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In this paper we present some parts of a mathematical theory that is
sometimes called Heyting-valued analysis (or non-standard analysis in the
broad sense). While this theory may be regarded as part of general topos
theory, it also has applications outside mathematical logic: in algebra,
analysis, and even in a broader context, as in Robinson’s well-known papers
on the application of non-standard analysis to quantum field theory.

In Chapter I we present the actual method of Heyting-valued (in particular,
Boolean-valued) analysis. §l.1 is an introduction, where we explain the
essence of the method on an intuitive level: an introductory role is also



38 V.A. Lyubetskii

played by those parts of the paper that are headed “‘example”, and also the
beginnings of Chapters II-1V and the beginning of the appendix. At the
beginning of the appendix we discuss the terms “Heyting-valued and
Boolean-valued analysis”’, “non-standard analysis in the broad sense”, and so
on. In §1.2 we briefly recall the notions that play an essential part in what
follows. §1.3 contains the definition of valuation—the key notion of this
method—and all the basic examples of it. The notion of a sheaf on a
Heyting algebra appears in §1.7, although it is used implicitly from the very
beginning. So the method is presented in § §1.3-1.7. Chapters II-1V
contain some concrete examples of applications of the method of Heyting-
valued analysis. In Chapter II we mainly consider the question of the
existence of a model companion for a locally axiomatizable class of rings.
The notion of model companion, a generalization of the notion of algebraic
and real closure of a field, was introduced by Robinson, and plays an
essential role in model theory. In Example 10 of Chapter II we show the
model completeness of a class of atomless rings whose localizations are all
central finite-dimensional simple algebras with centre satisfying a model-
complete theory. In Chapter III we consider a conjecture of Novikov (see
[5]1, p.127). This chapter is concerned with the transfer from classical to
intuitionistic validity in an arbitrary ring. In the cited paper of Novikov it
is shown that such a transfer is possible in the case of the ring Z. In
Chapter IV we construct, for certain rings of continuous Y-valued functions
(as algebras over the ring Y), a non-standard representation Y such that in a
certain sense this algebra is similar to its ring of scalars Y. The appendix
contains brief descriptions of applications of Boolean-valued analysis
concerned with questions of duality.

Practically all theorems and propositions have full proofs.

All the general theorems of Heyting-valued analysis are contained in
Chapter I. Regarding the applications, it is inappropriate, indeed hardly
possible, to cover them in full completeness. The author has selected some
applications related to his research interests with the intention of avoiding
intersections with well-known and easily-available articles. We mention some
of these. There are interesting papers of Beidar and Mikhalev ([18], [34] -
[35]) (on the study of semiprime rings based on their reduction to prime
rings by the method of orthogonal completeness), a series of papers on
operator algebras ([20] -[22]), the papers [11], [15] reprinted in [41]
(where a theory of Boolean-valued measure and integral representations is
constructed), a long series of papers of Kusraev and Kutateladze, see [36] -
[38] for example (mainly concerning problems on the K-spaces of
Kantorovich and also categorical aspects), and deep papers on Robinson’s
non-standard analysis by Kanovei ([32]-[33]), Gordon ([39] -[401]), and
Zvonkin and Shubin [31].
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Further details can be found in papers listed in the references. These
papers, in turn, contain numerous references, including some that claim
priority. In particular, detailed bibliographies are contained in [1]-[3] and
[71-110], where one can find references to articles by Robinson, Cohen,
Vopenka, Scott, Solovei, Takeuti, and other well-known authors in this field.
An introduction to Heyting-valued analysis is provided by [1], [3] for
example.

After a minimal acquaintance with Chapter I one can pass to any other
chapter or to the appendix, returning to Chapter I if necessary.

The meaning of the symbol == is “equal by definition” or “equivalent by
definition”. The sign | marks the end of the proof.

CHAPTER |
EVALUATION IN ALGEBRAIC SYSTEMS

I.1. The concept of valuation, global validity, and transfer theorem.

An evaluation (valuation) in a given language for a fixed lattice X is an
assignment to every formula ¢ of an element of X, denoted by [q]y (or
briefly by [¢]), in such a way that the logical connectives of the language
are modelled by the operations of X. This means that [¢ \/ ¥] = [¢] \V [¥],
Toe Avl={e] A¥D [Te] = 1ol and [ = ¥] = [¢] — [¥]: where
on the left-hand sides the symbols \/, A, =, 1 are the connectives of the
language, and on the right-hand sides \/, A,—>, 7] are the operationsin X
(with the same names). The same holds for all propositional connectives.
Quantifiers (and the associated variables) require, in addition, the designation
of some fixed set D (usually called the set of parameters of the given
language). If such a D is fixed, then [Jz¢] = \/ {[¢ (¥)]| ¥ & D} and
IVag: = A {[¢ (¥)]] ¥ = D). The same holds for other predicate
connectives. Here the operations \/, /\ apply to subsets of X, that is, they
have the form \/: & (X) — X, where & is the operation of taking the power
set. In our case the operations \/ and /\ are the least upper bound and the
greatest lower bound in the lattice X of two or, when appropriate, any set
of elements of X. The operations ™, — can also be expressed in the usual
way in terms of the ordering on X.

To emphasize the choice of the set D of parameters, the valuation is
sometimes denoted by [-Jx,p or [-Jp. We write 1 = \/X.

We denote by L(D) the set of all formulae of the language L with
parameters from D (without free variables). Then the evaluation is a one-
variable function of the form [.]: L(D) - X satisfying the inductive
conditions mentioned above. Frequently L(D) is denoted briefly by L, and
formulae with parameters from D are called formulae for short. If the function
[-]is defined for the atomic formulae of the language, then it extends
uniquely to the whole set of formulae.
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So, besides the usual validity of a statement ¢ in a fixed mathematical
structure K (notation K & @), there arises a new form of validity (new
semantics) [¢@]x, p = 1denoted by <X, D) = ¢ or briefly X & ¢ (or
sometimes D = ¢), where the valuation [ Jx, p is also fixed and somehow
connected with the structure K. The predicate X = ¢ is called the global
validity of ¢; sometimes it reads “g is true in the lattice X”’. Instead of
X k= ¢ the symbol [Jgis also used. This new validity (semantics) has
useful properties, and in particular in a number of cases it allows us to solve
questions concerning ordinary validity in K. To some extent, it can be
compared with (formal-logical) deducibility (denoted in what follows by —
in the classical and by H— in the intuitionistic case). The difference is that
the proof (verification) of the global validity X k= ¢ reduces in some sense
to the computation of ‘““algebraic” functions in the lattice X, and the number
of variables of these functions is not greater than the length of the formula
¢ being verified.

Usually the structure K admits a (non-unique) choice of lattice X = X(K)
(for D we usually take the domain of K) and a choice of valuation [-J (in
this case it is convenient to denote the valuation by [-:x) such that for
many formulae ¢ we have [¢]x = 1 (although, possibly, A == ¢). The class
of such formulae is denoted by ®.(X). On the other hand, we denote by
®_(K) the class of formulae ¢y that satisfy ([V]x = 1) = (K = ¢). Usually
the valuation [-Jx is closed with respect to some kind of deducibility
(depending primarily on the lattice X and so denoted by i—‘j), that is, if

¢ i—yand [¢ x = 1, then [Y]x = 1.
X

It is possible to take the view that non-standard analysis in the broad
sense is understood as a development based on the study of the valuations
T-Jx and the semantics [-Jx = 1 (or of more general semantics [ - [x £ J,
where j is a filter in X, for example j = {1}). A typical and, probably, the
main application of non-standard analysis (in this sense) is the following. If
Loy /\ - - - /\ ©a]x = 1(but possibly, A == q; A ... /A ¢,), thatis,

Gre oo =D, (K)o P IX—(K)-mp, and Y= @_ (R), then K = . If
P Ed_(K), then an assertion 1’ can nevertheless hold in K, where ¢’ is a
formula of the initial language equivalent to the global validity of the
formula {. One can say that the consequences ¥ and ¢’ of properties
91, -, 9, mythical for K are valid in X (in the most usual sense). Such a
situation is called a transfer theorem.

The next question concerns the usual choice of the connectives \/, A, .
=, 3, V¥ and (in the general case) of the infinite sets of parameters D.
The latter requires that the operations \/, A: P (X) - X are defined
everywhere, or at least on sets of the form {[¢ (k)]x | £ = D}. Sometimes
one can observe which subsets of X have such a form and require the
applicability of the operations \/ and /\ to them. But it is simpler, to
assume (and we do) that X is a complete lattice, that is, the least upper and
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the greatest lower bounds \/ uq and /\ ug exist for any set {u,} < X. Itis

always true that u A\ \/ ug > \/ (u /\ Ug)-

1.2. Heyting algebras and Stone spaces.

A complete Heyting algebra is a complete lattice £ with the property

(infinite distributivity) u A\ \/ ue <V (@ A ug), that is, u A \/ uq
a o o

= \/ (u A u,) for any element u & Q and any set {u,} = Q. We write
o

1 =1g=\/Qand 0 =0 = AQ.

Another equivalent definition of complete Heyting algebra is the
following: it is a complete lattice £ in which a two-place operation
c—s.1 Q2 — Q is defined and satisfies w < (u—>v) & u A\ w v,

Yu, v, w = Q. It is convenient to assume (and we do) that 1 # Q.

If H is a lattice (not necessarily complete) with greatest element 1 and
least element O in which such an operation -—. is defined, then H is called
a Heyting algebra. We always regard H as having the structure
H, N/, /\: —, 0, 13, where \/, /\, — are two-place operations. Every
Heyting algebra is distributive in the sense that (u \/ v) A w = (u A\ v) \/
VwAwand (u Av)\VVw =\ w A v\ w). In what follows (unless
it is explicitly stated otherwise) §2 is a complete Heyting algebra with a fixed
structure \/, /A, 0, 1>, where \/: P (Q) — Q and A: Q*— Q. Itis
important to fix the structure in an algebra, for example, for the notions of
subalgebra or morphism of algebras. In £2 we define

Nua =V {v|Va (v << u)},
Tw=\{vivAu=0}, and
w—v)=\Vi{wlu A\ w}.

Itiseasy tosee that u vy uAv=u, u Au—>1)<r,u A u=0,
vL(u—>vysuAwvvadu\y AW =V u\Vw).

An element u € § such that u \/ Tlu = 1 is called Boolean. A complete
Boolean algebra is an § in which all elements are Boolean. A Boolean
algebra is a Heyting algebra (not necessarily complete) in which all elements
are Boolean. A basis (dense subset) in § is a subset £, € £ such that
Vues QI {u) € Q, (u= \/ ug). Q is called zero-dimensional if it has a

[e4

basis consisting of Boolean elements. An element u € §2 is called finite if
Vi cQ @ Vite=u g, V...V Uq )for some ay, .., a, IfQ
o

has a basis consisting of finite elements, then 2 is called an algebraic lattice.
It is easy to see that a zero-dimensional algebraic lattice £ has as a basis the
set of finite as well as Boolean elements—it is usually this basis that is used
in proofs. A Heyting algebra is called compact if the unit is a finite element.
A zero-dimensional compact lattice is, of course, algebraic.
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Two extensive and in a certain sense mutually complementary classes of
complete Heyting algebras are the class of all topologies (a topology J (X)
is the lattice of all open subsets of a non-empty topological space X) and
the class of all complete Boolean algebras. In what follows the symbol B or
B always denotes a complete Boolean algebra, and B a Boolean algebra.

Two simple but important classes of complete Heyting algebras (cHa) can
be described as all zero-dimensional algebraic complete Heyting algebras and
all zero-dimensional compact complete Heyting algebras. The first of these
is the class of all lattices of ideals of Boolean rings and the second that of all
lattices of ideals of Boolean algebras. The lattice of all ideals of a Heyting
algebra H is denoted by I(H).

The Stone space X = X(H) of a Heyting algebra H is the set of all prime
ideals (“‘points’) in H, that is, those p € H such that 1 € p, 0 € p,
Vu,vepu\yvep), Yusp Vve Hu A\vep),
vu,veHuNveEp=susp\/vep).

In the set X(H) we fix the topology with basis {{p | u & p}| u = H}. An
element u € H is identified with the set {p | u & p} and this set is also
denoted by u (hence, p = u & u & p). Thus, this basis can be denoted
by H. It is easy to show that in the topological space X(H) the set H
consists of all open-and-compact elements (more precisely, open and quasi-
compact) and X(H) itself is a Tyquasi-compact topological space. It is
Hausdorff if and only if / is a Boolean algebra. The last assertion is
equivalent to the fact that prime and maximal ideals in H coincide.

If H is a Boolean algebra, then X(H) is a totally disconnected compact set
and A is the family of all its open-and-closed sets; if H is a complete
Boolean algebra, then X(H) is extremally disconnected.

The topology of the space X(H) can be identified, as a lattice, with /(H)
according to the rule: a — ©,, wherea €EI(H) and 0, = {p = X (H)| a £ p}.
In this sense I (H) = J (X (H)).

An important property of Stone spaces is the following: if {u.}is a
downward-directed family of open-and-compact sets in X(H) and F is any
closed set in X(H), then ya (ux () F %= @) = ([ ua) ) F 7= &. Therefore,

. [«

in particular, X(H) is a Baire space.

All that has been said above carries over without change to any distributive
lattice in the role of H (and after some minor changes also to any distributive
upper semilattice with zero).

An important role is played by the possibility of embedding any Heyting
algebra H in a complete Boolean algebra B = B (H) in such a way that the
operations \/, A, 0, 1 are preserved and, what is more, of embedding H in a
complete Heyting algebra 2 = Q(H) in such a way that all the operations
\/, /\, —, 0, 1 are preserved. This can be done as follows. We realize H as
the algebra of open-and-compact sets in the Stone space X = X(H) and we
extend the topology § = J (H) to the topology &, by adding to J the
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complements of all open-and-compact sets in & . Let B be the Boolean
algebra generated by H; it consists of the sets in X of the form /n\ (Cu; \/ u),
i=1

where u;, u; € H, and C denotes set-theoretic complement. B is a basis for
the topology &,. It is convenient to write the elements of B in the form

A (u; - u;), where — denotes implication in B. We put
i B B

I (A (i = ui))= A (@ — ui),
B i H

1

where — denotes implication in H; such an [ is of the form /:B = H.
H

Thus, the required B = B (H) is the Dedekind complement of B, in other
words, Bis the family of all open regular subsets (in the sense of the
topology &,) in X = X(H). .

