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Abstract 24 

Robust development is essential for multicellular organisms to maintain physiological stability in 25 

the face of environmental changes or perturbations. While various mechanisms contributing to 26 

developmental robustness have been identified at the subcellular level, those at the intercellular and 27 

tissue level remain underexplored. We approach this question using a well-established in vitro 28 

directed differentiation model known to recapitulate the in vivo development of lung progenitor cells 29 

from human embryonic stem cells. An integrated analysis of high-density cell lineage trees (CLTs) 30 

and single-cell transcriptomes of the differentiating colonies enabled the resolution of known cell 31 

types as well as their developmental hierarchies. Our dataset showed little support for the hypothesis 32 

that transcriptional memory contributes to robust development by constraining single-cell 33 

transcriptomes of closely related cells. We nevertheless observed stable terminal cell type 34 

compositions among many sub-clones. This feature enhances developmental robustness because the 35 

colony could retain a relatively stable cell type composition even if some sub-CLTs are abolished 36 

by necrosis. Furthermore, using a novel computational framework for CLT alignment, we found that 37 

many sub-clones are formed by sub-CLTs resembling each other in terms of both terminal cell type 38 

compositions and topological structures. The existence of such sub-CLTs resembling each other not 39 

only deepens our understanding of developmental robustness by demonstrating the existence of a 40 

stereotyped developmental program, but also suggests a novel perspective on the function of 41 

specific cell types within the context of stereotyped sub-CLTs, just as nucleotides are better 42 

understood in the context of sequence motifs. 43 
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Introduction 47 

Developmental robustness, also known as canalization1, refers to the phenomenon that 48 

biological development outcomes remain largely unchanged despite environmental or genetic 49 

perturbations2,3. In addition to being an essential feature of complex organisms, developmental 50 

robustness also has profound implications for evolution4,5 and disease6. Decades of studies have 51 

identified a variety of mechanisms that contribute to developmental robustness, including chaperone 52 

proteins7, microRNAs8-10, morphology-stabilizing genes11,12, feedback loops13, molecular 53 

redundancies14 and defect-buffering cellular plasticity15. While significant advances have been 54 

made at the molecular/intracellular level, other mechanisms that ensure robust development at the 55 

intercellular/tissue levels remain poorly understood. A couple examples include the nonlinear 56 

relationship between key regulators’ gene expression and embryonic structures16, and the robustness 57 

to cell death observed for determinative developmental cell lineages17. 58 

The developmental process encompasses both the history of cell divisions and state transitions 59 
18,19. It is thus possible to examine development, as well as its robustness, from two perspectives. In 60 

the first, cellular states, such as single-cell transcriptomes, were recorded during various 61 

developmental stages and used to construct a continuum of states known as an epigenetic 62 

landscape20,21 or state manifolds18. In the second, all cell divisions since the zygote or some 63 

progenitor cells can be recorded and used to construct a cell lineage tree (CLT)22. This CLT-based 64 

perspective, however, has been much less studied due to the difficulty in obtaining CLTs in complex 65 

organisms. Nonetheless, recent technological advancements in CLT reconstruction, particularly 66 

those utilizing genomic barcoding19, have led to new opportunities for joint analyses of these two 67 

perspectives. For example, scGESTALT simultaneously determined cell states by single-cell 68 

transcriptomics and the corresponding CLT via lineage barcodes23. Similar methods18,19 provide a 69 

combined view of single-cell states and CLTs, enabling CLT-based analyses of robustness for 70 

different developmental models. 71 

One of the main manifestations of developmental robustness is the generation of adequate 72 

numbers of cells of various types in an appropriate cellular composition, especially when they work 73 

together as a functional unit. For example, the Drosophila peripheral nervous system contains 74 

thousands of identical mechanosensory bristles24, each consisting of exactly one hair cell, one socket 75 

cell, one sheath cell and one neuron25. Another well-known example is the functional unit of the 76 

endocrine pancreas, the islet, which has been shown in mice to consist predominantly (~90%) of β 77 

cells at the core and ɑ and δ cells in the periphery26. To identify potential CLT characteristics that 78 

contributed to such a manifestation of developmental robustness, two CLT-based studies are 79 

particularly relevant. In the first, it was found that development of mammalian organs is preceded 80 

by significant mixing of multipotent progenitor cells27. Therefore, most organs have a polyclonal 81 

origin that ensures sufficient number of cells even some progenitors failed27. In the second, CLT of 82 

cortical development revealed stereotyped development giving rise to monophyletic clades of mixed 83 
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cell types28. On the basis of these observations, we hypothesized that the combination of polyclonal 84 

origin and stereotyped development facilitates the robust development of adequate numbers of cells 85 

with an appropriate cellular composition. It is imperative to note that as our hypothesis revolves 86 

around the above-mentioned functional units, CLTs with sufficient resolution (fraction of cells 87 

sampled) are essential, otherwise stereotyped development cannot be detected with only <1% cells 88 

sampled from each functional unit. In addition, a high resolution CLT would also reveal how 89 

stereotyped development occurs, such as mitotic-coupling versus population-coupling 90 

development18 and whether epigenetic memory29 plays a role. 91 

To this end, we obtained the single-cell transcriptomes and high density (capturing > 10% cells 92 

in the colony) CLTs of three in vitro cell cultures that mimic the in vivo development of human 93 

embryonic stem cells (hESCs) into lung progenitors 30. According to a joint analysis with another 94 

in vitro culture that retained stemness, single-cell transcriptomes were clearly separated into clusters 95 

of undifferentiated and various differentiated cell types, and the CLTs showed significant signals of 96 

divergence among subclones consistent with known sequential involvement of Bmp/TGF-β, Wnt 97 

and other endoderm differentiation related pathways. Multiple monophyletic groups of cells with 98 

stable cellular compositions were revealed by this CLT, directly supporting the existence of 99 

polyclonal stereotyped development. Based on the assumption that cells work collectively as 100 

functional units composed of similar compositions of various cell types, the stereotyped polyclonal 101 

developmental programs observed produce subpopulations with properly mixed cell types, thereby 102 

ensuring the formation of more functional units in the event of random necrosis compared to non-103 

stereotyped development, and therefore enhances robustness. Furthermore, we found that some sub-104 

CLTs with similar topological structures and terminal cell type compositions are significantly 105 

overrepresented, suggesting that at least some stereotyped development is driven by a mitotic-106 

coupling process. Together, we demonstrate the existence of stereotyped lineage trees, a feature of 107 

CLTs that likely contributes to stable cellular composition and therefore developmental robustness. 108 

Results 109 

Reconstructing high-density cell lineage trees for directed 110 

differentiation of primordial lung progenitors 111 

We aimed to determine the CLT of embryonic stem cells undergoing in vitro directed 112 

differentiation towards lung progenitors according to a well-established protocol recapitulating in 113 

vivo development30. This in vitro model of directed differentiation was chosen for several reasons. 114 

First, cells cultured in a small petri dish have a relatively homogenous environment, so that 115 

transcriptome divergence caused by environmental factors, or phylogeny-independent convergence 116 

due to niche-specific signals is unlikely. Second, the development trajectory of embryonic stem cells 117 
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to the lung is well-known, such that the in vitro cell culture can be monitored to ensure that they 118 

closely mimic physiological situation. Indeed, our implementation of the protocol can reach the 119 

alveolar epithelial cells (AEC2s) fate after 20 days of directed differentiation (Figure S1A and 120 

Video S1). Third, in vitro culture allows us to induce Cas9 expression and therefore initiate the 121 

editing of the lineage barcode concurrently with the directed differentiation (Figure S1B/C). Last 122 

but not least, it allows better control over the number of cells within the colony assayed for single-123 

cell transcriptomes and CLTs. In particular, our cell culture begins with ~10 hESCs and ends with ~ 124 

5,000 cells on day 10 (Figure S1B), of which a relatively high percentage can be captured in 125 

downstream experimental pipelines of 10x Chromium. The ten-day directed differentiation covers 126 

three critical phases of lung development, including definitive endoderm (DE), anterior foregut 127 

endoderm (AFE) and NKX2-1+ primordial lung progenitor (PLP)30 (Figure 1A, Figure S1A/B).  128 

To assess the CLT of the cultured cells, we employed a modified scGESTALT method23,31, 129 

which combines inducible cumulative editing of a lineage barcode array by CRISPR-Cas9 with 130 

large-scale transcriptional profiling using droplet-based single-cell RNA sequencing. Briefly, we 131 

initiated the editing of the lineage barcode concurrently with the directed differentiation using a 132 

Cas9 inducible by doxycycline (Figure S1C). We used an EGFP-fused cell lineage barcode that 133 

consists of 13 editing sites, each of which is targeted by one of four mCherry-fused sgRNAs each 134 

containing 2 to 3 mismatches in order to avoid large deletions resulting from excessive editing 135 

(Figure 1A, Figure S1D/E/F). These sgRNAs were designed to not target any part of the normal 136 

human genome other than the integrated lineage barcode (Table S1, see Methods). The hESCs 137 

carrying the lineage tracing system were subjected to the ten-day directed differentiation, then the 138 

colonies were processed for cDNA libraries using the standard 10x Chromium protocol. Each cDNA 139 

library was split into two halves, with the first half subjected to conventional RNA-seq for single-140 

cell transcriptomes, and the other half subjected to amplification of the lineage barcode followed by 141 

