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Introduction

One of the most remarkable parts of the first volume of "Introduction to
infinitesimal analysis" [1] by Leonhard Euler is §§155-164 of the ninth
chapter, where this great mathematician gives the factorization into an
infinite product of linear and quadratic factors for a selection of transcendental
functions, among which are the hyperbolic and circular sine functions. For
these last Euler derives the formulae

(1)

,2)

It is clear that these formulae are equivalent, as one can be derived from the
other by substituting ix for x.

By itself the factorization of the sine functions could hardly be called
new. Thus our motivation for this work after the passage of two and a half
centuries is the astonishing technique used to obtain them in [ 1 ] .
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Euler's computations on this subject combine simplicity, ease, and intuition
with a lack of rigour at almost every step of the argument (arising in freely
going over to the infinite), so that if we take into account the beauty of the
result, which was remarkable for its time, it would be hard to choose an
analogue in mathematical research.

Of course, following Euler, completely rigorous and correct proofs of (1)
and (2) were obtained, both in the framework of analysis ([3], 407) and as
a consequence of the theory of analytic functions ([4], Ch. VII). More
recently a rigorous derivation has been given using non-standard analysis—
the theory in which infinitely large and infinitely small quantities in the
sense of Leibniz are allowed (these arguments are introduced in §3).

However, all these proofs can be characterized by the fact that, in order
to prove the required result, they use methods that are very different from
the constructions in [ 1 ] . Thus they do not answer the question posed in
our title. We give a new derivation of (1) and (2) which, by contrast to
those mentioned above, follows Euler's calculations punctiliously. All the
ambiguities of Euler's construction are justified and made precise using
general principles of classical analysis and non-standard analysis. From this
proof we deduce the correctness of the method Euler gave for the factorization
of the trancendental functions sine and sinh into infinite products.

§ 1 . Euler's method. The basic statements

The arguments used in Euler's book are so remarkable that we will
reproduce them almost word for word, putting extracts from [ 1 ] in
quotation marks, and making only one change: the symbol /, which Euler
used to denote an infinitely large number, will be replaced by ω.

For simplicity we will divide our presentation into items that correspond
to the key elements of Euler's construction. These divisions are not made
in [1].

Euler begins the demonstration of his method in §155 with an example
where the required result is not obtained directly, but this relative failure
unexpectedly proves to be an additional argument in the later more successful
calculation.

1. We try to factorize the function ex - 1 (this is the example that concerns

us), starting from the formula

0) «·
where ω is a natural number that is infinitely large.

2. Euler uses the possibility (established in § 151 of [ 1 ]) of factorizing
αω - bw into factors

(4) tk = a2 + b2~-2abcos— , where 0<2λ·<ω,
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to which we add a factor a - b, and if ω is an even number, a factor a + b
also.

3. In the case under consideration we take a = 1 + χ/ω and b — \, and
then the factors (4) take the form

Later there is a transformation of tk in which

(6) the factor c«s-^2- is changed to 1 —

"to reduce to zero the remaining terms because ω is infinite". Euler intends
that "the arc 2&7τ/ω is infinitely small" and so the remaining terms in the
Maclaurin series for the cosine "vanish" by comparison with the first two
taken in (6). We obtain

In addition we have a factor a- b - χ/ω, and if ω is even, a factor
a+ b = 2 + χ/ω, which Euler did not in fact consider, as the fraction χ/ω is
infinitely small.

4. "In view of this", writes Euler, "apart from the factor x, the expression
ex — 1 will have infinitely many factors

(8) ( l + 7 i L 4 . _ L ) ( i + ^ L + _L) ( i + ^L_!__L) . . . , and so on.

These all include the infinitely small term χ/ω. As this term is in all the
factors, and multiplying through by ω/2 produces a term x/2, it cannot be
omitted".

5. "To avoid this difficulty" in § 156 Euler proceeds to look at the function

(3a) 2 sinh* = * * _ ^ =

where again ω is an infinitely large natural number.

6. For this function we take a = l + —,b — i — —, and then
ω ' ω

After the transformation (6) these factors take the form

(7a) ik = i*!jli ( l - f _ ^ L _ - 4 ) .
v ' Λ ω- V λ-2π2 ω2 /

7. "Thus, the function ex — e~x can be divided by

(8a) ΐ + 7 £ _ _ . £ ,
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where the term χ2/ω2 can be omitted without danger, since even after
multiplying by ω it remains infinitely small." Moreover a~b = 2x/ω, that
is, Euler continues, "the first factor is x. Hence, if we put these factors in
order, we have

(9a, t?i_

8. "By multiplying through by an appropriate constant, I bring the separate
factors into a form so that under the actual multiplication we obtain the
first term x." Euler appeals to the Maclaurin series for the hyperbolic sine
function, obtaining it from the series for the exponential

9. Thus we have completed the factorization of sinh. Next, in §157 of
[ 1 ] , by considering the factors of the expression α ω + bw in a suitable way a
factorization of the hyperbolic cosine is obtained. Then in § 158, substituting
the "imaginary quantity" ix for x, the factorizations for sine (formula (2))
and cosine are obtained.

The rest of Chapter IX (§ § 159-164) in [1] contains factorizations for
more difficult combinations of exponentials and trigonometric functions.
Euler used these results in the later chapters of [ 1] and also in "Differential
Calculus" [2] and other works, to sum numerical series, and for other
purposes.

But is the approach we have outlined correct? This question appears
rather naive, because almost every point raises problems of rigour and
justification. At the same time, a modern mathematician should at least ask
the author of [1] the following questions:

(A) What is an infinitely large number and in what sense should we
understand (3) and (3a)?

(B) If we agree to understand an infinitely large number as some special
numerical entity, larger than any ordinary "finite" number, then how can we
apply the result in item 2 on factorization to such a number?

(C) Further, how can we verify that (6) is valid, and also the expressions
for tk obtained from it (items 3 and 6) if we have in view only finite
values of k. In this case the arc 2&π/ω is in fact infinitely small, and the
factors (5) and (7) and also (5a) and (7a) are of the second order in ω" 1 and
differ only by terms of the fourth and higher orders; in fact, in each pair
they can be considered interchangeably (at least from our point of view).
But how can k be infinitely large with the same order of magnitude as ω,
when the ratio of k to ω is no longer infinitely small? This is a very
controversial point, and Euler's proof would appear to be consistent with
neither rigour nor informal intuition.

(D) How can we make rigorous the statement that it is not possible to
omit "the infinitely small term χ / ω " from the factors in the product (6),
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and that it is possible to omit the corresponding term χ2/ω2 in (6a)? Euler's
explanation only works on an intuitive level.

(E) Can we correctly determine the magnitude of the numerical factor in
(9a) by comparing the coefficients of χ in the product (9a) and the
Maclaurin series for sinh x, or in other words, can the known properties of
polynomials be extended to series and infinite products if they are considered
as "polynomials of infinitely large degree"?

(F) Where do the constant coefficients 4&2π2/ω2 (in (7a) for tk) and 2/ω
for χ in the final term in (9a) disappear to? Their product, according to the
calculated magnitude of the coefficients, should equal 2 (or 4 if we also have
the factor a + b = 2), but a simple calculation using Stirling's formula

(see §5) shows that this product is infinite. How do we remove this
discrepancy?

