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According to its impact on the course of set theoretic investigations, Ha-
usdorff’s paper [H 1936b] is obviously one of the most valuable studies in the
pre-forcing period of set theory. The results obtained, especially, the existence
of (ω1, ω

∗
1)-gaps, concepts and methods introduced, and problems discussed in

[H 1936b], have inspired numerous set theoretic studies, including those based
on forcing and other technique fully unknown in Hausdorff’s times. On
the other hand, the content of [H 1936b], in its part related to the gaps, goes
back to Hausdorff’s early works in set theory in 1906 – 1909, especially to
[H 1909a], while its motivation has roots in the mathematics of XIX Century.
To adequately reflect these issues, we decided to write this Essay, which starts
with a general review of the notions involved and structures and problems
studied, and then expands into modern studies.

Introduction

Suppose that 〈P ; ≤〉 is a partially quasi-ordered set, or pqoset 1 , whose do-
main consists either of real functions defined on [0,+∞), or of infinite real
sequences. Suppose also that the relation ≤ is compatible with the idea that
f ≤ g means that a function (or sequence) g grows faster-or-equal than f
does, and hence the degree of infinity represented by g is larger than, or equal
to, the degree of infinity represented by f .

Following Hausdorff, we can call such a pqo structure 〈P ; ≤〉 a gradua-
tion method on the domain P , meaning that it graduates objects in P (func-
tions or sequences) in accordance to their rates of growth.

The history of studies related to graduation of real functions according to
their rate of growth goes back to works of Du Bois-Reymond [DBR-1870,
DBR-1873, DBR-1875, DBR-1882] on the degree of growth and divergence of
real functions, later extended by Hadamard, Hardy, and others (see com-
ment [1] to [H 1909a]). In particular, Du Bois-Reymond was obviously in-
spired by the idea to define a linear graduation method, that would make

1 By a (non-strict) partial quasi-order , or pqo for brevity, we mean any transitive (x ≤ y
and y ≤ c implies x ≤ z ) and reflexive (x ≤ x) binary relation ≤ . If the relation ≤ is also
antisymmetric, that is, x ≤ y ∧ y ≤ x implies x = y , then it is called a partial order . If a
pqo ≤ satisfies the condition that any two elements x, y in its domain are comparable, that
is, at least one of the condition x ≤ y or y ≤ x holds, then ≤ is called a linear (or total)
quasi-order, lqo for brevity.

Given a pqo ≤ , we can define an associated equivalence relation

x ≡ y iff x ≤ y and y ≤ x ,

and a strict partial order (transitive and asymmetric relation)

x < y iff x ≤ y but not y ≤ x ,

on its domain. Conversely, given an equivalence relation ≡ and an ≡-invariant strict partial
order < , we can define a non-strict pqo: x ≤ y iff x < y or x ≡ y .

Given a pqoset 〈P ; ≤〉 , we define the equivalence relation ≡ as above, and the quotient
set P/≡ = {[x]≡ : x ∈ P } , where [x]≡ = {y ∈ P : y ≡ x} , the equivalence class of x . The
set P/≡ is ordered naturally so that [x]≡ ≤ [y]≡ iff x ≤ y , and the induced relation ≤ on
P/≡ is a partial order, not merely pqo.
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comparable any two monotonic real functions with nonnegative values. Differ-
ent families of functions, among them polynomials, exponents, logarithms, and
their combinations, admitted such a graduation. But all attempts to extend
those graduation methods to a truly representative family of real functions
easily led to the existence of incomparable functions, hence, non-linearity of
the graduation. This is why Hausdorff was quite skeptical regarding the
existence of a reasonable “universal” graduation method with the property of
linearity. Hausdorff approached the topic from another point of view, where
the focal issue is: the existence and properties of certain linearly ordered sub-
structures (gaps, limits, scales etc.) in different graduation pqosets.

The main goal of this Essay will be to present main traits in the devel-
opment of Hausdorff’s ideas, concepts, results since the beginning of XX
century, from the modern standpoint and as far as their set theoretic con-
tent is concerned. We begin with an outline of different graduation methods
(dubbed as Hausdorff’s ordered structures here), and their gap-like linearly
ordered substructures (Sections 1 – 3), and discuss the Hausdorff gap the-
orem (Section 4). Then we discuss “the main problem” (Section 5), that is,
the general problem of existence of different gap-like substructures in different
Hausdorff’s ordered structures. In spite of apparent multitude of concrete
questions under this common title, it occurs that, at least in the case when
the substructures considered are associated with the first uncountable cardinal
ω1 , there exist only three really different existence problems, so that the rest
of them are equivalent to one of these three. This is the content of our “main
theorem” (Sections 6 – 8, with related independence results in Section 9). It
occurs that problems of the existence of gap-like substructures in Hausdorff’s
ordered structures are intrincically connected with apparently different group
of set theoretic problems, those related to partitions of the continuum; we
discuss this in Sections 10, 11. Section 12 is devoted to five Hausdorff’s
problems of the existence of “pantachies” (maximal linearly ordered subsets
in Hausdorff’s ordered structures) with certain properties. One of them is
still unsolved, and it seems to be the oldest yet unsolved set theoretic prob-
lem. Then we come back to some Hausdorff’s ideas related to the graduation
problem in its generality (Sections 13 and 14), to discuss them from the point
of view of modern theory of Borel equivalence relations and Borel order rela-
tions. We finish (Section 15) with a brief review of Hausdorff’s set theoretic
problems.

1 Hausdorff’s ordered structures

Now let us review pqosets which Hausdorff considered in connection with
the graduation problem. They are presented here in the discrete form, that
is, being defined on the domain RN of all infinite sequences a = {a(n)}n∈N of
reas a(n). The relationship with the continual forms (for the domain of real
functions instead of infinite sequences) will be discussed in Section 3.
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Rate of growth order, RG :

a 4 b iff the limit limn→∞
(
b(n)− a(n)

)
exists and is > 0,

with the associated equivalence relation and strict order:

a ∼ b iff limn→∞
(
a(n)− b(n)

)
exists and is finite,

a ≺ b iff limn→∞
(
b(n)− a(n)

)
= +∞ .

This is clearly different from the Du Bois-Reymond original rate of growth

ordering 2 f 4 g iff limx→+∞
f(x)
g(x) < +∞, but the logarithm obviously induces

an isomorphism between the latter (restricted to sequences with positive terms)
and the former. On the other hand the “differential” definition is somewhat
more convenient and more in custom in modern studies.

To get rid of problems related to the non-existence of the limit, we may
follow Hausdorff [H 1909a, S. 299] in changing the limit to upper limit which
always exists:

RG modified : a E b iff lim supn→∞
(
a(n)− b(n)

)
< +∞ ,

with the associated equivalence relation and strict order:

a ./ b iff lim supn→∞
∣∣a(n)− b(n)

∣∣ < +∞ ,

a C b iff lim supn→∞
(
b(n)− a(n)

)
= +∞, but

lim supn→∞
(
a(n)− b(n)

)
< +∞ .

However non-comparable elements reappear in another form anyway.
Now we may note (and see [H 1909a, S. 308] for an equivalent argument)

that for f 4 g to hold it is necessary and sufficient that c + f 6fro g for any
real constant c (c+f is the function x 7→ c+f(x)), where 6fro is the following
pqo:

Final Rangordnung : a 6fro b iff there is n0 such that:
either a(n) < b(n) for all n ≥ n0 , or a(n) = b(n) for all n ≥ n0 ,

with the associated equivalence relation and strict order:

a ≡fro b iff ∃n0 ∀n ≥ n0
(
a(n) = b(n)

)
,

a <fro b iff ∃n0 ∀n ≥ n0
(
a(n) < b(n)

)
.

Finally, as none of the above orderings is suitable for the domain 2N, Ha-
usdorff studies one more ordering in [H 1936b]:

Eventual domination :

a 6∗ b iff there is n0 such that a(n) ≤ b(n) for all n ≥ n0 ,

with the associated equivalence relation and strict order:

a ≡∗ b iff ∃n0 ∀n ≥ n0
(
a(n) = b(n)

)
,

2 The latter formally consists of ≺ and ∼, of course, but this pair of a strict ordering and
an equivalence is bi-reducible with the non-strict ordering, as explained in Footnote 1.
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a <∗ b iff ∃n0 ∀n ≥ n0
(
a(n) ≤ b(n)

)
, and

∀n0 ∃n ≥ n0
(
a(n) < b(n)

)
.

The relations 6fro and 6∗ are obviously different: in fact 6fro $ 6∗ . Yet
they induce the same equivalence relation, ≡fro or ≡∗ , that is, a ≡fro b iff
a ≡∗ b iff a(n) = b(n) for all but finite n. The corresponding strict relations
are different: <fro $ <∗ .

Remark 1.1. The four quasi-order relations considered differ from the simple
componentwise quasi-ordering, a 6cw b iff a(n) ≤ b(n) for all n , in the following
crucial detail: obviously there exists no strictly <cw-incteasing (or decreasing)
sequences of length ω1 , while for any of the four pqos considered such sequences
do exist. For instance, to get a <∗-increasing ω1-sequence in NN , it suffices
to show that for any countable collection {fn : n ∈ N} of sequences fn ∈ NN

there exists a sequence f ∈ NN satisfying fn <∗ f for all n. Put f(k) =
1 + maxn≤k fn(k).

The relations 4, E, 6fro, 6∗, together with special forms for the subdo-
mains 2N (dyadic sequences) and NN, lead us to the following:

Definition 1.2. Hausdorff’s ordered structure, in brief HOS, is a pqoset of
the form 〈D ; ≤〉, where the domain D is one of the sets RN, NN, 2N, and
the relation ≤ is one of 4, E, 6fro, 6∗, except for the non-interesting trivial
structures 〈2N ; 4〉, 〈2N ; E〉, and 〈2N ; 6fro〉 .

Thus we have the total number of 9 HOS, of them one dyadic, 〈2N ; 6∗〉,
four HOS are N-type (i. e., with NN as the ground set) and four HOS are R-type
(with RN as the ground set).

It remains to note that the basic definitions (of HOS, gaps, etc.) above are
connected with the ideal Fin of all finite subsets of ω. Yet they remain equally
meaningful for any other ideal Z on N : one has only to replace the basic
orderings 4, 6∗, 6fro by their Z-versions, for instance, a 6∗Z b iff a(n) ≤
b(n) for Z{-many n, that is, the set {n : a(n) > b(n)} belongs to Z. It is
demonstrated by Todorcevic [To-1998] that, under some assumptions, the
“gap spectra” of Z-HOS include those of the Fin-versions, but generally not
much is clear. We refer to a substantial review in Farah [Far-2000] as a sourse
of further information.

2 Gaps and related constructions

The following list presents some important types of linearly ordered subsets.
Let P = 〈P ; ≤〉 be a pqoset, with < and ≡ being the associated strict partial
order and equivalence relation, and κ, λ be any cardinals, usually infinite and
regular, or otherwise finite and equal to 0 or 1.

pregaps : a (κ, λ∗)-pregap is a pair which consists of a <-increasing sequence
X = {xα}α<κ and a <-decreasing sequence Y = {yβ}β<λ of elements
xα, yβ ∈ P such that X < Y (i. e., xα < yβ for all α < κ, β < λ);
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gaps : any z satisfying X < z < Y is said to fill in a pregap 〈X,Y 〉, and if
such a z does not exist then a (κ, λ∗)-pregap is called a (κ, λ∗)-gap; 3

limits : a κ-limit (or κ-Element , as in [H 1909a, p. 320]) is a (κ, 1∗)-gap, that
is, a <-increasing sequence {xα}α<κ together with an element x ∈ P
satisfying xα < x, ∀α, and with no y < x such that xα < y, ∀α — let
us write x = limα→κ xα in this case; 4

towers : a κ-tower is a (κ, 0∗)-gap, that is, a <-increasing κ-sequence un-
bounded from above; 5

scales : a κ-scale is an increasing sequence {xα}α<κ such that for any x ∈ P
we have x < xα for some α ;

pantachies : a pantachy is a maximal linearly ordered subset. 6 This concept
has two distinct versions. By a non-strict pantachy we understand any
maximal ≤-ninearly ordered set L ⊆ P , and by a strict pantachy, corre-
spondingly, any maximal <-ninearly ordered set L ⊆ P .

Any non-strict pantachy L ⊆ P is necessarily ≡-saturated , in the sense
that if x ∈ L , y ∈ P , x ≡ y , then y ∈ L . On the contrary, any strict
pantachy L′ ⊆ P is necessarily pairwise ≡-inequivalent , in the sense that if
x 6= y belong to L then x 6≡ y . But both types are in 1-1 connection. Indeed,
given a non-strict pantachy L ⊆ P , pick an element in each ≡-equivalence class
C such that C ∩ L 6= ∅ (and then C ⊆ L), and the set L′ ⊆ L of all chosen
elements will be a strict pantachy. Conversely, if L′ ⊆ P is a strict pantachy
then L = {x ∈ P : ∃ y ∈ L′ (x ≡ y)} is a non-strict one.

Towers and scales are particular types of much wider categories:

unbounded sets : those X ⊆ P for which there does not exist any x ∈ P
satisfying X ≤ x (i. e., x′ ≤ x for any x′ ∈ X );

dominating sets : those X ⊆ P satisfying ∃x ∈ X (x′ ≤ x) for every x′ ∈ P.