PacBio Sequel-based HiFi sequencing of the lineage barcode (Figure 1A).  142 

We obtained single-cell transcriptomes of 3,576/4,400/1,456/5,659 cells respectively from 143 

three differentiating colonies CBRAD5-A1/G2/G11 and one parallel non-differentiating hESC 144 

colony, all of which appeared to have good quality (Figure S2A/B, Table S2). The UMAP clustering 145 

of the single-cell transcriptomes revealed a large fraction of cells from differentiating/CBRAD5 146 

colonies separated with those from hESC colonies, clearly indicating their differentiated cell states 147 

(Figure 1B). We identified 12 major functional clusters within the sampled cells (Figure 1C; See 148 

Methods). According to the average expression of pluripotent gene (NANOG, POU5F1), endoderm 149 

progenitor gene (GATA6) and lung progenitor gene (NKX2-1, SHH, CD47), these clusters were 150 

defined as NANOGhiPOU5F1hi (C1), NANOGlowPOU5F1hi (C2), NANOGlowPOU5F1low (C3), 151 

NANOGhi/lowPOU5F1hi (C4), CD47hi (C5), CD47low (C6), GATA6hiSHHhiCD47low (C7), 152 

GATA6lowNKX2-1negSHHnegCD47neg (C8), GATA6hiNKX2-1hi CD47hi (C9), GATA6hi (C10). Below, 153 

they are also more broadly categorized into the less differentiated spontaneous state (R1 and R2) or 154 

pluripotent state (C1/C2/C3/C4), and the more differentiated progenitor state 155 
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(C5/C6/C7/C8/C9/C10). These clusters displayed transcriptomic states largely compatible with 156 

known cell types occurred during the directed differentiation32 (Figure 1D, Figure S2C), and were 157 

differentially distributed between hESC and CBRAD5 samples (Figure 1E), thereby suggesting 158 

successfully induced differentiation and accurate measurement of single-cell transcriptomes. After 159 

confirming the sequencing quality of PacBio (Table S3, Figure S2D), the CLT of each sample was 160 

constructed based on the lineage barcode using maximum likelihood method (Figure 1A/F; See 161 

also Methods, Figure S2E, Table S4/S5/S6). The hierarchical population structures of the colonies 162 

were complex and intricate. In support of the accuracy of the CLT, cells more closely related to one 163 

another displayed more similar lineage barcode alleles (Figure 1G), and are more likely to share 164 

yet-to-decay transcripts of ancestral lineage barcode (Figure 1H). In conclusion, our experiment 165 

reliably captured the coarse-grained phylogenetic relationship of the cells within each colony.  166 

The cell lineage trees recapitulate key features of the transcriptome 167 

divergence 168 

To better elucidate the divergence between the single-cell transcriptomes in the context of the 169 

observed clusters, we identified differentially expressed genes (DEGs) in previously published 170 

microarray-based transcriptome33 data of samples from six timepoints of directed differentiation 171 

towards PLP (Figure 2A). Note here that despite being sampled on day12, the neural NKX2-1+ 172 

transcriptome has been shown to be most similar to that of day0 hESCs33. The Gene Ontology terms 173 

enriched with these microarray-based stage-specific DEGs (Table S7) were then individually 174 

examined for overall activities in our single-cell transcriptomes by the member genes’ average 175 

expression levels in each cluster (Figure 2B. See Methods). For pluripotent stage cells 176 

(C1/C2/C3/C4), significantly enhanced activities were found among GO terms enriched with DEGs 177 

of day 0/3 samples (including neural NKX2-1+)(Figure 2B). The same observations were made for 178 

progenitor stage cells C6/C10 in GO terms related to day3 samples, as well as C7/C9 cells in GO 179 

terms related to day6/day15 lung samples (Figure 2B). These results indicate that the single-cell 180 

transcriptomes recapitulated major differentiation stages of the in vitro PLP differentiation.  181 

Our data also permit us to resolve divergence among sub-CLTs. It is commonly understood 182 

that the developmental process involves an increase in transcriptional divergence among cells and 183 

a reduction of developmental potentials in individual cells. Analyzing single-cell transcriptomes 184 

among sub-CLTs should reveal these patterns with fine resolution, especially when using high-185 

density CLTs as we obtained. As an initial assessment for whether there is transcriptional divergence 186 

among sub-CLTs in the differentiating samples, we calculated for each sub-CLT, the CV (coefficient 187 

of variation) of the pseudotime estimates34 (see Methods) of all its tips. When compared with their 188 

null expectations generated by randomly shuffling all tips, majority of these CVs were significantly 189 

smaller (Figure 2C), suggesting cells in the same sub-CLT are more similar than expected by the 190 
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full range of transcriptional variation, an observation directly supports the transcriptional divergence 191 

among sub-CLTs.  192 

For a more detailed analyses, we quantified the developmental potential of an internal node by 193 

the multivariate variance among its descendant single-cell transcriptomes, which then allowed us to 194 

perform PERMANOVA-based statistical tests (PERmutational Multivariate Analysis Of VAriance, 195 

see Methods) for the transcriptomic divergence. Briefly, by subtracting from the developmental 196 

potential of a focal node by the sum of the potentials of all its daughter nodes, we estimated the 197 

degree of divergence that occurred during the growth of the focal node (Figure 2D). Using the 198 

degree of divergence seen in the hESC sample as the null distribution, an average of ~65% internal 199 

nodes of the CBRAD5 samples displayed significant divergence (Figure 2E), whereas only ~5% 200 

internal nodes displayed divergence in the HESC sample. When such degree of divergence is 201 

depicted against normalized depths (see Figure S3A and Methods) of the corresponding nodes, the 202 

CBRAD5 samples consistently showed rapid divergence that is not seen in HESC samples (Figure 203 

2E). Please note that divergence here is not equivalent to differentiation, since two sister cells 204 

differentiating into the same fate would not reveal any divergence for their mother cell. In other 205 

words, divergence implies asymmetric division creating daughter cells of different developmental 206 

potentials, whereas differentiation can occur during symmetric division giving rise to a pair daughter 207 

cells that both activate a particular function or differentiate in the same direction.  208 

By applying the above analysis to gene subsets associated with specific GO terms, it is possible 209 

to elucidate the progression of divergence in the corresponding cellular functions. As shown in 210 

several key GO terms including Wnt signaling (Figure 2B), the cumulative growth in the fraction 211 

of internal nodes with significant divergence at various normalized depths is also highly 212 

reproducible among CBRAD5 samples, and it differs from the hESC sample (Figures 2F and 213 

Figure S3B). Additionally, we examined whether our CLT data could resolve the temporal order of 214 

divergence completion for different cellular functions. To this end, we traced all root-to-tip paths on 215 

the CLTs and calculated the average depth of the last (furthest from the root) internal node exhibiting 216 

significant divergence on a GO term. As a result, the normalized depths of divergence completion 217 

appear consistent with known temporal orders of key developmental events (Figure 2G). 218 

Collectively, these results indicate that our dataset of single-cell transcriptomes and CLTs allowed 219 

the elucidation of cellular development with reasonable resolution. 220 

Transcriptional memory has limited contribution to developmental 221 

canalization 222 

Following confirmation of the CLT data's resolution, we began searching for contributors to 223 

developmental robustness using CLTs. A first hypothesis is that transcriptional memory may have 224 

constrained gene expression variation during development, which would canalize transcriptomic 225 
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state during development and contribute to robustness. In this context, transcriptional memory is 226 

the phenomenon of cells closely related on the CLT displaying similar expression levels due to the 227 

inheritance of the same cellular contents (proteins/transcripts) and/or epigenetic states from recent 228 

common ancestors29,31,35,36. Nevertheless, gene expression can also be restricted by transcriptional 229 

regulation that has nothing to do with cellular inheritance, such as negative feedback37 and denoising 230 

promoters38. If the transcriptional memory dominates the experimented differentiation, one would 231 

expect all cells of the same type would have been clustered into an exclusive sub-CLT, which is 232 

clearly not the case (Figure 1F). For a quantitative analysis, we reasoned that the CV of single-cell 233 

expression levels within real sub-CLTs should reflect the combined effect of transcriptional memory 234 

and inheritance-independent regulation (Figure 3A top), whereas that of CLTs randomized by 235 

shuffling cells of the same type at different lineage positions should reflect only inheritance-236 

independent regulation but not transcriptional memory (Figure 3A bottom). It is therefore possible 237 

to isolate the contribution of transcriptional memory to the expression constraint by contrasting the 238 

CV of real CLTs with that of randomized CLTs (Figure 3A and Methods), which is hereinafter 239 

referred to as the "memory index". We note that this definition of memory index is similar to that 240 

used in previous transcriptional memory-related studies 29,39. 241 

For each cell type, we calculated an overall memory index for each gene in each sub-CLT 242 

(Figure 3B and Figure S4). The top (10%) memory indices (Figure 3C) were found to be enriched 243 

in pluripotent cell types (C1/C2/C3/C4) as compared to progenitor cell types (C6/C7/C9/C10) (t-244 

test P=0.0039, Figure 3D), suggesting that transcriptional memory is more important to maintaining 245 

pluripotency than differentiation. Because transcriptional memory is mediated by cellular contents 246 

inherited from mother to daughter cells, such as transcription factors, we hypothesized that these 247 

genes with top memory indices should exhibit significant overlap with those regulated by some 248 

related transcription factors. Thus, we tested these genes for enrichment in genes responsive to 249 

genetic perturbation of individual transcription factors40 (see Methods), and made two observations. 250 