(G) Is it possible to bring Euler's incomplete calculation for ex - 1 to a
conclusion (items 3 and 4)? In principle this question does not have a
direct bearing on the analysis of the deduction of (1) and (2), but an answer
is necessary if we want to fully understand Euler's method.

(H) In writing down (9a) we implied a product of factors 1 + x2/kV with
finite natural numbers k. Euler's point of view is not entirely clear, but in
any case we need to show what the situation is for factors tk corresponding
to infinitely large indices k in the composition of the final formula (9a).

Thus, the aim of this paper is to obtain an exhaustive explanation of all
these controversial points, and carry out carefully and completely rigorously
all the constructions for the factorization of the hyperbolic and circular sine
functions into infinite products obtained by Euler. In our view this will be
both sufficient and necessary in order to draw any conclusions on the
correctness of Euler's method.

§2. Non-standard analysis

The starting point for the construction presented in § 1 is the use of an
infinitely large natural number, and this is generally a key aspect for
choosing a path to justify all the arguments.

It is well known that the infinitely large and infinitely small constants (or,
taking the terminology from logic and philosophy, "actuals" that is, given in
complete form) were widely, though not without hesitation, used by Euler
and his contemporaries, but were banished from mathematics in the course
of the reconstruction of the foundations of analysis carried out in the 19th
century. To be precise, these concepts had a quite different meaning, and
were interpreted as an indication of the convergence of a variable quantity
to infinity, or to zero.

In principle, with this present-day understanding of infinity it is possible
to give a correct and rigorous interpretation to Euler's proof of (1) and (2).
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However, to do this we would need such a fundamental reconstruction of
all the calculations that it is much more attractive, and more in the spirit
and letter of Euler's work, to give another interpretation of mathematical
infinity, known as non-standard analysis.

The system with this name was developed in the early 60's by Robinson
[5]. A detailed account of the foundations of non-standard analysis can be
found in several works, of which a number are in Russian [5] -[8] (with an
extensive bibliography in [8]). Here we only go into those aspects of non-
standard analysis that are necessary to establish our results, and we present
them in the simplest possible way, without pretending to strictly adhere to
this or that version of the rigorous axiomatics of non-standard analysis
([ 10], [11]) as far as the formal details are concerned.

In the framework of the system we are discussing, ordinary real and
complex numbers are called standard. However, it is postulated that non-
standard numbers also exist, and that these are divided into three categories:

1) Infinite numbers. The number ω is infinite if Ι ω I > c for any
standard real number c.

2) Infinitesimal numbers. The number α is infinitesimal if j α | < ε for
any standard real ε > 0. According to this definition, 0 is an infinitesimal.
Indeed, it is the only standard number that at the same time is infinitesimal.

3) Numbers of the form (standard) + (infinitesimal but non-zero), which
are appropriately called near-standard. It is clear that all the infinitesimals
apart from zero are in this category.

The near-standard numbers are combined with the standard numbers
under the general title of finite numbers, by contrast with infinite numbers.

It is very important that the extended continuum *R of non-standard
analysis, which includes the non-standard numbers together with the
standard ones, has all the intrinsic properties of the standard continuum.
(We consider as "intrinsic" any mathematical property that can be formulated
without appealing to standardness or non-standardness. Without this proviso
it is possible to obtain a contradiction; see below.) This fundamental
statement—the transfer principle—enables us to deduce the existence of the
infinite natural number ω. Indeed, in the standard continuum any real
number 5 is dominated by the natural number ω. According to the transfer
principle, this is also true in the extended continuum. We apply it to any
infinite real number s > 0 and we obtain the infinite natural number ω > s.

For natural numbers the concepts "standard" and "finite" are equivalent,
so that a non-standard sequence of natural numbers begins with standard
natural numbers, which form a proper initial segment, and is then continued
by the infinite natural numbers. It is clear that there is no maximum in the
set of finite natural numbers, and no minimum in the set of infinite numbers
(otherwise what do we get by adding or subtracting one?).

There is no contradiction to the transfer principle in this violation of the
principle of induction, as the property of "being finite" is not intrinsic.
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For those sets that have been extracted from the sequence of non-standard
natural numbers because of their intrinsic (that is, ordinary mathematical)
properties, the principle of induction follows as a corollary of the transfer
principle.

In general the transfer principle implies that we can manipulate non-
standard numbers in exactly the same way as the elements of the ordinary
"standard" continuum, at least when we are considering ordinary mathematical
sets and relations.

The system of non-standard analysis enabled Robinson and his followers
to make the foundations of the differential and integral calculus of Leibniz
and Euler completely mathematically rigorous, by using infinite numbers and
infinitesimals. In non-standard analysis some important mathematical
concepts take on an unusual form. In particular, the non-standard definition
of a limit becomes:

lim an — A when αω ~ A for any infinite natural index ω.

The sign ~ denotes infinitesimal closeness, that is,
u ~ ν when the difference u - ν is infinitesimal (in particular, it is

possible that it is exactly zero).

This definition of limit is equivalent to the standard one. Now the start
of Euler's calculations becomes clear. For in formulae (3) and (3a) we
replace the equals sign by ex. Then

(10) e 1 ^ ( l + ^ - ) ω and ex — e~x ~ 2sinhw x,

where

for any infinite natural number ω and any standard real or complex x. It is
clear that our aim is to show that

V

(11) sinho-~x[{ (i+η^τ)

for any infinite natural number ν and any standard real or complex x.
Formula (11) is the non-standard analogue and equivalent of (1).

We now present the proof of what we were aiming for. This proof was
obtained by Luxemburg [9], and differs significantly from Euler's arguments.
It does not clear up all the questions we raised earlier, but all the same it is
simple enough and serves as a good introduction to the analysis of Euler's
calculations that follows.
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§3. The derivation of Euler's factorizations using non-standard analysis

We fix a standard complex number x, where we assume that χ Φ km for
any integer k. This is without loss of generality, since (1) is obvious if
χ = km.

We also fix an infinite natural number v, for which (11) is to be proved.
We set ω = 2v+ 1, and we try to factorize the polynomial sinhwx, which
by (10) approximates the function sinh χ with an infinitesimal error in the
standard x. The transfer principle allows us to apply the statement on
factorization given in item 2 of § 1 of this polynomial of infinitely large
degree. Accordingly, the factors (5a) can be reduced to the form

— 2 ( 1 -

where

ω2 tan2 — '
ω

In addition to these factors (for which 1 < k < v) we also have the factor
a~b = 2x1 ω. Thus

V V

The resulting equality represents an identity transformation of polynomials
in x, and then by comparing the coefficient of χ on the left-hand side
(where it equals 1) and right-hand side it follows that the expression in the
square brackets equals 2, and so

V

(12) 8ΐηηω:τ = ζ Π ( j + I c f r h)

The next theorem guarantees that we can remove the term hk from this
expression. Although it does not appear in [9], it is clear that in general it
parallels the arguments introduced there. We recall that ν is a fixed infinite
natural number, and for simplicity we assume that the symbols ^ and

V V

without indication of the limits denote the operations V and \\.

Theorem. Let each natural number k, 1 < k < v, be put in correspondence
with the complex (possibly non-standard) numbers pk and uk. Firstly, if
2 | ph | ~ 0 and the following condition is satisfied:

(a) there is a real standard number ε > 0 such that \ uh \ > ε for all k

with 1 «ζ k < v, then we have: [Jj (uh + />*)/[! uh) ~ 1.
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Secondly, for the sum 2 I Ph I t 0 be infinitesimal it is sufficient that the
following two conditions hold:

(b) pk ~ 0 for each finite k, and
(c) there is a real standard number γ > 0 such that | ph | ^ γλ—2 for all

infinite k < v.