Thus a tower in P = 〈P ; ≤〉 is a <-wellordered unbounded set while a scale
is a <-wellordered dominating set. Each dominating set is unbounded (unless
there exist largest elements).

3 Also called a (κ, λ)-gap, with the understanding that λ indicates the inverse order.
4 In most cases considered below the partially ordered sets will be symmetric enough to

prove that the existence of (κ, 1∗)-gaps is equivalent to the existence of (1, κ∗)-gaps, and the
latter type will be called decreasing limits.

5 The notion of tower is due to Rothberger, Hausdorff used “transzendente Reihe”.
In most cases the existence of (κ, 0∗)-gaps is equivalent to the existence of (0, κ∗)-gaps, that
is, decreasing κ-sequences unbounded from below, which will be called decreasing towers.

6 The notion of pantachy, which Hausdorff owes to Du Bois-Reymond, was not accepted
in set theory since descriptions like “maximal branch” are fully informative.
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3 Discrete vs. continual structures

Note that each of the quasi-orderings, defined in Section 1 on RN , has a mean-
ingful continual 7 version defined on the collection C[0,+∞) of all continuous
functions f : [0,+∞) → R , or even on the collection of all f : [0,+∞) → R
not necessarily continuous but bounded on every bounded interval of [0,+∞),
like say all increasing functions. Namely,

f 4 g iff the limit limx→∞
(
g(x)− f(x)

)
exists and is > 0;

f E g iff lim supx→∞
(
f(x)− g(x)

)
< +∞;

f 6fro g iff there is x0 such that either f(x) < g(x) for all x ≥ x0,

or f(x) = g(x) for all x ≥ x0;

f 6∗ g iff there is x0 such that f(x) ≤ g(x) for all x ≥ x0.

The next theorem contains several rather elementary reductions between
the discrete and continual cases of the relations 4, E, 6fro, 6∗ , w. r. t. the
existence of various gaps and scales. Unfortunately the theorem does not cover
the whole spectrum of anticipated reductions.

Theorem 3.1. Suppose that ≤ is any of the order relations 4, E, 6fro, 6∗,
and κ is an infinite regular cardinal. Then

(i) a κ-scale in 〈RN ; ≤〉 implies a κ-scale in 〈C[0,+∞); ≤〉 ;

(ii) a κ-scale in 〈C[0,+∞); ≤〉 implies a κ-scale in 〈RN ; ≤〉.

If, in addition, either a) λ is an infinite regular cardinal, or b) λ = 1 8 and ≤
is one of the relations 4, 6fro, or finally c) λ = 0, then

(iii) a (κ, λ∗)-gap in 〈RN ; ≤〉 implies a (κ, λ∗)-gap in 〈C[0,+∞); ≤〉.

Proof. For any f : [0,+∞) → R, let f �N be the sequence {f(n)}n∈N. The
following argument is valid for any choice of ≤ in {4, E, 6fro, 6∗} .

(i) Suppose that {aξ}ξ<κ is a scale in 〈RN ; ≤〉. Let fξ ∈ C[0,+∞) be
defined so that aξ = fξ �N and fξ is linear on every interval [n, n+ 1]. Easily
{fξ}ξ<κ is <-increasing together with {aξ}ξ<κ, where < is the strict order
associated with ≤ . To see that {fξ} is a scale, consider any f ∈ C[0,+∞).
As f is continuous, a(n) = n max0≤x≤n+1 f(x) is finite for any n, and hence
this defines a sequence a ∈ RN. Then a ≤ aξ for some ξ. Now we have f ≤ fξ .

(ii) Suppose that {fξ}ξ<κ is a scale in 〈C[0,+∞); ≤〉. Put aξ = fξ �N. Take

any a ∈ RN. Let f ∈ C[0,+∞) be any (continuous) function with a = f �N.

7 The word “continual” reflects the character of the domain rather than of the functions
considered. Continual versions of, say, 4 and E historically precede discrete versions (those
for RN ). Hausdorff motivates his passage from continual to discrete versions, especially to
〈RN ; 6fro〉 , in [H 1909a] by a specifically simple forms which the questions considered take
in this case.

8 Recall that (κ, 0∗)-gaps = κ-towers (unbounded chains) while (κ, 1∗)-gaps = κ-limits.
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Then f 4 fξ for some ξ < κ, and hence a 4 aξ, as required. It remains
to note that {aξ}ξ<κ is still a ≤-increasing sequence, but is not necessarily
strictly <-increasing in the case when ≤ is E or 6∗ because in this case f < g
does not necessarily imply f �N < g�N. Thus it seems that reducing {aξ} to a

scale may result in a scale in 〈RN ; ≤〉 shorter than κ. However, in this case we
would have a shorter scale in 〈C[0,+∞); ≤〉 by (i), which is impossible since
two scales of different (transfinite regular) length cannot exist.

(iii) Let 〈{aξ}ξ<κ, {bη}η<λ〉 be a (κ, λ∗)-gap in 〈RN ; ≤〉. Let fξ, gη ∈
C[0,+∞) be functions linear on every interval [n, n + 1] and satisfying aξ =
fξ �N, bη = gη �N. Then fξ < fξ′ < gη′ < gη strictly whenever ξ < ξ′ < κ and
η < η′ < λ. Suppose that 〈{fξ}ξ<κ, {gη}η<λ〉 is not a gap. Let h ∈ C[0,+∞)
witness this, that is fξ < h < gη for all ξ, η. Then c = h�N satisfies aξ ≤ c ≤ bη
for all ξ, η .

If now κ and λ are limit ordinals then aξ < aξ+1 ≤ c ≤ bη+1 < bη, and
hence aξ < c < bη strictly, contradiction.

If ≤ is one of the relations 4, 6fro then it is clear that f < g implies
f �N < g�N, and hence we have aξ < c < bη strictly, contradiction.

Finally, assume that λ = 0, so that {aξ}ξ<κ is a tower (unbounded chain),
and prove that so is {fξ}. Suppose towards the contrary that h ∈ C[0,+∞)
and fξ ≤ h for all ξ. Then c = h�N satisfies aξ ≤ c for all ξ , which is a
contradiction.

We end this section with two open questions.

Problem 3.2. (1) Is the inverse of (iii) of the theorem true ?
(2) Does (iii) hold for λ = 1 and ≤ being one of E or 6∗?

To demonstrate the difficulty in (1), let 〈{fξ}ξ<κ, {gη}η<λ〉 be a (κ, λ∗)-gap
in 〈C[0,+∞); 4〉 . Put aξ = fξ �N and bη = gη �N. Then aξ ≺ aξ′ ≺ bη′ ≺ bη
whenever ξ < ξ′ < κ and η < η′ < λ. Suppose towards the contrary that
c ∈ RN satisfies aξ 4 c 4 bη for all ξ, η. And here we got stuck: it is not clear
at all how to define a function h ∈ C[0,+∞), with c = h�N, which fills in the
gap 〈{fξ}, {gη}〉.Regarding (2), suppose that a κ-limit 〈{aξ}ξ<κ, b0〉 in, say,

〈RN ; E〉 has the following property: if ξ is even then aξ(n) = b0(n) for even
n but aξ(n) < b0(n) and b0(n)− aξ(n)→ +∞ for odd n , while for ξ odd the
other way around. Then 〈{fξ}ξ<ω1 , g0〉 defined as in the proof of (iii) is not a
κ-limit in the structure 〈C[0,+∞); E〉 .

Remark 3.3. The following alternative “discretization” may be of some use for
these questions. Fix once and for all an enumeration {qn}n∈N of all rationals
in [0,+∞). For any f : [0,+∞) → R let āf be the sequence {f(qn)}n∈N,
where {qn}n∈N is any fixed enumeration of all rationals in [0,+∞). With this
definition, it is quite clear that, for any f, g ∈ C[0,+∞), f E g⇐⇒ āf E āg.
But this appears to be of little use since there does not seem to be any natural
condition on a ∈ RN sufficient for there to exist f ∈ C[0,+∞) with a = āf .

In particular it is not clear how to convert a scale or gap in 〈RN ; E〉 into that
in 〈C[0,+∞); E〉 using the map f 7→ āf in the opposite direction.
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From now on, we consider only “discrete” structures.

4 The Hausdorff gap theorem

Hausdorff shows in [H 1909a] that (ω, ω∗)-gaps and ω-limits do not exist in
structures of the type considered. The proof 9 utilizes the idea of a construction
due to Du Bois-Reymond, see Comment [12] to [H 1909a]. The following
theorem is much more difficult:

Theorem 4.1 (The Hausdorff gap theorem). (ω1, ω
∗
1)-gaps do exist in all

Hausdorff ordered structures (HOSs).

The result for 〈RN ; 6fro〉 appeared in [H 1909a]. In the “Nachlass”, the
result first mentioned, without a proof, in Fasz. 116 under 21–23 January, 1909.
The most known version, for dyadic sequences, was established in [H 1936b],
which is a standard reference in modern set theoretic literature. 10 The proofs
in [H 1909a] and [H 1936b] follow one and the same scheme, that also works
for any of the nine HOSs with more or less obvious modifications, but such a
generalization can also be established as a formal consequence of Theorem 4.1
by means of some rather transparent reductions, see Section 7.

Proof (for 〈2N ; 6∗〉 : a sketch). If a, b ∈ 2N and a 6∗ b then let Nab be
the least number n0 satisfying n ≥ n0 =⇒ a(n) ≤ b(n). Hausdorff defines
a <∗-increasing sequence A = {aξ}ξ<ω1 and a <∗-decreasing sequence B =
{bξ}ξ<ω1

of aξ, bξ ∈ 2N, satisfying aη <
∗ bξ for all ξ, η (that is, 〈A,B〉 is a

pre-gap), and the following key condition:

for all n ∈ N and ξ < ω1, the set {η < ξ : Naη bξ = n} is finite. (4.2)

This means that bξ, although <∗-bigger than all aη, is rather <∗-close to
the set {aη : η < ξ}. Suppose this has been done. To see that 〈A,B〉 is a
(ω1, ω

∗
1)-gap, suppose towards the contrary that aξ <

∗ c <∗ bξ for all ξ. As
ω1 is uncountable, there are ξ and n such that Naη c = n for infinitely many
ordinals η < ξ. But this contradicts (4.2) as c <∗ bξ .

The construction of aξ, bξ , goes on by transfinite induction on ξ.
The successor steps are rather trivial. Indeed if aξ <∗ bξ in 2N have

been defined, then choose, as aξ+1 and bξ+1 , any pair of a, b ∈ 2N satisfying
aξ <

∗ a <∗ b <∗ bξ .

9 Following a similar construction in Remark 1.1, suppose that a0 <∗ a1 <∗ . . . <∗ b1 <∗

b0 . There are natural numbers n0 < n1 < . . . such that, for all k , we have ai(n) < bj(n)
whenever i, j ≤ k and nk ≤ n < nk+1 . Put c(n) = maxi≤k ai(n) for all n with nk ≤ n <
nk+1. Then an <∗ c <∗ bn for all n , as required.

10 Hausdorff mentioned in a footnote in [H 1936b, S. 244] that his paper [H 1909a] re-
mained “wenig bekannt” (little known). Clearly the gap construction was far ahead of the
level of development and, perhaps, even the level of motivation of set theory in the early
years of the century. In addition, the paper was published in a rather provincial journal. It is
less clear why Hausdorff did not include the result in the monographs “Grundzüge”, 1914
and “Mengenlehre”, 1927.

9



The limit steps need more effort. Suppose that λ < ω1 is a limit ordinal,
aξ, bξ ∈ 2N have been defined for ξ < λ, and (4.2) holds for ξ < λ. A version
of the argument that proves the absence of (ω, ω∗)-gaps (see Footnote 9) yields
c ∈ 2N satisfying aξ <

∗ c <∗ bξ for all ξ. Note that, for all n and ξ < λ,
the set {η < ξ : Naη c = n} is finite. In this case, a more tricky version of the
same argument yields a dyadic sequence c′ <∗ c such that still aξ <

∗ c′ for
all ξ < λ, and in addition for any n the set {η < λ : Naη c′ = n} is finite. Put
bλ = c′ and take, as aλ, any a satisfying aξ <

∗ a <∗ c′ for all ξ .

5 The main problem and principal pre-forcing results

Our essay is largely devoted to different aspects of the following general prob-
lem, in connection with the pqosets called HOS above.

Problem 5.1 (the main problem). Given a pqoset P , what is the spectrum
of its gaps, limits, towers, scales, pantachies ?

In particular (the gap and scale problem), if κ, λ be regular cardinals, does
P have a (κ, λ∗)-gap ? a κ-scale ?

This problem includes a variety of more special questions, for instance,
related to the second part of the main problem: the existence of gaps (including
limits and towers) of certain cardinal characteristics in this or another HOS. In
particular, Hausdorff, mainly interested in the case κ = ω1, asks in [H 1909a,
S. 324] whether the structure 〈RN ; 6fro〉 has ω1-limits, ω1-towers, and (ω1, ω

∗)-
gaps. 11 Generally, Hausdorff considered all these problems as relevant to
the continuum-hypothesis CH (usually expressed by the equality c = ℵ1 ),
or perhaps as questions which underline a certain dimension in connections
between the cardinals ℵ1 and c. He conjectured in [H 1936b, S. 320,324] that
the problems may be as hard as CH itself.