First, some transcription factors with known involvement in the experimented differentiation, such 251 

as Nanog in the pluripotent C141 and Gata6 in progenitor C6/C942, indeed exhibit significant 252 

enrichment of the genes with top memory index. Second, the enrichment was generally stronger for 253 

pluripotent cell types than it was for progenitor cell types (Figure 3E), a pattern again suggesting 254 

that transcriptional memory only played a minor role in differentiation, which is at least not as 255 

significant as in maintaining pluripotency.  256 

Stable cell type compositions across sub-clones supports robust 257 

development 258 

Observations above indicate that terminal cells within a sub-CLT have restricted fates that are 259 

not dominated by transcriptional memory from the common ancestor (root of the sub-CLT). This 260 
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observation automatically prompted an assessment of the cell fate restriction imposed by 261 

inheritance-independent regulation, as well as its contribution to the robustness of developmental 262 

processes. We reasoned that inheritance-independent regulation should result in multiple similarly 263 

restricted sub-CLTs dispersed across the entire CLT. Therefore, we calculated the terminal cell type 264 

composition for each sub-CLT found in the CBRAD5 samples and compared it with the overall 265 

composition of the corresponding full CLT (see Methods). Intriguingly, the cell type compositions 266 

of sub-CLTs are usually more similar to those of the full CLTs than expected in randomized CLTs 267 

(Figure 4A-C). A closer examination of some sub-CLTs reveals a highly stable terminal cell type 268 

composition. For example, there are 35 sub-CLTs that generated subclones with highly stable (<10% 269 

deviation) proportions of 0.13, 0.39, 0.13 and 0.18 respectively for C6, C7, C9 and C10 (the top 270 

four most abundant progenitor cell types), which corresponds to the average proportion of these cell 271 

types in the three differentiating samples (Figure 4D). This observation suggests that a stereotyped 272 

developmental program may exist that produces subclones with highly similar compositions of cell 273 

types derived from multiple ancestral cells. 274 

The observed polyclonal stereotypic development can be understood from two perspectives. 275 

On the one hand, the consistent execution of such a developmental program across subclones may 276 

be by itself a manifestation of robust genetic and/or molecular regulation. On the other hand, stable 277 

cell type compositions across subclones might enhance developmental robustness. We examined 278 

this latter perspective by simulating a CLT for the development of a single cell into an "organoid" 279 

consisting of 1,024 cells (i.e., 10 cell cycles) comprised of four types (namely α, β, γ, and δ) of cells 280 

in a 1:1:2:4 ratio. These cells formed 128 functional units each consisting of one α cell, one β cell, 281 

two γ cells, and four δ cells. Normally developed organoid consisting of 128 functional units 282 

(assuming sufficient cellular migration) are considered 100% functional. Meanwhile, CLT perturbed 283 

by random necrosis (see below), which results in the loss of some ancestral cells and all their 284 

descendants, has a functional capacity defined as the fractional survival rate of functional units with 285 

proper cellular composition. This design was inspired by the observation that functional units in 286 

living tissues, such as mouse pancreatic islets, display a highly stable cell type composition as the 287 

outcome of normal development26. To generate the normal (necrosis-free) CLT with the 288 

predetermined number of cells of each type, two models were used. The first "random” model 289 

assigns each cell to a random tip of the CLT regardless of its cell type (Figure 4E left). A second 290 

“stereotyped” model defines all eight-tip sub-CLTs as strictly consisting of one α cell, one β cell, 291 

two γ cells, and four δ cells, but different placements of these cells are allowed on the tips (Figure 292 

4E right). A total of 1,000 normal CLTs were generated under each model, and the functional 293 

capacity of each CLT was determined by exposing all (internal or terminal) cells to various rates of 294 

random necrosis. When compared to the random model, we found that CLTs generated with the 295 

stereotyped models always formed more functional units, or in other words, were more robust 296 

against necrosis (Figure 4F). Such enhanced developmental robustness is more evident at higher 297 

rate of necrosis (Figure 4F). Collectively, these results suggest that the observed stable cell type 298 
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composition among subclones contributed to developmental robustness.  299 

Stereotyped cell lineage trees underlie stable cell type compositions 300 

We next seek further evidence for the existence of stereotyped developmental programs based 301 

on the CLT data at hand. Specifically, we hypothesized the existence of multiple sub-CLTs with 302 

highly similar topology and terminal cell types. Note that the similarity in sub-CLT topology is an 303 

additional requirement beyond the similarity of cellular compositions observed above, and the 304 

similarity in both topology and cellular composition is compatible with previously proposed 305 

“mitotic coupling” mode of cell state-lineage relationship18. As recurrent sub-sequences of 306 

biological sequences, such as transcription factor binding sites, are usually referred to as "sequence 307 

motifs", we call our target recurrent sub-CLTs "tree motifs" or simply "motifs". In fact, some tree 308 

motifs in development have been well characterized. For example, the Drosophila peripheral 309 

nervous system contains thousands of identical mechanosensory bristles24. Each of the bristles is 310 

formed by a sub-CLT rooted at a sensory organ precursor cell. This sub-CLT encompasses two cell 311 

cycles, the first of which produces PIIa and PIIb cells. Then PIIa divides to yield one shaft cell and 312 

one socket cell, followed by PIIb, which gives rise to one neuron and one sheath cell24. Therefore, 313 

this specific tree motif appears thousands of times in Drosophila’s developmental CLT. Furthermore, 314 

the meiosis process, in which one germ cell divides into four sperms or one egg and three polar 315 

bodies, is another example of a tree motif in developmental CLTs. 316 

Just as sequence motifs are identified by comparisons between (sub-)sequences, tree motifs 317 

should also be identified through comparisons between (sub-)CLTs. In order to identify potential 318 

tree motifs in the CLT of the differentiating samples, we utilized Developmental cEll Lineage Tree 319 

Alignment (DELTA), an algorithm we previously developed for quantitative comparisons and 320 

alignments between CLTs43 (Figure 5A, see Methods and Text S1). Using a dynamic programming 321 

scheme analogous to that employed by classical algorithms looking for similarities between 322 

biological sequences (e.g. the Smith-Waterman algorithm), the DELTA algorithm searches for pairs 323 

of homeomorphic sub-CLTs43 within two given full CLTs. As a result, DELTA identified a large 324 

number of highly similar sub-CLT pairs between and within differentiating samples (Figure 5B). 325 

Some of the most frequently occurring sub-CLTs exhibited a consistent structure, comprising 326 

multiple layers of internal cells, a stable composition of terminal cell types, and appeared 20 to 40 327 

times in the three differentiating samples (Figure 5C). Groups of such highly similar sub-CLTs 328 

represent strong candidates of tree motifs on the developmental CLT, and strongly supports the 329 

existence of a stereotyped developmental program that contributes to developmental robustness. 330 

Discussion 331 

In the current study, we have reconstructed high density developmental CLTs for in vitro 332 
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directed differentiation from hESC to primordial lung progenitors. In comparison with CLTs of non-333 

differentiating hESC colonies, differentiation CLTs showed a clear signal of transcriptomic 334 

divergence that recapitulates known involvements of key developmental regulatory pathways. 335 

Using CLTs, we investigated mechanisms that might have contributed to developmental robustness 336 

at the intercellular level. Although transcriptional memory appeared to have limited effects on 337 

canalizing cell fates within subclones, we found that multiple subclones exhibit stable compositions 338 

of terminal cell types, which enables sufficient numbers of cells in proper composition to be 339 

generated, and thus, a more robust development. By using a CLT alignment algorithm, we further 340 

showed that the observed stable cell type composition is underlied by stereotyped sub-CLTs with 341 

similar topology and terminal cell fate. Our results demonstrated the existence of stereotyped sub-342 

CLTs, which support robust development. 343 

There are a couple limitations of our study that are worth discussing here. First, our study was 344 

based on an in vitro directed differentiation model. This choice is a compromise between the 345 

feasibility for reconstruction of high density CLTs and a model that closely reflects the in vivo 346 

development. We believe our experiment reasonably recapitulates the in vivo situation because clear 347 

morphology of alveolar can be reach on the 20th day of the directed differentiation (Figure S1A 348 

and Video S1). Ideally, organoid or in vivo models should be combined with single-cell 349 

transcriptomes of a larger throughput (in terms of number of cells) in order to assess the question at 350 

a broader scale. Nevertheless, our main conclusion of polyclonal stereotyped development is most 351 

likely NOT an artefact of in vitro development, because none of the media components can create 352 

such pattern, and the number of ancestor hESCs seeding the colony is not correlated with the 353 

frequency of recurrence of lineage motifs. Second, we have not inferred detailed molecular 354 

processes and/or trajectories of gene expression changes in the stereotyped sub-CLT, as can be done 355 

for the nematode Caenorhabditis elegans43, whose temporal changes in gene expression have been 356 

recorded by microscopic image44,45. In the near future, this may be possible when the algorithms for 357 

inferring ancestral states based on cell lineage trees become sufficiently accurate 19,46. 358 

As a preliminary assessment on how the stereotyped CLT occurs, we treated the cell type 359 

composition of all descendent tips as a quantitative trait of the ancestral cells (internal nodes of the 360 

CLT) and regressed the difference of this trait between two ancestral nodes (that is not descendent 361 

of each other) onto their relatedness on the cell lineage (see Methods). This method, known in the 362 

genetics literature as a Haseman–Elston Regression47,48, is an unbiased estimator of heritability. In 363 

all of our samples, cell type compositions displayed heritability to some degree, with the heritability 364 

in the differentiating samples being significantly greater than that in the non-differentiating sample 365 

(Figure S5). Furthermore, similarly estimated heritability of single-cell transcriptome for each 366 

sample were lower than that of cell type composition (Figure S5). This result is unlikely to be 367 

explained by the higher measurement accuracy of cell type composition compared to single-cell 368 

transcriptomes for two reasons. First, the cell type itself is inferred based on single-cell 369 

transcriptomes. Second, the heritability of cell type composition in the non-differentiating sample 370 
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is almost equal to that of the single-cell transcriptome, suggesting similar measurement accuracy 371 

for these two traits. Thus, we concluded that descendent cell type composition is a heritable trait of 372 

ancestral cells. This trait is likely inherited from their earlier common ancestors by a mechanism 373 

independent of transcriptional memory, and is therefore expected to be pervasive in a CLT. 374 