We recall that a set @ = § (X) is called regular if © = ©, where * is the
composite of the operators of closure ~ and then interior °.

Using 7 it is easy to see that the natural embedding of H in B preserves
the operation \/. The embedding of B in B preserves both operations \/

and A.
Next, we extend the operation 7 to B (H) by the rule

I(0)=\/{I{&)]|by= B A b < b}

Thus, the required Q = Q (H)is {b=B (H)} I(b) = b}. Using I it is easy
to see that the natural embedding of H in §2(H) also preserves the operations

No =

I.3. Definition and examples of valuations.

It is convenient to include with the atomic formulae the following:

T (“truth™), L (“falsehood”) with the obvious assignment of valuations;
@ is always understood as ¢ = | . We repeat the definition of evaluation
(valuation) which essentially has already been given in §1.1. A valuation for
a language L (with equality symbol -=.), a family of parameters D, D # Q,
and a complete Heyting algebra £ is a map of the form [-I: L(D) > Q
(where L(D) is the set of all closed formulae of the language L with
parameters from D) satisfying the conditions [o A ¥] = [¢] A [¥].

[3 z9} =V {{¢ (¥)]| » = D} and similarly for all connectives, and also
satisfying the conditions [# = k} = 1, V& & D (‘“‘reflexivity”), and for any
atomic formula @, (“‘consistency with equality”) [k = ] A [@, (k)] < [90 ()]
Vk, t = D, where the k in @ can take the place of any free variable. It
follows from the definition that [k = t} = [t = k] (“symmetry”) and

[k = t] A\ [t =11 <[k = 1 (“transitivity”). that is, [- =] is an equivalence
relation on D. By induction with respect to the length of the formula

¢ (xq, ..., X,) we obtain (_/i\ [k = t:id A le ()] <[ (f)]. The definition

of valuation is not complete if the language contains functional symbols.
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Then to every functional symbol f(x,, ..., x,) there corresponds a function
f: D" - D which is “consistent with the valuation” in the sense that

(/"\ [k = ;) <[f (k) = f ()] All terms are, by definition, first computed
i=1

in D and then substituted into formulae. Such an understanding of the
occurrence of terms in formulae is called operational.

An Q-set is a triple (Q, D, [ -], where all components are as defined
above except that the reflexivity condition is replaced by the symmetry
condition (see Example 7).

The constants of the language L are identified with fixed elements of the
set D and in this sense we do not distinguish between the constants and the
parameters of the language.

All that is required to determine any valuation is to define the function
[-T LoD)— Q, where Ly(D) is the set of all closed atomic formulae of L
with parameters from D.

D is frequently the domain of some structure, and therefore a predicate
D = ¢ is defined, where @ € L(D) (in this case we usually write K instead
of D). The valuation [-] is called normal if for any atomic formula
¢ € Ly(D) we have (D & ¢) « (9] = 1). If D is a set without any
structure, then for any atomic formula ¢ we put (D k& ¢) < (9] = 1)
and obtain a structure in D for which this valuation is normal. The term
“normal valuation” is also employed in the case when the given condition
is fulfilled only for some atomic formulae. If it is not stated otherwise, we
shall assume that this condition refers only to the atomic formula . =-.

The valuation [ - o is a weakly sheaf valuation if Vu = Q (« is a Boolean
element = VA, t & DIs=Du<ls = ko N\ " 1u < [s = t]g). Fora
normal valuation this s is unique. We shall denote it by u-k + " Ju-t. For
a weakly sheaf valuation the following condition is fulfilled: if
{u,, - .., u,}is a disjunctive family of Boolean elements from £, then for
any {ky, ..., k,} & D there is a k € D such that u; <[k =#], ..., Uy <
< [k = k,]. We denote this k by ;u‘-ki.

A sheaf valuation is a valuation [-Ja with the following property: if
(4} @, {ka} © D, and Vou, B (ua A up < [ka = kykk), where \/ g is @
a

Boolean element, then there is a K € D such that ug < [k = kaJe Ve.
A sheaf valuation is weakly sheaf. The corresponding k£ will be denoted by
g,ug-kq.

A distinctive feature of a sheaf (in the traditional sense of this term) is
the possibility of pasting together the separate sections. ‘‘Sheaf” valuations
and objects are determined exactly by the possibility of pasting together
element-sections k, ‘““‘defined” on u,, that is, by the possibility of defining
the element-section Dug-kq.

a
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We call the valuation [ - Jo, paccessible if it satisfies ([ z¢] > u) = 3k = D
({9 (k)] > u) for any formula ¢ (z) with one free variable x and any
parameters from D and also for any Boolean element u € §2. We usually
use this condition with u = 1.

For an arbitrary valuation [-Je,» in a language including the symbol
. & - and for d € D, we denote by 4® (or just c?) the set

{zr=D |[r &= djo,p = 1).

The operator (-)A is similar to the operator *(*) in Robinson’s non-
standard analysis, which associates with an internal set d the external set *d.

For an arbitrary valuation [-Jo, p and a prime ideal p in £ we write
D, = D/~ ,, where (z~py) < [z = y] & p. For any atomic formula ¢, and
equivalence classes [k;],, ..., [k,], € D we also put

(Dp E @0 (K)ps - - oy (Bo]p) & (@0 (Rys - - s Kn)le,p €& P)-

Such a structure D, is called a fibre over the point p. Instead of [k],, the
symbol k(p) (or just [k]) is often used.

Example 1. Let L be the usual language of set theory (the language ZF)

with atomic predicates -<=. and-=-. As the family of parameters D we

choose the class V¥ defined as UT’? , where a runs over the class On of all
[

ordinal numbers and Vg is the set of all functions of the form f: V§ - Q,
B <a Forexample, (f=g) = Vz(zr=f< z< g)is a closed formula of
this language (with parameters f, g € V). In this case

LiD)={(fealf,ecsV} U{(f=29I|f gV}
We put

[fegle=\V{e® N =hlal hE D (g)} and

=gk = A{( )~ e DHINANE ()~
~ [hs E [l ke =D (8)}.

This is well-defined, in fact, by induction on «. The valuation extends
uniquely to all formulae.
We replace the family of parameters ¥V by V% /~, where

f~eg=lf=¢k=1
and we denote this quotient family again by V¥, The valuation in the
language ZF with the family of parameters '/~ is defined by
o ({fil, - .. fuD)Je = [® (f1s - - -» fa)]e (the right-hand side does not
depend on the choice of the representatives). It in fact coincides with the

valuation in the language ZF with the family of parameters 3. This
valuation is called the valuation in the language ZF.



46 V.A. Lyubetskii

The Heyting algebra Z, = {0, 1} can be embedded in any algebra £2. This
embedding induces an embedding (-)V: ¥V — V2 of the class of “all sets” V
in VS (where V = |J Vq with o running through On and Vo= | & (V).

o p<a

The embedding ()Y coincides with the identification of ¥ and V2. Usually

V, V2, and the image of I under this embedding are not distinguished. In
this sense, V is contained in all ¥'*? (although V also contains all elements
of V).

If X € V* and X is a set, then we denote by (X)_ (or X) the function
defined on X and identically equal to 1. Of course, X eyve,

A function f from V¥ is extensional if Vz,y & D (f) (f(z) N[z = y]o) <
< f(y). More generally, we call a function f: D =  extensional, where D
is the set of parameters of a certain valuation [:Jo, p, if it satisfies

le; dg = D (f (dl) /\ ﬂ:dl = 2]]‘?. D <f (d!))'
Some properties of an arbitrary valuation and of the valuation in the
language ZF are collected in the following four theorems.

Theorem 1. Let S be zero-dimensional and let [ Jo, b be a weakly sheaf
valuation.
a) If 82 is a compact lattice, then the valuation is accessible. If{-Jp, p is a
sheaf valuation and ) is a Boolean algebra, then this valuation is accessible.
b)If3d,, ..., d, =D ([o(d, ..., d,)]e, b =1), then we have

Bz @ AVeo=V{¥@, ..o zepls ... z2.ED,

[q) (xl’ .. ey 1n):ﬁQ.D = 1}
and
[Vxla R . ( =>"*l:’)]kl.D = A {[[‘p (1‘1, s xn)]k?,D (RN z, €D,

[ (z - .- z)Te. 0 = 1}
where ¢, Y contain any parameters from D. .

c) Let [-Ta be a valuation in the language ZF. If @ 5= (7, then we have

[(7). = flo=1. Let [-Jo,x be a normal valuation and let the set X be a part

of D. If X is a sheaf set with respect to the induced valuation [-Je, x, then
(X)'e = X.

Proof. a) Suppose that [Jz¢ (z, &, . . ., k,)] > u, where u is a finite
element of §, so we have \/ [ (d, k)] = \V bq,a > u, where the bqg, o are
d=D d,a

Boolean elements. Since u is a finite element, there exist dy, ..., d,, such
that bg, \/ . . . V bdn > u, where bdi is the join of the bq4, o that correspond
to a single d. All the bg, are Boolean elements. We form {b;} (employing
the Boolean property) such that b; < bda’ bV --.- Vo, >u, and {b;}is a

disjunctive family. By the definition of a weakly sheaf valuation, we form
d= Z b;-d;- Then we have b, < [d = d;], &; < "9 (d, k)], and u < [9 (d,%)].
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So far we have not used the compactness of 2. We now note that if 4 is a
Boolean element in a compact §2, then it also is a finite element.
We verify the second assertion. Suppose that [Jzo(z,k)] = \/ba > b = Q,
d

where by = [ (d, F)]. We form a disjunctive family {ba}, \/ ba = b, by < by
d
and by the sheaf condition there is a k such that by < [# = d]. The

conclusion now follows as above.
b) We have to show that

(A _ 0 ozl @ - 2)]) >

)/\ {’t[\p (2’21, A S ] IH)JH 'tl’ .« ey Ty EDv [[CP (1‘1, LI ] xn);ﬁ = 1}
Suppose that [ (zy, ..., T.)] = \/ uq, where the u, are Boolean elements
23

of . We put ¢, = ug-2; + g dy, ..., t, =Ug T, + |Ug-d, They all
belong to D. Then

ug [ty = A - - A [t =z A0 (@, oo 2] <o (0s - - - 8]
-_‘lllag [[tl = 1] /I\ b /\ [tn = dn] /\[(P (dh L] du)I <E_(P (f]‘ .o 'ﬂtn):ﬂ-

Hence 1 = [¢ (¢,.. . .. t,)]. What is more,
[\P (tlv e t”)] ‘<\ (u'a - H:lp (‘Tlv s ey zn):ﬂ)q and
I‘l’ (tl’ R tn)ll

The case 3z is dealt with in a similar way.

¢) It is sufficient to show that g = (fﬂ)_ and f have equal volume (what
remains is the question of an arbitrary valuation in a language containing the
symbol .e-). Obviously, [rg]l =V {r=K]jlhesfl=1} < [ref]
For the converse we use part b) above. As to the second assertion, in one
direction the equality is obvious. If [d = X] =1, then 1 = \E/X[d = z].

We denote these terms by u,. Now u, A u, < [x = y] and by the sheaf
property of the set X there is a K € X such that u, <{ [k = z]. Therefore,
1 = [k = d]. By normality we get d =k = X. []

The expression “U-valuation” means that we take into account the
following property: p & [J29] = 3k = D (p = [¢ (k)]), where ¢ is any
formula with parameters from D (in fact, this very property also appears in
Theorem 15). It is clear that we are concerned with a weakened accessibility.

Theorem 2. Let ¢ be any formula with parameters from D.

a) If the valuation is a sheaf valuation and ) is a complete Boolean
algebra, then

le@ ... d)]={pEXQ)IDy = @(d (p) ... dulP)}

In b) and c) we assume that the valuation of any atomic formula is a
Boolean element.
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b) For a U-valuation and a formula ¢ without quantifiers in the domain of
implication we have

Pele@ - wd))=DpE @ (d (@) ... di(p)

c) If the valuation is weakly sheaf and ¢ is an AE-formula, then we have

VpsuD, 9@ (p), ..., d, P)=le(@, ..., d)}>u
for any Boolean element u from K.

Proof. a) A valuation with values in a complete Boolean algebra is closed with
respect to all the classical transformations of connectives (see Theorem 8,

part ¢) and so of course is the predicate D, = (-). Therefore, we can restrict
ourselves to the verification of the equivalence [¢] & p < (D, & ¢) for
atomic formulae and the connectives /\,” , 3. For atomic ¢ this equivalence
is fulfilled by definition of the fibre D,. For "jwe have [¢] = p& D, "o,
[l p & 71[9] & p. For /\ we have

e ANVIE P (el EN NAN[WIEDP) & D E ) A\ (Dp =)

For 39 we use the accessibility, which holds by Theorem 1a).

b) For a quantifier-free formula ¢ we verify the equivalence
[9] & p & Dp = ¢, which is useful in many cases. For an atomic formula
and the connectives —1, A this was done in part a) (for 7] it is important
that [e} \/ [ i ¢] = 1). For the connective \/ we have [¢ \/ V] &£ p &
& (9] & p) VV (W1 & p). For the connective = we use [o] — [$] =
= "|{e] V [¥] (employing the fact that these valuations are Boolean).
Next, for V it is obvious and for 3 we use the condition of U-valuation.

c) For a quantifier-free formula this assertion was proved in the previous
paragraph, and for V it is obvious. We consider the case Vp & u (D, = 3Jzq),
where @ is a quantifier-free formula. We denote by d,, (p,) the element of
D,, such that D, &= ¢ (dp, (p,)), Where d,, & D. By what was proved above
and by hypothesis we have po < {p | Dp = ¢ (dp, (P))} = [o (dn)], a
Boolean element. We denote this element by b,. Then \/ b,, > u and by

the compactness of £ we can find &, .. ., b, such tha? bV ...V

V bp, = u. We replace by, by b;, where {b;} is a disjunctive family,

by < bp,, and \/ b; > u. The valuation is weakly sheaf, and so we can form
k= by, We now have b, < [(d,)] A% = d,,] < [9 (], [0 ()] > ,

and [Jzg] > u. (If we restrict ourselves to finite u, then the compactness
condition for £ is unnecessary.)

