. We are going to define a 446

sub-extension of L[G] in which the parameter-free AC∗
ω holds but the full ACω fails. 447

• Let Ω′ ∈ L be the set of all finite or L-countable initial segments ξ ⊆ I such that for 448

any γ < ω1 there is a number n = nγ < ω satisfying dom i < n for all i ∈ ξ satisfying 449

i(0) = γ . 450

• Let W ′[G] ∈ L[G] be the set of all restrictions of the form a[G]� ξ , ξ ∈ Ω′ , of the 451

generic array a[G] . 452

• Let OD(W ′[G])L[G] be the class of all sets W ′[G]-ordinal-definable in L[G] . Thus x ∈ 453

OD(W ′[G])L[G] iff x is definable in L[G] by a set-theoretic formula with sets in W ′[G]∪ 454

Ord as parameters. 455

• Let M′
G = HOD(W ′[G])L[G] be the class of all sets x ∈ L[G] , hereditarily W ′[G]- 456

ordinal-definable in L[G] . 457

Theorem 7. If a set G ⊆ P is P-generic over L then M′
G is a model of ZF in which the parameter- 458

free AC∗
ω holds, even ACω(OD) (with ordinals as parameters) holds, but the full ACω(Π1

3) 459

fails. It follows that M′
G ∩P(ω) is a model of PA2 + AC∗

ω + ¬ACω(Π1
3) . 460

Proof. Let A′(n, #”x ) be the formula ‘A(n, #”x ) ∧ x0 = a⟨0⟩[G]’. (See the definition of A in 461

Section 7.) Note the parameter a⟨0⟩[G] in this formula. Similarly to the proof of Theorem 6, if 462

i ∈ I then ai[G] ∈ M′
G and a⊆i[G] ∈ M′

G . It still follows by Corollary 3(i) that ∃ x A′(n, x) 463

is true in MG , where n = dom i . Moreover, arguments pretty similar to the proof of 464

Theorem 6, which we leave for the reader, show that the formula ∃ x ∀mA(k, (x)m), the 465

right-hand side of ACω , fails in M′
G . Thus ACω(Π1

3) (with real parameters) fails in M′
G . 466

It remains to prove that ACω(OD) (with ordinals as parameters) holds in M′
G . Sup- 467

pose towards the contrary that ϕ(k, x) is an ∈-formula with ordinals as parameters, such 468

that ACω fails for ϕ in M′
G . Thus there exists a condition X∗ ∈ G satisfying 469

(†) X∗ ∥− “it holds in M′
G = HOD(W ′[G])L[G] that ∀ k ∃ x ϕ(k, x) but ¬∃ x ∀ k ϕ(k, (x)k)”. 470

Here ∥− is the P-forcing relation over L , and G is the canonical P-name for the generic 471

filter G , as above. 472

As ∀ k ∃ x ϕ(k, x) holds in M′
G , there is a sequence ⟨xk⟩k<ω ∈ L[G] of reals xk ∈ M′

G ,
xk ⊆ ω , satisfying ϕ(k, xk), ∀ k . By definition, for any k there is a set δk ∈ Ω′ such
that xk ∈ HOD[a[G]� δk]

L[G] (meaning that only a[G]� δk and ordinals are admitted as
parameters), and the sequence ⟨δk⟩k<ω belongs to L[G] as well. Furthermore, as the forcing
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relation is definable in L , there exist sequences ⟨Xk⟩k<ω ∈ L of conditions Xk ∈ P (possibly
Xk /∈ G), and ⟨τk⟩k<ω ∈ L of sets τk ∈ Ω′ , such that

Xk ∥− ∃ x ∈ HOD[a[G]�τk]
(
M′

G |= ϕ(k, x)
)
. (4)

Now, arguing in L , we let ξk = ∥Xk∥ , ηk = ξk ∪ τk , and ξ∗ = ∥X∗∥ . Thus ξ∗ and 473

all τk, ξk, ηk belong to Ξ . Clearly there exists a sequence of permutations πk ∈ Π (see 474