Beyond the specific mechanisms underlying developmental robustness, our findings suggest a 375 

novel perspective regarding cell types within the context of stereotyped sub-CLTs. In particular, just 376 

as letters can be better understood within the context of words, and nucleotides/amino acids can be 377 

better understood within the context of sequence motifs, stereotyped sub-CLTs can potentially 378 

bridge our knowledge of the atlas of cell types and their organization into functional tissues. Indeed, 379 

Elowitz and colleagues49 recently identified statistically overrepresented patterns of cell fates on 380 

lineage trees as indicative of progenitor states or extrinsic interactions. The analysis was done using 381 

their newly proposed Lineage Motif Analysis, which differs from the method presented here that 382 

examined cell type composition and topological structure on incomplete CLTs, as their method uses 383 

the fully resolved CLTs and only analyzes cell type composition. Nevertheless, similar to our 384 

proposition here, they considered lineage motifs as a way of breaking complex developmental 385 

processes down into simpler components49. 386 

Methods 387 

Design of the lineage tracer hESC cell line 388 

To design the lineage barcode and corresponding sgRNA, we first generated randomized 20-389 

bp candidate sgRNA sequences with >3 substitutions relative to any human genome fragments. 390 

Among these candidates, the spacer sequence 5’-TATTCGCGACGGTTCGT- ACG-3’ was selected 391 

as sgRNA1. A total of 13 protospacer sequences were designed based on sgRNA1 according to the 392 

following criteria: (i) each protospacer contained 2-3 mismatches with sgRNA1, (ii) there was no 393 

recurrence of any sequence of 9 bp or longer, and (iii) consecutive repeats of the same nucleotide 394 

for more than 2 bp were completely absent. The 13 protospacers (along with PAM, or protospacer 395 

adjacent motif) were organized according to decreasing CFD (cutting frequency determination) 396 

scores into the full lineage barcode 50,51. The next three sgRNAs, sgRNA2, sgRNA3, and sgRNA4, 397 

were designed to perfectly match the 9th, 12th, and 13th protospacers, but with lower CFD scores 398 

(<0.55) for other protospacers, because these three protospacers were rarely edited in preliminary 399 

experiments using only sgRNA1. To facilitate capture by poly-dT reverse transcription primers on 400 

10x gel beads, the full lineage barcode with a 20-nt poly-dA(A20) 3' tail was inserted into the 3'UTR 401 

of an EGFP driven by an EF1α promoter. 402 

We constructed lineage tracer hESC cell lines by genomic integration of the lineage barcode, 403 

doxycycline-inducible Tet-on Cas9 and the sgRNAs. Briefly, the lineage barcode vector (pLV-404 
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EF1A>EGFP:T2A:Bsd:V1(Barcode), VectorBuilder, no:VB1709 11-1008qmt) was constructed by 405 

the Gateway system and then transfected into H9 hESCs with MOI=0.15. The EGFP-fused lineage 406 

barcode was confirmed to exist as a single copy in the genome and to be highly expressed after 407 

blasticidin selection (15 μg/ml, InvivoGen, no. ant-bl-1) and flow cytometry sorting. Then the Tet-408 

on inducible Cas9 vector (PB-Tet-ON-T8>Cas9:T2A:puro-PGK:rtTA, donated by Professor 409 

Jichang Wang, Zhongshan School of Medicine, Sun Yat-sen University) was co-transfected with 410 

hyPBase (VectorBuilder, no: VB190515-1005nrp) in a ratio of 1μg:100ng for 1x107/ml cells by 411 

NeonTM transfection system (Life, MPK5000). In order to ensure adequate Cas9 expression for 412 

efficient editing, we applied double reinforced selection of Puromycin (1.0 μg/ml, InvivoGen, no. 413 

ant-pr-1) and Doxycycline (Dox, 1.0μg/ml, sigma, D9891-1G) for 7 days. Lastly, the sgRNA vector 414 

(pLV-U6>sgRNA1>U6>sgRNA2>U6>sgRNA3>U6>sgRNA4-EF1α>Mcherry:T2A:Neo,VB1912 415 

11-3149jwe) was constructed by Golden Gate ligation and transfected at MOI=30. H9 hESC cells 416 

with high expression of sgRNAs (fused with mCherry) were enriched by G418 selection (1000 417 

μg/ml, InvivoGen, ant-gn-1) for 11 days and flow cytometry sorting. Expression levels of Cas9, 418 

lineage barcode and sgRNA1 transcripts were detected by RT-qPCR with primers listed in Table 419 

S8.  420 

The editing efficiency of the lineage tracer hESC cell line was evaluated by inducing Cas9 421 

expression in mTesR media with 1.0 µg/ml Dox for five days. We extracted gDNA from all cells 422 

using DNeasy Blood & Tissue Kits (Qiagen, no.69504). Using primers gDNA-V1-F and gDNA-423 

V1-R (Table S8), we amplified the lineage barcode from gDNA using Phanta Max Super-Fidelity 424 

DNA Polymerase (Vazyme, No. P505), which was then cloned into pCE-Zero vector (Vazyme, No. 425 

C115). The efficiency of editing was then evaluated by colony PCR and Sanger sequencing for 50 426 

recombinant clones. 427 

Additionally, we examined editing efficiency in the context of our directed differentiation 428 

experiment, in which only a small number of initial cells were used to form each colony. In 96-well 429 

dishes, matrigel (Corning, No. 354277) was plated and each well was seeded with < 10 log-phased 430 

lineage tracer hESC cells manually by micromanipulation. For 11 days, the cells were cultured in 431 

100 µl of mTesR media, to which 10 µl of cloneR (Stemcell, No.05888) were added on day0 and 432 

day2, and 1.0 µg/ml Dox+ mTesR media was added and refreshed every 48 hours since day2. 433 

Normally surviving colonies after the 11-day culture were harvested by GCDR (Stemcell, 434 

No.07174). Next, 50ng of genomic DNA was extracted from each colony using the QIAamp DNA 435 

Micro Kit (Qiagen, No.56304) and PCR amplified for the lineage barcode. The Cas9-induced 436 

mutations accumulated during colony formation were then identified by Sanger sequencing, TA 437 

cloning-based sequencing or Illumina HiSeq PE250 sequencing. Specifically, the raw HiSeq data 438 

were trimmed by fqtrim (https://ccb.jhu.edu/software/fqtrim/) with default parameters. The paired 439 

reads were merged by FLASH52 using 30 bp of overlapping sequence and 2% mismatches. 440 

Sequences alignable to the human reference genome by Bowtie2 with default parameters53, or to 441 

primer sequences of gDNA-V1-F and gDNA-V1-R with two mismatches, were removed as they 442 
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likely represented nonspecifically amplified sequences. MUSCLE54 aligned the sequenced lineage 443 

barcode to the wild-type lineage barcode using default parameters. The editing events of each 444 

sequence were identified according to a previous method50.   445 

Validating directed differentiation from hESC to lung progenitor and 446 

alveolosphere 447 

Using the BU3 NGST (NKX2-1-GFP; SFTPCtdTomato) iPS cell line (donated by Professor 448 

Darrell N. Kotton, Deparment of Medicine, Boston University), we tested the protocol of directed 449 

differentiation towards lung progenitor and alveolosphere published by Kotton and colleagues30. 450 

Briefly, in six-well dishes pre-coated with Matrigel (Stemcell, No.356230), 2x106 cells maintained 451 

in mTESR1 media were differentiated into definitive endoderm using the STEMdiff Definitive 452 

Endoderm Kit (StemCell, No.05110), adding supplements A and B on day 0, and supplements B 453 

only on day 1 to day 3. Flow cytometry was used to evaluate the efficiency of differentiation to 454 

definitive endoderm at day 3 using the endoderm markers CXCR4 and c-KIT (Anti-human CXCR4 455 

PE conjugate, Thermo Fisher, MHCXCR404,1:20; Anti-human c-kit APC conjugate, Thermo Fisher, 456 

CD11705, 1:20; PE Mouse IgG2a isotype, Thermo Fisher, MG2A04,1:20; APC Mouse IgG1 isotype, 457 

Thermo Fisher, MG105, 1:20) based on the method of Sahabian and Olmer55. After the endoderm-458 

induction stage, cells were dissociated for 1-2 minutes at room temperature with GCDR and 459 

passaged at a ratio between 1:3 to 1:6 into 6 well plates pre-coated with growth factor reduced 460 

matrigel (Stemcell, No.356230) in ‘‘DS/SB’’ anteriorization media, which consists of complete 461 

serum-free differentiation medium (cSFDM) base, including IMDM (Thermo Fisher, No.12440053) 462 

and Ham’s F12 (Corning, No. 10-080-CV) with B27 Supplement with retinoic acid (Gibco, 463 

No.17504044), N2 Supplement (Gibco, No.17502048), 0.1% bovine serum albumin Fraction V 464 

(Sigma, A1933-5G), monothioglycerol (Sigma, No. M6145), Glutamax (ThermoFisher, No. 35050-465 

061), ascorbic acid (Sigma,A4544), and primocin with supplements of 10 μm SB431542 (‘‘SB’’; 466 