Remark. The connection between Theorem 2a) and Eos’s theorem in
Robinson’s non-standard analysis is obvious.
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Theorem 3. We take f, g € V and consider a valuation in the language ZF.
a) We have

@r=fek=_Y fOAlE@k [Veeheh=_/ (©-[Ek:

b) For any set X < V®, D (f) © X, there is an extensional function
g D (g) = X, such that [f = gla =1, that is, f =g in V. For extensional
functions f, g we have [z & flo = f (z) (if z = D (f)) and

It = el =\ U @+ g @)

(if the domains of [ and g coincide).
¢) We have f (z) <[z < flo f z & D (f)). Moreover, [f = gla =
> u s fy=g, if fand g are extensional with the same domain and
[fi="Fla=uforany u € Q, where f,(z) = f(z) /\ uand g (r)=g(x) /\ u.
d) We have

) ) 1, q}(Il, .. .,In),
[[cp(xl,...,-'fn)_ﬂﬂz{(), BT ¢ I R

where x4, ..., X, € V and @ is any bounded formula (that is, all quantifiers
of ¢ appear in the form 3z = u or Vx & uw and u is a free or a bound
variable). In this sense (-)V: V — V2is an “almost elementary’” embedding.

The following relations between V< and V2 are often used (see Ch. III),
where B = B (f2) was defined at the end of §1.2.
Firstly, V' is a part of VB, and secondly we have the following resnit.

Theorem 3e). We haveVf,g = Vi[f=gh <[fegls [f = gle <[f = g]s
and also “{f, g}_, the pair of fand g~ and “{{f}_, {f, g}.}_, the ordered pair
of fand g”’ make sense in § and in B, and, finally, [z = {f, g}Je <

LMz ={f, g}]s, [z =<, T <[z = {, £>]s, where fand g are from V<,

The proof of Theorem 3 is contained in essence in [3] for example, and
in fact also in [2].

Theorem 4. The valuation in the language ZF is a normal and sheaf
valuation. If S is a complete Boolean algebra, then this valuation is
accessible.

Proof. The fact that the valuation is normal follows at once from the
definition of the valuation in the language ZF. Supnose that {u.} < Q,
{fo} = V2, and that these families are consistent, that is, ug A up << [fa = fa]-
We put f(-) = \/ (ua A fa (+)), where each f; is an extensional function

2

equal to f, and they have the same domain for all . Then f has the same
domain and is also extensional. Next,

FNug =\ ua Nug Nfa=V ua Nt A fy = up N\ i
up <7 =16k us <If = fpl,
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using Theorem 3, part ¢ twice. Therefore f = Muy-fo. To obtain the second
¢
assertion we apply Theorem 1, parta. [ ]

The construction of V' and its simple properties appeared gradually.
This also applies to the concept of arbitrary valuation. To some extent it
can be found in papers of Godel, Church, and later Cohen, and it appears
explicitly in papers of Vopenka, Scott, Solovay, Grayson, and others.

Example 2. Let (K, +, —, 0, 1) be an arbitrary associative ring with identity.
In what follows we denote by B(K) the set of all central idempotents of the
ring K, thatis, k= B (K) & k* =k /\ Vt (-t = t-k). In B(K) we have the
canonical structure of a Boolean algebra: e, A e, = e;-6,, € =1 — ¢,
e\ e, = e e, — e -e, where e, e, € B(K). In what follows we denote
by X(X) the Stone space of the Boolean algebra B(K) and by F (K) its
topology. A point from X(K) is called a point of the ring K. Next, the
letter @ always denotes an open set from the corresponding topology: in
the case in hand, © is an element of J (K). Obviously, B(K) = J(K). This
J (K) is sometimes called the topological completion of the Boolean algebra
B(K).

We denote by B (K) or B(K) the complete Boolean algebra that is the
Dedekind completion of the Boolean algebra B(K). It is convenient to
identify it with the lattice of all regular open sets in X(K), that is,

B (K) © J (K). We note some simple properties: ~], O = (CO)*, where

C denotes set-theoretic complement, 5 = "]+ |90, and also 5 is the
smallest regular open set containing @, \/g0s = | JOa, \VEOa = (UO)™,

o o « a
N7Ca = (N0x)° N\80sx=([10s)% and ~ |50 = "0, that is, the operations
o a a a

in & and B differ only in the join.

Let L be the language of rings, that is, the language containing the
symbols =, +, —, *, 0, 1, one kind of variable (running over K), and all the
usual connectives. For the family of parameters we take D = K. Then
LoD) = {(k = t)] k, t = K}. It is presumed that for atomic formulae with
terms, that is, for the formulae of the form (p = ¢q), where p, g are
polynomials with the parameters %, ..., k, € K substituted in place of free
variables, we first compute p and g in K and then calculate the valuation of
[k = ¢], where k, t € K. Such an understanding of terms that are parts of
formulae is called operational.

So we put [k = ¢t] = \/ {e & B (X)| e-k = e-t}, where \/ is computed in
one of the two completions of the algebra B(K)—the topological completion
J (K)or the Dedekind completion B (X). In this way we define two
valuations [ Jo and [- Je&). They are respectively called the J-and
B-valuation in the language of rings. The symbol [-]g is sometimes used
instead of [+ 7). The valuation [ - Jo &) was defined by Scott (see [1]).
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For any p € X(K), let p denote the smallest ideal in K containing p. It is
easy to check that p = p*K and 1 & p, that is, p is a proper ideal. Depending
on the conditions imposed on the ring X, the class of ideals {p | p = X (K)}
can be described in terms of the ring K itself without mentioning the
Boolean algebra B(K). We put K, <= K/p. We mention the valuable
function p — K, and also the function & ~— k& (-), where k € K and
k() X (K) ——>p~UX(K)Kp, k(p)= [k]i and [k]; is the equivalence class in K,

of the element k with respect to the ideal p. This construction (in fact, of
the covering space ¢ |J K,, X (K)) with fibres K,) was obtained by Pierce.
P=X(K)

Of course, if k = ¢, then [k = t]5x) = [k = tlpx) = 1.
Theorem 5. The valuation [- |7, is a normal and sheaf valuation and hence
it is accessible.
Lemma 1. If e < [k = t])g (), where e € B(K), then ek = e-t.
Proof. By hypothesis e C | J eq, where €,k = ey*t. By the compactness of

ewegeteCe, |J ... U ea and since the components are Boolean,

e=c¢e||]. Llem where e; = B (K), e €a , and | ] denotes the
disjunctive join. Therefore,

e=¢e + ... +en ek=ek1 .. =epre kT ... =e€-6€-t=cet

(A simple argument also shows that the map & — & (-)is injective. The values
of this map are called sections. Hence the elements of an arbitrary ring can
be identified with sections.)

Proof of Theorem 5. By Lemma 1 we find at once that the valuation is
normal. By Theorem 1, part a, the accessibility will follow from the fact that it
is a normal and sheaf valuation, since § (K) is a zero-dimensional compact
lattice. It remains to verify the fact that the valuation is a sheaf valuation.
We first note that it is a weakly sheaf valuation, since we can paste together
k and t on e € B(K) into the element (e*k+ (1—¢€)*t) of the ring.

Suppose that U O, = e & B (K). Then U €q,p = e, where O = L €q, bs

e, I . .- U €o = €, and e, is the join of a finite number of ea“ﬂ, c e
-« v eq,p . We form the disjunctive system {e;}, where [ Je; = e and ¢; < e, ..
1 3

Now we paste Zei-ka. == k. This k is the required one: ¢; [k = ka,’g,

Oa/\\/ee \/Oa/\Oa)/\{[k—k D) < (Tk = ke JATE = ko ]) <
< [k = k] [J
The ring K is normal if Vk & K3e, & B(K) Ve € B(K)(e-k = 0 < e < ).
This formula written in the language of rings will be denoted by ®,. The
intuitive meaning is clear: in a normal ring the set of annihilators from B(X)
of any fixed element k¥ € K contains the greatest element. Examples of
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normal rings are the rings mentioned in Theorem 14, including the strictly
bi-Rickartian rings defined by the condition Yk & K3e &= B(K)(<kD*= e- K),
where (k) is the principal (two-sided) ideal generated by k, and a" is the
right annihilator of the ideal g, that is, a* = {t &= K | a-t = 0}. The
condition that a ring be atomless will be denoted by &®,, that is,

Dy == Vedt Je,Vt, (2 =e¢ N et=te=e; = e,/ \et; = t; €0 \
Ao =0se=0)A (eg=c=>e=0) A (ee = e).

The fact that K is atomless is the condition of the absence of atoms in the
Boolean algebra B(K), and is equivalent to the condition of the absence of
isolated points in the topological space X(K). Let ®; denote the condition
that the ring K is Abelian, that is, @y = VeVi(e? = e = e-t = t-¢). For
example, in a ring without nilpotent elements (that is, 2> = 0=z = 0) P,
is fulfilled. Other properties of rings frequently mentioned in this paper are
introduced in §1.6, and are denoted there by ®,, ®;.

A ring K will be called a sheaf ring if it is normal and, in addition,

V {ea) S B (K)V {ko) S KIk = K (1= /5 € N\ V& B (ea-e5-Fa =
= eqep-kp) = Vo (ea-k = €a-ka)).

The normality condition ensures the uniqueness of such a k£; we shall
denote it by D) ex-ky. In the case when B(K) is a complete Boolean algebra,

the notion of a sheaf ring (module) coincides with that of an orthogonally
complete ring (module) introduced by Beidar and Mikhalev. The term used
here is consistent with the theory of sheaves and with [1].

Theorem 6. If K is a normal ring, then the valuation [ -], is normal. If
K is a sheaf ring, then this valuation is a normal and sheaf valuation and
hence accessible.

Proof. If K is normal, then | {e | e-k = 0} = e,, where e, comes from the
normality condition for k. Then [k = 0] 3 = [k = 0} = ¢,, and

[k = 0]s = 1 means that ¢, = 1. It follows by Lemma 1 that ¥ = 0. We
verify that the valuation is a sheaf valuation. Suppose that b = \/ b, and

o
ba N b; < [ka = kplp@). We write by = |} eqy, Where egy & B (K). Then

we have egy, N\ ey, < [ka = kp]Bk); from 1{he fact that the ring is normal
we have [kq = kyJpay= [ke = kJza), and by Lemma 1 we have

€ay, €py, *ku = eay, -y, -kg. We adjoin to the family {e,,} all es, where
b= gj es, ep & B (K), and correspondingly we adjoin to the family {%4}

any fixed element of K. By the condition that the ring K is a sheaf ring, we
can find a k such that ey < [h = ka]ox) << [k = ko]Bx)- Therefore
be < [k = ko px). We now apply Theorem 1, part a. []
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Example 3. Let & be a left module over a ring K (as in Example 2). The
language of modules consists of two sorts of variable, k (over K) and x
(over &), the atomic symbols of the language of rings and, moreover, of the
symbol . T-(for elements of &), the symbols +, —, 0 (for operations in &),

the functional symbol k*x, and also the usual connectives for the variables
of both sorts. The definition of the valuation in Example 2 is supplemented
by the condition [z = y] =\ {¢= B (K)| e-z = e-y}, where \/ is taken in
T (K) or B(K). We call these valuations J - and B-valuations, respectively,
in the language of modules.

A module over a normal ring is called normal if Vz3e,Vele-z=0 < e < €).
Sheaf modules are defined in the same way as in Example 2.

Theorem 7. a) The valuation [:]gx,in the language of modules is a normal
and sheaf valuation, and therefore it is accessible.

b) If the module & is normal, then the valuation [}, in the language
of modules is normal. If & is a sheaf module, then the valuation [- s, is
a normal and sheaf valuation and therefore it is accessible.

The proof is the same as in the case of rings.

Proposition 1. For a normal ring (module) K and a formula ¢ in the
language of rings not containing the quantifier 3 in the premises of any
implication nor the quantifier ¥ in the domain of any connective \/, we
have [@le&) << [9]Bx). For a sheaf ring (module) K and any formula ¢ in
the prenex form we have [@]gxk) = [@lsx). (These yield the corresponding
relations between the global validities.)

Example 4. One of the foremost examples of valuation is the function
associating with every formula the corresponding element of the Lindenbaum-
Tarski algebra. However, such a valuation is “made’ in an essentially
different way from the valuations of Examples 1, 2 (see [17], p.211).

Example 5. The modal connectives can be interpreted by means of the
corresponding evaluation. Then the modal logics are well described by
means of common validity in suitable classes of presheaves and sheaves
(defined in §1.7), that is, by means of the corresponding evaluation. These
classes can be described extensively, in particular, in terms of the homology
of sheaves. There are possibly interesting examples of evaluation in more
general lattices such as semidistributive and Dedekind lattices, in particular
in connection with quantum logic. By constructing the algebra © one can
compute the valuation in an algorithmic way (under certain assumptions) in
a time which is of the order of the logarithm of the number of elements of
this algebra.

1.4. The connection between deducibility and global validity.
As defined in §1.1, @, is the set of all closed formulae ¢ with parameters
from D such that Q | ¢ (for a fixed language L, a family of parameters D,
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a complete Heyting algebra £2, and a valuation [-Je, p). How can we find
this set in practice? Direct computation of the valuation is sometimes
workable but may be a complicated task. We usually know beforehand a
list T (finite or infinite) of formulae (‘“‘axioms’) belonging to ®,. It is
useful to find a notion of deduction 'rg (depending on the valuation) such

that (T — ¢) = (Q £ ¢). In certain cases we have (T |~ ¢) & (Q = ¢)and
o Q
we can even have T and l'; such that the set of all deducible formulae is

recursively axiomatizable., For example, this happens in the case when
€ = [0; 1]*. In this context we shall need in what follows some (very
traditional) axiomatics and a notion of deduction.