Beside Theorem 4.1, Hausdorff’s main results in [H 1909a, § 4] regarding
these particular problems, amount to the following:

Theorem 5.2. (i) The problems of existence of ω1-limits, ω1-towers, and
(ω1, ω

∗)-gaps in the structure 〈RN ; 6fro〉, are equivalent to each other:
the existence of any such an object implies the existence of the two other
objects.

(ii) The continuum-hypothesis CH implies the existence of ω1-limits, ω1-
towers, and (ω1, ω

∗)-gaps, and also ω1-scales.

Rothberger later partially reproved this theorem in [Ro-1948].
Hausdorff’s gap construction underwent further development in [Lu-1943]

and [Lu-1946], where Luzin considered subsets of N ordered as follows:

11 The (ω1, ω∗)-gap existence problem was reformulated in [H 1936b] in terms of the struc-
ture 〈2N ; 6∗〉 .
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Almost–inclusion : x ⊆∗ y iff the difference x r y is finite, and the corre-
sponding strict relation: x ⊂∗ y iff x ⊆∗ y but not y ⊆∗ x. Thus,
〈P(N); ⊆∗〉 is isomorphic to 〈2N ; 6∗〉 .

Luzin proved the existence of a pair of ⊂∗-increasing ω1-sequences {xξ}ξ<ω1

and {yξ}ξ<ω1 of sets xξ, yξ ⊆ N, which are orthogonal (i. e., all intersections
xξ∩yξ are finite) but unseparable (i. e., there is no set z such that xξ ⊆∗ z but
yξ ∩ z is finite for all ξ ) — which is equivalent to the existence of a (ω1, ω

∗
1)-

gap in 〈2N ; 6∗〉. In addition Luzin obtained an uncountable set X of infinite
subsets of N such that any two disjoint uncountable subsets X ′, X ′′ of X are
orthogonal but unseparable. Luzin also posed problems of the existence of an
ω1-limit and an (ω1, ω

∗)-gap in 〈P(N); ⊆∗〉 (in terms of the existence of a pair
of orthogonal and unseparable sequences, one of length ω1, one of length ω,
called Luzin pairs), now associated with his name. 12

Rothberger [Ro-1948] studied logical connections between the problems.
In particular, he proved that, in the structure 〈2N ; 6∗〉, the existence of (ω1, ω

∗)-
gaps is equivalent to the existence of ω1-towers and implies the existence of ω1-
limits [Ro-1948, ch. II]. (Compare with Hausdorff’s Theorem 5.2(i); limits
have a somewhat different nature in the structures 〈2N ; 6∗〉 and 〈RN ; 6fro〉 .) 13

See Engelking [En-1972] for some other pre-forcing results related to gaps
in Hausdorff’s structures.

Todorcevic [To-1996] introduced a new dimension in the study of gaps. It
occurs that not only cardinal characteristics but also the descriptive class of a
gap may be an interesting issue. For instance, if X and Y are two orthogonal
families of subsets of N, and at least one of them is a Suslin set (as a subset of
P(N)) and both are σ-directed (i. e., say, for any countable X ′ ⊆X there is
x ∈X such that x′ ⊆∗ x for all x′ ∈X ′ ) then they are separable.

6 Classification theorem

Quite surprisingly, for any regular cardinal κ ≥ ω1 the whole variety of the
existence problems of κ-scales, κ-towers, κ-limits, and (κ, ω∗)-gaps in different
HOS of Definition 1.2 is reducible to a rather short list of really different prob-
lems — especialy if we consider only the following seven HOS of the original
nine ones:

〈RN ; 4〉 , 〈RN ; 6fro〉 , 〈RN ; 6∗〉 ,
〈NN ; 4〉 , 〈NN ; 6fro〉 , 〈NN ; 6∗〉 , and 〈2N ; 6∗〉,

}
(6.1)

12 van Douwen [vD-1984, S. 127] wrote that “Luzin . . . seems to have been unaware of
Hausdorff” [H 1936b], which hardly can be the case as [H 1936b] is in the reference list of
[Lu-1943] — actually the only item of the list. The reference was omitted in the Russian
translation of [Lu-1943] in [Lu-1958], perhaps, accidentally. Anyway, the Editors’ preface to
[Lu-1958] mentions Hausdorff’s influence on Luzin’s papers [Lu-1943, Lu-1946].

13 Readers of [Ro-1948] should be aware of Rothberger’s non-traditional use of symbols
≺, <, ⊂ to indicate non-strict orderings. For instance ≺ in [Ro-1948] is what we denote by
6∗, ⊂ is ⊆, < can be both ⊆∗ (between sets) and ≤ (even between numbers).
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that is, to the exclusion of the E-structures

〈NN ; E〉 and 〈RN ; E〉 . (6.2)

Such a reduction is provided by the next theorem. It deals with the seven HOS
of (6.1). As for the two remaining HOS of (6.2), see Section 8.

Theorem 6.3. Let κ, λ ≥ ω be infinite regular cardinals. Then

(1) All HOS in (6.1), except for the dyadic structure 〈2N ; 6∗〉, are equivalent
w. r. t. the existence of a κ-scale, and also equivalent w. r. t. the existence
of a κ-tower. 14

(2) The hypothesis of the existence of a (κ, λ∗)-gap is subject of the following
diagram, where A=⇒B means that (in ZFC) the existence of a (κ, λ∗)-
gap in the structure A implies the existence of such a gap in the structure
B, and ⇐⇒ is understood accordingly :

〈2N ; 6∗〉 ⇐⇒ 〈NN ; 6∗〉 ⇐⇒ 〈NN ; 6fro〉 ⇐⇒ 〈NN ; 4〉
⇓ ⇓ m

〈RN ; 6∗〉 ⇐= 〈RN ; 6fro〉 ⇐= 〈RN ; 4〉

If moreover λ = ω then all cases of =⇒ in the diagram can be changed to
⇐⇒, and hence all seven HOS in (6.1) are equivalent w. r. t. the existence
of a (κ, ω∗)-gap.

This allows us to introduce κ-scales, κ-towers, (κ, ω∗)-gaps as shorthands for
the assertions that any/every non-dyadic HOS in (6.1) has a κ-scale, resp.,
κ-tower, resp., (κ, ω∗)-gap.

(3) The assertion (κ, ω∗)-gaps is equivalent to κ-towers.

(4) The hypothesis of the existence of a κ-limit is subject of the following
diagram, where A =⇒ B means that the existence of a κ-limit in the
structure A implies the existence of such a limit in the structure B,
A⇐⇒B is understood accordingly, A −→ B means that the existence of
a κ-limit in A implies the existence of a κ′-limit in B for some regular
cardinal κ′ ≤ κ, and the composite symbol ⇐l is understood in the sense
of (4)(vii).

14 The scale and tower existence questions are vacuous for the dyadic structure 〈2N ; 6∗〉.
Indeed let an almost-1 sequence be any dyadic sequence in 2N having at most finitely many
terms 0. Then a <∗ b whenever b is an almost-1 sequence and a is any dyadic sequence
which is not almost-1. If one removes almost-1 sequences from 2N then there will be no
scale at all, while any κ-tower will be just a κ-limit in the full structure 〈NN ; 6∗〉 (with the
constant 1 as the limit element of NN ). It follows that, without any loss of generality, we
can eliminate 2N and concentrate on NN and RN as the ground sets for the problems related
to towers and scales.
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〈NN ; 6∗〉 ⇐⇒ 〈2N ; 6∗〉
〈RN ; 6∗〉 ⇐l ↑

κ-towers ⇐⇒ 〈RN ; 6fro〉
↓ ⇑
〈NN ; 4〉 ⇐⇒ 〈RN ; 4〉

More exactly :

(i) There is no κ-limits in 〈NN ; 6fro〉 ;

(ii) κ-limits exist in 〈NN ; 6∗〉 iff they exist in 〈2N ; 6∗〉 ;

(iii) κ-limits exist in 〈RN ; 6fro〉 iff κ-towers ;

(iv) κ-limits exist in 〈NN ; 4〉 iff they exist in 〈RN ; 4〉, and each of these
two existence claims implies κ-towers ;

(v) if κ-towers then κ′-limits exist in 〈NN ; 4〉 for some uncountable
cardinal κ′ ≤ κ ;

(vi) if κ-towers then κ′-limits exist in 〈2N ; 6∗〉 for some uncountable
cardinal κ′ ≤ κ ;

(vii) κ-limits exist in 〈RN ; 6∗〉 if and only if either κ-limits exist in
〈2N ; 6∗〉 or κ-towers.

(5) every scale is a tower, therefore κ-scales implies κ-towers.

(6) If κ-towers, but there are no κ-limits in 〈2N ; 6∗〉, then κ-scales.

Remark 6.4. In the particular case λ = ω , the theorem reduces the multitude
of the existence problems related to κ-scales, κ-towers, κ-limits, and (κ, ω∗)-
gaps in different HOS in (6.1) to the following groups of hypotheses mutually
equivalent within each group:

6.4a : the existence of a κ-limit in 〈2N ; 6∗〉 and/or in 〈NN ; 6∗〉 ;

6.4b : κ-towers, (κ, ω∗)-gaps, the existence of a κ-limit in 〈RN ; 6fro〉 ;

6.4c : κ-scales;

6.4d : the existence of a κ-limit in 〈NN ; 4〉 and/or in 〈RN ; 4〉 ;

6.4e : the existence of a κ-limit in 〈RN ; 6∗〉 , equivalent to the disjunction
6.4a ∨ 6.4b by (4)(vii) of the theorem.

Recall that the existence of κ-limits in 〈NN ; 6fro〉 is impossible.
In the most important special case κ = ω1 , the picture is even simpler

because by necessity κ′ = κ in (4)(v) and (4)(vi) of the theorem (there are no
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ω-limits), and hence 6.4d is equivalent to 6.4b, moreover 6.4b implies 6.4a, and
6.4e joins 6.4a. Thus we have

6.4a ⇐= 6.4b ⇐= 6.4c

m m
6.4e 6.4d

 the case when κ = ω1 and λ = ω .

The problems mentioned in (i) of Theorem 5.2 are of type 6.4b.
Another consequence is that, in any N-type HOS, the existence of (κ, λ∗)-

gaps implies the existence of (λ, κ∗)-gaps, since this clearly holds for 〈2N ; 6∗〉.
(For R-type HOS, i. e. those with RN as the underlying set, such a symmetry
is rather clear.)

Problem 6.5. Which implications in the diagram in (2) of the theorem can be
improved to equivalences in the general case of infinite (regular) cardinals κ, λ?
For instance, it would be interesting to prove that a (κ, λ∗)-gap in 〈RN ; 6∗〉
implies such a gap in 〈NN ; 6∗〉 .

If κ > ω1 then what is the relationship between 6.4d and 6.4b ?

7 Proof of the classification theorem

Different parts of Theorem 6.3 are just a folklore (we take many of them from
a substantial Scheepers’ survey [Sch-1993]), but a few most interesting can
be attributed to Hausdorff and Rothberger. In the course of the proof of
the theorem below in this section, notation like (4)(ii) or (2) will identificate
items of the theorem.

7a Towers and scales

Easily any 4-tower in NN of any length is a 6fro-tower and any 6fro-tower is a
6∗-tower. Conversely, the map which sends any a ∈ NN to a′(n) =

∑n
i=0 a(i)

transforms any 6∗-tower in NN into a 4-tower. The same for scales. In
addition, changing negative real terms by 0 and positive real terms by nearest
natural numbers, we convert any “real” tower or scale into a “natural” one.
This proves (1) of Theorem 6.3 and justifies the definition of the abbreviations
κ-scales and κ-towers.

Definition 7.1. From now on, κ is an uncountable regular cardinal while λ is
either an infinite regular cardinal (including ω ) or 1 (to include limits), unless
explicitly specified otherwise.

7b Gaps

Here we prove the first part of claim (2) of Theorem 6.3: the diagram related
to the hypotheses of the existence of (κ, λ∗)-gaps in different structures. The
proof splits into a few simple lemmas.
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Lemma 7.2. The structures 〈2N ; 6∗〉 and 〈NN ; 6∗〉 are equivalent w. r. t. the
existence of (κ, λ∗)-gaps.

Proof. Any gap in 〈2N ; 6∗〉 obviously remains a gap in 〈NN ; 6∗〉 . Con-
versely any gap in 〈NN ; 6∗〉 can be transformed into a gap of the same type
in 〈2N ; 6∗〉 . Indeed replace any sequence a ∈ NN, which occurs in a given
gap, first by the set Xa = {〈i, n〉 : i < a(n)} ⊆ N2, then by the image Ya =

{f(i, n) : 〈i, n〉 ∈ Xa} of Xa via any fixed bijection f : N2 onto−→ N, and finally
by the characteristic function of Ya : this yields a gap in 2N .

Lemma 7.3. If ≤ is any of the orderings 6∗, 6fro, 4, then any (κ, λ∗)-gap
in 〈NN ; ≤〉 remains a gap in 〈RN ; ≤〉.