(Remark. The correspondence mentioned in the hypotheses of the theorem
is assumed to be intrinsic, in the sense that this concept was explained in § 1.
In other words, the rule that defines pk and uk with respect to the index k
must not be dependent on the concept of standardness. They are of the
same type as, for example, in (13) below and all the other applications of
the theorem in this paper. However, if we define pk = 1 or 0 depending on
whether k is finite or infinite, then the correspondence will not be intrinsic.

In the proof of the theorem that we give here, the requirement that the
correspondence be intrinsic is only used in order to guarantee that operations

such as T] | ph | are carried out in the system of non-standard analysis, for
which, strictly speaking, we need to use the transfer principle. For the
"exterior" collection of numbers pk introduced a few lines earlier the

operation T] j pk | is not defined in the non-standard domain *R.)

Proof of the theorem. We simplify matters by setting zk = pk/uk. Then

Σ Ι ζ > . Ι < τ Σ ΙΡ*Ι· that is, 2 |2«,l^0.

However, multiplying out the brackets on the right-hand side of

we obtain the sum of all possible products of the numbers zk with each
other. It is clear that the absolute value of this sum will not decrease if we
replace each zk by \zk\. Thus, also taking into account that \ + r < exp(r)
for any real r, we obtain

\D\ < Π ( 1 + l* f c | ) - i ^ exp ( Σ | J f c | ) - l ,

that is, D ~ 0, since, as we saw above, J] | zh | is infinitesimal.
In the proof of the second part of the theorem (that (b) and (c) are

sufficient for 2 I Ph I to be infinitesimal) let us agree to denote the
V (1 "

expressions 2 a n d 2 ^ y 2 anc^ S respectively.

Step 1. The number ν is a natural number in the system of non-standard
analysis, and thus any "intrinsic" set of ν real numbers contains a largest
member (by the transfer principle). The number ρ = max | phi\ is

infinitesimal, since each pk is infinitesimal because of (b) and (c). We let η

denote the integer part of the (infinite) number p~Vl (if ρ = 0, we take
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η = ν). Then

Step 2. We now show that the complementary sum 2 I Pk I is
infinitesimal. We use the following estimate: n+i

V

Σ IP* ι < τ Σ k'2 < y \ i'2 rfi < τ»"1·
7 1 + 1 I) + 1 71

7i

Thus, V | ph | ~ 0 because η is infinite, and since in addition ^ | />h | ~ 0,
n+i 7i

the whole sum V | p f t | = V ι^ι — ν j Pk \ i s also infinitesimal. This
. +1

completes the proof of the theorem.
In order to apply the theorem to the number ν fixed at the start of §3

and the numbers

(13) „„ = ! + £ £
we must show that the corresponding conditions are satisfied.

(a) For numbers k such that \k\ > \x\ we have \uk\ > 1/2. Thus for ε we
can take the smaller of the numbers 1/2 and

min{|u h | : —\x\ ^ k < \x\).

Under this definition ε > 0, since at least one of the uk is non-zero (by
hypothesis χ does not have the form km).

(b) If k is finite, then fai/co ca 0, since ω is infinite. But (tan α)/α cz. 1
for any infinitesimal a. Therefore hh ~ 1 and p f t ~ 0 for finite k.

(c) In the quadrant 0 < a < π/2 the inequality 0 < a. < tan α holds, and
so taking α = kitjω we obtain 0 < hk < 1 for 1 < k < v. Consequently,
I Pk I <.yk-2, where γ = \χ\2/π2.

Thus, we can in fact apply the theorem to the set of numbers in (13), and
this means that (11) is a consequence of (12) and the relation (10). This
completes the derivation of (11).

It is obvious that the proof we have given clarifies some elements of
Euler's calculations given in § 1. In particular, the answer to question (A),
given by the concepts of non-standard analysis and the relation (10), even if
it does not correspond completely to Euler's point of view (given in detail in
"Differential calculus" [2]), is in any case sufficiently in accordance with
his method of reasoning about infinity. Question (B) is completely answered
on the basis of the transfer principle. But the later calculations of Luxemburg
are essentially removed from the construction in [ 1 ], thus avoiding all the
remaining questions.
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§4. Euler's construction in the system of non-standard analysis

Now, keeping in mind the main problem of the paper, we look carefully
at Euler's construction, in the form given in §1, and give a justification in
the system of non-standard analysis of each of the separate key items in § 1.
On the way we try to answer questions (A)-(E). (The remaining three
questions will be dealt with later.)

First, we take χ to be a standard real or complex number, with χ Φ km
for any integer k. Euler did not make this proviso, but it is unimportant, as
when χ - km the result we are interested in is obvious.

Items 1 and 5. The concept of an infinite number and the sense of
equalities (3) and (3a) have already been explained. In particular, (3a) can
be understood as the second relation in (10), where ω is an infinite natural
number. This answers (A), and is also the starting point for all the
constructions that are aimed at deriving (1) in the form of (11), where an
appropriate choice for ν is the integer part of ( ω - l)/2, so that ω = 2v+ 1
or ω = 2v+ 2. We shall see how this is done.

Item 2. We have already discussed the answer to (B) at the end of §3.
Thus, the approximating polynomial

is a product of factors tk of the form (5a) (1 < k < v) together with the
factor 2x/ω, and if ω = 2 ^ + 2 is even, a constant factor 2.

Items 3 and 4, which do not touch on the factorization of the sines directly,
will be left until §6.

Item 6. We shall now look at some peculiarities of the transformation (6)
when it is applied to the factors (5a). Replacing cos 2/or/ω by 1 - 2&2π2/ω2,
Euler wrote down the sum of all the remaining terms of the Maclaurin series
for cos α (well known at that time, and derived in [ 1 ], § 134) for a = 2 kit Ι ω.
In what follows we denote this sum by 2k2n2ak/u)2, where, consequently,

In this notation the correct form of the factor (5a) will be

Thus,

(16)

where the constant is independent of* and TJ denotes Π just as in §3.
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But Euler, applying (6), obtained a different form:

(17)

where again the constant is independent of x. This step is justified by
applying the theorem in the last section to the collection of numbers

(18) u k = l +

Let us check that the hypotheses of the theorem are satisfied.
(a) The term χ 2 / ω 2 in uk is infinitesimal for standard χ and infinite ω,

and hence the arguments given in §3 to show that (a) holds for numbers of
the form (14) are also valid here.

(b) If k is finite, then Απ/ω ~ Ο and ak ~ 0, since (sin α)/α ~ 1 for
infinitesimal a. Thus, in this case ph ~ 0.

(c) In the sector 0 < α < π/2 we have 2/π < (sin α)/α < 1. We set
α = /τπ/ω. Then, by definition (16),

and we see that we can choose γ = 2\x\2/ir2 to estimate pk.
Thus, the theorem in §3 can be applied, and so (17) follows from (16)

(with the same constant).