The axiomatics of the set theory ZFC consisting of the axioms of ZF and
the axiom of choice AC is well known (see [2]). Considering it together
with the axioms and the rules of inference of the classical predicate calculus
in the language ZF, we obtain the theory ZFC, deducibility in which we
shall denote by ZFC |—. The theory ZF is obtained from the theory ZFC
by removing the axiom AC. Deducibility in the classical predicate calculus
is denoted by |—.

The intuitionistic predicate calculus is obtained from the classical predicate
calculus by removing the “law of the excluded middle” —the axiom ¢ \/ T
(and the equivalent axiom ~]7¢ = ¢), and we denote deducibility in this
calculus by }-; Combining this calculus in the language ZF with the axioms

of the theory ZF, where exactly one of them is reformulated in the
classically equivalent way, we obtain the intuitionistic theory of sets HZF~.
The axioms of ZF mentioned above are the axioms of equality (for *€- and
«=+_which, however, follow from the other axioms), extensionality, pairing,
unions, power-set, €-induction (instead of the classical axiom of founding
which is equivalent to it): Vx (Vy & 29 (¥) = ¢ () = Vao¢ (z)), separation,
replacement: Vz & uldlye (z, y) = Jv Vr &€ udy € ve (7, y), and infinity.
If in HZF~ we substitute the replacement axiom by a stronger axiom of
“collection”: Vz & ulye (z, y) = JvVer & uld y & vy (z, ), then we
obtain a theory which we denote by HZF. Of course, ZF |— HZF. In
certain cases the theory HZF is made even stronger by adding Zorn’s lemma
ZL as an axiom and the axiom HAC (in ZF the axiom ZL is equivalent to
HAC, which is equivalent to the axiom AC):

VeeudylyE ) AVz,yculz=yV "l (z=y) =3} u>
—JuVzeu(f (2) = z)).
It is interesting that in the theory HZF* = (HZF+ ZL + HAC) the law of the
excluded middle is still not deducible, so this theory also is to some extent
intuitionistic. For the theory HZF~ the properties of disjunctiveness and

extensionality are fulfilled, and this underlines its intuitionistic status (see,
for example, [9], [10]).
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Theorem 8. a) If ZFC |— w, then for any complete Boolean algebra B we
have B |= @ (here we consider the valuation in the language ZF defined in
Example 1).

b) If HZF |— ¢, then for any complete Heyting algebra Q we have Q = ¢
(here we consider the same valuation in the language ZF).

¢) For any valuation [-1» with values in a complete Boolean algebra B, if
Pur v - Pu =, then [@1]e A - A lenls < []s. So
BEMN.-- - Ag)=BEY), wheren = 0.

d) For any valuation [-Jo with values in a complete Boolean algebra S, if

Prr o+ o Pn l; '\P, then [(plIQ /\ “ s /\ l[qJnIQ < ][\p]Q: SO

QREaANA. .. Ag)=(Q V), where n = 0.

e) Let Q, = J (X,), where X, is the Baire space (that is, X; = w*, where
w is the sequence of natural numbers). If for any sheaf valuation [-Jo, we
have Q, k= ¢ then |— ¢ (“the completeness theorem for intuitionistic

H

predicate calculus in the language ZF™’).

In this way, the traditional classical and the intuitionistic predicate calculi,
as well as the axiomatics of set theory, are closely connected with valuations.
We have the same situation in modal logics.

The following two (mutually dependent) problems are closely connected
with non-classical logics, in particular with intuitionistic logic: firstly, the
development within the framework of the given logic of ordinary mathematics
(algebra, topology, analysis, and so on) and, secondly, for a given logic the
quest for a syntactical translation of the formulae ¢ + ¢’ for which the
deducibility (or validity) of the formula ¢ in the theory with classical logic
implies the deducibility (respectively, validity) of the formula ¢’ in the same
theory with this non-classical logic, and the meanings of the statements ¢
and ¢’ are close. For example, the famous Kolmogorov (Gddel negative)
translation ¢ ~ ¢~ is such that ¢~ is obtained from ¢ by adding ~| "} before
the atomic formulae and the connectives \/, 3. Then |- ¢ implies |- ¢~.

H

The Godel negative translation that solves, for example, the question of the
consistency of the theories with both classical and intuitionistic logics
apparently gives little from the point of view of developing intuitionistic
mathematics. The point is that the theorems ¢ of, for example, Galois
theory mean little in the form ¢~. A fundamental result of Novikov ([5],
p-127) gives another example. If in the ring of integers Z the formula

% = VzIyg (z, y) (where ¢ (z, y) defines a decidable predicate) is (classically)
valid, then in the same ring the formula % is intuitionistically valid. The
intuitionistic validity is defined, in essence and substantially, without
axiomatization. Intuitionistic logic is connected with the idea of
“effectiveness™: if Jye’ (y) or VzIyg’ (z, y) is intuitionistically valid, then
we reckon that we can effectively produce a y such that @’(y) or a function
f(x) such that ¥z (¢’ (2, f (2))) (as a term or in another explicit way).
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Hence the importance of the results of the following type is clear: if 3yo (y)
or Y23y (z, y) is classically valid in a ring K, then Jy¢’ (y) or VzIy¢’ (z, y)
is intuitionistically valid in the same ring, where ¢’ is close in meaning to ¢
and does not contain ‘“‘meaningless’ connectives like | |. In the case of
the results of Novikov we have K = Z and ¢ = ¢'. In Ch. III we shall
consider Novikov’s conjecture (stated in his paper) that his result is true
“under very broad conditions”; see also the definition in 8II.1.

L5. The connection between validity and global validity.

We shall find some classes of formulae useful. We say that a formula is in
“weakly E-normal form” if none of its implications contains the connective
J in the premise and if there is no connective V in the domain of the
connective \/. We have a “weakly A-normal form” if neither ¥V nor =
occurs in the premises of implications. A formula is in a “normal form” if
every implication occuring in it contains only the connectives /\ and \/ in
the premise and in the conclusion. We recall that by 7] ¢ we mean ¢ = | .

A formula is positive if it does not contain the connective = (nor, of
course, the connective ~ }).

A Horn formula is obtained by applying the connectives ¥, 3, A to a
formula of the form ¢; A ... A ¢, = ¢, where n = 0 and ¢,, . . ., ¢, ¢ are
atomic formulae (including T and _| ). This class can be written graphically
in the formV, 3, Alg; A ... A @.=> ¢l. The last notation is also convenient
in other cases, and therefore we denote by @y, ..., QxlXxy, ..., X;n] the class
of formulae obtained by the application in arbitrary order and number of
the connectives @y, ..., Qx to the formulae (*blocks™) of the form Xy, ..., Xn-

A formula is almost positive if it is of the form 3, V, A, V
[VE (9 (f) = ¢ (1))], where p is any Horn formula and y is any positive or
almost positive formula. The variables ¢ are called block variables and ¢ is
called the premise of the block. We note that, besides ¢, ¢ can also contain
other block variables. For example, in the formula

=V 3k (w<k) =t W<tAVs (w<s=t<53)

(this is an important formula expressing the conditional completeness of a
lattice; w is an arbitrary subset and k, ¢, s are arbitrary elements of the
lattice), both w and s are block variables in ¢ = (w < s).

The rank of an almost positive formula is defined by induction. An
almost positive formula whose blocks all have positive formulae in the
conclusions is of rank 0. An almost positive formula whose blocks all have
almost positive formulae of rank up to and including (# — 1) in the conclusions
is of rank #.

We fix an arbitrary valuation [ -Je, p and also an almost positive sentence
% == % (k,, .-, kn) With parameters from D. For an almost positive formula x
we define an auxiliary predicate P [-]. If x is positive, then P lx]==T.
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If % is a block of the form V¥ (¢ (f) = ¥ (7)), then
Pl =35, D (¢E)=DAVIEDDE¢@ =Py @

next, P[32¢]} == Ik = DD k ¢ (k) A\ Plo (k)]), P[Vze] = Vk = D(P[¢ (k))),
Plg A4l = Plgl A Ply], Plo\/ 91 = (PIe] AD £ q) V (PRI A D E ).
The sentence x is decidable if D k= » implies P [x]. For example, the
sentence ¢ has rank 1, and is decidable since we can choose w= ¢ and &
by the condition D = 3k (w < k). The valuation we consider here is such
that fw < kj=[Vzre v (z < k)]

The choice of the term ““decidable” can be explained as follows: if in the
language of rings an almost positive formula » has the form » = Vit (¢ (f) =
=1 (f)), where ¢ ({) = p, }) =0 A\ ... Apm () =0and p,, ..., p,, are
polynomials, and ¢ is decidable, then the decidability of x (for a normal
valuation [ Je, p) is equivalent to the fact that the system of equations
=0, .., p, =0 can be solved in D. Various criteria, including syntactical
ones, can be given for the decidability of almost positive formulae.

Theorem 9. Suppose that a valuation [ - Je, p is normal for all atomic
formulae and is accessible. The formulae we consider contain the parameters
from D.

a) For any Horn formula @, Q |= ¢ implies D = ¢.

b) For any positive formula ¢y, D = ¢ implies Q = .

c) Suppose, in addition, that [[-Jo, p is a weakly sheaf valuation and S is
zero-dimensional. For any almost positive formula x, D = x implies Q = =.

Proof. For an atomic formula ¢, the fact that the valuation is normal yields
(D E 9) « [@] = 1. If the valuation of the formula ¢, A\ ... A ¢, = @ is
equal to 1, then o, A ... A o] <[ol- If [@.] <1 forsomei, 1 <i<n,
then D & @; and the proof is complete. Otherwise [@] = 1 and the proof
is complete. If [¢ A ¢] = 1 or [Vzg] = 1, then we use induction. If
[3z¢] = 1, then by accessibility we have [¢ (k)] = 1, where kK € D, and we
use induction.

b) For the atomic formulae we proceed in the same way and then use
induction.

¢) Suppose that a decidable almost positive formula x of rank n with
parameters from D is valid in D. By the condition of decidability we obtain
P[x}. By induction with respect to the structure of x we shall show that if
D |= x (k)and P [x(k)], then [« (k)] = 1. If « is a block, then we compute
the valuation only for ¢ such that [@ ()] = 4. Whence D & ¢ (£, %) and
also P [y (f)], where ¥ is an almost positive formula of rank less than or
equal to » — 1. For ¢ we perform induction with respect to the rank, whence
[$i=1. If x == Jz¢, then D = ¢ (k,, k) and P [¢ (k,, %)], that is, we can
apply the induction step. If x = Vzg, then D |= @ (k,, k) and P lo@ (k,, K)]
forany kg€ D. If n== @ A\ VPor x = @ \/ ¢, then (second case) D ¢
and P [¢). (]
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Suppose that the Heyting algebras £, and 2, are embedded in a lattice H
and H is a Heyting algebra, though we do not assume that the embedding
preserves the operation —, but instead assume that u I Lu—-rrvu - v,

where — is implication in H. If , € , or , C §,, then for H we take
2, or , respectively. We write £; < §2, if Va (ug < vo) implies

V olua <V e and A glq << /\ ol We write Q5 Q, if 2, < 0, but
a o [+ 1

with u\/qv < u\/o (that is, < instead of =) and u FUv=u_v (that is,

= instead of <). For example, for any ring K we have 3 (K) < ¥ (K) and
J (K) < B (K) and, what is more, we have A 7u, = /\puq. The second
important example is as follows. For any complete Heyting algebra £ we
have Q < B (Q), Q < B (Q)and, what is more, \/ gUe, = \/&o)lla, Where
B () was defined at the end of §1.2. These properties easily follow from
the definitions of the corresponding algebras.

Theorem 10. a) Suppose that Q; < Q,,[- e, p,and [ - Ja,, . are two valuations
coinciding on atomic formulae, and a formula @ has parameters from
D, 0 D, and the premises of all its implications contain only the connectives

\/’ /\' Then [q)Igll D, < ﬁrqz;gn D,-
b) Suppose that ¢ is a formula in the language of rings with parameters

from the ring K. If K is a normal ring and @ is in weakly E-normal
form, then {9l < [¢]nwk)-
Part b) of this theorem is closely related to Proposition 1.

1.6. Cancellation of idempotents and transfer theorems in the case of rings.
Expressibility of global validity.
The ring K is “without idempotents” if it has the property

D, =Ve(e®=e=me=0\e=1),
and “‘indecomposable” if it has the property
P, =Vedt (*=¢ Aet=te=se=0\e=1)
we also write
GO, =Ve((e?=e AVit(et=te)=e=0\e=1).
Classically (but not intuitionistically) &, and ®3 are equivalent.

Theorem 11. a) For any ring K and any J (K)-valuation in the language of
rings the property ®5 is globally valid. If K is a normal ring, then for a
B (K)-valuation the property ®s (and ®5) is globally valid.

b) Let T be an arbitrary collection of almost positive decidable sentences
in the language of rings with parameters from the ring K, and suppose that
K& T. If Tand @, |— ¢, then § (K) &= 9. If K is a sheaf ring and

H

T, @y @, then B (K) £ ¢.
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Remark. This theorem explains why the passage to global validity is useful:
all idempotents cancel and we can use this, since global validity turns into
ordinary validity (see, in particular, Theorem 12).

Let ¢ — ¢’ be the following translation of the formulae in the language of
rings with parameters from K. If g¢(k,, ..., k,) is any formula in prenex
disjunctive form and e € B(K), then ¢'(ky, ..., k,,, €) is obtained from ¢ by a
shift of the quantifier prefix occurring in ¢ and by the assignment

SéthVeoato[e‘;' =e Neprt=teg\... A\ H(1 — ) <

<U—Aerki=e -ty \---N(eh =€, N\eglo =1ty \egks =
=eprty=el—e)A\...],
where the index s runs over the number of the disjunctive parts of ¢, k; = ¢,

is the first equality, and k, ¥ ¢, is the first inequality in the first disjunctive
part of . We note that ¢’ is always a Horn formula.