Tocris, No.1614) and 2 μm Dorsomorphin (‘‘DS’’; Sigma, No. P5499). In the first 24 hours 467 

following passage, 10 μmY-27632 was added to the media. After anteriorization in DS/SB media 468 

for three days (72 hrs, from day 3 to day 6, refreshed every 48 hours), cells were cultured in “CBRa” 469 

lung progenitor-induction media for nine days (from day 6 to day 15, refreshed every 48 hours). 470 

This CBRa media consists of cSFDM containing 3 μm CHIR99021 (Tocris, No.4423), 10 ng/mL 471 

rhBMP4 (R&D, 314-BP-010), and 100 nM retinoic acid (RA, Sigma, No. R2625). At day 15 of 472 

differentiation, single-cell suspensions were prepared by incubating the cells at 37℃ in 0.05% 473 

trypsin-EDTA (Gibco, 25200056) for 7-15 minutes. The cells were then washed in media containing 474 

10% fetal bovine serum (FBS, ThermoFisher), centrifuged at 300 g for 5 minutes, and resuspended 475 

in sort buffer containing Hank’s Balanced Salt Solution (ThermoFisher), 2% FBS, and 10 μm Y-476 

27632. The efficiency of differentiation into NKX2-1+ lung progenitors was evaluated either by 477 

flow cytometry for NKX2-1-GFP reporter expression, or expression of surrogate cell surface 478 
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markers CD47hi/CD26lo. Cells were subsequently stained with CD47-PerCPCy5.5 and CD26-PE 479 

antibodies (Anti-human CD47 PerCP/Cy5.5 conjugate, Biolegend , Cat#323110, 1:200; Anti-human 480 

CD26 PE conjugate, Biolegend, Cat#302705, 1:200; PE mouse IgG1 isotype, Biolegend , 481 

Cat#400113, 1:200, PerCP/Cy5-5 mouse IgG1 isotype, Biolegend, Cat#400149, 1:200) for 30 min 482 

at 4 ℃, washed with PBS, and resuspended in sort buffer based on the method of Hawkins and 483 

Kotton 55. Cells were filtered through a 40 μm strainer (Falcon) prior to sorting. The CD47hi/CD26lo 484 

cell population was sorted on a high-speed cell sorter (MoFlo Astrios EQs) and resuspended in 485 

undiluted growth factor-reduced 3D matrigel (Corning 356230) at a dilution of 20-50 cells/μl, with 486 

droplets ranging in size from 20 μl (in 96 well plate) to 1 ml (in 10 cm dish). Cells in 3D matrigel 487 

suspension were incubated at 37℃ for 20-30 min, followed by the addition of warm media. The 488 

differentiation into distal/alveolar cells after day 15 was performed in ‘‘CK+DCI’’ medium, 489 

consisting of cSFDM base, with 3 μm CHIR (Tocris, No.4423), 10 ng/mL rhKGF(R&D, No.251-490 

KG-010) (CK), and 50 nM dexamethasone(Sigma, No. D4902), 0.1 mM 8-Bromoadenosine 3’,5’-491 

cyclic monophosphate sodium salt (Sigma, No.B7880) and 0.1 mM 3-Isobutyl-1-methylxanthine 492 

(IBMX; Sigma, No.I5879) (DCI). Immediately after replating cells on day 15, 10 μm Y-27632 was 493 

added to the medium for 24 hours. Upon replating on day 15, alveolospheres developed in 3D 494 

Matrigel culture outgrowth within 3-7 days, and were maintained in CK+DCI media for weeks. 495 

These spheres were analyzed by Z stack live images of alveolospheres taken and processed on the 496 

Leica DMi8 fluorescence microscope. 497 

Directed differentiation followed by simultaneous assessment of 498 

single-cell transcriptomes and cell lineage tree. 499 

Based on the results from the full directed differentiation experiment above, we aimed to 500 

evaluate single-cell transcriptomes and CLTs simultaneously for directed differentiation from 501 

hESCs to PLP, a stage at which the colony has <10,000 cells, allowing us to sample a large 502 

proportion of cells. To prepare suitable ancestor hESCs, the cell colonies outgrowth after 5-7 days, 503 

plated in 96-well dishes with microscopic selection for GFP+ mCherry+, were digested with GCDR 504 

to form ~50 μm aggregates, and cultured in mTesR media until day 5. Combining selection and 505 

induction by dox (1.0 μg/ml) and puro (1.0 μg/ml) from day 5 to day 7, the normally survived GFP+ 506 

mCherry+ colonies were capable of Cas9 expression and marked by primary editing events (to 507 

distinguish ancestor cells), as confirmed by DNA extraction and barcode PCR and sanger 508 

sequencing. The cell colonies with primary editing events were digested by GCDR for cell counting 509 

(~ 4000 cells) and resuspended at a density of 10 cells/μl. 1μl cell suspension was added into each 510 

well of 96-well dishes plated with 1:10 diluted Matrigel (Corning, No.354277) for culture in mTesR 511 

media with ClonR (10:1) (Stemcell, No.05888) added in the first 48h to promote the survival of 512 

very few stem cell. Directed differentiation was then initiated by applying both dox (1.0μg/ml, for 513 

editing the lineage barcode) and the STEMdiff Definitive Endoderm Kit to the normally survived 514 
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colonies. Later stages of directed differentiation followed the differentiation protocols described 515 

above, with the exception that it was stopped on the tenth day after its initiation (Figure S1B). 516 

Finally, colonies with intermediate size (~ 5,000 cells as approximated by colony size and cell 517 

counts) and ≥50% GFP+ Mcherry+ cells were digested with 0.05% trypsin-EDTA for 1 minute at 518 

37 ℃, washed in PBS containing 10% fetal bovine serum (FBS, ThermoFisher), centrifuged at 500 519 

g for five minutes, and resuspended in single cell resuspension buffer containing PBS and 0.04% 520 

BSA. Using the standard 10x Chromium protocol, cDNA libraries were prepared from these single 521 

cell suspensions. Each cDNA library was split into two halves, with the first half subjected to 522 

conventional RNA-seq for single-cell transcriptomes, and the other half subjected to amplification 523 

of the lineage barcode followed by PacBio Sequel-based HiFi sequencing of the lineage barcode 524 

(Figure 1A). 525 

Analysis of scRNA-seq 526 

Following the 10x Genomics official guidelines, we used the Cell Ranger56 pipeline to map 527 

raw reads to the human reference genome (GRCh38) by STAR57 and obtained the read counts for 528 

each gene. Using Seurat v3.2.158, we retained cells with <10% mitochondrial reads and >200 529 

expressing unique features detected. Then highly variable genes were detected by Single-cell 530 

Orientation Tracing (SOT)59, which were then subjected to Principle Component Analysis, followed 531 

by batch effect correction by Harmony60. We then clustered cells based on the cell-cell distance 532 

calculated by FindNeighbors and FindClusters using the Harmony-normalized matrix of gene 533 

expression. Then, we used runUMAP for visualization and FindAllMarkers to obtain differentially 534 

expressed genes (DEGs) among clusters. To identify cell types, we downloaded microarray data 535 

from Gene Expression Omnibus (GEO)33,61, and extracted DEGs (Wilcoxon Rank Sum test, P < 536 

0.01) in different stages of differentiation towards PLP. We scored the clusters base on the average 537 

expression and numbers of expressed stage-specific DEGs. Finally, we named 12 cell cluster based 538 

on the inferred order of appearance in the differentiation progress. 539 

Construction of cell lineage trees 540 

Based on the PacBio HiFi sequencing results, we built and assessed the quality of the CLT 541 

from PacBio HiFi reads following our previous pipeline31. Briefly, using HiFi-seq raw sequences, 542 

we called consensus sequences separately from positive and negative strand subreads from each 543 

zero-mode waveguide (ZMW). We reserve only consensus sequences with at least three subreads 544 

and identifiable barcode primers (Table S8, allowing up to two mismatches). From the consensus 545 

sequences, 10x cell barcodes and UMIs were extracted and matched to those from scRNA-seq, with 546 

one mismatch allowed. Lineage barcode sequences were then extracted from the consensus 547 
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sequences, grouped by identical cell barcode and UMI, then merged by MUSCLE alignment 548 

followed by selecting the nucleotide with the highest frequency at each site. After MUSCLE 549 

alignment of the merged sequence to the reference lineage barcode, the editing events were called50. 550 

Then, for each lineage barcode allele from the same cell, the frequency was calculated as the total 551 

number of UMIs of the allele and its ancestral allele. Here, the ancestral allele of a specific allele 552 

was defined as any allele in which the observed editing events were a subset of the editing events 553 

in the focal allele. Finally, the lineage barcode allele of a cell was defined as the allele with the 554 

highest frequency, prioritizing the alleles with more editing events if the frequencies were equal. 555 

For each sample, all cells with a lineage barcode and a single-cell transcriptome were used to 556 

construct a multifurcating lineage tree based on the lineage barcode using the maximum likelihood 557 

(ML) method implemented by the IQ-TREE LG model 62. 558 

Transcriptome divergence among cell type clusters 559 

 To elucidate the transcriptomic divergence among the observed clusters in the context of the 560 

directed differentiation towards PLP, we extracted stage-specific DEGs with the top 10% most 561 

extreme fold-change relative to other stages (Figure 2A, using microarray data33 mentioned above), 562 

and identified the Gene Ontology terms enriched (BH-adjusted P < 0.05, Fisher’s exact test) with 563 

these stage-specific DEGs. After eliminating GO terms that have very few expressed genes, we 564 

focused on 179 GO terms (Table S8). For each cell, the activities of the specific cellular functions 565 

represented by these GO terms were estimated by the AddModuleScore function of Seurat, which 566 

basically calculated the average Z-score transformed expression levels of all genes annotated by the 567 