Remark 1. It is clear that, as far as Euler was concerned, making the
transformation (6) in the factors (5a) reduced to multiplying the true
product of the factors (15) by a constant (whilst rejecting the coefficients
1 - ak that are independent of x) and to replacing the quadratic factors by
simpler ones; this amounts to multiplying by a coefficient which, although
it depends on x, is infinitely close to 1 for any χ of the form under
consideration. In the given case these changes do not affect the final result,
since the constants can all be chosen to be equal from other considerations.
This also answers question (C): the transformation (6) remains infinitely
close not in the absolute sense, but to within a constant factor.

Remark 2. Some of the deficiencies in our justification of the transition
from (16) to (17) can be overcome by using (19), which is simple but not
so obvious and, which is the main thing, completely missing from Euler's
computations. This estimate is derived here on the basis of the concrete
properties of the cosine function, and it may seem that Euler was rather
lucky in that 2/π < (sin a)/a < 1 in the quadrant 0 < α < π/2, which is the
starting point for (19). But actually the fact that the fraction ak/(\ -ak)
can be bounded above by a standard number may be shown by completely
different arguments.

For suppose on the contrary that ah ~ 1 for some k. Then cos (2Απ/ω) CU 1,
by the definition of ak, that is, 2kn/w esc 0. However, by definition, ak must
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be infinitesimal for infinitesimal α = 2&π/ω (it has a factor a2 in it), and
this contradicts the original hypothesis that ak ~ 1. In this method of
reasoning we only use quite general facts about Maclaurin series, and also
the remark that the equation cos a — 1 has the unique solution a = 0 in the
quadrant 0 < a < π/2.

Item 7. Here we give another simplification of the factors, and (17) is
transformed to

V

(20) s i n h ^ ^ C o n s t - i β ( l + - ^ r ) .

This change is quite easily justified by the theorem in §3 with

uh = 1 + xVk2n2, ph = —χ2/ω2,

where in this case

Σ I Pk I = ν*2/ω2 ~ 0,

that is, essentially, just as in Euler's work, everything reduces to the fact
that the term χ 2 /ω 2 remains infinitesimal even after being multiplied by ν
(but ν/ω ~ 1/2).

Thus, Euler's arguments that we mentioned in question (D) can be
completely justified insofar as they concern the factors in (6a).

Item 8. Euler drew the conclusion that the constant in (20) was equal to 1,
based on a comparison between the infinite product and the Maclaurin series
for sinh x. In principle, the size of the constant can be determined without
this. In fact, (16) is obtained by an identity transformation of the polynomial,
so that the constant in (16) is precisely equal to 1. Now the transition to
(17) and then to (20) is carried out by using the theorem of §3, and so the
size of the constant is unchanged. Nonetheless, since we want to justify
Euler's calculations per se, we need to explain what the basis for comparing
the coefficients is.

For convenience we introduce the following notation:

= Σ -iaqpur, &.<*>= Π Ο +

Then for infinite η and standard χ Φ km we have

(22) xPn(x)~unhx~CxQn{x),

where C is the constant in (20). In fact, the left-hand relation is the non-
standard analogue and equivalent of the decomposition

sinhx = x ( l + | ^ + - f i+. . . )
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(see the end of §2), and the right-hand one is the derivative of (20) (for
η = v) and (10). If in (22) we divide through by x, and again take η = ν,
we obtain

(23) Pv(x)~CQv(x) for standard x^kni.

Formally we cannot put χ = 0 here, but in fact we would like to, since
ΛΑΟ) = Qv(0) = 1, and we would then find that C = 1. If Pv and Qv were
standard polynomials, and (23) were satisfied with equality, then the
required result would be given by the following elementary argument, which
it is completely possible that Euler used to obtain the comparison of the
coefficients:

"Choosing χ Φ 0 sufficiently small, we can arrange that the values of
Pv(x) and Qv(x) are arbitrarily close to Pv(0) and Qv(0), respectively. But
then Pv(x) = CQv{x), that is, we find that Pv(0) and CQV(O) are arbitrarily
close to each other, that is, their values are equal, which is what we
required."

We shall try to apply this line of argument to our problem.
First we must choose a "sufficiently small" value of x. In particular, (23)

will be satisfied if χ = m"1, where m is a finite natural number, that is, for
such m

A simple argument from the proof of the theorem in §3 (the first step)
shows that this inequality remains true for some infinite m, and then setting
χ = m"1 we find that Pv{x) ^ CQv(x) where χ is infinitesimal.

Now, in order to show that C ~ 1, it is enough to use the following fact:

(24) Ρ (χ) ~ 1 ~ CO (x).

The proof of (24) reduces to simple estimates:

2) \QV ( * ) - 1 Κ exp ( J ^ (|*|2/ft*n

e x p ( | z | 2 I ! (I/A·2*2)) — 1 ̂  exp (|x|2) — 1 ̂  0.

{Remark. It can be shown that whether the first estimate holds depends
essentially on the actual form of the coefficients ak = \j(2k+ 1)! in the
polynomial Pv, since we have used the fact that they are bounded. However,
this can be obtained directly from (22). Indeed, if k «ζ ν is infinite, then

ak = Ph (1) — /Vi (1) =* sinh 1 - sinh 1 = 0,

and so ojt ~ 0 for infinite k. Thus, the largest natural number k < ν such
that \ak\> 1 must be finite. We now take as the bounding number Μ the
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largest of the numbers 1, \ao\, ia j , ..., \ak I. The number Μ is finite, and
\ak I < Μ for any k < v.)

Thus, we have shown that C ~ 1, and so we can set the constant C in
(20) simply equal to 1. If we now recall (10), we obtain our final result:

(25) sinhz-zil (l-

This completes our analysis of item 8 of Euler's arguments, and on the
way we have also cleared up the points discussed in question (E).

Item 9 is of no interest, and we do not need to consider it.
Thus we have shown that Euler's construction for the factorization of the

hyperbolic and circular sine functions into an infinite product is correct, or,
more precisely, can be put on a completely rigorous and correct footing on
the basis of:

1) some elementary facts from mathematical analysis, such as the
convergence of the series y]k~'- or the fact that the ratio of sin α to α tends
to 1 as a -*• 0;

2) some simple estimates based on these facts;
3) the setting of non-standard analysis, which more or less adequately

interprets the methods characteristic to Euler of dealing with infinity in
mathematical analysis.

This also gives us the courage to regard the main thesis of this paper,
namely that Euler's methods were right, as well-founded.

Having thus dealt with the basic problem we now dwell in more detail on
some of the questions we considered above only to the extent that they
directly concerned Euler's constructions. However, as we hope to show,
they deserve more attention. We will look at (F), (G), (H) together.

§5. Factors and coefficients in Euler's construction

In this section it is a question of the ambiguity in question (F) from § 1.
First we consider constant coefficients for factors of the form (7a) and
present the calculation that gives an infinitely large quantity for their
product.

For definiteness, suppose that ω is odd: ω = 2v+ \. We apply Stirling's
formula \·! ~ v ve~ v ]/"2πν, where the notation r ~ q means that rlq ~ 1. Thus,

ω 11 ω2 ~ ω« ~ e 2v w <u —
h—i

(2ν) 2 ν + 1 · 2 π ω 2.πω

9 JL

that is, it is an infinite quantity, and in no way has the value 2 which
follows from comparing indices.
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This incongruity has a simple explanation: it is enough to look at the
correct form of (15) for the factors tk, from which it is clear that in the
structure of the constant coefficient, besides the term 4£2π2/ω2, we also
have a term 1 — ak, which Euler did not take into account. These numbers
1 — ak multiplied together (1 < k < v) give an infinitesimal quantity which
exactly corresponds to the calculated value 2πω/βω in the sense that the
generalized product will equal 2. This comes from the fact that

and the product of these factors (with the additional factor 2/ω), calculated
in §3, is exactly equal to 2.