Theorem 12. Suppose that ¢ is in disjunctive normal form.
a) For any Boolean element e € B(K) we have

(s Dlrm=a) e (KE o (@ e).
b} For any sheaf ring K and e € B(K) we have
T Olsay =€) < (K = ¢ (L, ).

In the same way we define the translation ¢’ (I) » ¢” (I, €) for formulae
¢ in conjunctive normal form. Namely, for a quantifier-free ¢ we put

¢ =13e,...,e Vi Ve, Aol = eyt =105 A\ ... N H 1—e) <K

Kl—eA... Nevkp=e -ty A ... A(€h =€y N\ ety = tye, N €-ky=
=epty,=e, <1 —e) N ...l

where s runs through the number of the factors, » is the total number of
disjunctive parts, and the quantifier prefix is shifted as before.

In the same way, such a translation can also be defined for other forms of
presentation of g.

Instead of ¢’(k, 1) and ¢”(k, 1) we shall write ¢'(X) and q" (k).

Theorem 12. c) Suppose that ¢ is in conjunctive normal form. The
equivalence in parts a) and b) of Theorem 12 can be replaced by an
equivalence of the form ([¢ (k)] > €) < (K & ¢" (&, e)).

Remark. In Theorems 11, 12, and in the next corollary, it is sufficient to
consider, instead of sheaf rings, normal rings and accessible valuations.

Corollary 1. Any set of sentences (in a corresponding language extending
the initial language of rings) of the form J (K) k= ¢ (‘¢ is globally valid™),
where ¢ runs through the set of sentences in the language of rings with
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parameters from K, is equivalent in the class of all rings to a Horn theory T
in the language of rings with the same range of parameters from K, namely,
to the theory T' = {@' | @ & T'}; instead of T' we can take the theory

T" = {9" | o= T} (here we assume that T is, respectively, in disjunctive or
conjunctive normal form). If global validity is understood in the sense of
B (K)-valuation, then the same assertion is true in the class of all sheaf rings.

A class X of rings is internally axiomatizable if there is a theory T (in the
language of rings) such that K & & « [T]=1. Corollary 1 says that in a
number of cases the ‘“‘internal” axiomatizability coincides with the “external”
(that is, the usual) axiomatizability. Similar assertions are also true for
certain other structures and the corresponding valuations. Other forms of
axiomatizability, such as local axiomatizability, are considered in Ch. II. We
note that internal axiomatizability is *“‘simpler”’, for example, in the sense
that the theory T can be formulated in the class of indecomposable rings.

Corollary 2. If ¢ is a Horn formula in the language of rings with parameters
from an arbitrary ring K, then (K |= ¢" (%)) or (K k= ¢’ (k) implies
KE ok

Theorem 13. Under the conditions of Theorem 11b) we have K = ¢’ N\ ¢
(if p is a Horn formula, then also K = o).

Example 6. By Theorem 11b) K-spaces and LR-algebras (that is, algebras of
measurable R-valued functions) for the corresponding valuations can be
described as the field R. Theorem 13 gives the transfer of the corresponding
properties of the ordered field R to K-spaces and LR-algebras. (The
description of K-spaces as the field R was given by Gordon in 1977 and the
connection between LR-algebras and real closed fields was discovered by Scott
in 1969).

The classes of rings mentioned in the next theorem are defined, for
example, in [3], p.389. Theorem 14 enables us to apply Theorem 11, part b
(and consequently Theorem 13) by adding to Theorem 11, part b the property
i') before the symbol of deducibility }— in the case when the ring K has the
property i), where the number i takes the values 1, 2, 3, 4. We note that,
compared with i), i') is a strong property. This extends the remark after
Theorem 12c¢).

Theorem 14. For a ring K which is 1) strictly bi-Rickartian, 2) biregular,

3) Abelian regular, or 4) strictly Rickartian, the following properties are

I (K)-globally valid respectively: 1') prime, 2") quasisimple, 3') division ring,
or 4') without zero divisors.

A proof of the theorem is contained in [3].

L.7. Universal valuation. The notion of sheaf on a Heyting algebra.
One of the important merits of the language of ZF set theory and also of
ZFC set theory is that almost all the usual mathematical languages can be
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interpreted in the language ZF, and the corresponding theories can be
reduced to the theory ZFC, and often even to the weaker theory ZF.

A second important merit of the language of ZF theory is that, working
within the framework of this theory, we can use in the arguments such
notions as ideal, family of ideals, the rings Z, R, C, ®, and so on, which are
not expressible in the language of rings.

Therefore, it is of interest to reduce the valuation [ - Je, p in a certain
specific language L with a specific set of parameters D% to a valuation in the
language ZF (with a set of parameters £ fixed once and for all). Such a
reduction is possible (see Theorem 16) and in this sense the valuation in the
language ZF (defined in Example 1) is sometimes called a universal valuation.
Of course, this does not mean that other valuations are not necessary.

To work with arbitrary valuations, the notions of a presheaf and a sheaf
on a Heyting algebra are convenient and we recall them now. These are
connected with the names of Leray, Grothendieck, Lawvere, and Tierney
(see [1]).

Any partially ordered set, in particular a Heyting algebra H, can be
considered as a trivial category: the set of objects is H itself, and the set of
morphisms Hom(u, v), where u, v € H, consists of one element if ¥ < v and
is empty if « € v. A contravariant functor & (-) from H into any category
is called a presheaf. For the sake of definiteness we consider presheaves
with values in the category of sets, that is, in fact with values in the class of
all sets V. By definition, the sets ¥ (x) and ¥ (v) are disjoint if u # v.
Suppose that H is embedded in a complete Heyting algebra £ with respect
to the operations A, \/, 0, 1 (but not necessarily with respect to =). Then
Q induces in H a predicate u = \/gug, Where u € H, {u,} & H. A presheaf

a

F(-) on H is a sheaf (with respect to the given ) if
Vue HY{us} S HV{ka} 3! k= F(u) (u = \/aua AVa (ke = F (ua)) AVa,

B (Pugnuy (k) = pulrug (k) = Va (o, (B) = ko),

where p¥ is the morphism corresponding to the case v < u.

A presheaf & (+) on H is normal (Hausdorff) if in the previous property
instead of 3! & we only require the uniqueness of k.

It is easy to prove (by means of inverse limits) that a sheaf can be
canonically extended from H to a sheaf on Q. If H is a complete Heyting
algebra, then for £ we take H itself (unless explicitly stated otherwise).

If §(-) is a presheaf on £, then we put § = [J{F (1) | u = Q} and we
put Ek equal to the unique u from £ such that £ & & (u). We note that

E:F — Q On ¥ we define the operation kl u= pf;ﬁ,\u (k). Instead of

F (1) we write §,. The elements of the set ¥ (1) = &, are called global.
Of course, py, (k) = k tu for global .
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Example 7. The valuation connected with a presheaf. Stratified valuation.
For any presheaf ¥ (+) on £, we choose as the set of parameters ¥ (1) = §,
and we put [k = t]y, = \/ {u € Q | klu = t|u}, where k, t = F,, that is,
[k =tly, = V{iueEQ lpu (k) = pu ()}

If the language under consideration contains (besides - = -) an atomic
formula (that is, for example, binary), then according to the general
definition of Valuation we ought to define a function of the form
[P0 (s )]s F1— Q consistent with [- - J#., in other words, an
extensional functlon for the valuation [- ]:,r, In a similar way we interpret
the functional symbols [f (+,.. ., *) = Jo: F1* — Q. In fact (for
example, for a two-place functional symbol f), we ought to define a
function f: 3 — Q with the property
Vk’ kl' ti tlv Yy, 1 (.f (kv t1 y) /\ f (klv tl’ yl) /\ [[k = kl]]g’l //\

N[t =t]s, <[y = nils)
and
ikt y)=1 vk tEF,
YEF,
The structure of a presheaf can be used to obtain an interpretation of
atomic formulae and functional symbols. Namely, if on each ¥ (u) we are
given a predicate P, (-, *) consistent with the “structure of the presheaf™
(that is, (v < u) A\ P, (kju, tlu)) = P, (klv, t{v),where k,t & §,),
then we put [¢, (&, t)]r, = V{u s Q | P, (k{u, tiu)}.

The function obtained in this way is extensional. For an interpretation of
a functional symbol (for example, two-place), any natural map of functors
72 (F (\)? = F (-) is suitable: the symbol f(*, *) corresponds to f: Fi — F,.
So we extend the valuation from the atomic formulae to all formulae
according to the general definition of valuation. The valuation we get is
called a valuation of the presheaf ¥ (-)and is denoted by [ Js,. It is easy
to see that for any formula ¢ we have the possibility of substituting
[e (i, - . . 4)]s, with respect to[- = ]z,

If everywhere in the definition of the valuation [-J, we replace 1 by §
then we obtain another example of a valuation. However, this valuation
seems not to find important applications, since it does not take into account
the additional structure that we have in § (but not in ;). Namely, the set
¥ is ““stratified” by the function E: § — Q.

We put

k=tly =V{usQ|klu=_tu} and

k=t =V {uesQiol k) = @)

Of course, for k, t & §, we have [k = t]y = [k = t]y. The structure

L, 7, I[ Js> is a typical example of an §2-set (see the definition in
§1.3). The valuation so far defined only for atomic formulae extends to all
formulae: for propositional connectives as usual and for quantifier
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connectives in a new fashion: [Jz¢] = \V/ {Ek Ao (¥)]s | k= ¥},
[Vzqo] = N\ {Ek— [¢ (k)]s | k & §}. The atomic formulae and the
functional symbols (if we have any besides - = .) are interpreted in a way
consistent with the function [+ = -Js#: &2 — Q. We call this valuation a
stratified valuation of the presheaf & (-) and we denote it by [ Jr.

Two valuations [ Je, p, and [ Je, p, are equal if there is a bijection
Y : Dy = D, such that for all formulae ¢ we have

[q; (klv R kn):nQ. D, = [[(P ("'p (kl)v LS | ‘q’ (kn))]ﬂ, D,

and if in D, or D, we have certain structures, then we assume they are the
same and the bijection preserves them.

Example 8. A large stock of valuations can be obtained from the valuation
[-Je in the language ZF (see Example 1) in the following canonical way.
Suppose that in a certain language we have, besides - = -, exactly one
atomic binary predicate @, (to be concrete). We choose a pair of functions
hy, h € V. The synibol @, 1, denotes the relativization of the bound
variables to & (3x= h and Vz & k) and the replacement of q,(x, ) by
{x, > € hy. We put [ @Jo, n, n, = [P, nJo- Instead of A, h, we can write A
as is usually done when only the “‘support of the structure” {k, A4,) is
indicated. For the set of parameters D of the valuation [ Jg, », », we take
D (k). Intuitively, (k, A;> is not simply a non-standard and £ is a non-
standard model in the corresponding language. Instead of [gJg, » the symbol
[~ E ¢]o is sometimes used, since the relativization of ¢ to k coincides with
the definition of the predicate & = ¢@. []

In the case of the stratified valuation it is convenient to consider the
notions of E-normality and E-fibre instead of normality and fibre.
A valuation [-J¥ is E-normal if

Vuc QVE, teFEk=Et=ulN[k=tlg>u=k=1)

and an E-fibre, denoted by D, is the structure defined as in §1.3, with the
only difference that for the factorization with respect to ~, we do not take
the whole of D = F but {k = ¥ | Ek & p).

A singleton (with respect to the valuation [-]# or [*J#.) is any extensional
function of the form p: § — Q (or, respectively, of the form §, — Q)
having the property p (k) A p (1) <[k = t]s. Intuitively, a singleton is an
Q-one-element subset in ¥ or §,, respectively. For example, the function
px () = [k = ]y, where k is fixed, k &= &, and [ runs through ¥, is a
singleton with respect to the valuation [-Js. If in this example we replace
¥ by ¥4, then we obtain an example of a singleton with respect to the
valuation [+ J#,. A valuation is called complete if any singleton p is equal to
a singleton of the form p, for some k. The notions of singleton and
complete valuation are defined in [1].
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We recall that a fibre §, of a presheaf & (-) is defined as the direct limit
of the system{F (W) |lps=sues Q). If k= F (u), u € Q, then the value of
k at the point p (if it is defined) is denoted by k(p).

The following proposition is an analogue of Lemma 1.

Proposition 2. For a normal presheaf, if u < [k = t]s, then ktu = thu for
all k, te ¥F.

Theorem 15. Let [-]#,and [-]s be two valuations defined by a presheaf
F () on a complete Heyting algebra S2.

a) The presheaf ¥ (+) is normal for any global elements if and only if the
valuation [+ J#, is normal. 1t is normal if and only if the valuation [-]g is
E-normal.

b) The presheaf ¥ () is a sheaf if and only if the valuation [ is is
E-normal and complete.

Suppose that for the atomic formulae the valuation [ 15 has the property
prEfr=tly>3up=su N klu=tlu) (in fact it is a property of Q of
the form p = \/ ug = Ja (p < uy)).

o

c) We have [k = t]y, = {p= X (Q) | k (p) = t (p)}.

d) The fibre ¥, of the presheaf and the E-fibre of the valuation [-J¥
coincide. If S is zero-dimensional and Ulrisa weakly sheaf valuation,
then the fibre ¥ p of the normal presheaf §(-) and the fibre of the valuation
{-Is: coincide.

Proof. a) We know that if 1 = Y ug and ph (k) = ps, (t) for all o, where

k,t=F,,thenk =1t If [k =t]g, =1 then1 = \/ {u| pi (k) = p. (1)},
so k = t. Conversely, if 1 = \/ uq and pjy, (k) = pi, (t) for all &, then

[k = t}s, = 1, so k = . Suppose that ¥ () is normal, Fk = Et = u, and
[k = t]y > u. Then we have

u <V {vlktv=tlv} =V {v|pErao (k) = pEtno (8},

and k = t. Conversely, if k, t = F(u), u= \o{ Uq, and py, (k) = pu, (¢), then
[k=tlg >uand k = ¢.