Section 5), k < ω , such that the sets η′
k = πk ”ηk = {πk(i) : i ∈ ηk} ∈ Ξ are pairwise 475

disjoint and disjoint with ξ∗ . 476

Let X′
k = πkXk , so that X′

k ∈ Perfξ ′k
in L by Lemma 6, where ξ ′k = πk ”ξk = {πk(i) : 477

i ∈ ξk} ⊆ η′
k . Define ζ = ξ∗ ∪ ⋃

k ξ ′k ; ζ ∈ Ξ . It follows by Corollary 2 that the set 478

X′ = (X∗ �−1 ζ) ∩ ⋂
k(X′

k �
−1 ζ) belongs to Perfζ and X′ 6 X∗ , X′ 6 X′

k for all k . 479

On the other hand, the sets τ′
k = πk ”τk belong to Ω′ (because so do τk ) and are 480

pairwise disjoint (because so are the sets η′
k = ξ ′k ∪ τ′

k ). However Ω′ is closed in L under 481

countable disjoint union, hence τ′ =
⋃

k τ′
k ∈ Ω′ . 482

We still work in L . Starting with (4) and arguing as in the proof of Lemma 11 (the 483

proof of 3 on page 11), we deduce that, for all k , 484

X′
k ∥− ∃ x ∈ HOD[a[G]�τ′

k]
(
M′

G |= ϕ(k, x)
)

, 485

and hence
X′ ∥− ∀ k ∃ x ∈ HOD[a[G]�τ′]

(
M′

G |= ϕ(k, x)
)
, (5)

because X′ 6 X′
k and τ′

k ⊆ τ′ . 486

Finally, if H is P-generic then the class HOD[a[H]�τ′] has a well-ordering, say 4H ,
also {a[H]�τ′}-ordinal-definable in HOD[a[H]�τ′] . See e.g. [18], Section 13, the class
HOD[a[H]�τ′] is identic to HOD[a[H]�τ′] as in [18]. Therefore, if H is any P-generic
set over L containing X′ , then, arguing on the basis of (5), we can define y ⊆ ω in M′

H
such that, for each k , (y)k is equal to the 4H-least set x ⊆ ω in HOD[a[H]�τ′] , satisfying
ϕ(k, x) . This proves that M′

H |= ∃ y ∀ k ϕ(k, (y)k) for any such H , and hence

X′ ∥−
(
M′

G |= ∃ y ∀ k ϕ(k, (y)k)
)
.

But this contradicts (†) above since X′ 6 X∗ . 487

11. Models in which the parameter-free CA∗ holds but the full CA fails 488

Here we sketch a proof of Theorem 2(i). See a full proof in our recent ArXiv preprint 489

[8]. Thus the goal is to define a set X ⊆ P(ω) in a cardinal-preserving generic extension 490

of L , which is a model of PA∗
2 (with the parameter-free Comphehension CA∗ ) in which the 491

full CA fails. 492

Following the arguments above, assume that G ⊆ P is a set P-generic over L , define
ai[G] ⊆ ω (i ∈ I ) and the array a[G] = ⟨ai[G]⟩i∈I as above, and consider the set

J[G] = {γa0n : γ < ω1 ∧ n < ω} ∪ {γa0n a1 : γ < ω1 ∧ n ∈ aγa1[G]}.

Here γa0n = ⟨γ, 0, . . . , 0︸ ︷︷ ︸
n 0s

⟩ , γa0n a1 = ⟨γ, 0, . . . , 0︸ ︷︷ ︸
n 0s

, 1⟩ , γa1 = ⟨γ, 1⟩ . 493

Thus J[G] ⊆ I and J[G] ∈ L[G] . (Not necessarily J[G] ∈ L .) We put

MG = P(ω) ∩
⋃

i1,...,in∈J[G]

L[ai1 [G], . . . , ain [G]]; MG ⊆ P(ω).

Theorem 8. If a set G ⊆ P is P-generic over L then MG is a model of PA∗
2 (with the parameter- 494

free Comprehension CA∗ ) in which the full CA(Σ1
2) holds but the full CA(Σ1

4) fails. 495

Proof (sketch, see [8] for a full proof). That MG is a model of CA(Σ1
2) (with parameters) 496

follows by the Shoenfield absoluteness theorem, because MG is Gödel-closed downwards 497