§6. A factorization that Euler did not want to complete

We now consider the invalid argument used by Euler in order to factorize
ex - 1 (items 3 and 4 of §1). It is not impossible that the famous
author of "Introduction to infinitesimal analysis" assumed this calculation to
be a consequence of the basic result—the factorization of the hyperbolic sine
function—as an additional and intuitive argument to justify the possibility of
omitting the term χ2/ω2 from the factors of (8a). Nonetheless, Euler's
arguments can be completed to give the desired result, as we shall now show.

First we introduce the correct form of the factorization (in standard
notation):

(20) e*-i = e*

After a comparison with (8) we can observe that if, notwithstanding Euler's
assertion, we omit the term χ/ω from the factors in (8), then we obtain an
incorrect result, that differs from (26) by a factor ex!2. Further, the same

factor can be considered as /i + — ) ω / in correspondence with (3), where

ω/2 is the total number of factors of (8) (to be precise, it is the integer part
of ( ω - 1)/2). Thus, the way to obtain the factorization (26) may be to
change each factor of (8) into a product of two factors:

We can try to imagine how Euler would have carried through his argument if
he had asked himself such a question.

(A continuation of the discussion of item 4.) "In order to overcome
the difficulties that have arisen, we represent each of the resulting factors as
a product of two cofactors, the first of which has, for all the factors, the
common form

—



Euler's method for the factorization of the sine function into an infinite product 81

and which for ω/2 such cofactors gives a value

and the second cofactors form the product

The additional term formed from this representation

χ- χ x3

can be omitted without risk, because, as ω is infinite, it is infinitesimal
relative to the remainder term x2/4k2ir2:

_ / x°~ — T ^ f i "

(All of this argument is just a poor reflection of the depth of Euler's work
and the refined style of his translators. The only apology we make for our
attempt is that we consider it a natural desire to have the role, unusual in
present-day mathematics, of the direct successor to, and interpreter of, the
ideas of the great man Euler, albeit in connection with questions which have
little current importance, and are in general not very significant.)

We now show how the relevant derivation of (26), which consists of
Euler's arguments (items 3 and 4 of § 1) and their possible conclusion
that we have suggested, becomes rigorous from the viewpoint of non-
standard analysis.

We suppose, just as before, that ω is an infinite natural number, and ν is
the integer part of ( ω - l)/2. We fix a standard χ Φ km. The factor (5)
takes the form

1h = — ; — (1 — ah) I 1 + -rrs-j--! h - j — ., •:••. I ,

where ak is given by (14). The fourth term in the right-hand bracket, when
we multiply out the factors tk, can be dropped according to the theorem in
§3, in the same way as we did in §4 (in going from (16) to (17)). Besides
this, on the same basis, we can add the term we need, α /̂4Α:2π2ω (it satisfies
requirements (b) and (c) of the theorem in §3). Hence,

- ! « Const·* Π (1 +

V

where the product J] is taken to mean Jf in the non-standard version and

Π in the standard one. Finally, by analogy with the correspondingh—l
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point in §4, we can see that the constant is infinitely close to one, and so,
omitting the constant, we arrive at the required factorization (26).

This shows the correctness of the deduction of the factorization (26) for
the function ex - 1 that Euler outlined but did not carry through to its
conclusion. It answers question (G) of § 1.

§7. The summation of infinitesimals

In this section we analyse in more detail than we did in §3 the part of
the theorem there that asserts that the sum

Σ \ΡΔ = Σ ι/>* ι

is infinitesimal under the hypotheses
(b) the term pk is infinitesimal for any finite index k;
(c) there is a standard real number j > 0 such that for any infinite k we

have | pfc Κ yk~2.
The method of proof of this proposition consists firstly in the fact that

that the sum

Σ
ft=l

is infinitesimal for suitable infinite η < ν, and secondly that the additional
sum

Σ l ^ l = Σ |ρ»!

is also infinitesimal, in fact for any infinite η <v. The first statement is
based on hypotheses (b) and (c). The second is proved by means of a very
simple estimate, using hypothesis (c), and we can show that the result
remains true in the case when, in place of the bound given in (c), we bound
the numbers I pk I above by the terms of any series of positive terms that is
convergent in the standard sense.

In this argument we can see some incompatibility, which is expressed in
the indeterminate choice of the "critical" value n: any infinite η < η can
be taken in place of n. Here we would like to use the smallest η that will
work in the proof, that is, in this case, simply the smallest of the infinite
natural numbers n. The trouble with this is that in the system of non-
standard analysis there is no such number, and indeed, the assumption that
it exists immediately leads to a contradiction (see §2).

We shall assume nonetheless that there is a "number" °°, whose nature is
ambiguous, that lies on the number axis between the finite and the infinite
numbers. In this case its inverse "number" oo -1 will separate the infinitesimal
numbers from the positive numbers that are not infinitesimal.



Euler's method for the factorization of the sine function into an infinite product 83

We now introduce a line of argument whose aim is to show that the sum

Σ | Ph I is infinitesimal under hypotheses (b) and (c).
The summation for k < °° is carried out separately. To estimate the first

sum, we note that for any finite k, since the term pk is infinitesimal, we
i_

have | pk | < oo"1, and further, | pk | <; oo--, because | pk | 2 is infinitesimal
σο

together with pk. Hence the quantity ν j ph | is infinitesimal, as the sum of

00 terms that do not exceed σο-2.
The estimate of the second sum is an exact repetition of that given in §3:

V

Σ ΙΡ*1= Σ iPfcKvJ ξ-2ώ|<γοο-«,
oo + l oo<fc<v 00

and hence it is also infinitesimal.
One may suppose that this " p r o o f would have been more readily

acceptable to Euler than the more precise arguments in §3, where °° was
interpreted as a "sufficiently small" infinite natural number n. What this
"ideal" interpretation for °° may be we shall see below, but meanwhile we
mention two more arguments.

The sum of the series. From what we said at the end of §2 about the limit
00

of a sequence, for the standard series V. ak to converge to the standard
ft + l κ

number A it is necessary and sufficient that Σ ah — A for any infinite n,

and the criterion for the existence of such an A is the requirement that the
V

sum 2 ak be infinitesimal for any pair of infinite natural numbers η < ν
(the non-standard Cauchy criterion). Taking °° in place of η here, we can
obtain the following interpretation of the relationship between standard and
non-standard convergence:

V cc> V

Σ «*= Σ «*+ Σ ah-

where the second sum on the right is infinitesimal, and so the result of
summing to infinite ν is determined (to within an infinitesimal summand)
simply by the terms with finite indices k.

Infinite products also allow a similar analysis, but in place of infinitesimals
we need to consider factors becoming infinitely close to unity. In particular,
our definitive formula (25) can be written in the form

(27) sinha^xj] (»+τ£τ) Π
h>oc

where the second product is infinitely close to unity (and this will be
rigorous in non-standard analysis if in place of °° we put any infinite η < ν).
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On the basis of this representation we will try to establish the role of the
factors tk with finite and infinite indices k in Euler's construction.