Part b) is proved in [1].

o) If k(p) = t(p), that is, k}u = tu and p € u, where u € £, then
[k=tlsr,zu>Dp HpeE[k =ty =\ {usQ|klu = t}u}, then by
hypothesis we get p € u and k}{u = tlu, that is, k(p) = t(p).

d) The sets that are factorized in the cases of the presheaf ¥ (-) and the
valuation [ -] are the same, and equal to {k = & | p & Ek}. The equivalence
relations are also the same:

k~pgeosFJupp=suANklu=tlu)yepelk =1ty

If © is zero-dimensional, then we can take ¥, as the set for factorization
in the definition of ¥, and the same goes for the valuation [-Js,. [']
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Let () be a presheaf on 2. We recall that p; is the function defined
on ¥ by px () = [k = Js, px: § — Q. Similarly, p; is the function
defined on §,by py (I) = [k = I]s,. Of course py, py = V2, where [ from

the domain of py or p} is identified with [ = V2. We write Il = {p;|k = ¥}
and I’ = {px |k = §1). We put §* (po) = Ek and [ (p;:) =1, where §’
is defined on Il and &, on II'. The prime in the symbols pr and I is
usually omitted, and we keep in mind that ¥ and 1 are defined in
different ways; §', ¥, = V2.

Theorem 16. Let ¥ (-) be a presheaf on a complete Heyting algebra .
a) We have [ (ky, . . ., k)lw, = [ Pk, » - - - P& Do, 5! for any formula

q in the language of rings with parameters from F1(on the right-hand side
we have the valuation from Example 8). For a normal presheaf the
valuations T -z and ﬂ-]p g are equal (at least on global elements).

R |

b) We have [@ (k. . . ., k)]s = [ By, - - o pr Yeg- for any formula
¢ in the language of rings with parameters from ¥. For a normal presheaf
the valuations [- 17 and {-Jo, 5~ are equal.

¢) If ¥ (+) is a sheaf, then 971 (F)"\%and §, = (F)® where o~ is an
isomorphism of the form kw py and k « py, respectively.

d) If fo: (F (N —~F (-)is a natural transformatzon of presheaves
(n;-ary operation on Fy, where 1 < i < m), then <¥1, {£i}.> and <F1, {f:}>
are algebraic systems of the same type (and also for FH.

Remark. This theorem remains true if we extend the language of rings by
new predicative and functional symbols. In d) we have in mind positively-
defined algebraic systems, for example groups or rings.

Proof. a) The functions p; and § ; are obviously extensional. If the
formula @ is atomic, that is, it is an equality, then we have

[pk = Pido,s; = ), & O = pi@) = A\ = o, = [t =) = [k =],

Obviously, the connectives A, \/, and = preserve equality. The connective
Y also preserves equality, since

Vool = A [ 0], and [Vaal, oo = ATo (0], -

So we consider the case of the connective 3. For a normal sheaf the map
k p;‘ is a bijection, which means that the valuations coincide. (Therefore for
a normal sheaf we need not distinguish between k and py,, so we identify them.)
b) The functions p, are extensional and the cases of atomic formulae and
propositional connectives are dealt with as in a). Quantifiers are handled by
taking into account the definition of a stratified valuation. (We note that
the function ¥'is extensional.)
The parts c¢)-d) are proved in [3].
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Example 8a). We apply Theorem 16 to one particular presheaf which we
shall need in Ch. II. Namely, we fix a ring K and put § (¢) = e- K, where

e runs through B(K), and for e, < e, we put pe: (k) = e;-k (where k runs
through & (e;), that is, e,*k = k). Pierce essentially proved that the presheaf
& (-) is a sheaf with respect to the topological completion J (K) of the
algebra B(K). Therefore, as always, & (-) extends to a sheaf on J(K). We
restrict & (-) to B (X), which is the algebra of regular open sets in X(K) and
also the Dedekind completion of the algebra B(K). We denote this restriction
by G(*). Such a G(*) is a presheaf but not necessarily even normal. The
fact that X is a sheaf ring in fact means that G(*) is a sheaf. We can again
define the valuations of Example 2 as [¢]sx) = [¢]s, and [¢lawx) = [¢]s..
We write K’ = &, that is, K’ is the identity function defined on all p; of
the form py (I) = [k = I]7,. Intuitively K’ is a non-standard image of the
ring K in the universe of sets V¥ &), Using the presheaf G(+), we can also
form Gy & VB&E) where G, is similar to K', that is, G| is the identity
function on all L, of the form L, () = Tk = I]g,. But in general p, is not
equal to Ly, since ¥ (+) is not equal to G (-).

Theorem 16e). Suppose that K is a normal ring. Then G(*) is a normal
presheaf on global elements (in particular, K' = § 1= Gy) and the map

kv pyis injective, that is, K can be embedded in K'Y and K'®, and also
[olrx = [9]s. k* < [9]s,5 = [®]B(k) for any ¢ in weakly E-normal form.

Proof. Suppose that 1 = \/peq, €z & B (K), and eq-k = eq-t Va. Then
Ueéa & &y, where the ey comes from the normality condition. Therefore,

go = 1 and k = ¢t. Then p, (1) = Ly() = e,, where e, comes from the
normality condition. Therefore, K’ equal by definition to §; is also equal
to G}, that is,

K & VBE) (V& [ VBEK)),

By Theorem 16, part a, the map k — p, is an embedding, and taking into
account the fact that [p, & K']=1 (for the J and B cases) we obtain the
required embedding of K. The last assertion follows from Theorem 16,
part a and Theorem 10, part b.

We recall that Q, = J (X,), where X, is the Baire line w®.

Theorem 17. Let @ be a closed formula in the language ZF. If for any
h, hy € V¢ we have Q, = @n, n,, Where h is an identity function with non-
empty domain and hy is an extensional function on (D (h)), then F; ?.

This theorem, and also the article [5] (p.127), stimulate the following
definition given by Takeuti (see [10]). Let ¢ be a formula in the language
ZF, possibly with parameters from V o~ VZ. We denote by cHa = ¢ the
predicate VQ (V2 = 9), where §2, as always, runs through all complete
Heyting algebras. This predicate can be called Heyting validity. Heyting
validity does not imply deducibility in the theory HZF, since bounded
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formulae can have the same valuation in all ¥, for example, the sequence
of natural numbers w is exactly the same object o in all V. However, we
can suppose that for unbounded formulae Heyting validity is in better
correspondence with intuitionistic validity in set theory. In particular, we
have certain properties of disjunctivity and extensionality for Heyting
validity. Of course if HZF | ¢, then cHa & ¢.

CHaprTER 1l
LOCALIZATIONS AND VALUATIONS

II.1. Local axiomatizability of a class of algebraic systems.

Let o7 be the class of sheaves ¥ (-) on complete Heyting algebras £, where
€ runs through a certain class % ,; each value & (u) is an algebra of the
same signature. Usually the fibres (algebras) &, of the sheaf & (-) (here and
in what follows p runs through X(£2)) are simpler than the algebra ¥ (1).
Therefore, we try to reduce properties of (1) to properties of the family
{F,lp = X (R)}. This is one manifestation of the “method of localization™.

The class of sheaves & is locally axiomatizable if there is a theory T in
the language corresponding to the signature of the algebras such that
F ()= x <« ({Fp} £ T), where here and in what follows {F,} = T means
that Vp (¥, = T). The theory T is called a local theory of the class .
The notion of local axiomatizability, as well as the well-known notion of
axiomatizability, expresses a certain ‘“‘closure (completeness)” property of
the class . For a sheaf ¥ (-) on £, valuations [ - J#, and [:Js with values
in  were defined in Example 7. These valuations give a useful tool for
passing from the local theory T of the locally axiomatizable class X to the
class of global objects {§ (1) | § & ¥} and the theory Th{F (1) | § = ).
An important role is played by the possibility of expressing the global
validity (with respect to [:J&, or [-]J#) in the algebra § (1). This means the
existence of a translation @ ~ ¢’ (independent of the sheaf ¥ (-)) such that
(F ) E ¢)e ([¢]r, =1) for all F (-)in s (and similarly for the
valuation [ - ). In this case we call % a class with global validity. In this
chapter we apply such an approach in the case when all the global objects of
¥ (1) are associative rings with identity.

In this case the expressibility of global validity is guaranteed by
Theorem 12. In the presence of such an expressibility, some concrete
questions about the class {F (1) | ¥ (-) & &'} or the theory
Th{F (1) | F € o} can be reduced to the theory T in the uniform way.
This can be also done for model-theoretic questions. For example, we can
reduce decidability, completeness, model completeness, categoricity, stability
and similar properties to the analogous properties of the theory T.
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We note that the properties of axiomatizability and local axiomatizability
of the class % do not imply each other ind their relation to the property of
internal axiomatizability (see the definition in §1.6) is also non-trivial.

In Example 8a) we considered the following (Pierce) sheaf defined for any
associative ring K with identity. For ¢ € B(K) we put § (e) = e- K, and if
e; < e, we take p: § (e) — & (ey) to be multiplication by e,, that is,

& (k) = e,-k. Of course, ¥ (1) = K. As a rule, B(X) is not complete We
have: ife = Uea, where e € B(K), {ew} & B (K), and by & § (&), that is,

eq ko = kaand en-ep-ka = eq-eg-kg, then Ik = §F (e)Va (e -k = k). The
existence of such a k is obvious because e is compact and the uniqueness
follows from Lemma 1 for Theorem 5. Therefore, in a standard way we can
extend ¥ () from B(K) on J (K) putting § (©) equal to the inverse limit of
the system {F (¢)} e © ©}. We obtain a (Pierce) sheaf on J (K). Any class
of rings s can be identified with the class of corresponding Pierce sheaves
and we need not distinguish K and ¥ (-) on J(K). The fibre ¥, of this
sheaf coincides with K, = K/p, where p = p*K, that is, we are in the
situation of Examples 2 and 8a). In place of F1 (see the definition before
Theorem 16), where ¥ () is the Pierce sheaf of the ring K, we shall write K'.
Of course, K' can be defined without mentioning the Pierce sheaf. The fibre
K, in the algebraic context is also called the Pierce localization of the ring K
at the “ring point” p. Other forms of localization of rings and the
corresponding sheaves may also be considered. The results that follow
basically carry over to them but we restrict ourselves here to the Pierce
localization.

Theorem 15¢) in fact implies the following resulit.

Proposition 3. We have [k = tjgx) ={p = X (K) |k (p) = t (p)}.

Proof. If p e[k = tyx), thenp € e and e*k = e-t. If k(p) = t(p), then
p €eand ek = e*t. (Proposition 3 is also true for any positive quantifier-
free formula.)

11.2. Valuation and model completeness. Boolean absoluteness.

We apply the approach described in §11.1 to the following problem of
Macintyre: if T has a model companion, then does % have a model
companion (and of what kind) (see [7], p.173)? We recall the corresponding
definitions.

A class sz of rings is X -model complete if forany K, L& %, K C L,
and any formula ¢ from the class of formulae X (here and in what follows in
the language of rings) with any parameters k,, ..., k, from K we have
EEoly,.. .k)e (L=l ..., k). If 2is the class of all formulae,
then J¢ is called model complete. 1f a class 5 is model complete and
axiomatizable, then the theory Thoy is called model complete. If the class
X is axiomatizable, then the model completeness of the class s and the
theory Thoy is equivalent to the fact that any system of equations and



Valuations and sheaves. On some questions of non-standard analysis 69

inequalities with coefficients from K that has a solution in L also has a
solution in K (“‘Robinson’s criterion). The latter is equivalent to the fact
that any formula @(x,, ..., x,,) is equivalent to an A-formula Y (x,, ..., x,) in
the theory Thot (“‘Robinson’s theorem”™). A formula expressing in a natural
way the assertion of the existence of a solution of a concrete system of
equations and inequalities is called primitive.

A class s* is a model companion of the class J¢ if these two classes can
be embedded in one another, that is, VK = #3L = %* (K < L) and
VL= x*3K & % (L S K), and % * is model complete. If these classes are
axiomatizable, then the theory ThJ* is called a model companion of the
theory Thot. It is well known that, for example, the class of all algebraically
closed fields is a model companion of the class of all fields and the class of
real closed fields is a model companion of the class of all ordered fields.

We fix a theory T having a model companion T* and also the class
X% == {K|{K,} = T}. When does the class % have a model companion and
of what sort? In particular, for the class X of biregular rings (in other
words X, = {K | {Kp} k= ‘‘simple ring”’}), which of its subclasses are
model complete? These are questions of Macintyre (see [7], p.173 and
[81, p.88). In [8] he found a model companion for the class % of the
form % = {K | {K,} k& “field”}, in other words, he found a model
companion for the subclass of %, consisting of all commutative reguiar
rings. This result has also been obtained by other authors, as is discussed
in [8]. Proofs of the fact that the classes 27 jand J can indeed be
characterized in this way by their localizations, and also other examples of
locally axiomatizable classes, can be obtained, for example, from the
theorems of [3], p.389 (see also Example 9). Some answers to these
questions of Macintyre are contained in the next section. Namely, we
actually produce the following class &* = {K | {K,} = T*, K = @, A\ D,),
where @, is the normality condition and ®, is the condition that the ring K
has no atoms, and we find a sufficient (and in fact necessary) condition for
X'* to be a model companion for . It is easy to show that
VK< %, (K = ®,). Therefore, if T'* k= “simple”, then x* < % and the
condition &, in the definition of the class s * is unnecessary. In Example 10
we produce a new model-complete subclass of the class &,,.

In what follows, essential use is made of the following result.