Proof. Consider, for example, a (κ, 1∗)-gap 〈{aξ}ξ<κ, a〉 , that is, a κ-limit,

in, say, 〈NN ; 6∗〉. Suppose towards the contrary that x ∈ RN satisfies aξ <
∗

x <∗ a for all ξ . We can assume that 0 ≤ x(n) < a(n) for all n . Let, for any
n, c(n) be the largest integer with c(n) ≤ x(n). Then c ∈ NN, c <∗ a (since
c(n) ≤ x(n), ∀n), and easily aξ <

∗ c for all ξ because all terms of aξ belong
to N .

Lemma 7.4. The structures 〈NN ; 4〉 and 〈RN ; 4〉 are equivalent w. r. t. the
existence of (κ, λ∗)-gaps.

Proof. To pass from 〈RN ; 4〉 to 〈NN ; 4〉 cut terms to the nearest integers
and note that 4 is stable under uniformly bounded changes.

Lemma 7.5. If λ ≥ ω and D is NN or RN then any (κ, λ∗)-gap in 〈D ; 4〉
is a gap in 〈D ; 6fro〉, and any (κ, λ∗)-gap in 〈D ; 6fro〉 is a gap in 〈D ; 6∗〉.

Proof. This claim is elementary: for instance, to prove the transition from 4
to 6fro note that a ≺ b <fro c implies a ≺ c.

The next lemma completes the short cirquit between the N-type HOS w. r. t.
the existence of arbitrary gaps (except for limits and towers).

Lemma 7.6. If λ ≥ ω and a (κ, λ∗)-gap exists in 〈2N ; 6∗〉, then a (κ, λ∗)-gap
exists in the structure 〈NN ; 4〉, too.

Proof. Indeed assume that {aξ}ξ<κ , {bη}η<λ is a gap in 〈2N ; 6∗〉. For any

a ∈ 2N, we define ã ∈ NN by ã(n) =
∑n
i=0 2na(n). Then the sequences

{ãξ}ξ<κ , {b̃η}η<λ are resp. ≺-increasing and ≺-decreasing, and ãξ ≺ b̃η for all

ξ, η. To prove that this is a 4-gap, suppose that on the contrary ãξ 4 c̃ 4 b̃η
for some c̃ ∈ NN. Define c ∈ 2N as follows: c(n) = 1 iff c̃(n) ≥ 2n. Then easily
aξ 6∗ c 6∗ bη for all ξ, η, which is a contradiction.
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7c Gaps and towers

Here we prove the remaining part of item (2) of Theorem 6.3: the “moreover”
claim in the case λ = ω , along with item (3) of the theorem.

In view of the results above, it suffices to prove that the structures 〈RN ; 6∗〉
and 〈NN ; 6∗〉 are equivalent w. r. t. the existence of a (κ, ω∗)-gap. Our strategy
will be to obtain a κ-tower in 〈NN ; 6∗〉 from the “weakest” gap and then obtain
the “strongest” gap from such a tower. The plan is realized by the following
two Hausdorff’s reductions, demonstrated in [H 1909a, § 4] for the structure
〈RN ; 6fro〉 in the case κ = ω1 (see (i) of Theorem 5.2) and reproduced by
Rothberger [Ro-1941] for the structure 〈2N ; 6∗〉 .

Lemma 7.7. A (κ, ω∗)-gap in 〈RN ; 6∗〉 implies a κ-tower in 〈NN ; 6∗〉, and
hence a κ-tower in any other non-dyadic HOS, e. g., 〈NN ; 6fro〉, see Subsec-
tion 7a.

Proof. Let 〈{aξ}α<κ, {bn}n∈N〉 be an (κ, ω∗)-gap in 〈RN ; 6∗〉.
We can assume that bn+1(k) ≤ bn(k) for all n, k. If a ∈ RN satisfies a 6∗ bn

for every n , then let, for any n , ã(n) denote the least natural number such
that a(k) ≤ bn(k) for all k ≥ ã(n). The sequence {ãξ}ξ<κ is obviously 6∗-
increasing, thus it suffices to show that it is unbounded in 〈NN ; 6∗〉. (Indeed,
then it contains a strictly <∗-increasing cofinal subsequence.) Suppose towards
the contrary that some c ∈ NN satisfies ãξ 6∗ c for all ξ < κ .

Define k−1 = 0, and then, by induction, kn = max {c(n) + 1, kn−1}. Put
a(k) = bn(k) whenever kn ≤ k < kn+1 (separately a(k) = b0(k) for k < k0 ).
It follows from our assumptions that then a(k) ≤ bn(k) for all k ≥ kn, and
hence a 6∗ bn, ∀n. Now it suffices to prove that aξ 6∗ a for all ξ : indeed
then a fills in the given gap, contradiction.

Recall that ãξ 6∗ c, therefore there is an index N such that ãξ(n) ≤
c(n) ≤ kn for all n ≥ N. Take any semi-interval In = (kn, kn+1], n ≥ N. Then
aξ(k) ≤ bn(k) = a(k) for all k ∈ In because ãξ(n) ≤ kn. Thus aξ(k) ≤ a(k)
for all k > kN , and hence aξ 6∗ a, as required.

Lemma 7.8. A κ-tower in 〈NN ; 6fro〉 implies a (κ, ω∗)-gap in the atructure
〈NN ; 6∗〉.

Proof. Hausdorff’s idea can be explained as follows. Let {cξ}ξ<κ be a

6fro-tower in NN. We can assume that each cξ ∈ NN is a strictly increasing
sequence (otherwise put c′ξ(n) = n +

∑
k≤n cξ(k)), so that cξ(n) ≥ n. Define

aξ ∈ NN for any ξ so that aξ(k) = n whenever cξ(n) ≤ k < cξ(n+ 1), so that
aξ, as a map N → N, is in a sense an inverse of cξ. Then aη 6∗ aξ for all
ξ < η < κ. We claim that moreover aη <

∗ aξ strictly whenever ξ < η. Indeed
if cξ(n) < cη(n) (this happens for infinitely many n since cξ 6∗ cη ) then by
definition n− 1 = aη(cη(n)− 1)) < aξ(cη(n)− 1)) = n.

Thus {aξ}ξ<κ is a strictly <∗-decreasing sequence in NN. Note also that
any aξ is increasing (as a map N→ N), perhaps non-strictly, and unbounded,
that is 0 ≺ aξ, where 0 ∈ 2N is the constant 0, but aξ(k) ≤ k for all k .
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We assert that

7.9. There is no a ∈ NN with 0 ≺ a and a 6∗ aξ for all ξ .

Indeed, assuming otherwise, we can w. l. o. g. suppose that a is increasing (non-
strictly) and a(n + 1) ≤ a(n) + 1, ∀n. Then there exists a unique strictly
increasing c ∈ NN such that a(k) = n whenever c(n) ≤ k < c(n + 1). Then
a 6∗ aξ implies cξ 6∗ c for all ξ, a contradiction with the tower assumption.
Thus 7.9 holds.

It follows that, with bn = the constant n, 〈{bn}n∈N, {aξ}ξ<κ〉 is a (ω, κ∗)-

gap in 〈NN ; 6∗〉. To obtain a (κ, ω∗)-gap, put a′ξ(k) = k − aξ(n) (recall that
aξ(k) ≤ k ) and b′n(k) = max {0, k − n} for all ξ, k, n .

This ends the proof of items (2) and (3) of Theorem 6.3 and justifies the
definition of the abbreviation (κ, ω∗)-gaps.

7d Limits

Here we prove item (4) of Theorem 6.3.
To prove (4)(i) (there is no κ-limits in 〈NN ; 6fro〉) note that any a ∈ NN has

an exact 6fro-predecessor a−(n) = max {a(n)− 1, 0}. Further, (4)(ii) follows
from Lemma 7.2. The remaining subitems of (4) need some work.

(4)(iii) Suppose that {aξ}ξ<κ is a tower in 〈NN ; 6fro〉. We get a limit

〈0, 0, 0, ...〉 = limξ→κ cξ in 〈RN ; 6fro〉, where cξ(n) = 1
aξ(n)

. (For any ξ there

may be finitely many cases of division by 0, the result of which can be set to
be, say, 1.) The converse is similar.

(4)(iv) The equivalence follows from Lemma 7.4. The construction of a
tower resembles the final part of the proof of Lemma 7.8. Consider a κ-limit
a = limξ→κ aξ in 〈NN ; 4〉, where aξ ≺ aη whenever ξ < η < κ. Put bn(k) =
max {0, a(k)− n}, thus, {bn}n∈N is a 6fro-descending sequence, and {aξ}ξ<κ,
{bn}n∈N form a (κ, ω∗)-gap in 〈NN ; 6fro〉. To derive a κ-tower in 〈NN ; 6fro〉
apply Lemma 7.7.

(4)(v) Say that a tower {cξ}ξ<κ is regular , if it satisfies

7.10. for any ξ there is η > ξ and n0 such that cη(n) ≥ cξ(n + 1) for all
n ≥ n0 — in other words, it is required that ∀ ξ ∃ η > ξ (c+ξ 6

∗ cη),

where c+ξ (n) = cξ(n+ 1), ∀n . 15

Now suppose κ-towers, in particular, there is a κ-tower {cξ}ξ<κ in 〈NN ; 4〉 .
Then there exist a regular cardinal κ′ < κ and a regular κ′-tower {c′ξ}ξ<κ′ in

15 It does not seem that 7.10 follows from the fact that {cξ}ξ<κ is ≺-increasing. Accord-

ingly, we are not able to follow the proof that κ-towers imply κ-limits in 〈NN ; 4〉 for the
same κ in [Sch-1993] (Theorem 14, 2 =⇒ 3) in its key part, Claim 5 on S. 454. But we have
no example of a tower not satisfying 7.10 either. Note that 7.10 holds provided {cξ} is a

scale, thus κ-scales imply κ-limits in 〈NN ; 4〉 .
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〈NN ; 4〉 , satisfying cξ 4 c′ξ for all ξ < κ′ . (Indeed define c′ξ by transfinite
induction so that cξ+1 4 c′ξ+1 and c′ξ+1(n) ≥ c′ξ(n + 1) for all ξ and n , and
if λ is limit and {c′ξ}ξ<λ is not yet a tower then cλ 4 c′λ and c′ξ 4 c′λ for all
ξ < λ .)

Simulating the proof of Lemma 7.8, let us define aξ ∈ RN for all ξ < κ′

on the base of such a regular κ′-tower {c′ξ}ξ<κ′ . Then, if ξ < η < κ′ and
cη(n) ≥ cξ(n + 1) holds for all n ≥ n0 , then we have aη <fro aξ in the proof
of Lemma 7.8, not merely aη <

∗ aξ . Therefore the sequence {aξ} contains a
cofinal strictly <fro-decreasing subsequence. Moreover, the limit members of
such a subsequence form a cofinal strictly ≺-decreasing subsequence. Thus, by
7.9 in the proof of Lemma 7.8, we have a κ′-limit in 〈NN ; 4〉 , as required.

(4)(vi) Let, for any infinite set x ⊆ N, ϕx be the unique increasing bijection

N
onto−→ x. Suppose that {fα}α<κ is a κ-tower in 〈NN ; 6∗〉. We can assume

that every fα ∈ NN is a strictly increasing function, for if not change it to
gα(k) = k +

∑k
n=0 fα(n). We are going to define a ⊂∗-decreasing sequence

{xα}α<κ′ of infinite sets xα ⊆ N such that fα 6∗ ϕxα for all α < κ′; the
ordinal κ′ ≤ κ is determined in the course of the construction.

Suppose that ν ≤ κ and the sets xα, α < ν, have been defined.

Case 1 : there is an infinite set x ⊆ N such that x ⊆∗ xα for all α < ν.
Then fα 6∗ ϕxα 6

∗ ϕx for all α, therefore ν < κ. Obviously there is an
infinite set y ⊂∗ x such that fα 6∗ ϕy. Put xν = y.

Case 2 : otherwise. Then the sequence {xα}α<ν can be easily converted to
a κ′-limit in 〈2N ; 6∗〉, where κ′ is the cofinality of ν.

(4)(vii) Any κ-limit in 〈2N ; 6∗〉 obviously remains such in the structure
〈RN ; 6∗〉 by Lemma 7.3. A κ-tower in 〈NN ; 6fro〉 can be transformed to a
κ-limit in 〈RN ; 6∗〉 as follows. First of all we convert it to a κ-tower {aξ}ξ<κ
in 〈NN ; 4〉 such that any aξ ∈ NN is increasing. Then, following the proof of
(4)(iii), put cξ(n) = 1

aξ(n)
. We claim that the sequence {cξ}ξ<κ is a κ-limit in

〈RN ; 6∗〉 (not only in 〈RN ; 6fro〉, as in (4)(iii)), with limξ→κ cξ = 0 . (Where

0 ∈ RN is the constant 0.)
Indeed suppose, towards the contrary, that x ∈ RN satisfies 0 <∗ x 6∗ cξ

for all ξ. The set D = {k : x(k) 6= 0} is infinite as 0 <∗ x strictly; let D =
j0 < j1 < j2 < . . .. Put a(k) = 1

x(k) for k ∈ D. Obviously x�D 6∗ cξ �D, and

hence aξ �D 6∗ a for any ξ. Now take any strictly increasing b ∈ NN with
b(k) ≥ a(jn+1) whenever jn ≤ k < jn+1 — we have aξ 6∗ b because aξ is also
increasing. Therefore the sequence {aξ}ξ<κ is bounded, a contradiction to the
tower assumption.