For definiteness, we suppose that ω is an odd infinite number: ω = 2v+ 1.
By the computations in §4 each factor tk of the form (5a) can be represented
as follows:

Zfe = — 5 — (1 — «ι) 1Η—,„ ., ) = 4 sin- — 1Η—,„ „ .

(We have omitted for simplicity a factor that depends on χ but is infinitely
close to unity for any standard x. This factor appears when we apply the
theorem in §3 in the transitions (16) -»• (17) ->• (20); see Remark 1 in §4.)
In addition, the constant in (20) that equals 1 (on going over to (25)) is the
product

V

r —— — Π

of the constant coefficients of the factors tk with the coefficient 2/ω of the
factor 2x1 ω and also the 1/2 from the formula for sinh.

Thus, returning to the representation (27) for formula (25), we can see
that the functional structure of the hyperbolic sine is determined by the
factors tk with finite indices k (and the separate factor 2x/ώ). The factors
tk with infinite indices are only involved in forming the constant Cv that is
equal to 1, and their formal dependence on χ is expressed in multiplying by
quantities that are infinitely close to 1 for any standard Λ: (both separately
and as a product). At the same time it is not possible to simply omit those
factors tk with infinite k, since the regular factors l + x2/kW in the
composition of the "unnormalized" tk are connected with the infinitesimal
numerical coefficients (for finite k), and it is a function of the factors tk

with infinite index to "neutralize" them.
We present these arguments as an answer to the last question (H) in § 1.

It is clear that in the system of non-standard analysis all the concepts have a
rigorous meaning provided only that we replace °° by an arbitrary infinite
natural number η < ν, which corresponds to adjoining to the finite natural
indices some "arbitrarily small" part of the infinitely large indices. Now the
question is how to find an "ideal" interpretation of the symbol for formal
infinity °° that reflects precisely the requirement we started with: that it
separates the finite numbers from those that are positive infinite.

§8. Formal infinity as a mathematical object

Here we present a "model" of formal infinity that is very simple: it is
based on the method of the Dedekind cut, which gives us the definition of
the real numbers "due to Dedekind". In fact, we let °° denote the cut I\J
of the non-standard continuum *R, where the lower class / is the set of all
non-standard real numbers that are not positive infinite (that is, finite plus
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negative infinite) and the upper class is the set of all positive infinite
numbers (amongst these are the infinite natural numbers).

Here we should make some general remarks about the cuts of *R. It is
known that each cut A \B of the standard continuum R is a Dedekind cut
(that is, either the lower class A has a largest element, or the upper class Β
has a smallest element), and this statement is one of the formulations of the
fact that R is dense. By the transfer principle (see § 2), and cut of *R given
by the intrinsic property will also be a Dedekind cut. However, among the
cuts of *R there are also "non-intrinsic" ones: an example is given by the
cut °° = /I/just introduced, which is clearly not a Dedekind cut. The
definition of this cut is not intrinsic, as the concept of an infinite number
appeals to an "external" property of the standard system.

Thus, the Dedekind completion Jfl of the non-standard continuum *R is
formed by all possible non-Dedekind cuts of *R, to which we append
Dedekind cuts of the form

{x£*R--X ^ a}\{x£*R:z>a}.

where a E *R, identified with the corresponding standard or non-standard
number a.

Among other things, the "supercontinuum" Μ contains the "number" °°,
its inverse "number" φ, that is, the cut which has as upper class the set of
all positive χ Ε *R that are not infinitesimals, the "numbers" with the
opposite sign to these, namely -°° and -φ, and so on. If we define a linear
ordering on .if) in the usual way (that is, corresponding to the closures of the
lower classes) we obtain χ < °° < £ for any finite χ S *R and any infinite
ξ £ *R, and hence in .# the "number" °° separates the finite numbers from
the positive infinite ones, which is what we expected. In exactly the same
way, the inverse "number" φ separates the infinitesimals from the positive
numbers that are not infinitesimal.

Hence, the symbol °° from the arguments in §7 has the precise meaning
of a cut in *R and of a "number" in the Dedekind completion Μ of the
non-standard continuum *R.

In an attempt to define the arithmetic structure of Μ we encounter a
phenomenon that has no analogue in the Dedekind completion of the field
of rational (standard) numbers to the standard continuum R. This is most
easily seen in the example of taking differences, which according to Dedekind
has the following definition:

where the class Αχ~Β2 consists of all possible differences αχ — b2, where
αχ £ Ax and b2 ε Β2, and Bx- A2 is defined analogously. However, by
contrast with the Dedekind completion of the field of rationals, here it can
happen that the pair (Αχ — Β2) \{Βχ ~ A2) does not form a cut of *R. For
instance, if we want to find °°-°° from the given definition, then the lower
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class I — J contains the negative infinite numbers, and the upper class / —/
contains all the positive infinite numbers; the finite numbers remain outside
both classes. Thus, 00-00 i s not realizable in ;H (in the framework of
Dedekind's definitions) and in this we can see a parallel with one of the
main indeterminancies in the classical theory of limits. We get exactly the
same situation with the other indeterminate operations, such as 0·°°, o0/00, 1°°,
and so on; in this connection the classical zero corresponds to the "number"

0 6 .//.
In other cases the operations in .if lead to definite results, that are not

without interest. Thus,

oo — 2— οο·2 = οο 2 =οο; 0 = — ; 0 4-0 = 0 .

These and similar equalities are well known in the theory of limits, where
the symbol °° is treated in a formal sense, as the symbol of a quantity that,
in the given case, tends to plus infinity, and the equalities themselves are
treated in the same way. Here they become mathematically rigorous
consequences of the given definitions, giving the symbol °° the sense of a
definite mathematical object.

Now let us return to the questions we considered in §7. The fact that
(£>·οο is indeterminate unfortunately does not allow us to give a meaning to

the proof we set out in §7 that ]5] I Pu \ is infinitesimal, simply on the basis
of the formal rules of operation with the "numbers" °° and 0== oo-1. To
overcome this difficulty we must use the following definition.

Definition. Let F be an intrinsic function of a single real variable, and A a
standard number. Then the relation F{oo) ~ A holds in either of the two
cases:

1) (lower limit) lim F(x) = A in the standard sense, that is, for any

positive ε £ Η there is a number ,rf ζ /? such that | F(x) — A | < ε for any
χ ξ R, χ > xt\

2) (upper limit) there is an infinite X £ *R such that F(x) ~ A for any
infinite χ < X.

(These definitions are not contradictory, that is, the two cases cannot give
two different standard values for F(°°); this is not hard to show on the basis
of the transfer principle.)

In the simplest case of a constant function F(x) = 0 we find that
.F(oo) ~ 0. This is also true when F(x) = x"1. However, if we are trying to
find the correct value for F(°°), then we must write F(°o) = 0 in the first
case, and F(°°) = Φ in the second. This suggests that the given definition
may be stated in the form of an equality, rather than a relation of infinite
closeness , where as possible values for F(°°) we could have: a) standard
numbers; b) ideal "numbers" in $ of the form (standard) ±0; and c) the
"numbers" ±°°. We shall not investigate further the interesting question of
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the construction of the analytic structure of M. There may be many
absorbing problems here, and they need a separate investigation.