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 December 2022                   doi:10.20944/preprints202212.0255.v2

https://doi.org/10.20944/preprints202212.0255.v2


Version December 23, 2022 submitted to Mathematics 14 of 18

by construction. That the parameter-free AC∗
ω holds in MG follows by the ordinary 498

permutation technique by a method rather similar to the verification of AC∗
ω in the proof 499

of Theorem 7 above. 500

Finally, MG fails to satisfy the full CA. Indeed the reals aγ1[G] (γ < ω1 ) do not belong 501

to MG , since γa1 /∈ J[G] by construction. On the other hand, each aγa1[G] is analytically 502

definable in MG as the set containing the numbers n ≥ 1 such that the structure of true 6L - 503

successors above a⟨γ⟩[G] has a split at n-th level, and possibly containing or not containing 504

0. Note the role of a⟨γ⟩[G] ∈ MG as a parameter in this definition of aγa1[G] in MG . The 505

ensuing definability formula for aγa1[G] is Σ1
4 by direct estimation, because it is based on 506

the Π1
3 definability of the relation of ‘being a true 6L -successor’. 507

Another model of PA∗
2 , in which CA fails even in the most elementary form of the 508

nonexistence of complements of some its members, is also presented in [8]. It has the form 509

M = (P(ω) ∩ L) ∪ {yn : n < ω} , where ⟨yn⟩n<ω is a Cohen-generic sequence over L . 510

Note that the complements y′n = ω r yn are not adjoined to M , so that CA is violated in 511

M even in the form ∃ x ∀ k (k ∈ x ⇐⇒ k /∈ yn) , with yn as a parameter. On the other hand, 512

the parameter-free CA∗ holds in M by ordinary permutation arguments. 513

12. Working on the basis of the consistency of PA2 514

This section is devoted to claims (ii) of our main Theorems 1, 2, 3. We recall that the 515

consistency of PA2 is a common assumption in claims (ii). As the proofs of claims (i) of the 516

theorems, given above, contain a heavy dose of the forcing technique, first of all we have to 517

adequately replace PA2 with a more ZFC-like, forcing-friendly theory. This will be ZFC− , 518

a subtheory of ZFC obtained as follows: 519

(a) the Power Set axiom PS is excluded; 520

(b) the Axiom of Choice AC is replaced with the wellorderability axiom WA saying that 521

every set can be wellordered; 522

(c) the Replacement schema, which is not sufficiently strong in the absence of PS, is 523

replaced with the Collection schema; 524

See, e.g., [24] for a comprehensive account of main features of ZFC− . 525

Two more principles are considered in the context of ZFC−, namely 526

HC: every set is finite or countable, 527

V = L: every set is Gödel-constructible, i. e., the axiom of constructibility. 528

Theorem 9. Theories PA2 and ZFC− + HC + (V = L) are equiconsistent. In fact they are 529

interpretable in each other. 530

Proof. This has been a well-known fact since while ago, see e.g. Theorem 5.25 in [14]. A 531

more natural way of proof is as follows. 532

Firstly the theory Z− (i. e., ZFC− without WA and Collection) is interpreted in PA2 by 533

the tree interpretation described e.g. in [14], § 5, especially Theorem 5.11, or in [15], Definition 534

VII.3.10 ff. Kreisel [1], VI(a)(ii), attributed this interpretation to the category of “crude” 535

results. Secondly the whole theory ZFC− +HC+ (V = L) is interpeted in Z− by means of 536

the same tree interpretation, but restricted to only those trees that define sets constructible 537

below the first gap ordinal, see a rather self-contained proof in [25]. This second part belongs 538

to the category of “delicate” results of Kreisel [1], VI(b)(ii) 539

Theorem 9 allows us to replace the consistency of PA2 in claims (ii) of our Theorems 1, 540

2, 3 by the equivalent consistency of ZFC− , which is a much more forcing-friendly theory. 541

This makes it possible to argue in the frameworks of ZFC− in the following proof 542

of Theorem 3(ii). The proof is an adaptation of the proof of the statement (i) of the same 543

Theorem 3, on the basis of ZFC− + HC + (V = L) . 544
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Proof of Claims (ii) of Theorems 1, 2, 3. We argue on the basis of ZFC− + HC + (V = L) . 545

In other words, all sets are countable and constructible, so that the ground universe 546

behaves like Lω1 in many ways. Yet, to avoid unnecessary misunderstanding, we accept 547

the following. 548

Definition 2. The ground universe of ZFC− + HC + (V = L) is denoted by L− . Accord- 549

ingly ω−
1 will be the collection (a proper L− -class) of all ordinals in L− . 550