Proposition 4. If K is a normal ring and {9} = T* (where T* is a model
complete theory), then for any formula o,

“:(p (kl'l s e kn)]lﬂ'(K) = {pE X (K) I Kp h P (kl (p)v .. ey kn (p))}
and [@ (ky, . . ., kn)]7E)

is an open-and-closed set, where kq, ..., k, € K.
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Proof. For atomic formulae we have [k = t] = e,, where e, comes from
the definition of normality for the element k — ¢, and we employ Proposition 3.
For the connectives \/, /\, ~ | everything is obvious. For the connective 3
we note that [Jz¢] = {p = X | K, = Jz¢}. Using the model completeness
for the formula (T}3z9) (z,, . . ., z,), we obtain the reducing E-formula
P(xy, ..., X,) and since the ring is normal the valuation [Jz¢] is open-and-
closed. For the connective V we notec that

[Veel= {p= X | Kp E V2 © N{[e (W]l k= K}

and we employ the fact that {p &= X | K, & 3z ¢} is open-and-closed.
The next two propositions are special cases of Theorem 2, parts b and ¢
(see also {31, p.388).

Proposition 5. Let ¢ be any formula in normal or prenex form (in the latter
case K is normal). If p = [ (ky,..., k.)]7x) then Ky = ¢ (ky (p),..., k.(P)).

Proof. We consider the case of the normal form. If p & [k = t], then
peE e[k =t], and by Lemma 1 we have k(p) = #(p). The cases

9 =q,\ ¢, and ¢ = ¢, A ¢, are obvious. If ¢ = ¢, = ¢, and

p = [9, = @], then in the case when p = [¢,] we get p & [¢,] and the
proof is complete. In the case when p & [¢,] and K, = ¢; we arrive at a
contradiction by induction on the number of connectives in g,.

Remark. In connection with Proposition 5 (and Theorem 2, part b, which
is also true for the normal form), we turn our attention to the following:
by Theorem 11, part a, it is J -globally valid that “K is without non-trivial
central idempotents’, that is, [(D;}y = 1. We must not infer from this that
K, = (@ /\ @), because @y is not in normal form and we must not take
@,, which is in normal form, since J -global validity is subordinate to
intuitionistic logic. Indeed, K, can have numerous central idempotents
(see [27]). This shows that Theorem 11 is non-trivial.

Proposition 6. If an AE-formula o is in normal form or K is normal, then

ToKRyes k)l 2> €) & VpE e (Ko 9k, (p)- o5 En (D)), e E B (K).

A class & is Boolean regular if for K, L& % we have K € L = B(K) &
€ B(L). For example, it is sufficient to verify Z(K) & Z(L), where Z(K) is
the centre of the ring K.

Proposition 7. a) A model-complete class 3% is Boolean regular.
b) Boolean regularity is equivalent to KCC L =V p, &= X{L)(p, (1 K) = X(K),
and also to K L= 3p, & X (L) ((p, [} K) & X (K)).

Proof. a) For any e € B(K) we carry the formula Vz (e-z = z-e) over from
K to L.

b) We verify the implications in the order given. Of course, p, N K =p; N
N B(K) € B(K), does not contain 1, contains 0, is closed with respect to \V/,
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and by Boolean regularity is downwards transitive and prime. If there is an
e € B(K)\B(L), then p; N K is not prime.
A class 2 is Boolean prime if for K, L &= & we have

K& L=VeEB(L)(e,*0=3p, = edp €
EXK)lp=2p N KEANVEE K@esSp(ek =k =3Je p(eh = k)L

If 2 is a Boolean regular class and VK & % (K |= @), then the condition
for the class s to be Boolean prime takes the form

KS L=Vp=X({L)(pL)NKS (N KK
(see the proof of Proposition 8, part b).

Proposition 8. Suppose that 5 is a Boolean regular class and
VAE x (K = O,).

a) From the AE-model completeness of the class & it follows that it is
Boolean prime.

b) The property of the class ¥ of the form

KcL=VYie KVes B(R)(KEV(F,ey=L = v (k, ¢)),
where
Vo= Ve 3t (e = ey N\ eg-l =1l-eg N\ €k = 0= gy-€ = e),
is equivalent to the fact that it is Boolean prime.

Proof. Part a follows immediately from the equivalence in b.
b) Suppose that this property holds and (using the hypothesis)
ex[k =0jx. Then L |z ¢ (k, e), that is, [& = 0}, <[,k = O0]x. Hence

[k 0x < [k+= OVp=X (L) Yk € K [3e, = (
& by (ek = k)= [k 0k <y

[k:“'—O];hE nl K, [[k;&()];;(k = kI,

that is, 3de &= (p, [ K) (e-k = k). This is stronger than the assertion that
the class & is Boolean prime. Conversely, suppose that e; € B(L) and

eyo'k = 0. Let us suppose that e, N (1 —e) # 0. By the condition that our
class is Boolean prime we can choose a point p; € ¢, N (1 —¢) in X(L) such
that p; N K C p, where p = p; N K is a prime ideal in B(K). Since

(1 —ey)*k = k, there is an e; € p such that e;*k = k. Therefore, (1—¢€,) Ep1.
(1—e)k=0,(l—¢)<e e&p, but on the other hand (1—e¢) & p,. This
is a contradiction. Here k € K and e € B(L).

Remark. The property in Proposition 8, part b follows from the fact that the
class is Boolean prime without using the condition VA & % (K &= @,).

Example 9. If the rings in Jr have property ®;, then s is Boolean regular.
The class of strictly Rickartian rings in the class of normal rings has for a
local theory the axiom Vk, t(k-t = 0=k =0\/ t = 0), that is,
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& ={K | K[ ®, A\ {K;} &£ T}. It consists of normal rings and it is
Boolean regular. The last assertion is true because I |— @,, and consequently
&, holds in 5.

The class 5, of Abelian regular rings has for a local theory the axjom
“division ring”’. This class is also Boolean regular and, in addition, Boolean
prime. The latter is true by virtue of the fact that any Boolean regular class
of rings &, the localizations of whose elements are simple rings (that is, any
Boolean regular subclass of the class of biregular rings), is Boolean prime.
We verify the last assertion. Suppose that K, L &= &, K & L, and we have
P € X(L), k € p; N K. We have to show that k € p for some p € X(X).
We put p== p, [ K< B (K). By Boolean regularity we have p € X(X).
We consider the homomorphism [tl; — mﬁf’ K/p — L/p,, whose kernel is a

two-sided ideal in K/p and contains the element [k];,. If a = K/p, then

[”,‘DL = [O]I»{" that is, 1 = e;*I, where e; € p,. Hence e, = 1, a contradiction.
1

If a = 0, then [k];) =0, s0o k = ek, where ¢ € p.

The class o, of biregular rings is, as we have noticed, characterized by the
condition K & &, < {K,} | “simple”. It is not locally axiomatizable (in
the language of rings).

Another interesting class of rings %, consists of all strictly bi-Rickartian
rings. In the class of normal rings it is locally axiomatizable by the theory
T with one axiom: “primitive ring”, that is, %, ={K | K = ®, N\ {K,} & T}.
We recall that a primitive ring is defined by the condition that for any
(two-sided) ideals a, b, a*b = 0 implies that a = 0 \/ b = 0. This condition
can be expressed in the language of rings:

VE, k3t (k-t-ky, =0=k=0\/k, =0).

We note that all the local theories mentioned in this example are such that
all their models have only two central idempotents O and 1, that is, they
satisfy ®s.

Example 10. The next example is the most important one in this chapter.
We present it for associative rings with identity, although it remains correct
for rings without an identity and also for the non-associative rings that are
discussed in [23]. We shall assume that the reader has read the next section
up to the end of the statement of Theorem 18. The assertions related to
this example are numbered with the prefix 10 because of their special nature.
We denote by £ the class of all primitive Pl-rings A (over a commutative
ring K with identity) of a fixed degree s. The centre of 4, which we
everywhere denote by F == Z(A4), is an integral domain (that is, a commutative
ring without zero divisors). We recall that an algebra Ag is a Pl-ring if at
least one polynomial (with non-commutative variables) and leading coefficient
equal to 1 is identically equal to zero in it; the least degree of such a
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polynomial is called the degree of the algebra Ag (see, for example, [29],
vol. 2, p.43). Then Ay (regarded as a central algebra) can be embedded in
its classical ring of fractions Sa = 4 ®rF Fea, where F,,; is the field of
fractions of F; the field F,; can also be embedded in S,. This can be done
by the formulac a — a ® 1 and f.-g'w 1 & f-g* respectively (since Ap
and gF. are torsion-free as modules). Any maximal linearly independent
system {a;} in A over F forms a basis {a; ® 1} for S, over F,, and any basis
of S4 can be transformed into this form (for details see [28], pp.46-49).
Therefore, certain properties of A and S, can be expressed in terms of one
another. Pozner’s theorem (see [29], vol. 2, p.48) says that S, is an
m-dimensional simple algebra (over its centre F). For any simple algebra 4
that is m-dimensional (over its centre) we have m = n? for some n. In what
follows we call such an A an n-algebra (see [25]). In our case n = [s/2].
In the class of prime rings 4 the condition “Pl-algebra of degree s is
axiomatizable in the form 4 & S,, /\ 7] Seu-=, Where Sg is the standard
identity of degree k (see [25], p.404). This condition can also be axiomatized
in a different way: in A there is a maximal system of m elements linearly
independent over its centre F. Thus, the class £ is axiomatizable by these
three axioms, and we denote them by 7.

We consider the class £, consisting of all n-algebras with centre F that
satisfy a fixed theory T,. We have ¥7, & 4, since in A precisely those
identities are fulfilled that hold in the matrix ring M, (F) (see [25]}, p.403)
and, in particular, the standard identity S,, holds in Ag.

Proposition 10.1. The class L, is axiomatizable by the theory T given
below.

Proof. 1t follows easily from the Artin-Wedderburn theorem that

Ap = M, (D), where D is a division ring and an algebra over its centre
F = Z(D) of dimension s (see [25], p.227). It is clear that n? = k?'s.
Therefore, we can axiomatize £r, by the theory containing the axiom

K
k.y_ma{e,-,}" Vady{Re =1\ eijepg=0jp-eig N\lx-tij = e;50=>y i =
== §==1 P

=e;-y Nl =02y =yz =)D A3Jay,...,2(Vz 3y, ..., ¥4
Vo (ze =ey-a/N\. . Nypu=uy N\ A2 =200+ ... +z,0) A\
A (zy, . . ., 2, are linearly independent over the centre )1},

where 8;, is the Kronecker delta, and also the list of relativizations to the
centre F of all axioms of the theory T,. Let A be a model of the theory T.
It is easy to see that A == M, (Z ({e;;})), where Z ({e;;}) is the centralizer of
the system of “‘matrix units” {e;;}, and it always forms a ring (see [24], p.52).
In our case it is a division ring of dimension s over the centre of A, by
hypothesis.
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Proposition 10.2. The class %1, = {K| {K,} & T} is Boolean regular (and
so is any of its subclasses). What is more, for K, L & ¢, we have
KcL=sZ (K< Z(L).

Proof. We note that £r, & K#1,. We verify the second assertion. A multilinear
polynomial (with non-commuting variables) is distinguished if its coefficients
are t1, its values on any central algebra M, (F) lie in the centre, and it is not
identically equal to zero, where F is any prime field, that is, ® or any field
of residues. Such a polynomial exists, for example Razmyslov’s polynomial .
It is clear that it has the same list of properties as all n x n-matrix rings over
fields. Since any n-algebra Az satisfies exactly the same identities as M, (F),
where F = Z (4), Y has the same list of properties for all n-algebras (see [29],
vol. 2, p.47). For any algebra 4 the image of Y on 4 coincides with the
whole centre F. Suppose that f € Z(K) and K € L, where K, L & &r,.

For any point p, € X(K) we have k (p,) & Z (K, ). Therefore, there exist

fi°, - . ., th ==t such that k (p,) = ¢ (P (p,)). This equality also holds in
an open-and-closed neighbourhood e,, of the point p,, that is,

Vp & e, (k(p) = (5 (P))-
We choose a disjunctive subcover ey, . . -, ép, of the whole of X(K). We
{
paste together &, . . ., tf’ on ep,, . . ., ép, (that is, we form t, == > tf’i-epi)
i=1

and we also form #,, ..., t,,. Then k = (7). Since tCL k=y()“inl”
and for any point p € X(L) we have k(p) = Y(1(p)), so k(p) € Z(L,).
Thus, k € Z(L).

Theorem 10.3. If T, is a model-complete theory, then so is T.

Proof. Suppose that A, B = %r, and A € B, and let F = Z (4) and

G = Z (B). Then Proposition 10.2 shows that F € G and it is easy to see
that any basis {z;, . . ., z,} for 4 over F is a basis for B over G. In fact, we
form the subalgebra A+G in B over G generated by the subring 4. We have
Z=Z,6(AY=F, G, F, G S Z(A-G), and A*G is an algebra over F.
According to [25], p.232, we find that A-G = A X r Z.i.¢c (4), where the
isomorphism is given by @ & ¢ — a-c. But this is also an isomorphism of
G-algebras. So

n = dimg B > dimg A+ G = dimg(4 X rZ)¢ = (dimp 4).(dimg Z) = n-[Z : G].

Hence Z = G. Thus, dimgA+*G = n and A*G = B. Therefore,

Be = (A &r G)g. Now any basis {a;} of Ar becomes the basis {a; & 1} of

(A ®r G), that is, of B;. Arguing as in [23], p.23, we complete the proof.
Examples of model completeness are: the theory of quaternions, the class

of n-algebras with centres real or algebraically closed, the class of rings that

are elementarily equivalent to the quaternions or to the ring My (R), and so

on.
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Corollary 10.4. Suppose that Ty is a model companion of Ty,. Then the
theory T* (corresponding to the class ZT.) is a model companion of the
theory T. 0

Theorem 10.5. Suppose that T, is a model-complete theory. Then the class
Xr,= {K | K E O, A\ {Kp) = T}is model complete and axiomatizable by
Horn formulae. What is more, it is Boolean absolute. '

The proof consists in verifying the Boolean absoluteness (by applying 10.2
and Example 9) and in applying 10.3 on the basis of Theorem 18, part b.
For example, the following classes are model complete:

{K|Vp(K, = H, K ®,} and
{K 1 (Vp (Kp =HY\ Kp= M, (R)) \ K | Oy}
Theorem 10.6. Suppose that Ty is a model companion of To. The class
H += (K| K= © N\ {Ky} = T*} is Horn axiomatizable and is a model
0
companion of the class #'r,.