As for the fact that the sum S I Ph I given in §7 is infinitesimal, from the
point of view of the definitions we have given and the interpretation of °°
we have introduced, the computations in §7 have a completely definite
meaning. A more curious argument is obtained when we prove that the sum
is infinitesimal in the region k < °°, using the definition in the form of an
upper limit. In principle, here we could have used the compttation from

Η

the proof of the theorem in §3, where we showed that the sum £̂ | pu I is
infinitesimal for some infinite η < ν (and then the result holds for any
« ' < « ) . But this calculation has a deficiency, namely the use of hypothesis
(c), since the corresponding argument in § 7 (that is, the proof that the sum
is infinitesimal in the region k < °°) is not based on (c).

This defect may be overcome as follows. We consider the greatest natural
number μ < ν (where ν is the upper bound of the summation in §7) that
has the property that \ ph | <c k'1 for any k < μ. The number μ is infinite,
since for finite k the inequality | ph | < A·"1 is satisfied, as the pk are
infinitesimal by hypothesis (b). Moreover, pk will be infinitesimal for any
k < μ—for infinite k by the construction of μ, and for finite k by
hypothesis (b).

Further, taking the μ we have found in place of ν in the computation
(which we have discussed) from the proof of the theorem in §3, we find an

infinite η < μ that satisfies the relation ν ι ph \ ^ 0 for χ = n. This
relation will clearly also be satisfied for any χ < η (in place of χ we need to
take the integer part of x). Now using the definition we quickly find that

oo

2 I Ph I — 0, as required.
We can interpret the other arguments in §7 along the same lines, and also

Euler's construction as a whole. However, the problem of constructing
another interpretation seems to be of great interest. What we have in mind
is to take ν = °° (or ω = °°) in the arguments presented in § § 1, 3, 4.
There are perhaps no fundamental difficulties here, and the question is now
that of finding a proof that does not reduce to a straight application of the
given definition. In particular, the following nuance deserves attention: for
ν = oo the only factors tk that remain under consideration are those
corresponding.to finite indices k. The analysis of this case probably reveals
a new side to Euler*s method.

We will make some further remarks about one problem. The indeterminate
nature of the analytic structure of .9? can arise not only as a consequence of
the Dedekind definitions of the operations. For instance, is there a whole
"number" °° in the structure of ΜΊ We cannot answer this question on the
basis of our definitions, as any neighbourhood of °° in ,fl contains both
integers and non-standard fractions (both on the left and the right).
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We need to find a wider definition which will include a reasonable answer to
the question of the "wholeness" of °° in ^?.

More generally, we can give (in a consistent way) a value in Λ for each
indeterminacy (of any type and origin), taking these indeterminancies one by
one (we have in mind a construction that is similar to the construction of an
ultrafilter, using the axiom of choice), or in some other way, and how can
we give a meaning to all this? To show that this is a non-trivial problem and
that there may be interesting arguments in connection with it, we give the
following example.

We assert that sin °° = 0. In fact, since

co -f- π = oo and sin (χ -f- π) = — sin x,

there is no alternative. Similarly, cos °° = 0. But we have sin2 χ + cos2 χ = 1
for any standard or non-standard x, that is, here we lose the associativity of
composition:

(5ΐη2α;-(-0θΗ2χ)| χ = ο ο Φ (sin οο)2-)- (cos oo)-.

§9. Representations of the exponential as a series and as a power

The aim of this section is to examine the arguments Euler used to obtain
the formulae

2 . X3 .(28) β χ = Χ Π _ - , _ Γ _ _ _

(29) ex — (1 + — ] , where ω is infinite.

We recall that the second formula is the starting point for Euler's arguments
in § 1, and we have written it in the form in which it was used in
"Introduction to infinitesimal analysis". It is clear that instead of the equals
sign we should write the symbol for infinite closeness ^ . The first formula
is used to determine the size of the constant factor in the product (9a) (see
item 8 in our § 1 and also §4 where we analyse it).

At the same time, formulae (28) and (29) were obtained by Euler in [ 1 ]
in a manner entirely different from the way in which this material is
presented in modern books on the foundations of mathematical analysis.
Euler's arguments in this respect are very close in spirit and approach to
infinity to the factorization of sine, and we consider them in consequence
of this closeness, and also to make our survey of the whole of Euler's
construction more complete.

Having fixed a finite number a, in § 114 of Chapter VII of [ 1] Euler
writes the equality αε = 1 + ψ, where ε and also ψ are infinitesimals, and he
connects these numbers by the relation ψ = se, where s is a finite number
that depends on a (in the important case when a = 10 we have s = 2.30258...).
Hence az = 1 -f se.
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If we now take χ = ωε, where ω is an infinite natural number, then
ts = sx/ω and (§115)

(30) Λ» = ( 1 + * ε ) ω =

(32) ^

since if ω is infinite we have

l, l f

ω ω ω

because "the larger the number we substitute for ω, the closer the fraction

approaches to unity; if ω becomes larger than any given number, then the

fraction becomes equal to unity" (§116).
Afterwards, Euler goes over for a time to logarithms, and then returns to

the exponential, and in § 122 he consider the particular case when s = 1.
He denotes the corresponding value of a according to (32) with χ = 1 by e:

in passing he obtains an approximation to the value of e to 23 decimal
places.

Next, to obtain formulae (28) and (29) for s — 1 and a = e we use (32)
and (30) respectively. These are introduced by Euler in §§123 and 125,
where in the first edition of the Russian translation of [ 1 ] used by the
author of this article there is a misprint (on p. 122, in the 7th line from the
bottom, the exponent is omitted).

(We should mention that we have somewhat changed the system of letters
that Euler used. For instance, the infinite number is denoted in [ 1 ] by /
and not by ω, and in place of s he used k.)

It is impossible not to remark on the simplicity and elegance of Euler's
arguments by comparison with the modern way of setting out the material
under consideration. As for the question of rigour, non-standard analysis
enables us to obtain satisfactory and well-defined interpretations of all the
elements of his construction.

Thus, let a and χ be standard numbers, with a > 0 and ε infinitesimal.
Then the difference φ = ax — 1 can be put in the form ψ = st -f- θε, where
s is the value of (a*)' at χ = 0 and θ is an infinitesimal that depends on a
and ε. (Here we are using the differentiability of the exponential function,
that is, in principle there is an element of a circular argument, but we shall
not pay attention to it.) Then

<ζε = Ι -|-5ε + θε = Ι +σε,

where σ = s + θ.
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Now if χ = ωε, where ω is an infinite natural number, then using the
binomial theorem we can write

(33) «* = «,«»

r34) = 2 i ( i - - M . . . ( i - - ^
Z j \ ω / \ ω /
ft=C

However, we also need to deduce another formula

(35) « aQi2j-jEr»
ft=0

which represents the non-standard equivalent of (32). To do this we denote
the terms of the sums (34) and (35) by vk and wk, respectively. As ω is
infinite and θ is infinitesimal, vh ~ wh for any finite k. If k is infinite, then
\vh | < A"2 and | wh | < λ-"2, since the factorial grows faster than any
product of powers with finite exponents and exponentials with finite bases
(of course, we can obtain concrete estimates here). Hence, we are in the
domain of action of the theorem in §3, more precisely, a statement about
the infinitesimal nature of the sum 2 I Pfc I f°r Pk = vk~ wk (and for
ν = ω, since ν is an upper bound for the sums and products in §3). This
implies that the sums (35) and (34) are infinitely close, that is, (35) follows
from (34), which we wanted to prove.