Let us prove the converse. We begin with a 6∗-limit {cξ}ξ<κ in RN. To
simplify the argument, we assume w. l. o. g. that {cξ}ξ<κ is 6∗-decreasing, the
limit value limξ→κ cξ is 0 and that all terms cξ(n) are non-negative. Let
Dξ = {n : cξ(n) = 0} and let hξ be the characteristic function of Dξ. The
sequence of functions hξ is 6∗-increasing, so that if limξ→ω1

hξ = 1 (the
constant 1) in 〈2N ; 6∗〉 then we are done. Thus suppose that the equality
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fails, so that there exists h ∈ 2N with hξ 6∗ h <∗ 1 for all ξ. Then the set
D = {n : h(n) = 1} is co-infinite in N and Dξ ⊆∗ D for all ξ since hξ 6∗ h.

It follows that the infinite set C = NrD has a finite intersection with each
Dξ. This allows us to define aξ(k) = 1

cξ(a)
for all k ∈ C and ξ. (For each ξ, a

finite number of exceptions with division by 0 can be ignored.) The sequence
of functions aξ : C → N is 6∗-increasing (at least non-strictly) because {cξ}
is 6∗-decreasing. Moreover {aξ} obviously is 6∗-unbounded in the family NC

of all functions a : C → N because {cξ} is a limit (and remains such even
after the restriction to C ). It follows that {aξ} has a strictly <∗-increasing
subsequence. Thus we have a tower in 〈C ; 6∗〉. To transform it into a tower
in NN use any bijection of D onto N .

It follows from (4)(vii) that 6∗-limits in RN consist of at least two different
“species”: those homological to towers in NN and those homological to 6∗-
limits in 2N (or NN, that is equivalent).

7e Towers, limits, and scales

Here we prove the last items of Theorem 6.3, that is, (5) ans (6). Basically (5)
is obvious, so it remains to establish (6). This is based on the the following
claim (due to Rothberger for κ = ω1 ).

Lemma 7.11. If there is no κ-limits in 〈2N ; 6∗〉 then any κ-tower in 〈NN ; 6∗〉
is a κ-scale.

Proof. Suppose that {fα}α<κ is a κ-tower in 〈NN ; 6∗〉. Consider an arbitrary
f ∈ NN and suppose towards the contrary that f 66∗ fα for all α < κ. We can
assume that f is strictly increasing, together with all functions fα. Then the
sets xα = {n : fα(n) < f(n)} are infinite, and we have xβ ⊆∗ xα whenever
α < β < κ since fα 6∗ fβ .

We claim that there is an infinite set x ⊆ N with x ⊆∗ xα for all α. Indeed
if the sequence {xα}α<κ contains a cofinal strictly decreasing subsequence then
such an x exists because otherwise the subsequence would produce a κ-limit
in 〈2N ; 6∗〉. If a cofinal strictly decreasing subsequence does not exist then for
some γ < κ we have ∀ ξ > γ (xξ ≡∗ xγ), and hence x = xγ is as required.

Thus let x be as indicated. Then fα �x 6∗ f �x (in the sense that the set
{n ∈ x : f(n) < fα(n)} is finite) for any α. Assuming that

x = {0 = i0 < i1 < · · · < in < . . .},

we put g(k) = f(in+1) whenever in ≤ k < in+1. Then, as f and all fα are
increasing, we have fα 6∗ g for all α, a contradiction with the assumption
that the sequence of all fα is a tower. � (Lemma)

� (Theorem 6.3)
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8 The case of the modified rate of growth

The structures 〈NN ; E〉, 〈RN ; E〉 of (6.2), not covered by Theorem 6.3, require
a separate consideration. Here the results remain less complete. The principal
difficulty is connected with the fact that even the strict relation f C g is
compatible with g(n) < f(n) on the vast majority of numbers n, with g(n)−
f(n) → +∞ only on a very scarse sequence of n’s. This does not allow to
convert E-ordered constructions to, say, 4-ordered ones.

The transformation in the other direction is sometimes possible.

Proposition 8.1. The structures 〈NN ; E〉, 〈RN ; E〉 are equivalent w. r. t. the
existence of a scale, a tower, a gap, or a limit with any given cardinal charac-
teristics. Moreover if κ is an uncountable regular cardinal then :

(i) the existence of κ-scales in 〈NN ; E〉 is equivalent to κ-scales ;

(ii) the existence of κ-towers in 〈NN ; E〉 follows from κ-towers and implies
κ′-towers for some regular uncountable cardinal κ′ ≤ κ ;

(iii) (κ, ω∗)-gaps implies the existence of (κ, ω∗)-gaps in 〈NN ; E〉.
Proof. First of all, one easily proves that any scale, tower, or gap in 〈NN ; E〉
is a scale, resp., tower, resp., gap in 〈RN ; E〉, and conversely, any scale, tower,
gap, limit in 〈RN ; E〉 can be converted to resp. a scale, tower, gap, limit in
〈NN ; E〉 of the same cardinal characteristics, by changing real terms of se-
quences to nearest bigger integers.

Note further that ≺ is a stronger order than C (in the sense that f ≺ g
implies f C g ), and moreover f C g ≺ h implies f ≺ h. It easily follows that
any scale, tower, gap (with both cardinals infinite) in 〈NN ; 4〉 remains a scale,
resp., tower, resp., gap in 〈NN ; E〉 .

The converse holds for scales: if there is a κ-scale {fα}α<κ in the structure
〈NN ; E〉 then there is a κ-scale in 〈NN ; 4〉. Indeed by definition for any set
X ⊆ NN of cardinality cardX < κ there is h ∈ NN satisfying f 4 h for all
f ∈ X. (Indeed as {fα} is a scale there is α < κ such that f E fα for all
f ∈ X. Put h = fα .) This enables us to define a ≺-increasing κ-sequence
{hα}α<κ of hα ∈ NN such that fα 4 hα for all α. It is clear that {hα} is a
κ-scale in 〈NN ; 4〉 .

As for towers, the inverse holds in a weaker form: if there is a κ-tower
{fα}α<κ in 〈NN ; E〉 then there is a κ′-tower in 〈NN ; 4〉 for some κ′ ≤ κ.
Indeed {fα} remains an unbounded family in 〈NN ; 4〉, of course, but it is
not necessarily ≺-increasing. Now consider a maximal ≺-increasing sequence
{hα}α<κ′ such that xα 4 yα for all α < κ′. Clearly κ′ ≤ κ (otherwise {fα}
would not be a tower), while the maximality simply means that {hα} is un-
bounded, i. e., a tower in 〈NN ; 4〉 .

9 Solutions of the problems

Hausdorff proved in [H 1909a] that Cantor’s continuum-hypothesis CH (that
is, 2ℵ0 = ℵ1 ) implies hypotheses 6.4a, 6.4b, 6.4c of Remark 6.4 for κ = ℵ1 . On
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the contrary, the status of these hypotheses in the absense of CH was made
fully clear only in the 1970s. It was established, by forcing technique, that there
is no any connection between the hypotheses in the case κ = ℵ1 , provable in
ZFC + ¬ CH , except for the double implication 6.4c =⇒ 6.4b =⇒ 6.4a that
follows from Theorem 6.3 in this case. This is summarized in the next theorem.

Theorem 9.1. Each of the four statements is consistent with 2ℵ0 > ℵ1:

(1) 6.4c, 6.4b, 6.4a hold for κ = ℵ1 ;

(2) 6.4c fails but 6.4b, 6.4a hold for κ = ℵ1 ;

(3) 6.4c, 6.4b fail but 6.4a holds for κ = ℵ1 ;

(4) 6.4c, 6.4b, 6.4a fail for κ = ℵ1 .

In particular, it follows that hypotheses 6.4a, 6.4b, 6.4c (with κ = ℵ1 ) are
undecidable in ZFC +¬CH . In other words, this theory is not strong enough
to solve the problems. 16

Proofs of different parts of the theorem appeared in the general frameworks
of studies of “special subsets” of the reals and spaces like 2N (often in the form
of P(N), the power set of N) or NN. Let us take some space to present an
idea of the modern setup.

It has become plausible to associate, to each interesting type of “special
subsets”, a certain cardinal invariant , a cardinal (in the interval [ℵ1, 2ℵ0 ])
equal to the least cardinality of a set of this type. Among the multitude of
the cardinal invariants (see van Douwen [vD-1984] for a part of them) the
following four are of interest because of their connection with the problems we
discuss:

t = the least cardinal κ such that κ-limits exist in 2N ;

b = the least cardinality of an 6∗-unbounded subset of NN — easily equal to
the least cardinal κ such that κ-towers exist in 〈6∗ ; NN〉 ;

b6 = the least cardinal κ such that (ω, κ)-Luzin pairs exist in 2N ;

d = the least cardinality of an 6∗-dominating subset of NN . 17

(See Section 2 on dominating and unbounded sets.) Among them, we have
t ≤ b = b6 ≤ d (van Douwen [vD-1984, 3.1, 3.3], but mainly due to Roth-
berger [Ro-1948]). Thus hypotheses 6.4a, 6.4b, 6.4c of Remark 6.4 obtain

16 It seems that long before any idea of the methods used in the proof of Theorem 9.1
was known, Hausdorff in certain way foresaw that the problems could not be solved in the
usual sense of words “to solve the problem” — i. e., to give a definite answer to the question
by means of standard mathematical reasoning. See [H 1909a, p. 324].

17 If d = ω1 then a d-scale exists. However note that for κ > ℵ1 the equality d = κ does
not imply the existence of κ-scales, or to that extent of scales of any length. It is only in the
assumption d = ℵ1, or more generally b = d, that a dominating subset of cardinality d can
be converted to a scale.
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compact formulations in the case κ = ℵ1 as the equalities, resp., t = ℵ1,
b = ℵ1, d = ℵ1 .

This theory includes a universal tool of getting non-existence results, the
Martin axiom, or MA, which makes all reasonable “cardinal invariants” equal
to 2ℵ0 . (See Kunen [Kun-1980] as a general reference on MA .) It is known
that MA is consistent with ZFC plus 2ℵ0 > ℵ1, therefore every consequence
of MA is consistent with ¬CH. In particular, as MA easily implies t = 2ℵ0 18,
hence, implies the absense of (ω, κ)- Luzin pairs (= (ω, κ∗)-Hausdorff gaps)
for κ < 2ℵ0 , we have the consistency of item (4) of the theorem.

Consistency results of opposite character usually involve forcing construc-
tion of models of set theory. In particular Hechler used in [He-1970, He-1974]
some models to prove the consistency of t = b = ℵ1 < d = 2ℵ0 and of
t = b = d = ℵ1 < 2ℵ0 (in fact in a rather generalized form), which proves
the theorem in parts (1) and (2). See a more modern proof in [Bur-1997]. As
for the consistency of statement (3) of the theorem, van Douwen credits the
result (Theorem 5.3 in his survey, actually the consistency of the combination
ℵ1 = t < b = 2ℵ0 ) to Solomon [Slm-1977].

10 Uncountable sequences of Borel sets and partitions

It is known that in a separable space there is no wellordered uncountable in-
creasing or decreasing sequences of open or closed sets. Zalcwasser [Za-1922]
proved that moreover, in any separable space any wellordered increasing or de-
creasing sequence of ∆0

2 sets (i. e., those simultaneously Fσ and Gδ ) is at
most countable. (Hausdorff gives a simplified proof that deals directly with
reducible sets rather than ∆0

2 sets in “Mengenlehre”, § 30.4. Another modifi-
cation of Zalcwasser’s argument is presented in [Kur-1966, § 24.III].)

To define an increasing ω1-sequence of Fσ (even countable) sets, take a set
X = {xξ : ξ < ω1} ⊆ R of cardinality ℵ1 and put Xξ = {xη : η < ξ}. It is a
bit more difficult to obtain a strictly increasing sequence of Gδ sets. A con-
struction, again due to Zalcwasser, (see Kuratowski [Kur-1966, § 40.III]),
produces such a sequence of sets Xξ ⊆ R by transfinite induction, so that Xξ

is a Gδ set of Lebesgue measure 0 which covers
⋃
η<ξXη and contains at least

one extra point. Hausdorff (Fasc. 281) suggested another construction: take
a strictly 6fro-increasing ω1-sequence {aξ}ξ<ω1

of elements aξ ∈ NN and put

Xξ = {x ∈ NN : aξ 66fro x}. Yet another construction was given by Sierpiński
in [Si-1934], see also [Si-1956, § 68]. 19

Hausdorff’s Gap Theorem yields a much stronger result: there is a strictly
increasing ω1-sequence of Gδ sets Xξ ⊆ 2N the union of which is the whole
space 2N . (Satz I in [H 1936b, S. 248]; this is true then for any uncountable
Polish space.)

18 See e. g. Rudin [Ru-1977], Corollary 8, which is an elementary consequence of a more
general fact, Theorem 7 there, first proved perhaps by Martin and Solovay [MS-1970].