GO term. All cells within a cluster were then combined to determine the average activity of the GO 568 

term for the cluster (Figure 2B).  569 

Transcriptome divergence among sub-CLTs 570 

 As for the divergence among sub-CLTs, estimation of pseudotime was conducted via 571 

Monocle34 with all cells on differentiating CLTs pooled together. After Principal Component 572 

Analysis of all cells from all samples combined, the transcriptomic divergence (DT) between any 573 

two cells is quantified by one minus Pearson's Correlation Coefficient of the top 100 principal 574 

components. The developmental potential of an ancestor cell (an internal node on the CLT) was then 575 

calculated by the summed squared DT of all pairs of its descendant cells. The reduction of 576 

developmental potential (ΔDP) during the growth of an internal node to its daughter nodes was 577 

calculated by the focal internal node’s ΔDP subtracted by the summed ΔDP of all its daughter nodes 578 

(Figure 2D). The statistical significance of an observed ΔDP was estimated by contrasting the 579 

observation with its null distribution generated by random assignment of single-cell transcriptomes 580 

from hESC samples to the focal CLT (Figure 2D). We emphasized here that the null distribution 581 
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should be estimated by the single-cell transcriptomes from the non-differentiating hESC sample, 582 

since using those from the differentiating CBRAD5 samples would introduce actual divergence into 583 

the null and thus lead to an underestimated statistical significance. It is also worth noting that this 584 

method is very similar to the commonly used nonparametric method of permutational multivariate 585 

analysis of variance (PERMANOVA63), except that Pearson’s correlation-based divergence replaces 586 

the distance-based divergence used in canonical PERMANOVA, as the correlation-based metric has 587 

consistently been shown to result in superior performance for single-cell transcriptomes64,65. We 588 

have also applied this PERMANOVA-based method to subsets of genes within the transcriptome. 589 

For example, only genes annotated with a specific GO term (Table S8) were used. A significant 590 

divergence for a specific GO term does not necessarily indicate a significant divergence in the whole 591 

transcriptome, since genes annotated with the GO term may have a small effect on the transcriptome 592 

as a whole. As a result, internal nodes with transcriptomic divergence do not necessarily represent 593 

a larger fraction than nodes with divergence on a specific GO term. 594 

 In order to perform a retrospective analysis of divergence progression, we need a normalized 595 

temporal scale that is comparable across samples. In theory, this scale could be derived from the 596 

mutation rate of the lineage barcode and/or the topological depth of a node (i.e., the number of nodes 597 

between the root and the focal node). Considering the variability in Cas9 editing efficiency over 598 

barcodes, as well as long inter-site deletions, we discarded the mutation rate-based scale.  For the 599 

topological depth scale, due to both biological and experimental stochasticity, the reconstructed 600 

CLTs and their nodes have very different depths, despite the fact that they are supposed to 601 

correspond to the ten-day directed differentiation. Assuming that the internal nodes were evenly 602 

sampled on all root-to-tip paths throughout the CLT, the actual depth of a node should be reflected 603 

equally by its depth from the root and (indirectly) by the depth from the focal node to its descendent 604 

tips. Based on this logic, we defined the normalized depth of a node as 𝑑𝑑 = �𝑑𝑑𝑟𝑟/𝑑𝑑𝑡𝑡 +605 

(1− 𝑑𝑑𝑠𝑠/𝑑𝑑𝑡𝑡)�/2, where dr is the focal node’s depth from root, dt is the max depth found in the CLT, 606 

and the ds is the max depth from the focal node to its descendent tips (Figure S3A). Here, via 607 

division by dt, all depths were scaled from 0 to 1, with 0 being the root and 1 being the tips with 608 

maximal raw depth within the CLT. 609 

Transcriptional memory index 610 

We followed previously proposed methods29,39 to calculate transcriptional memory index. In 611 

each cell type and for each gene expressed in >10% of cells of this type, the CV of the expression 612 

levels was calculated among all terminal cells of this type within a sub-CLT (containing at least two 613 

cells of this type). The minimal CV among all sub-CLTs, i.e. min(CV), was then used to represent 614 

the expression variability of the focal gene in this cell type. It was also calculated for each of 1,000 615 

randomized CLTs created by reassigning all cells of the same type to a new lineage position that 616 
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was originally occupied by the same cell type. These 1,000 min(CVRandom) from randomized CLTs 617 

were averaged, i.e. mean (min (CVRandom)), to yield a null expectation for the observed min(CV). 618 

Finally, the memory index was defined as M = (min(CV) - mean(min(CVRandom))) / min(CV). Note 619 

that the final division by min(CV) is different from the previously defined memory index29,39, but 620 

allows comparisons between genes with very different baseline CVs or expression levels. 621 

To test the hypothesized role of transcription factors in mediating transcriptional memory, we 622 

obtained lists of gene sets responsive to perturbations of individual transcription factors 623 

(“TF_Perturbations_Followed_By_Expression” in Enrichr40). The genes with highest memory 624 

indices (top 10% across all cell types) were assessed for enrichment in each of these TF-responsive 625 

gene sets using Enrichr 40. We reported (Figure 3E) the ‘‘combined score’’ calculated by Enrichr, 626 

which takes into account both the statistical significance and the magnitude of enrichment 627 

(combined score of enrichment c = log(p) * o, where p is the P value from Fisher’s exact test and o 628 

is the odds ratio of the enrichment40). 629 

Composition of terminal cell types compared among sub-CLTs and 630 

the full CLTs 631 

To compare the terminal cell type composition of one sub-CLT with its expectation, we 632 

constructed a 2-by-n contingency table for the n cell types appearing in the entire CLT. The first row 633 

of the contingency table lists the observed count of terminal cells for each cell type within the focal 634 

sub-CLT. The second row of the table lists the expected count of each cell type as determined by the 635 

fractional cell type composition of the entire CLT multiplied by the size of the focal sub-CLT. We 636 

then calculated 𝜒𝜒2 = ∑ (𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2/𝐸𝐸𝑖𝑖𝑛𝑛
𝑖𝑖=1   for the focal sub-CLT, where 𝑂𝑂𝑖𝑖  and 𝐸𝐸𝑖𝑖  are the 637 

observed and expected count for cell type i. Then 𝜒𝜒2  values from all sub-CLTs with roots of 638 

normalized depth < 0.7 (because internal nodes closer to terminal cells produce sub-CLTs that are 639 

too small for meaningful statistics) were summed up to represent the diversity of cell type 640 

compositions among sub-CLTs (x axis of Figure 4A/B/C). In other words, a small summed 𝜒𝜒2 641 

indicates uniform/stereotyped composition of cell types among sub-CLTs. To assess the null 642 

distribution of the summed 𝜒𝜒2, 1000 control CLTs were created by randomly reassigning all cells 643 

on the tree to a different terminal node, while keeping the topology of the tree unchanged. 644 

Robustness of random versus stereotyped development 645 

Without loss of generality, we defined a functional unit as consisting of four cell types, namely 646 

α, β, γ, and δ, in a 1:1:2:4 ratio. We simulated 1000 binary CLTs, each consisting of 1024 terminal 647 

cells (128 α cells, 128 β cells, 256 γ cells, 512 δ cells) generated through ten cell cycles, under two 648 

developmental models. The first “random” model randomly assigns the four types of cells onto the 649 
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tips of the tree. A second “stereotyped” model strictly assigns α, β, γ, and δ cells in a 1:1:2:4 ratio 650 

onto each sub-CLT consisting of eight tips (three cell cycles). A predefined fraction (0.001, 0.005, 651 

0.01, 0.05 or 0.1, as on x axis of Figure 4F) of the 2047 (1024 terminal and 1023 internal) cells 652 

were chosen and removed along with all their descendent cells to mimic random necrosis. Assuming 653 

sufficient cell migration to allow formation of the functional unit as long as there are enough 654 

terminal cells of the proper type, the robustness is thus quantified by the number of functional units 655 

that can be formed by all terminal cells surviving necrosis. A simple example shown in Figure 4E. 656 

Comparison and alignment of sub-CLTs by mDELTA 657 

Let us denote vectors/nodes as V and edges connecting nodes as E. Given a query tree 𝑄𝑄 =658 

(𝑉𝑉,𝐸𝐸) and a subject tree 𝑆𝑆 = (𝑉𝑉′,𝐸𝐸′), an isomorphic alignment is a bijection A : 𝑉𝑉 ⟷ 𝑉𝑉′, such 659 

that for every pair of nodes with 𝑣𝑣,𝑢𝑢 ∈ 𝑉𝑉, we have (𝑣𝑣,𝑢𝑢) ∈ 𝐸𝐸 ⇔ �𝐴𝐴(𝑣𝑣),𝐴𝐴(u)� ∈ 𝐸𝐸’. Based on 660 

two types of biologically informed tree editing operations, namely pruning and merging (see 661 

Supplementary Text), a homeomorphic subtree alignment A between Q and S is defined as an 662 

isomorphic alignment between 𝑄𝑄′ and S′’, where 𝑄𝑄′ is the result of zero or more pruning and 663 

merging in Q, and 𝑆𝑆′ is the result of zero or more prunin and merging in S. Here all the pruning in 664 

Q and S are collectively denoted as 𝜋𝜋(𝐴𝐴), and all merging in Q and S are collectively denoted as 665 

𝜇𝜇(𝐴𝐴). If we further denote the alignment score between two nodes 𝑣𝑣 ∈ 𝑉𝑉 and 𝑣𝑣′ ∈ 𝑉𝑉′ as 666 