Emulating the construction in Section 5, we define proper classes I = (ω−
1 )<ω r {Λ} 551

and Ξ , and sets ISζ , ζ[⊂i] , ζ[ ̸⊆i] , etc., similar to Section 5. But coming to Definition 1, 552

we face a problem. Indeed, each space P(ω)ξ and any homeomorphism H : P(ω)ξ → 553

P(ω)ξ is now a proper class, hence Perfξ as by Definition 1 is a class of proper classes, 554

which cannot be considered. Therefore we have to parametrize homeomorphisms by sets. 555

Definition 3 (ZFC− form of Definition 1). Arguing in L− , let ξ ∈ Ξ . Define 556

Qξ = {x ∈ P(ω)ξ : the set {⟨i, k⟩ : x(i)(k) = 1} is finite} ; 557

this is a countable dense subset of P(ω)ξ in ZFC− . 558

Let h : Qξ → P(ω)ξ be any map (a set in L− ). Let [h] be its extension defined on 559

P(ω)ξ by [h](x) = limy→x h(y) whenever the limit exists, so [h] : dom [h] → P(ω)ξ is a 560

continuous map defined on dom [h] , a topologically closed “subset” or rather subclass of 561

P(ω)ξ (also a proper class). 562

We define Hξ to be the class of all maps h : Qξ → P(ω)ξ such that dom [h] = P(ω)ξ , 563

[h] is 1 − 1 and [h] is a projection–keeping homeomorphism. 564

Finally if h ∈ Hξ then let Xh = [h] ”P(ω)ξ = {[h](x) : x ∈ P(ω)ξ } . 565

Then Perf−ξ = Hξ and Perf− =
⋃

ξ∈Ξ Perf−ξ are proper classes, of course. 566

It is quite obvious that in the ZFC setting Perfξ coincides with the collection of all sets 567

Xh , h ∈ Hξ . This allows us to use the map h → Xh as a parametrization of Perf in L− , so 568

that Perf− is the set of codes for the Perf and each particular Perf−ξ = Hξ is the set of codes 569

for Perfξ . We will use Perf− as a forcing notion, that is, put P− = Perf− , with the order 570

g 6 h iff Xg 6 Xh in the sense of Section 5. 571

Hote that both P− and the order are definable proper classes in L− . 572

Conditions h ∈ P− should be informally identified with corresponding objects (para- 573

metrically defined proper classes) Xg . 574

The property (∗) in the proof of Theorem 4 transforms to the following property of 575

the forcing Perf− has a property in L− : 576

(∗−) if a parametrized sequence of classes Dn ⊆ Perf− is such that each Dn is open dense 577

in Perf− , and X ∈ Perf , then there is a stronger condition Y ∈ Perf , Y 6 X , and 578

finite sets D′
n ⊆ Dn pre-dense in Perf− below Y . 579

In other words, Perf− is a pretame forcing notion in L− in the sense of [26] or [27]. 580

It follows (see e.g. [27]) that any Perf−-generic extension of L− is still a model of 581

ZFC− , and the forcing and definability theorems hold similar to the case of usual set-size 582

forcing. Furthermore all constructions and arguments involved in the proofs of Theorems 583

6, 7, 8 above (i. e., claims (i) of Theorems resp. 3, 1, 2), as well as the results of [19,20] 584

cited in the course of the proofs, can be reproduced mutatis mutandis on the basis of 585

the theory ZFC− + HC + (V = L). In particular, Theorem 6 takes the form asserting 586

that the P(ω)-part of a certain subextension of any P− -generic extension of L− satisfies 587

PA2 + ¬AC∗
ω(Π

1
3) . 588

Metamathematically, this means that the formal consistency of ZFC− +HC+ (V = L) 589

implies the consistency of PA2 + ¬AC∗
ω(Π

1
3). However the consistency of ZFC− + HC + 590

(V = L) is equivalent to the consistency of PA2 by Theorem 9. This concludes the proof of 591