Omitting some of the subtleties of the proof that to each standard s in
our argument there corresponds a definite standard a (clearly, a = e"), we
denote by e the value of a that corresponds to s — 1. Then

and the latter relation is the analogue and non-standard equivalent of (28)
Finally, in order to derive (29) (with c* in place of the equals sign), it is

enough to use (33) with 5 = 1 and a = e, showing first that

(36)

The theorem in §3 helps us again here. In fact, hypothesis (a) is satisfied
for uk = l + x/ω (which is independent of k), since χ is finite and ω is
infinite, and if we set pk = θχ/ω, then the sum

will be infinitesimal, as θ is. Thus, the theorem in §3 is applicable, and we
arrive at (36).

To close this section we make some comments. The editor of the
translation of the first edition of "Introduction to infinitesimal analysis"
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([1], 328) showed that in the particular case χ = 1 the formula connecting
the right-hand sides of (28) and (29) was obtained by D. Bernoulli in 1728.
However, the method of binomial expansion with an infinite power and the
consequent representation of the coefficients with the omission of
infinitesimal "distortions" leading to a series was found much earlier. In
any case, such a representation had already been used by Taylor in 1714 to
construct the series named after him. Taylor's arguments are given, for
example, in Euler's "Differential calculus" ( [2] , Ch. Ill of the second part)
and analysed in the "Introductory remarks" in [2] and, from the standpoint
of non-standard analysis, by the author of this article in [ 13].

Another construction that includes the binomial expansion for infinitely
large powers was used by Euler in [ 1], § § 133-134, to obtain power series
for the circular sine and cosine functions, where Euler, not satisfied by the
simpler method connected with the expression of the circular functions by
exponentials, gave a much more subtle argument, starting from de Moivre's
theorem.

§10. Comparing the coefficients of non-standard polynomials

Here we return to a question for which the arguments we gave in §4 in
order to compare the coefficients obtained by Euler do not give an answer
in the general case. Let Ρ and Q be two polynomials, possibly having
infinitely large degree, where for any standard x ^ O w e have P(x)~ Q(x).
Is it then the case that the constant terms of Ρ and Q are equal, or perhaps
infinitely close to each other? The problem obviously reduces to the
following: if P(x) ~ 0 for any standard χ Φ 0, then is it true that the
constant term of Ρ is infinitesimal or exactly equal to 0? We will also
consider this problem, and we start with a negative result.

Lemma. There is a polynomial Ρ with constant term 1 such that Ρ (x)~0
for any standard χ Φ 0.

Proof. We fix an infinite natural number ω. By the Stone-Weierstrass
theorem ([12], 251) there is a polynomial Q(x) such that

<?(*)+τ for

But any standard χ Φ 0 lies in the annular region

and so, if we multiply by x, we obtain

| 1 + xQ(x) I < I x Ι ω-1

for any standard χ Φ 0. Thus, the polynomial P(x) = 1 +xQ(x) has the
desired property.
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Remark. If we complicate the proof somewhat we can obtain the desired
polynomial in a form such that its coefficients are given by means of a
standard function of the index of the corresponding power of x. In
particular, the coefficients of finite powers of χ can be expressed as standard
numbers. Here is a sketch of this more complicated construction.

Let Po = 1. If we have constructed the polynomial Pn of degree m, then
as before there is a polynomial Qn with the property that

\Pn (x) + xm+1<?n (x) | < n~l for any χ in the annulus Kn,

and so this polynomial can be defined by Pn in a single-valued fixed way.
(In fact, we first pick out those polynomials Qn that have the stated

property and the smallest possible degree. Next we select from them only
those that have rational coefficients, and finally we minimize the numerators
and denominators of the coefficients represented as irreducible fractions
from the lowest to the highest.)

With a view to the single-valued definition of Qn from Pn, we take as
Pn+1 the polynomial Pn(x) + xm+1Qn(x). It is clear that Pn+1 contains all
the terms of Pn and their coefficients, and in addition has only terms that
have degree higher than the degree of Pn.

The given construction is an intrinsic construction in analysis, and in the
system of non-standard analysis it can be extended to any infinite natural
number ω. The corresponding polynomial Ρ = Ρω "inherits" the constant
term 1 from Po and at the same time satisfies the inequality | Ρ(ι) | < ω"1

on the annular region Κω, which clearly contains all standard χ Φ 0.

One of the possibilities for finding a positive answer to the question we
are discussing consists in bounding the coefficients. If we assume that all
the coefficients of the polynomial Ρ are bounded in absolute value by a
standard number M, then

for any x, and hence taking a standard JC that is small enough, we can
arrange things so that \P(x)~P(Q)\ remains smaller than any preassigned
standard ε > 0. Thus, if in this case P(x) ~ 0 for all standard χ Φ 0, then
P(0) ~ 0. Essentially, this is roughly how we have argued in §4.

Finally, the method of ensuring that the coefficients of the polynomial
are bounded, which was given at the end of §4 (the remark in brackets), can
also be carried out in a sufficiently general setting, but we will not dwell on
this.

Conclusion

The works of Leonhard Euler are probably among the mathematical works
of the 18th century most strongly characterized by their systematic and
exceptionally fruitful application of the infinite. However, the arguments
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that this article has dealt with still essentially only occur in the work of
experts in non-standard analysis. Euler made other experiments with infinity
which have still not been the subject of detailed study from the position of
non-standard analysis, among them beautiful and complicated constructions
such as the Euler-Maclaurin series, the interpolation of functions, and others
(see "Differential calculus" ( [2] , the second part of the book), the analysis
of which can lead to posing new problems both in the foundations of
mathematics and possibly also in more concrete areas.

We have already mentioned one such problem—the determination of the
analytic structure of the "supercontinuum"i?—at the end of §8. Another
possible problem is the determination of the exact meaning and the bounds
of applicability of the following statement of Euler's:

"I assume that each series must attain a definite value. However, in order
to handle all the difficulties that arise here, this value should not be called
the sum, since we usually associate a meaning with this word as if the sum
can in fact be obtained as a result of an actual summation, and this idea has
no place in divergent series...". (Quoted from [14], 29.)

Thus, Euler assumes that any series has a numerical characteristic, which
could properly be called the sum, had this concept not been needed in
connection with the known method of defining this sum for convergent
series. But how do we define the "sum" of a divergent series? Deep ideas
and concrete methods of summation, developed by Euler in "Introduction
to infinitesimal analysis" [1] and particularly in "Differential calculus" [2],
make a significant contribution to the foundations of the theory of the
summation of divergent series. This area of the theory of functions has been
successfully developed (thus, in the survey [15], which is especially devoted
to different questions on the summation of divergent sequences and series, a
bibliography of 870 names is given, and the author of the survey mentions
that some directions have yet to be investigated). Many and various
methods of summation have been developed, that is, ways of defining (or
"finding") the sum of a divergent series, each of which has its own
characteristics and range of applications. However, such a multiplicity of
approaches is indicative of the absence of a fundamental answer to the most
important question from the point of view of the foundations of mathematics:
is it true that any series has a unique "natural" value of the sum, as Euler
believed, and if so, how do we find that value? It would be of great interest
to find an approach to this question from the standpoint of non-standard
analysis.
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