19 By a theorem of Luzin [Lu-1934] a strictly increasing ω1-sequence of Gδ sets Xα cannot
be continuous in the sense that Xλ =

⋃
α<λXα for any limit ordinal λ.
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These constructions make use of the axiom of choice, of course. On the
other hand, Luzin – Sierpiński decompositions and sequences of constituents
of Suslin and co-Suslin sets (see our comment to § 34 of “Mengenlehre” in
Volume III) do not use choice, but fail to produce ω1-sequences of Borel sets of
bounded rank (say, of Gδ sets or Fσ sets). Yet all of them appear to be both k-
and m-convergent in the sense of [H 1936b], i. e., additive w. r. t. both measure
and category. This observation allowed Hausdorff to recall the following
problem of Sierpiński [Si-1920p] (problems (A) and (B) in [H 1936b]). It
belongs to a type of questions known as partition problems:

Question 10.1. In a Polish space, is there a strictly increasing sequence
{Bξ}ξ<ω1 of Borel sets of measure 0 (resp. meager sets) such that the union⋃
ξ<ω1

Bξ is not a measure 0 set (resp. not a meager set) ?
In either case, one can also require that the union

⋃
ξ<ω1

Bξ is equal to the
whole space. This will be referred to as the strong version.

The problem, in its “category” part, has one and the same solution in each
perfect Polish space because every such a space contains a dense Gδ subset
homeomorphic to the Baire space NN. The “measure” part is also indepen-
dent of the choice of both the (Borel non-atomic σ-additive) measure and the
uncountable Polish space.

Question 10.2 ([H 1936b, (P) on p. 250]). Is there a Polish space equal to the
union of a strictly increasing ω1-sequence of Fσ sets ?

Such a Polish space has to be uncountable, of course. Somewhat surpris-
ingly, the solution also does not depend on the choice of the Polish space (in
the sense that if there exists a Polish space equal to the union of a strictly
increasing ω1-sequence of Fσ sets, then any uncountable Polish space hac this
property), see below.

Question 10.3 ([Si-1945], [Kur-1966, § 39.II]). Is there a Polish space equal
to the union of ℵ1 pairwise disjoint non-empty Gδ (or closed) sets ?

These (and some related) problems attracted a lot of interest among set the-
orists, both in the “classical” period of set theory (for instance, Rothberger
[Ro-1948], Sierpiński [Si-1945]), and especially, in the modern set theory —
as a typical field of application of advanced methods of forcing.

11 Solutions of the partition problems

Questions 10.1, 10.2, 10.3 (in any of the versions indicated) clearly are solved
affirmatively assuming CH. But, similarly to the gap existence problems, they
are undecidable in ZFC+¬CH. In this case there are interesting interrelations
between the problems which certainly deserve a discussion in our comments.

We start with Question 10.1. The following associated “cardinal invariants”
are considered (see Vaughan [Va-1990]):
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add(K): the least cardinality of a family of meager subsets of R, the real line,
the union of which is not meager;

add(L): the same for sets of Lebesgue measure 0;

cov(K): the least cardinality of a family of meager subsets of R the union of
which equals R ;

cov(L): the same for Lebesgue measure 0.

All of them belong to [ℵ1, 2ℵ0 ], of course, and obey certain rules, for instance
obviously add(K) ≤ cov(K) and add(L) ≤ cov(L) 20. Question 10.1 consists,
in this notation, in the questions whether add(L) = ℵ1 and add(K) = ℵ1 (or
resp. cov(L) = ℵ1 and cov(K) = ℵ1 in the strong version). The following
theorem demonstrates that the questions cannot be answered in ZFC+¬CH .

Theorem 11.1. The next statements are consistent with 2ℵ0 > ℵ1 :

(i) add(L) = add(K) = 2ℵ0 ;

(ii) cov(L) = ℵ1 ;

(iii) cov(K) = ℵ1 .

The consistency of (i) was established by Martin and Solovay [MS-1970]
with the help of MA . To be more exact, they proved that MA implies (i).
Parts (ii) and (iii) were granted in [MS-1970] to unpublished works of Solovay
in the early period of forcing 21.

Questions 10.2 and 10.3 turn out to be closely related to Question 10.1.
This is based on the following key result of Fremlin and Shelah [FS-1979].

Theorem 11.2. If R is the union of ℵ1-many pairwise disjoint non-empty
Gδ sets then R is the union of ℵ1-many meager sets.

(The converse is trivial.)

Corollary 11.3. Questions 10.1 (strong version, category), 10.2, and 10.3
(Gδ ) are equivalent, hence undecidable in ZFC + ¬CH.

Proof. Suppose that R (then any perfect Polish space as well, see above) is
a union of ℵ1-many meager sets. This can easily be converted to a union of
ℵ1-many closed nowhere dense sets and then both to a strictly increasing union
of Fσ sets and to a pairwise disjoint union of non-empty Gδ’s.

20 Some other rules are rather nontrivial, for instance it is known that add(K) ≤ add(L)
but the inequality add(K) < add(L) is consistent, so that there is no full symmetry, see
Vaughan [Va-1990] or Bartoszyński e. a. [BJS-1993].

21 The most elementary models that can be used to prove the consistency of (ii) and (iii)
with ¬ CH are those obtained by adding resp. ℵ2 Cohen-generic reals and ℵ2 Solovay-
random reals to the constructible model. See Hechler [He-1973] on details and related
questions and Bartoszyński e. a. [BJS-1993] on the modern state in this area, including
some interesting interrelations between the partition and scale/gap/tower/limit existence
problems and, correspondingly, between the associated cardinal invariants.
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Suppose that a Polish space X is a strictly increasing union of ℵ1-many
Fσ sets. Then X is a nontrivial union of ℵ1-many closed sets, hence a disjoint
union of ℵ1-many non-empty Gδ sets. Now, as X is a continuous image of the
Baire space NN, homeomorphic to the irrationals, R turns out to be a disjoint
union of ℵ1-many non-empty Gδ’s. It remains to apply Theorem 11.2.

Finally few words on partitions onto closed sets. Question 10.3 for closed
sets also does not depend on the choice of the (uncountable) Polish space
(Miller [Mi-1980]). Stern [St-1978] proved that the problem is undecidable
in ZFC +¬CH. As the models used by Stern were pretty the same as those
proving the undecidability of Question 10.1 (strong version, category) 22, there
was a question whether the problems are in fact equivalent. That this is not the
case was demonstrated by Miller [Mi-1980]: it is consistent with 2ℵ0 > ℵ1
that Question 10.1 (strong version, category) – and then Question 10.2 and
Question 10.3 (Gδ ) by the above – are solved affirmatively but Question 10.3
(closed) – negatively.

12 On five Hausdorff’s problems on pantachies

The following is a list of problems on pantachies in [H 1907a, S. 151–152],
actually for the structure 〈RN ; 6fro〉 . Recall that a pantachy is a maximal
set strictly linearly ordered by a given pqo. Hausdorff’s formulations are
slightly modernized here.

Problem 12.1. Does there exist a pantachy not containing a (ω1, ω
∗
1)-gap ? 23

Problem 12.2. Does there exist a non-homogeneous pantachy ? 24 Or, saying
it differently, do there exist different order types of pantachies ?

Problem 12.3. What is the least possible cofinality of a pantachy ?

Problem 12.4. Do all pantachies have the same cofinality ?

Problem 12.5. For a given uncountable cardinal κ, does there exist a κ-scale ?

Problem 12.1 remains open, in fact it seems to be the oldest open problem
in set theory explicitly stated in a suitable mathematical publication ! Let
us call gapless any pantachy that does not have a (ω1, ω

∗
1)-gap. If a gapless

pantachy exists then 2ℵ0 = 2ℵ1 (see Comment [15] to [H 1909a]), therefore,
the continuum-hypothesis fails ! Gödel used this fact in his attempt to prove

22 Stern proved that a partition of the reals onto ℵ1 non-empty closed sets is possible in
an ℵ2-Solovay extensions and impossible in ℵ2-Cohen extensions, and also impossible under
the Martin axiom MA .

23 The existence of pantachies which do contain (ω1, ω∗
1)-gaps immediately follows from

the Hausdorff gap theorem — explicitly observed in [H 1909a, S. 323].
24 By Hausdorff, a linear order type is homogeneous iff it is similar (order isomorphic)

to any its nonempty open interval, including initial and final segments. Otherwise it is non-
homogeneous. The existence of a homogeneous pantachy is established in [H 1907a, § 4] (see
S. 146).
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2ℵ0 = ℵ2 in [Go-1970] from a plausible list of axioms. See some remarks on
Solovay’s analysis of Gödel’s argument in [Slv-1995] in Comment [15] to
[H 1909a]. Kanamori [Kana-2007] gives additional information.

It can hardly be expected that the theory ZFC plus 2ℵ0 = 2ℵ1 outright
proves or refutes 12.1. In such a case, the practice of the forcing era in set
theory leads to consistency questions. Thus one can ask:

(A) is the existence of gapless pantachies consistent with ZFC + 2ℵ0 = 2ℵ1 ?

(B) is the absence of gapless pantachies consistent with ZFC + 2ℵ0 = 2ℵ1 ?

Both questions remain unanswered. A somewhat stronger (?) form of (A)
(with the additional requirement that the pantachy does not contain strictly
increasing or decreasing sequences of cardinality ≤ ℵ2 ) is in the list of (two)
open questions in [Slv-1995, § 7]. Solovay notes that the major problem in the
construction of a model satisfying (A) is to avoid Hausdorff’s (ω1, ω

∗
1)-gaps.

Now on Problem 12.2. Its two forms are equivalent to each other. Indeed,
given two pantachies A1, A2, there is a pantachy B having open intervals
similar to A1, A2, thus if A1, A2 are not similar then B is not homogeneous.
Conversely, if a pantachy B is not homogeneous, then it contains an open
interval B′ non-similar to B , thus there is a pantachy A similar to B′ and
hence not similar to B .

The negative answer to 12.2 (that is, all pantachies are similar) easily fol-
lows from CH , and hence is consistent with ZFC . It is perhaps an open
problem whether the negative answer is consistent with the negation of CH ,
for instance, with 2ℵ0 = 2ℵ1 . Nevertheless, MA plus not-CH implies that at
least all pantachies have the same cofinality. Does MA imply that moreover all
pantachies are order isomorphic ? As for the positive answer (there exist non-
similar pantachies), its consistency with ZFC (by necessity with the negation
of CH) follows from some results related to 12.4, see below.

Problem 12.3: again ZFC does not have much to say. CH answers the
question, the answer is ℵ1, simply because any pantachy has both the cardi-
nality and the cofinality equal to ω1 = ℵ1 = 2ℵ0 . On the other hand, there
is a model of ZFC where 2ℵ0 = 2ℵ1 ≥ ℵ2 but no pantachy has increasing
ω2-chains. Such a model can be obtained by a construction known as adding
many random reals, see Solovay [Slv-1995, 6].

Many consistency results related to 12.4 are known. In particular, it is
consistent with ZFC that there exist towers of different cofinalities (even of
many different cofinalities), see Dordal [Do-1989]. Therefore, as any tower
can be extended to a pantachy of the same cofinality, the existence of pantachies
of different cofinalities is also consistent. “Gluing” together a pair of pantachies
of different cofinalities, we can obtain a pantachy of some cofinality κ ≥ ω1

containing an increasing (but non-cofinal) λ-sequence for some cardinal λ > κ .
Finally, on 12.5, the scale existence problem. Unlike towers, scales can exist

in only one regular cardinality. An obvious transfinite construction yields an
ω1-scale in the assumption of CH. If CH fails then all three logically possible
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possibilities are consistent with ZFC . In particular, each of the following three
hypotheses is consistent:

1) ℵ1 < 2ℵ0 , and there is an ω1-scale.

In fact this hypothesis is a consequence of the sentence d = ℵ1 < 2ℵ0 , proved
to be consistent by Hechler, see Section 9.

2) ℵ1 < c, and there is a c-scale.

This is a consequence of the Martin axiom MA plus ℵ1 < 2ℵ0 , because such
a hypothesis implies b = d = c > ℵ1 .

3) ℵ1 < c, and there is no scale of any length.

This holds for instance in any model of ZFC obtained by adding ℵ2 Cohen
generic reals to a model of ZFC + CH .

13 Hausdorff’s equivalence relations in the structure of
Borel reducibility

The study of Borel reducibility is one of the most exiting topics in modern
descriptive set theory. (See e. g. [Kec-1999] for motivation.) Given equivalence
relations E and F on Borel sets resp. X and Y (sets in Polish spaces 25), E is
said to be Borel reducible to F , symbolically E ≤b F, if there is a Borel map
ϑ : X → Y (called a reduction) such that

x E y⇐⇒ ϑ(x) F ϑ(y) for all x, y ∈ X.

In this case ϑ can be lifted to an embedding Θ : X/E → Y/F between the
quotients, defined so that Θ([x]E) = [ϑ(x)]F , and the existence of such an
embedding is interpreted as the fact that the Borel cardinality of the quotient
X/E is ≤ than that of the quotient Y/F. They define the associated relations
of Borel equivalence, or Borel bi-reducibility :

E ≈b F iff both E ≤b F and F ≤b E ,

and Borel strict reducibility : E <b F iff E ≤b F but ¬ F ≤b E .
The ≤b-structure of the family of all Borel equivalence relations has been

subject of intense study in descriptive set theory since the late 1980s. The key
role of several mathematically meaningful Borel equivalence relations in the
≤b-structure has been established, including:

E0 , defined on the set NN of all infinite sequences of natural numbers so that,
for a, b ∈ NN, a E0 b iff a(n) = b(n) for all but finite n ;

E1 , defined on the set RN of all infinite sequences of reals similarly;

25 That is, separable topological spaces metrizable by a complete metric, like R .
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`∞ , defined on RN so that, for a, b ∈ RN, a `∞ b iff there exists a real x
such that |a(n)− b(n)| < x for all n ;

c0 , defined on RN so that a c0 b iff limn→∞(a(n)− b(n)) = 0;

and many more. 26 In particular, it is known that

E0 <b E1 <b `∞ and E0 <b c0 ,

but c0 is ≤b-incomparable with either of E1 and `∞, see e. g. [Kano-2008] for
a survey of basic results in this area.