𝑎𝑎(𝑣𝑣, 𝑣𝑣′), the cost for pruning a subtree 𝑇𝑇�  as 𝑝𝑝�𝑇𝑇��, the cost for merging an internal node 𝑣𝑣� with 667 

its mother node as 𝑚𝑚(𝑣𝑣�). The score of a homeomorphic subtree alignment A between Q and S can 668 

then be expressed as 669 

 𝑤𝑤(𝑄𝑄, 𝑆𝑆,𝐴𝐴) = ∑ 𝑎𝑎(𝑣𝑣, 𝑣𝑣′)(𝑣𝑣,𝑣𝑣′)∈𝐴𝐴 − ∑ 𝑝𝑝�𝑇𝑇��𝑇𝑇�∈𝜋𝜋(𝐴𝐴) − ∑ 𝑚𝑚(𝑣𝑣�)𝑣𝑣�∈𝜇𝜇(𝐴𝐴)  670 

Our algorithm of mDELTA find the optimal A (with optimal/highest possible w) given Q, S, a, 671 

p and m by a dynamic programming procedure. We defined a based on similarity of single-cell 672 

transcriptomes, p based on the number of pruned terminal cells, and m based on the number of 673 

merged internal nodes. Detail computational procedures of mDELTA can be found in 674 

Supplementary Text. 675 

Heritability of quantitative traits in the CLT 676 

In order to gauge the heritability of quantitative traits on the CLT, we calculated the correlation 677 

between the relatedness and the phenotypic divergence of a pair of nodes. When the relatedness is 678 

defined by genomic relatedness like DNA sequence identity, this analysis is the same as the classic 679 

statistical genetics method called Haseman-Elston Regression47. Thus, we consider the correlation 680 

coefficient from this analysis to be a proxy for phenotypic heritability among nodes on the CLT. 681 
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However, we would like to emphasize that since the DNA sequences of all cells in our dataset are 682 

presumably nearly identical, the relatedness between nodes is therefore defined by their distance on 683 

the CLT instead (see below), and resulting correlation coefficients cannot be interpreted as 684 

traditional heritability as they are in Haseman-Elston Regression. Specifically, we define the 685 

relatedness between any two nodes on the CLT inversely by the number of cell divisions separating 686 

them, which is then estimated by contrasting the number of their descendent cells with the number 687 

of descendent cells of their latest common ancestor. Following previous Haseman-Elston 688 

Regression applications48, the relatedness between nodes was then scaled so that the mean 689 

relatedness between any pair of nodes is 0 and the maximal relatedness is 1. As such scaling is 690 

equivalent to calculating relatedness relative to a different population48, comparing the heritability 691 

of one trait relative to that of another trait would not be affected as long as both traits are analyzed 692 

in the same focal population (the focal CLT). On the phenotype side, we examined two quantitative 693 

traits, the single-cell transcriptomes of terminal nodes and the descendent cell type compositions of 694 

internal nodes. Here, the single-cell transcriptomes of terminal nodes were first processed by 695 

Principle Component Analyses, then all principle components of a cell is used to represent its 696 

transcriptome. As for the descendant cell type compositions of an internal node, each internal node 697 

is represented by a vector comprising M elements, where M is the total number of cell types 698 

identified in our dataset, and each element represents the percentage of descendent cells of that type. 699 

The phenotypic divergence between two nodes is calculated as the Euclidian distance between the 700 

multidimensional quantitative traits. Lastly, we reported the Spearman’s Correlation Coefficient 701 

between the relatedness and the phenotypic divergence between all relevant node pairs in Figure 702 

S5 as a proxy for the heritability of quantitative traits. 703 

 704 

Data availability 705 

The new data generated in this study were deposited to NCBI BioProjects under accession 706 

number PRJNA1099925.  707 

 708 

Code availability 709 

Custom R/Python codes that were used in data analysis, are available on GitHub 710 

(https://github.com/ZhangxyOk/Stereotyped-CLT). The mDELTA algorithm is deposited on a 711 

separated GitHub repository (https://github.com/Chenjy0212/mdelta_full). 712 
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Figure legends 730 

Figure 1. Cell lineage tracing for directed differentiation of 731 

primordial lung progenitors  732 

(A) Schematic diagram illustrating the overall experimental process. The 10-day directed 733 

differentiation from several Lineage Tracer hESCs to primordial lung progenitors (PLP) was 734 

conducted along out with simultaneous lineage tracing utilizing inducible CRISPR-Cas9 editing of 735 

an expressed lineage barcode (13 editable sites). The resulting colony was assayed for single-cell 736 

transcriptomes by Nova-seq and lineage barcode by PacBio HiFi-seq, which were used to 737 

reconstruct CLTs with single-cell transcriptomes assigned to tips. (B) The variation among single-738 

cell transcriptomes captured in the four samples (one non-differentiating “HESC” sample and three 739 

differentiating samples) as shown by UMAP. A data point represents a cell, which is colored based 740 

on its source sample on the left panel and the expression level of NKX2-1 (the marker for PLP) on 741 

the right panel. (C) Major clusters of the single-cell transcriptomes are differentially colored and 742 

labeled by their corresponding cell types. (D) In the 12 major cell types (y axis), differentially 743 

expressed genes (DEGs) found in bulk samples of specific developmental stages preceding PLP (x 744 

axis) were examined for their average expression levels (dot color) and fraction of cells that 745 

expressed the gene (dot size). See also Figure S2C. (E) For each of the four samples (x axis), the 746 

percentage of cells belonging to each type was shown. The cell types are colored identically to those 747 

in panel C. (F) Reconstructed CLTs are visualized as circle packing charts for the four samples. 748 

Circles represent sub-CLTs, whose sizes indicate the number of terminal cells in the sub-CLTs, while 749 

the color (same as panel C) indicates the fraction of terminal cells belonging to each cell type. See 750 

Figure S2E for their tree representation. (G) A pair of cells' normalized lineage distance (the 751 

number of internal nodes on the path from one cell to the other, divided by the maximal lineage 752 

distance found in the sample) is highly correlated with the normalized allelic distance of their 753 

lineage barcodes (the total number of target sites that differed from the reference, divided by the 754 

maximum value of 26). All cell pairs were separated into five groups based on their normalized 755 

lineage distance (x axis), and the distribution of normalized allelic distances (y axis) within each 756 

group is shown in the form of a standard boxplot, with the mean value indicated by the white point. 757 

On top, Spearman's ρ and P value for raw data are indicated. (H) The probability of finding a 758 

common ancestral allele (as yet-to-decay transcripts) between a pair of single-cell tips decreased as 759 

their normalized lineage distance (x axis) increased. The error bars indicate the standard error 760 

estimated by bootstrapping the cell pairs for 1,000 times. 761 

Figure 2. The transcriptome divergence among cell type clusters and 762 
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among subclones 763 

(A) Heatmap for expression levels of DEGs extracted from microarray-based transcriptomes of 764 

specific developmental stages (color bars on top) of the directed differentiation33. (B) Functional 765 

activities of GO terms (x axis. Full list in Table S7) enriched with stage-specific DEGs were 766 

shown for every cluster (y axis) identified in our samples. Here functional activity as indicated by 767 

the color scale was estimated by the average Z-score-transformed expression of all genes 768 

annotated with the GO term. Some important GO terms are boxed and labeled by dashed lines, 769 

and are further analyzed in panel F and Figure S3B. (C) A coefficient of variation (CV) was 770 

calculated using pseudotime estimates of single-cell transcriptomes within a sub-CLT. These CVs 771 

were plotted for all real sub-CLTs (y axis) and corresponding randomized sub-CLTs generated by 772 

shuffling all tips (x axis) in each differentiating sample (name on top). As the dashed line indicates 773 

x = y, sub-CLTs with CVs lower than random expectation (i.e. restricted variation) will appear 774 

below it. Each panel includes the number of CLTs above and below the dashed line, which was 775 

also tested against the binomial expectation (50% below the line) and yielded the P values on top. 776 

(D) Schematic diagram for the PERMANOVA-based estimation of transcriptome divergence for 777 

an internal node (see Methods). (E) Cumulative fraction (y axis) of internal nodes exhibiting 778 

significant transcriptome divergence as the normalized depth (x axis) considered increased. 779 

Results from different samples were shown with different colors, as indicated by the color legend. 780 

(F) Same as panel E except that the analyses were limited to specific GO terms indicated on top of 781 

each panel. (G) We calculated the normalized depths (y axis) at which the divergence of specific 782 

functions is completed. GO terms enriched of marker genes in representative developmental 783 

stages (x axis and colors) were examined. Dots represent GO terms and triangles represent the 784 

average depth within the same-color group. Significant P values from between-group Wilcoxon 785 

Rank Sum test are labeled on top. 786 

Figure 3. Limited contribution of transcriptional memory in 787 

differentiation  788 

(A) Schematic diagram for the CLT-based estimation of transcriptional memory. (B) Expression 789 

variability in the real CLT (y axis) compared to that in the randomized CLT (y axis). Each dot 790 

represents a gene in a cell type. Dot color shows the fraction of cells within the cell type that express 791 

the gene, as indicated by the color scale on top. (C) A stacked histogram showing the distribution 792 

of the memory indices calculated. A filled bar represents those estimated from pluripotent cell types 793 

and an empty bar represents those estimated from progenitor cell types. Genes exhibiting strong 794 

transcriptional memory, i.e. those with a memory index ranking among the top 10% (dashed line), 795 

were red, while others were gray. The inset shows a zoomed-in view of the large memory index 796 
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region. (D) Among different cell types, the fraction (height of bar) of genes exhibiting high memory 797 

indices was compared. The bars are colored similarly to those in panel C. (E) Gene sets responsive 798 

to perturbation of individual transcription factors (x axis) were tested for the enrichment of genes 799 

exhibiting strong signal of transcriptional memory (see Methods). The top ten transcription factors 800 

with the highest combined enrichment score (y axis) were shown for each cell type. The statistical 801 

significance of enrichment according to Fisher’s exact test is indicated as *:P<0.05; **:P<0.01; 802 