Claim (ii) of Theorem 3. 592
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Pretty similarly, Theorems 7 and 8 take appropriate forms sufficient to infer the 593

consistency of resp. 594

PA2 + AC∗
ω + ¬ACω(Π1

3) , PA∗
2 + CA(Σ1

2) + ¬CA(Π1
4) , 595

from the consistency of PA2 , as required. 596

(Claims (ii) of Theorems 1, 2, 3) 597

13. Conclusions, remarks, and problems 598

In this study, the method of generalized arboreal iterations of the Sacks forcing is 599

employed to the problem of obtaining cardinal-preserving models of ZFC, and models of 600

ZFC− and the second-order Peano arithmetic PA2 , in which the parameter-free version 601

of the Comprehension or Choice schema holds but the full schema fails. These results 602

(Theorems 1, 2, 3 above) contribute to the ongoing study of both subsistems and extensions 603

of PA2 as in [15], [28], [29] among many others, as well as to modern studies of forcing 604

extensions in class theories and ZFC− -like theories as in [24], [30], [31], [32]. 605

From our study, it is concluded that the technique of generalized arboreal iterations 606

of the Sacks forcing succeeds to solve important problems in descriptive set theory and 607

second-order Peano arithmetic related to parameter-free versions of such crucial axiom 608

schemata as Comprehension and Choice, by our Theorems 1, 2, 3. 609

From the results of this paper, the following remarks and problems arise. 610

Remark 5. Identifying the theories with their deductive closures, we may present the
concluding statements of Theorems 1, 2, 3 as resp.

PA2 + AC∗
ω $ PA2 + ACω, PA∗

2 + CA(Σ1
2) $ PA2, PA2 $ PA2 + AC∗

ω. (6)

Studies on subsystems of PA2 have discovered many cases in which S $ S′ holds for a 611

given pair of subsystems S, S′ , see e.g. [15]. And it is a rather typical case that such a strict 612

extension is established by demonstrating that S′ proves the consistency of S . One may 613

ask whether this is the case for the results in (6). The answer is in the negative: namely 614

the theories PA∗
2 , PA∗

2 + CA(Σ1
2) , and the full PA2 are equiconsistent 615

by a result in [16], also mentioned in [17]. This equiconsistency result also follows from a 616

somewhat sharper theorem in [33], 1.5. 617

Remark 6. There is another meaningful submodel of the basic model L[G] = L[a[G] . 618

Namely, consider the set W ′′ of all finite or countable well-founded initial segments 619

ξ ∈ L , ξ ⊆ I , instead of the sets W (as in Section 8) and W ′ (as in Section 10). Define a 620

corresponding submodel M′′
G accordingly. Then ACω holds in M′′

G but DC(Π1
3) fails. Yet 621

a better model is defined in [29], in which ACω holds but even DC(Π1
2) (the best possible 622

in this case) fails. 623

We proceed with a list of open problems. 624

Problem 1. Is the parameter-free countable choice schema AC∗
ω in the language L(PA2) 625

true in the models defined in Section 11 ? 626

Problem 2. Can we sharpen the result of Theorem 8 by specifying that CA(Σ1
3), rather 627

than Σ1
4 , is violated? The combination CA(Σ1

2) plus ¬CA(Σ1
3) over PA∗

2 would be optimal 628

for Theorem 2. Can we similarly sharpen the result of Theorems 6 and 7 by specifying 629

that AC∗
ω(Σ

1
2) , resp., ACω(Σ1

2) are violated? As suggested by V. Gitman, Jensen’s iterated 630

forcing introduced in [29] may lead to a solution. 631

Problem 3. As a generalization of Problem 2, prove that, for any n ≥ 2, PA∗
2 + CA(Σ1

n) 632

does not imply CA(Σ1
n+1). In this case, it would be possible to conclude that the full 633
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schema CA is not finitely axiomatizable over PA∗
2 . There are similar questions related to 634

Theorems 6 and 7, of course. Compare to Problem 9 in [14, § 11]. We expect that methods 635

of inductive construction of forcing notions in L that carry hidden automorphisms, recently 636

developed in our papers [34–38], may lead to solutions. 637

Problem 4 (Communicated by Ali Enayat). A natural question is whether the results of 638

this note also hold for second order set theory (the Kelley-Morse theory of classes). This 639

may involve a generalization of the Sacks forcing to uncountable cardinals, as in Kanamori 640

[39], and new models of set theory recently defined by Fuchs [40]. 641
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