Let us review the place of Hausdorff’s equivalence relations ∼, ./, ≡fro,
≡∗ (Section 1) in the ≤b-structure of Borel equivalence relations. Recall that,
for a, b ∈ RN ,

a ∼ b iff the limit limn→∞(a(n)− b(n)) exists and is finite;

a ./ b iff the limit superior limn→∞(a(n)− b(n)) is finite;

a ≡∗ b iff ∃n0 ∀n ≥ n0 (a(n) = b(n));

that is, resp., the rate of growth, rate of growth modified, and the eventual
domination equivalence relations on RN , and the the final rangordnung equiv-
alence relation ≡fro coincides with ≡∗ .

It does not seem that ≤b-properties of ∼ have ever been studied with any
success. For instance it is not known if either `∞ or c0 is Borel reducible to
∼ . On the other hand, the restricted version ∼�NN (the restriction of ∼ to
sequences of natural numbers) is a rather easy case. Let Z denote the entire
numbers; Z ⊆ R. For x, y ∈ ZN, we have x ∼ y iff there exist n0 ∈ N and
j ∈ Z such that x(n) = y(n) + j for all n ≥ n0 . It easily follows that the
equivalence relation ∼�ZN is induced by a Borel action of a countable abelian
group Z × (Z)<ω. Therefore, by a recent result of Su Gao and Jackson
[GJ-2007], that the restricted equivalence relation ∼�ZN is Borel reducible to
E0 . In fact we have

E0 ≈b (∼�ZN) ≈b (∼�NN) .

Equivalence relations ≈b-equivalent to E0 are called essentially hyperfinite in
modern descriptive set theory.

The relation ./ is obviously the same as `∞ on RN . The relation ≡∗ is E1

in the domain RN and E0 in the domain NN by obvious reasons.
Let us now discuss continual versions of the same relations, defined on the

26 Note that NN is a Polish space as a countable product of N with discrete topology,
and RN is a Polish space as a countable product of R , the real line. That E0 is a Borel
equivalence relation on NN , while E1, `

∞, c0 , as well as the relations ∼, ./, ≡∗ discussed
below, are Borel equivalence relations on RN is an easy exercise.
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domain C[0,+∞) of all continuous f : [0,∞)→ R as follows: 27

f ∼ g iff the limit limx→∞(f(x)− g(x)) exists and is finite;

f ./ g iff the limit superior limx→∞(f(x)− g(x)) is finite;

f ≡∗ g iff ∃x0 ∀x ≥ x0 (f(x) = g(x)).

The relation ./�C[0,+∞) is Borel-equivalent to ./�RN . Indeed, given f ∈
C[0,+∞), define xf ∈ RN so that xf (n) = f(qn), where {qn}n∈N is a fixed
enumeration of Q+. Then clearly f ./ g iff xf ./ xg for all f, g ∈ C[0,+∞),

so that f 7→ xf is a reduction of ./�C[0,+∞) to ./�RN. And the smaller

domain NN does not change the picture: cut all values x(n) of x ∈ RN to the
nearest entire numbers and then work a bit more to convert from entire values
to natural values. Formally,

(./�C[0,+∞)) ≈b (./�RN) ≈b (./�NN) ≈b `∞ .

The relation ≡∗ �C[0,+∞) is Borel-equivalent to E1 , similarly to ≡∗ �RN .
Indeed given f ∈ C[0,+∞) define hnf = f � [n, n+ 1], so that hnf belongs to
the Polish space C[n, n+ 1] of all continuous functions h : [n, n+ 1]→ R. And
obviously f ≡∗ g iff hnf = hng for all but finite n. With the help of suitable

Borel bijections bn : R
onto−→ C[n, n + 1], the map f 7→ {hnf }n∈N reduces the

C[0,+∞)-version of ≡∗ to E1 .

Problem 13.1. Study the place of the rate of growth equivalence relations
∼�RN and ∼�C[0,+∞) in the ≤b-structure of Borel equivalence relations.
(See [Gao-2006] on some partial results.)

14 On the graduation problem

The goal of this Section is to demonstrate that the problem of “infinitary
pantachy”, or the problem of universal graduation as presented in Comment [6]
to [H 1909a] in this Volume, can be solved, in the positive or in the negative,
under different suitable clarifications of the setup. In brief, we’ll show that a
reasonable positive solution (and quite an elementary one) is possible within
general set theoretic frameworks including the axiom of choice, but if a concrete
definition or an “effective” construction of a graduation method is required then
the problem is solved rather in the negative.

In parallel to this problem, we consider the question of existence of a usual
pantachy as defined by Hausdorff, that is, a maximal branch in, say, the
structure 〈RN ; 6fro〉 . In this case, the positive solution on the base of the
axiom of choice is clear, but the “effective” existence of a pantachy has not

27 One can view C[0,+∞) as a Borel set in the Polish space X =
∏
nC[n, n+ 1], where

each C[n, n + 1] is a Polish space of all continuous f : [n, n + 1] → R with the maximal
distance metric ρ(f, g) = maxn≤x≤n+1 |f(x)− g(x)| . The equivalence relations ∼, ./, ≡∗ on
C[0,+∞) are Borel relations on X .
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been studied in detail. The difference between the abstract existence and the
“effective” existence of a pantachy was underlined by Hausdorff. 28

14a What is an “infinitary pantachy”

First of all, let us find a reasonable exact formulation of the problem of universal
graduation. Focusing on Hausdorff’s favorite domain RN of countable real
sequences, we shall be looking for

(1) a partial quasi-order (pqo) ≤ on as set D ⊆ RN , which is linear , that is,
any two sequences a, b ∈ D are ≤-comparable, and

(2) ≤ is based on the comparison of the behaviour of sequences at +∞ .

As the graduation is supposed to be universal, we assume for now that

(3) the domain D of ≤ is equal to RN ,

but reserving the right to consider the case when D $ RN in a suitable moment.
Condition (2) needs further clarification. As any finite number of values

a(n), b(n) must have no influence on the definition of a ≤ b , we stipulate that

(2a) the relation ≤ is ≡fro-invariant, that is, if a, b, a′, b′ ∈ D , a ≤ b , a ≡fro

a′ , and b ≡fro b
′ , then a′ ≤ b′ as well.

Basically this means that a ≡fro b=⇒ a ≡ b , where ≡ is the associated equiv-
alence relation, that is, a ≡ b iff a ≤ b and b ≤ a .

Still the combination (1)+(3)+(2a) is compatible with a ≡ b for all a, b .
This triviality can be avoided by different extra conditions. One of them simply
requires that the equivalence relation ≡ has no “large” equivalence classes.

(2b) if a ∈ D then the equivalence class [a]≡ is a meager set.

And there is another reasonable condition, essentially saying that ≤ respects
a part of Hausdorff’s Fundamentalsatz :

(2c) if a subset X of the domain D of ≤ is at most countable then there is
b ∈ D such that a < b (that is, a ≤ b but b 6≤ a) for all a ∈ X .

Let us call a universal graduation any relation ≤ satisfying every condition
in the list (1), (3), (2a), (2b), (2c). Note that the relation 6fro itself satisfies
all these conditions, except, of course, for the linearity of ≤ in (1).

All results below in this Section are explicitly related to the structure
〈RN ; 6fro〉 , but they remain equally true for other Hausdorff’s ordered struc-
tures defined in Section 1.

28 “Since the attempt to actually legitimately construct a pantachie seems completely
hopeless, it would now be a matter of gathering information without further assumptions
about the order type of any pantachie” ([H 1907a], p. 110, Hausdorff’s italics). Thus Ha-
usdorff makes a clear distinction between the “effective” construction of a pantachy and
the investigation of pantachies produced merely by the axiom of choice.
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14b Linear extensions

We continue to consider Hausdorff’s favorite graduation order 6fro on the set
RN of all infinite real sequences. By a linear extension of 6fro we understand
any quasi-linear ordering ≤ on RN such that

(A) a 6fro b=⇒ a ≤ b , and

(B) the associated equivalence relation a ≡ b iff a ≤ b and b ≤ a satisfies
a ≡ b⇐⇒ a ≡fro b for all a, b ∈ RN .

Theorem 14.1. There is a linear extension ≤ of 6fro . Any such extension
≤ is a universal graduation, i. e., it satisfies (1), (3), (2a), (2b), (2c).

Proof. The existence of a linear extension is one of basic facts in order theory;
in this case it requires the axiom of choice, of course.

Any linear extension ≤ of 6fro is compatible with 6fro , even preserves the
≡fro-equivalence classes (that is, does not break or glue them), preserves the
<fro-order between any two <fro-comparable classes, and in addition makes
all elements in the domain RN comparable. After this remark, the proof of all
five conditions becomes a triviality.

Thus the problem of universal graduation in such a liberal form admits a
rather simple positive solution on the base of the axiom of choice.

Yet a closer inspection shows that quasi-linear extensions of 6fro given by
a formal application of the axiom of choice lack any concrete mathematical
meaning, since the decision, which one of relations a < b , a > b , a ≡ b
is assigned for any given pair of 6fro-incomparable sequences a, b ∈ RN , is
taken not really on the base of comparison of their behaviour at the infinity,
but rather on an arbitrary choice in a transfinite sequence of arbitrary choices
behind the very construction of a linear extension of 6fro . Therefore we may
ask whether there is any concrete, well-defined, or, as it is customary to say,
“effective” universal graduation method.

14c The Borel domain

It turns out that the graduation problem solves flatly in the negative in the
Borel domain, that is, we have the following non-existence result.

Theorem 14.2. There is no Borel pqo ≤ on RN satisfying conditions (1),
(2a), (2b), (3).

Proof. We apply an old argument which Sierpiński [Si-1918] designed to
prove that there is no Borel linear ordering of Vitali classes. Suppose towards
the contrary that a Borel pqo ≤◦ on RN satisfies (1), (2a), (2b). (We add ◦

in order not to mix this relation with the usual ordering of the real line R that
will also participate in the argument.)

Consider the following Borel sets in RN × RN :

P = {〈a, b〉 : a <◦ b} , Q = {〈a, b〉 : b <◦ a} , E = {〈a, b〉 : a ≡◦ b} ,
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where <◦ and ≡◦ are the associated strict order and equivalence relation. The
cross-sections Ea = {b : 〈a, b〉 ∈ E} are equal to the equivalence classes [a]≡◦ .
Therefore it follows from (2b) by the Ulam – Kuratowski theorem that E is
meager in RN × RN . Thus at least one of the sets P,Q is not meager. Let say
P be a comeager set on a non-empty open set U × V ⊆ RN × RN , where

U = {a ∈ RN : ∀ i ≤ m (pi < a(i) < qi)} ,
V = {b ∈ RN : ∀ i ≤ m (ri < b(i) < si)} ,

m is a natural number, and pi < qi , ri < si are rationals for all i ≤ m . Then
〈a, b〉 ∈ U × V iff 〈b, a〉 ∈ V × U , and hence Q is comeager on V × U .

For every i , let fi be the increasing linear map from the real interval (ri, si)

onto (pi, qi). Define a homeomorphism f : U
onto−→ V so that f(a) = a′ iff

a′(i) = fi(a(i)) for all i ≤ m , and a′(i) = a(i) for all i > m . Then a ≡fro f(a),
and hence a ≡◦ f(a) by (2a), for all a ∈ U , and accordingly b ≡◦ f−1(b), for
all b ∈ V . Therefore if 〈a, b〉 ∈ U × V then 〈f(a), f−1(b)〉 ∈ V × U , and
a <◦ b iff f(a) <◦ f−1(b). We conclude that P is comeager on V × U , but
this contradicts to the fact that Q is comeager on V × U .

The proof of Theorem 14.2 works also on the base of measure instead of
the category, provided a σ-additive measure on RN is given and it is invariant
under the transformations 〈a, b〉 7→ 〈b, a〉 and 〈a, b〉 7→ 〈f(a), f−1(b)〉 .

However both the category and the measure versions of the proof are limited
by the assumption that the whole domain of ordering admits a suitable notion
of category or measure. For instance the argument does not seem to work if
one wants to show that there is no Borel pantachy in RN (in Hausdorff’s
sense, that is, a maximal <fro-branch in RN ). Fortunately there is an entirely
different argument based on the following advanced theorem of Harrington,
Marker, Shelah [HMS-1989]:

Theorem 14.3. If ≤ is a Borel thin quasi-order on a Borel set X then there
is an ordinal α < ω1 and a Borel map h : X → 2α such that

x ≤ y =⇒ h(x) ≤lex h(y) and x ≡ y⇐⇒ h(x) = h(y)

for all x, y ∈ X , where ≤lex is the lexicographic order on 2α and x ≡ y iff
both x ≤ y and y ≤ x.