***:P<0.001. 803 

Figure 4. Stable cell type composition across sub-clones supports 804 

robust development   805 

(A-C) In each panel for each of the CBRAD5 samples (names on top of the panel), the diversity of 806 

compositions of terminal cell types within sub-CLTs were estimated by a summed chi-square value 807 

(𝜒𝜒2) (see Methods) as indicated by the red arrows. The same summed 𝜒𝜒2 values were calculated 808 

for 1,000 randomized CLTs, whose distribution was shown as a blue histogram. The probability of 809 

a summed 𝜒𝜒2 value being smaller than the observation (red arrow) is indicated by the P values in 810 

the panel. (D) For 35 sub-CLTs in CBRAD5 samples, the normalized depths of their roots (y axis) 811 

and the sizes of the sub-CLTs (x axis) were plotted. These sub-CLTs display highly similar terminal 812 

cell type compositions (less than 10% deviation from 0.13, 0.39, 0.13 and 0.18 respectively for C6, 813 

C7, C9 and C10) (E) A schematic diagram showing a simple model of the functional robustness of 814 

the random (left) versus stereotyped (right) development against random necrosis (indicated by “X”). 815 

The robustness is quantified by the number of functional units (with cell type compositions indicated 816 

in the triangle) that can be formed by terminal cells surviving necrosis, as exemplified at the bottom. 817 

(F) Robustness (y axis) of the random (blue) versus stereotyped (green) development under different 818 

rate of necrosis (x axis), as estimated by the model in E. The statistical significance of student’s t-819 

test is indicated as ***:P<0.001.  820 

Figure 5. The heritability and of the stereotyped developmental 821 

program 822 

(A) The input (top) for DELTA includes two CLTs (query and subject) and the expression profiles 823 

of all terminal cells on these CLTs. DELTA uses a dynamic programming procedure (middle) to 824 

compare the two CLTs and identify homeomorphic sub-CLTs. The procedure has three phases, 825 

including (i) a cell pair scoring stage, (ii) a forward stage that maximizes the alignment scores by 826 

finding the best correspondence between terminal cells, and (iii) a backtracking stage for extracting 827 

the alignment behind the maximized scores. The output (lower right) is one or more aligned sub-828 

CLTs ordered by decreasing alignment scores. See Methods and Supplemental Texts for more 829 
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details. (B) A circular plot of the top 100 sub-CLT pairs found by mDELTA in each of the six 830 

pairwise comparisons among the CLTs from the three differentiating samples. In the outer circle, 831 

each sub-CLT is represented by a dot, with the color indicating its source sample. Each pair of 832 

homeomorphic sub-CLTs identified by mDELTA is shown by curved links between two 833 

corresponding dots, where inter-sample pairs/links are colored the same as the sample used as the 834 

query CLT, and intra-sample pairs/links are colored purple. A dot's size indicates how many links it 835 

has. Only sub-CLTs with at least one link are included. (C) One highly recurrent tree motif found 836 

in all three samples is shown by “densitree” plots. All sub-CLTs homeomorphic to a specific 837 

reference sub-CLT are extracted from mDELTA results in panel B. They were separated by their 838 

source sample as indicated on top of each plot. In each plot, the mDELTA-aligned topological 839 

structure of each sub-CLT (including the reference sub-CLT) is drawn with transparency on the left 840 

so that common topologies can be seen as darker lines. Each column of tiles on the right shows the 841 

DELTA-aligned terminal cell types (colored as the label on top) on one of the homeomorphic sub-842 

CLTs. The left-most column of tiles is always the reference sub-CLT. The number at the bottom 843 

indicates the number of sub-CLTs found as homeomorphic to the reference sub-CLT.  844 

 845 

  846 
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Supplementary Information 847 

Video S1. A typical alveolosphere formed by the directed differentiation procedure 848 

Figure S1. Reliability of the directed differentiation and experimental lineage tracing 849 

Figure S2. Quality of the simultaneous directed differentiation and lineage tracing 850 

Figure S3. Transcriptional divergence among sub-CLTs  851 

Figure S4. Transcriptional memory in individual cell types 852 

Figure S5. Heritability of descendent cell type compositions and single-cell transcriptomes 853 

Table S1. Designed lineage barcode sites and sgRNAs 854 

Table S2. Summary statistics of single-cell transcriptomes 855 

Table S3. Number of passes required versus sequencing quality of PacBio HiFi-reads 856 

Table S5. List of unique (cell barcode and UMI) lineage barcode alleles and their editing events 857 

Table S4. List of the representative lineage barcode of each cell by their editing events 858 

Table S6. Structure of the constructed cell lineage trees 859 

Table S7. List of analyzed GO terms enriched with stage-specific DEGs 860 

Table S8. List of primers used 861 
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Video S1. Alveolospheres developed on day 15 of the in vitro directed 863 

differentiation  864 

Following the sorting and replating of NKX2-1+ lung progenitors on day 15, alveolospheres are 865 

developed in 3D Matrigel culture with CK+DCI media within 3-7 days and maintained in CK+DCI 866 

media for weeks. These spheres are examined by Z stack live images on the Leica DMi8 867 

fluorescence microscope. 868 

Figure S1. Reliability of the directed differentiation and experimental 869 

lineage tracing 870 

(A) Verification of in vitro directed differentiation toward PLP at hallmark steps ranging from day 871 

0 (hESC), day 3 (definitive endoderm, with flow cytometry results below), day 6 (anterior foregut 872 

endoderm), day 15 (primordial lung progenitor, with flow cytometry results below) to day 20 (Lung 873 

alveolar type II epithelial cells, fluorescence imaging) by using the BU3 NGST (NKX2-1-GFP; 874 

SFTPC-tdTomato) iPS cell line. Bars at the bottom right corners indicate 50 μm. (B) Key steps of 875 

experimental lineage tracing for in vitro directed differentiation from several (~10) lineage tracer 876 

hESCs (sgRNA-mCherry; lineage barcode-GFP) to PLP are shown at the bottom. The process began 877 

with the selection of traceable colonies (GFP+ and mCherry+) by a 7-day culture, during which a 878 

brief Cas9 induction was applied to uniquely label the ancestor cells by the resulting mutations on 879 

the lineage barcode. The selected colonies were digested and plated again at ~10 cells per well for 880 

the subsequent directed differentiation culture, which lasted for 10 days to produce ~5000 cells. On 881 

top, a typical sample is shown with bright field images at several timepoints, with the scale bar 882 

placed at the bottom right corner. (C) Cas9 (left), the lineage barcode (middle), and sgRNAs (right) 883 

are sufficiently expressed/induced in lineage tracer hESCs. The error bars indicate the standard error 884 

of three replicates. (D) The frequency of inter-site (red) and non-inter-site (blue) deletions found in 885 

edited barcode of lineage tracer hESCs. (E) The most frequent editing events are evenly dispersed 886 

within the lineage barcode. Editing events are named (x axis) by length (the number before I/D), 887 

type (I: insertion; D: deletion) and position (the number after the underline). (F) The frequency of 888 

inter-site deletion events of different lengths (in terms of the number of editing sites) among all 889 

inter-site deletion events. 890 

Figure S2. Quality of the simultaneous directed differentiation and 891 

lineage tracing. 892 

(A) Morphology and fluorescence imaging of differentiating/CBRAD5 and hESC self-renewal 893 

samples on day 10. (B) Overview of single-cell transcriptomes measured for differentiating and 894 
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hESC samples. (C) Feature plots for average expression level of marker DEGs found in previous 895 

microarray-based transcriptomes of specific developmental stages33, based on UMAP visualization 896 

of single-cell transcriptomes as described in Figure 1B. The specific marker genes were listed below 897 

the title and above the plot. (D) Sequencing quality and accuracy of PacBio HiFi-reads given the 898 

required number of passes. Error bars indicates standard deviation among ZMWs. (E) Tree 899 

representation of the CLTs shown in Figure 1F. (F) Bootstrap support percentages for the internal 900 

nodes of the CLTs in each sample are presented as histograms. The sample names and median 901 

bootstrap support are shown in the plot titles and in-plot texts, respectively, with the median support 902 

further indicated by a red vertical dashed line. 903 

Figure S3. Transcriptional divergence among sub-CLTs 904 

(A) Schematic diagram for the normalized depth of a node (see Methods). (B) Same as Figure 2F 905 

except that the analyses were limited to specific GO terms indicated on top of each panel. 906 

Figure S4. Transcriptional memory in individual cell types 907 

(A and B) Similar to Figure 3B and C, except that each major cell type was plotted separately. 908 

Figure S5. Heritability of descendent cell type compositions and 909 

single-cell transcriptomes 910 

The Spearman’s Correlation Coefficient (y axis) between relatedness and phenotypic divergence, a 911 

proxy of the phenotypic heritability, is calculated for all pairs of relevant nodes (see Methods). For 912 

the differentiating samples (x axis), the correlation and therefore phenotypic heritability is always 913 

stronger for the phenotype of descendent cell type components (dots) compared to single-cell 914 

transcriptomes (triangles). The correlation is nevertheless indistinguishable between the two 915 

phenotypes in the non-differentiating sample. A filled or empty point is used to indicate whether the 916 

correlation is statistically significant. A slight offset has been applied to the points of the two 917 

phenotypes in order to avoid overplotting. 918 
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