A thin quasi-order is any pqo ≤ such that there is no perfect set of pairwise
≤-incomparable elements. In particular, any linear quasi-order (lqo) is such,
and if ≤ is a lqo then the properties of h as in the cited theorem are equivalent
to just the equivalence x ≤ y⇐⇒ h(x) ≤lex h(y) for all x, y ∈ X .

Corollary 14.4. If ≤ is a Borel lqo on a Borel set X then there is no
strictly <-monotone ω1-sequence, where < is the associated strict order.

Proof. There is no strictly <lex-monotone ω1-sequence in any 2α, α < ω1 .
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This allows us to replace conditions (2a) and (2b) in Theorem 14.2 by (2c).

Theorem 14.5. There is no Borel pqo ≤ on a Borel set D ⊆ RN satisfy-
ing conditions (1) and (2c). In particular, there is no Borel pantachy in the
structure 〈RN ; 6fro〉.

Proof. Suppose towards the contrary that a Borel pqo ≤ on D satisfies (1)
and (2c). Then ≤ is a Borel lqo, and hence by Corollary 14.4 there is no
<-monotone ω1-sequence in D . On the other hand, the existence of such a
sequence easily follows from (2c).

It follows from Theorem 14.3 that such Borel pqos as 4, E, 6fro, 6∗ do
not admit a Borel linearization, that is, e. g., for 6fro , there does not exist a
Borel lqo ≤ on RN such that a 6fro b =⇒ a ≤ b and a ≡fro b⇐⇒ a ≡ b for
all a, b ∈ RN , where ≡ is the associated equivalence relation.

14d Larger “effective” domains

The concept of “effectivity” in set theory includes, of course, much wider do-
mains than the Borel domain, for instance Suslin sets and their complements,
projective sets, Gödel-constructible sets, and so on. And as long as only
sets related to Polish spaces are studied, the widest class of “effective” sets
is considered to be the class ROD of real-ordinal definable sets 29, see Solo-
vay [Slv-1970]. What about the state of the universal graduation problem in
these wider non-Borel domains?

As it is typical in modern set theory, the answer depends on the background
set theoretic environment, that is, the type of the set universe we consider, or
the axioms we add to ZFC in order to solve the problem.

For instance, adding Gödel’s axiom of constructibility 30 V = L , we obtain
an “effective” wellordering of the reals, of class ∆1

2 , and this easily leads to the
following rather routine result.

Theorem 14.6. Assuming the axiom of constructibility :

1) there is a linear extension ≤ of 6fro in the class ∆1
2 , and

2) there is a pantachy in 〈RN ; 6fro〉 in the class ∆1
2 .

As any such extension ≤ satisfies (1), (3), (2a), (2b), (2c) by Theorem 14.1,
we obtain a universal graduation in the class ∆1

2 . The proof of Theorem 14.6
consists in a direct and absolutely “effective” construction of ≤ (under the
assumption V = L), so we conclude that this axiom implies the “effective”
existence of a universal graduation (in the sense of Subsection 14b) and of a

29 The class ROD contains those sets which admit a definition by an arbitrary set theoretic
formula which contains only ordinals and reals as parameters.

30 It postulates that every set belongs to the constructible universe L . The latter contains
all sets obtained in the course of a certain transfinite inductive construction. L is a small
part of the class ROD mentioned in the previous footnote. See [Kana-2007, Kun-1980] for
more on this topic.
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pantachy in 〈RN ; 6fro〉 . In particular the “effective” existence of a universal
graduation and such a pantachy is consistent with the axioms of ZFC because
so is the axiom of constructibility.

Now consider the opposite side of the problem. Solovay [Slv-1970] defined
a model of set theory in which all real-ordinal definable (class ROD, see above)
sets of reals are Lebesgue measurable, have the Baire property, and if uncount-
able then contain perfect subsets. This model is known as the Solovay model
in modern set theory, and they often prove that this model has no typical
counterexamples related to pointsets in Polish spaces among projective sets,
and generally in the class ROD — which is interpreted as the non-existence of
“effective” counterexamples. The case of universal graduation and pantachies
is no difference.

Theorem 14.7. The following is true in the Solovay model :

1) there is no ROD pqo ≤ on RN satisfying (1), (2a), (2b), (3), and

2) there is no ROD pantachy in 〈RN ; 6fro〉.

The proof of the first claim is quite similar to the proof of Theorem 14.2,
with the only difference that, instead of the Baire property for Borel sets,
Solovay’s theorem, that in this model all ROD sets have the Baire property,
is applied. As for the second claim, the proof (yet unpublished) is much more
complicated, and based on the analysis of ROD linear orders in the Solovay
model in Kanovei [Kano-2000] and the analysis of Borel sets of bounded rank
by Stern [St-1984].

In particular, it follows from Theorem 14.7 that there is no any “effective”
construction in ZFC of either a universal graduation or a Hausdorff’s pan-
tachy in 〈RN ; 6fro〉 .

14e On graduation scales vs direct comparison

Theorem 14.3 also contributes to the analysis of a different aspect of the uni-
versal graduation problem, namely the dilemma graduation scale vs direct
comparison, see Comment [2] to [H 1909a].

Suppose that P = 〈P ; ≤〉 is an arbitrary partially ordered set considered
as a graduation scale (and it is assumed that x ≤ y ∧ y ≤ x implies x = y
for x, y ∈ P ). Let a graduation by means of P be any map π : RN → P .
It induces a pqo ≤Pπ on RN such that a ≤Pπ b iff π(a) ≤ π(b). A question
that could be asked here is to what extent pqos of the form ≤Pπ exhaust the
domain of all pqos ≤′ on RN . (Here we discard any further requirements to
≤′ connected e. g. with comparison by final behaviour; hence, RN below can
be replaced by any Borel set in a Polish space.)

In the frameworks of pure set theory this question is rather vacuous. Indeed,
given a pqo ≤′ of any kind on RN , we let P = RN/≡′ (where ≡′ is the
equivalence relation associated with ≤′ ) with the induced quotient order, as in
Footnote 1 on p. 2, which we denote by ≤ , and let π(a) = [a]≡′ for all a ∈ RN

— then ≤′ coincides with ≤Pπ , of course, where P = 〈P ; ≤〉 .
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However the picture changes in the domain of Borel sets and relations.
Indeed, suppose that ≤′ is a Borel pqo on RN . Is there any Borel partially
ordered set P = 〈P ; ≤〉 (P being a Borel set in a Polish space, and ≤ being a
Borel order on P ), and a Borel map π : RN → P , such that ≤′ is equal to ≤Pπ ?
And the answer is that this may be not the case, and this is definitely not the
case for ≤′ being typical graduation orders, e. g., those defined in Section 1.
Indeed, if π etc. are as indicated then we have a ≡′ b iff π(a) = π(b), that
is, the equivalence relation ≡′ is Borel reducible to the equality on a Borel
set. Equivalence relations satisfying this property are called smooth. On the
other hand, it is known that all equivalence relations associated with Haus-
dorff’s graduation orderings (see Section 13) are non-smooth. (See, e. g.,
Kanovei [Kano-2008].) Thus, in the Borel domain, graduation methods (not
necessarily linear) form a wider category then those based on Borel scales.

But the picture again turns upside down if we consider, still in the Borel
domain, only linear graduation methods, that is, basically, Borel lqos ≤′ , and
accordingly linear Borel orders P = 〈P ; ≤〉 as scales. But if ≤′ is a Borel lqo
on RN then by Theorem 14.3 there exist an ordinal α < ω1 and a Borel map
h : RN → 2α such that we have for all a, b ∈ RN : a ≤′ b iff h(a) ≤lex h(b).
Therefore it suffices now to take 2α (a Borel set and a Polish space itself) as
P and the lexicographical order ≤lex as ≤ . Thus, in the Borel domain, linear
graduation methods are exactly those based on Borel linear scales.

15 Review of Hausdorff’s problems in set theory

This Section is written to bring together different problems on descriptive set
theory which we found in Hausdorff’s books, printed papers, and the “Nach-
lass”. Some of them have been discussed above, but we consider it to the
convenience of the reader to collect some other problems, not necessarily re-
lated to gaps and similar topics, in a common list, with brief remarks.

Problem 15.1 ([H 1933b]). Does there exist a countable system {An}n∈N

of sets An ⊆ ω1 such that every set X ⊆ ω1 can be presented in the form
X = limk→∞Ank for some increasing sequence {nk}?

This problem makes sense only if 2ℵ1 = 2ℵ0 , of course. Under this assump-
tion, Martin’s axiom MA implies the positive answer, and hence the positive
answer is consistent. The negative answer is consistent either, and this can
be demonstrated by a model obtained by adding ℵ2 Cohen generic reals (with
finite support). See more on this in Commentary on [H 1933b] in Volume III.

Problem 15.2 ([H 1935c]). A function f : R→ R is symmetrically continuous
if for all x we have limh→∞[f(x+ h)− f(x− h)] = 0. Consider the set Df of
all points of discontinuity of such a function f. Can Df be uncountable ? Can
Df be any given Fσ set ?

Problem 15.2 may still be open. It is known that Df is meager and null, and
can be uncountable assuming CH. Ponomarev [Pon-1973] proved that Df
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cannot be both closed and uncountable. See further comments in Kommentary
on NL 601 and NL 602 in Volume III (pp. 733–735).

Problem 15.3. Let κ, λ be infinite cardinals. Are all 7 HOS of list 6.1
equivalent to each other with respect to the existence of (κ, λ∗)-gaps ?

Theorem 6.3 above resolves the question in the affirmative provided one of
the cardinals is countable. The answer is also positive when κ = λ = ℵ1 , just
because each HOS contains a (ω1, ω

∗
1)-gap by the Hausdorff gap theorem.

As for the general case, Problem 15.3 can be re-formulated as follows: which
implications in the diagram related to (2) of Theorem 6.3 can be changed to
equivalences in the general case of infinite (regular) κ, λ? The solution may
be not entirely elementary. Farah observed that a (κ, λ∗)-gap in 〈NN ; 6∗〉
implies a (κ, λ∗)-gap in 2N×N/Fin× 0 while the latter implies a (κ, λ∗)-gap in
〈2N ; 6∗〉 after adding a single Cohen real .

Problem 15.4. For a function f to be of the 1st Baire class it is necessary
and sufficient that any non-empty closed set contains a point of continuity of
f. Is there any generalization for higher Baire classes ?

Problem 15.5. In a complete spaces, meager dense sets are not Gδ. Are there
similar characterizations for higher classes ?

These two rather vague problems were formulated in a short note NL 1002
published in Volume III, pp. 590–591. Hausdorff conjectures that any dense
set A =

⋂
nAn, where An ⊆ An−1 for all n and each An is everywhere

comeager in itself but meager in An−1, is not Σ0
3 . See further remarks in our

Kommentary in Volume III, pp. 618–621.

Problem 15.6 ([NL 629]). Let t be a countable order type, not necessarily
an ordinal. Is the set of all sets X ⊆ Q of order type t Borel ?

Problem 15.6 was solved in the affirmative by a rather nontrivial argument
of Scott [Sco-1964]. Is there a really elementary proof ? See further remarks
in our Kommentary in Volume III, pp. 735–736.

Problem 15.7. By a Hurewicz’s result the union U of any increasing ω1-
sequence of Gδ sets is FII (i. e., any relatively closed X ⊆ U is not meager in
itself).

Conversely, is any FII set equal to such a union U ?

Problem 15.8. Say that a decreasing sequence of Borel sets {Xξ}ξ<ω1 is
canonical if, for any Borel set B, if

⋂
ξXξ ⊆ B then there is ξ < ω1 such that

Xξ ⊆ B. Any Suslin set is known to be equal to the intersection of a canonical
sequence. Conversely, is any intersection of a canonical sequence of Borel sets
a Suslin set ?

These two problems were formulated in NL 1002, a note published in Vol-
ume III, pp. 701–703. And both remain open. Zapletal noted that, under
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CH, Problem 15.8 solves in the negative: any Bernstein set is the intersection
of a canonical sequence of co-countable sets. See more substantial remarks in
our Kommentary in Volume III, pp. 710–712.

Problem 15.9. When a sum of ℵ1 Borel sets is a Suslin set ?

This question appeared in [NL 380], a half-page list of assorted mathemat-
ical problems dated between 1928 and 1931. The original text is as follows:

Wenn ist die Summe von ℵ1 Borelschen Mengen eine Suslinsche?

This is a question perhaps rather vague to expect any direct answer. Moreover
it is known that questions of this kind may lead to very strong hypotheses of ax-
iomatic set theory. For instance, hypothetical Proposition II of Luzin [Lu-1935,
Section 9], that any union of (perhaps, uncountably many) Borel constituents
of a given Π1

1 set is Π1
1 itself, implies that ℵ1 is a measurable cardinal (this is

mentioned in [MS-1970]), which is incompatible with the axiom of choice. The
only known way to prove Proposition II is from the axiom of determinacy AD
[Mos-1980, Chapter 7]. Coming back to Problem 15.9, we may ask whether the
hypothesis, that any union of Borel constituents of a given Σ1

1 set is Σ1
1 itself,

is consistent with ZF .
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