We dwell briefly on completeness and decidability. We denote by ‘ZT.,. ca
subclass of &r, with a fixed k —s relation and fixed structural constants ¢

from Q. It is axiomatizable by some theory 7.

Proposition 10.7. Suppose that Ty is a complete and model-complete theory
of rings. Then the class %, = {K | K} @, /\ {Kp} &= T:}is Horn-

axiomatizable, model complete, and complete, and also decidable if T, is
recursively axiomatizable.

Theorem 10.8. Suppose that Ty is the theory of algebraically closed fields.
Then the Horn-axiomatizable class %« is a model companion of the class
He = {K|{Kp ETg}. o

Example 11. We now present Example 10 in the far simpler case of matrix
rings. We denote by T the set of all propositions (in the language of rings)
that are valid in the matrix ring M, (F), where F is a fixed ring, that is,

T = Th (M, (F)). Similarly, we put T* =Th (M, (F,)), where F, is an
algebraically closed field. In [23] it was noticed that the theory T¥ is
model complete and we assume that the theories Th(F) and Th(F)) are
mutually model embeddable. Then the theories 7" and T* are also mutually
model embeddable, that is, 7% is a model companion for 7. These theories
are normal and totally autonomous, since they contain the proposition ®,.
We form the classes

K == {K |Vp (Kp = A"‘111 (F))} and
K* = {K | K = (Dz/\. Vp (KpE M, (FI))}7
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which correspond, as usual, to the local theories 7 and 7* The class &* is
Boolean regular and in addition for K,L & % * we have K& L = Z(K)Z Z(L).
We verify the last assertion. In M,(F)) (where in all arguments F, can be
replaced by any commutative ring) there is a collection of elements é;;,

n
1 <i, j <n (“matrix units”) such that Ee“ = 1and e;;-epg = dj,-€i9

i=1
(where §;, is the Kronecker delta) and this can be expressed as an E-formula.
By Proposition 6 and Theorem 9, part a, we find that this formula is true
in K; the resulting system of matrix units in K will be denoted by {e;;}. It
is also a system of matrix units in L. It is easy to see ([24], p.52) that
L = M, (G), where G = Z; ({e;5}) is the centralizer of the family {c;;} (that
is, Z, (X)={le L |Vaec X (I-x = a-1)}); here G is a ring and the
isomorphism sends an / from G into I'E. By the Amitsur-Levitzki theorem
(I25], p.405), and again by Proposition 6 and Theorem 9, part a, we find that
the standard identity of order 2» holds in L, which by a theorem of Leron and
Vapne ([26], p.135), means that G is a commutative ring. Now, if k € Z(X),
then ¥ € G and for any / in L (denoting the corresponding matrix by m) we
get kE*m = m+kE, which completes the proof. All the localizations of a
ring K in the class &'* are simple rings. For if K = M ,(F), where F is a
field, then in M, (F), and consequently in K, we have

n
Hé‘,-Vx, Yy (21; ey = 1 /\e;,--em = Gjp-eiq /\ei_,--z = x-e,-,-).

As above K = M,(G), where G == Z ({&;;}) and G is the centre of K. It is
clear that G = F and, in particular, G is a field. Two-sided ideals in M, (G)
are of the form M,(a), where a is a two-sided ideal in G, and therefore K is
a simple ring. Thus, the class &'* is Boolean regular and Boolean prime
(according to Example 9). As we noticed in Example 9, it consists of
biregular rings, and therefore VK & a* (K = ®,), that is, * is of the
required form. Consequently, Tho*is a model-complete Horn theory, and
it is a model companion for the class &. From this we can pass in the usual
way to the completeness and decidability of the theory Th**, For example,
if the field F, has a decidable theory, then the theory of M,(F)) is decidable
([23], p.36) and by Theorem 21, part b, the theory Th* is, in addition to
what has been said, complete and (if ThF) is recursively axiomatizable)
decidable.

In the same way we see that if T is the theory of n-matrix rings over
commutative regular algebraically closed atomless rings, then the theory I'*
of n-matrix rings over commutative regular algebraically closed atomless rings
is a model companion of T, and the same is true for the corresponding
classes #* == (K | K = @, A\ {K,) E T*} and & == {K | {K,} = T).

A Boolean absolute class is a Boolean regular and Boolean prime class
(see Example 9).



Valuations and sheaves. On some questions of non-standard analysis 77

I1.3. Macintyre’s problem: a model companion of a locally axiomatizable
class.

The formulation of Macintyre’s problem and the corresponding references
were given at the beginning of §I1.2 before Proposition 4.

A theory T is (normally) autonomous if any model K of it can be
embedded in a (normal) ring F such that {F,} = T.

We denote by X,(K) the set of all proper ideals in B(K) (and similarly for
an arbitrary algebra §2). If ¢ € X{(K), then ¢ = ¢*K is an ideal in K and we
write {K,} = {K/glge X, (K)}. A theory T is totally autonomous if for
any model F of it we have {F¢} = T.

Example 12. Any theory T such that T |~ @ (all the more if T |- @,) is
normal and totally autonomous. All the classes of rings mentioned in
Example 9 have such local theories.

For a theory T in disjunctive normal form we recall the notation
I"= {9’ | ¢ & T}, where ¢’ was defined before Theorem 12.

Theorem 18. a) The class x* is axiomatizable and, what is more, Horn-
axiomatizable. If 3, = {K |{K,} = T, K £ ®,}, where T is an AE-theory
(in the absence of the condition K = ®,, and AE-positive theory), then the
class & is Horn-axiomatizable, and in fact %, ={K | K= T', K | ®,}.

b) If 2r* is a Boolean absolute class, then it is model complete.

c) If T* is a normally autonomous theory then X can be embedded in J*.

d) Suppose that T < T*. If T*is a normally autonomous theory and X *
is a Boolean absolute class, then %% is a Horn model companion of . We
have 3°* < Mod T’ € . Under the same conditions ®, — @, + (T*) isa
model companion of T'.

e) If T*is a normally autonomous theory, T is a totally autonomous
theory, and X* is a Boolean absolute class, then X% is a Horn model
companion of X (we presume that the model-embedding of T*in T is
deducible in ZFC).

Proof. a) We claim that the class &, = {K |{K,} = 7%, K [ ®,}is
Horn-axiomatizable, more precisely o, = {K | K &= (T*)’, A | @,}. For
if K& s, then by Proposition 4 and Theorem 12 we obtain K = ¢’, where
¢ = T*. Conversely, by Theorem 12 and Proposition 5 we obtain {K;} E o
All the formulae ¢’ and the formula &, are Horn formulae. The class 2 is
distinguished in the class % by the Horn axiom ®,. The second assertion
of part a) generalizes the first, since a model complete theory is
AE-axiomatizable. If K & 27, then by Proposition 6 and Theorem 12 we
obtain K = T'. If K &= T’, then by Theorem 12 and Proposition 5 we
obtain {K,} = T.

b) Let Y be a primitive formula with parameters from K, where K & Jr*,
that is, the assertion of existence of a solution of a system of equations and
inequalities with coefficients from K, and let L be any extension of K in the
class '*. We denote by y, the assertion of existence of a solution of the
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subsystem of this system consisting of all equalities and one inequality or of
all equations only. The index / numbers such subsystems in arbitrary order.
In [8] it was shown in fact that under the conditions that L is normal and
atomless we have

LEpeIVidpe X (L) 1L, Ev}+= Q) UAp 1Ly E ¥} = X (L))

We also verify this equivalence here. By Proposition 4 the set in curly
brackets coincides with [¥,]7() and is an open-and-closed set. The implication
from left to right is obvious. For the converse we write [\, =@y = u, = B(L).
We form the Boolean subaigebra in B(L) generated by the finite set {u,}.

It is finite and thus atomic. In u; we choose an atom v,. If in u, we do not
have any atom except v; (otherwise we choose in u, an atom v, # v,), then
we split vy in an arbitrary way (in the atomless algebra B(L)) into v; and v,
and again obtain v; < u,, v, < u,, and v; F v,. We use here the fact that
the ring L is atomless. Continuing this process for all / we obtain a system
of pairwise disjunctive elements {v,} & B (L), 0 # v; < ;. We supplement it
with w; < v, such that {. . .v, .. ., w,. . .} is a decomposition of 1. By
accessibility (Theorem 5) there exist k; such that u, < [y, (k;)]- We paste
these k, onto v; and k; onto w,, obtaining K € L. This k is a solution of
the system ¢ in L. Using this equivalence we obtain

CETMWMe =0V MU <)

where in place of © and X(L) we write 0 and 1, respectively.
We successively rewrite the first disjunctive term as follows: \l/([_l P ] = 1);

by the model completeness of T# we can find an E-formula ¢; (with
quantifier-free part of the form \/4,,) equivalent to 7|4y, in models for T¥

that is, \z/ (T[lp;]] = 1), by accessibility (Theorem 5) we have \I/HE(Léj[xp,s]] =1)

that is, \/3k3¢é,, = B (L) (e < [V ] A ][ (1 — €;c) = 0).  The last formula

can be wlritten in the form )

e, \/ Ve, [H (A—e) =0 Aey by =ey -t A - - A\ leg-ks = eo-t3) =
=l —e)A.- ]

where &k, = t; is one of the equalities and k, # ¢, one of the inequalities
occurring in ¥, and e;; and e, are special variables running through B(L).
Similarly, for the second disjunctive term we obtain the chain of

equivalences JIp &= X(L) /l\ (pEvD), Ip € X(L) (p & [[\I/‘PI]),

ITIV¥:.] > 0; by the model completeness of I'* we can find an E-formula
)

¢ with quantifier-free part \/ v, such that [y] > 0; by accessibility

3k QV91>0), ke V (c#O0NA[]>e).
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The last formula can be written in the form
3%36\/“7’60(60 F=O/Nek =et; Ao Nleghs = gty = 2, <1 —€) A\.n ),

where k, = ¢, is one of the equalities and k, # £, one of the inequalities
occurring in Y, and e and e, are special variables running through B(L).
Because the class & * is Boolean absolute, and using Proposition 8, part b, we
find that ~ 4 carries over from K to L, where K &€ L, K, L e ™. Since
Robinson’s criterion holds for the axiomatizable class s*, we find that this
class is model complete.
¢) If K &= o, then K is contained in HK,,, where K, = T (and the ring

p is indecomposable). By the definitioz;l of model companion, K, is
embeddable in F'P, a model of T* By the condition that 7'*is normally
autonomous we can assume that F? is a normal ring all of whose localizations
are models of T*. We introduce the discrete topology in FP. Let X, be the
Cantor set (or any totally disconnected Hausdorff compact space without
isolated points). Let FP = C(X,, FP) be the set of all continuous functions
from X, to F?. The ring FP consists of piecewise-constant FP-yalued
functions on X, with finitely many values. The ring F? is included in FP.
We later show that FP e X%,

Since &* is a Horn class, it is closed with respect to any products (even
filtered ones). Therefore, (H F”) & o* and consequently
P

Ky 1k, y— 17y [TFP = 2.
P P P

K

So we consider the ring F = Cy(X,, F), where F is a normal ring all of
whose localizations are models for 7*. We have B(F) = C(X,, B(F)) and the
set {xo, po), by definition equal to {f & B (F) | f (z,) & po}, is a prime ideal
in B(F) for any x, € X and py, € X(F). Any point in X(F) has this form,
that is, symbolically X(F) = X, x X(F), since for p € X(F) there is an
Xo € X, such that p, = {f (z,) | f = p}does not contain the identity of
B(F) (otherwise {{z, &= X, | f (z,}) = 1} |f & p} is an open covering of X,
and a finite subcover yields f;, ..., f, such that f, \/ ... \/ /, = pand
HY - - -V fn =1, a contradiction). Such a p, is a prime ideal in B(F).
Therefore, p © (x4, po’, and since p is maximal (everything takes place in
Boolean algebras), this is possible only if p = {z,, p,>. Then

o, po> = {f € F | { (x0) € p,}, Where Py = po°F and <{zy, pe> = {xo, po>-F.
Therefore, (F)¢x, py = Fi{xg, poy =~ F/py = Fp,, Where pg runs through

X(F). By hypothesis we have Fp k= T* for all Fp,, so {(F)x, oo} = T*. We
show that F is normal. If f € F, then we put eq(x) = e,, where e, is the

element of F that corresponds by the normality of F' to the element f(x) of
F, and such an e, satisfies the normality condition for f in F. Suppose that
fis an atom in B(F). At least one “step” of f, say flxy), is different from O.
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This step is taken on an open-and-closed set containing at least two points.
Removing one of them together with its open-and-closed neighbourhood, we
find that f is not an atom.

d) The first assertion follows at once from b) and ¢). If K & x'* then
K &= @, + (T*), so certainly K = T’, If K = T’, then by Theorem 12 and
Proposition 5 we find that K = 5. From this we get the last assertion.

e) We need only supplement d) with the fact that the class J* is
embeddable in 2 (apart from this, in d) the condition we now want to
remove was not used at all). This follows from (the general) Theorem 19,
and is proved below.

Theorem 19. Suppose that the theory T is model embeddable in the theory
T, (and that this is deducible in ZFC). If T is an AE-theory, T, is totally
autonomous, K is normal (that is, K = ®,), and {Kk,} &= T, then K is
embeddable in a ring L such that L=, = {L | {L;} & T,}.

To infer Theorem 18, part e from thiswe put 7 = 7*and T, = T. By
definition of model companion, 7% is model embeddable in T (and in part d)
we discussed the deducibility of this fact in ZFC). It is well-known that T* is
an AFE-theory and that K in 2 * is normal.

Remark. 1) In part ¢ of Theorem 18 we used only two properties of the
model completeness of T*: the fact that Jr* is closed with respect to
products and that T is model embeddable in T*. In this way, Theorem 18,
part ¢ and Theorem 19 give examples of ‘“embedding theorems for locally-
axiomatizable classes”. 2) In part d of Theorem 18 we proved the formula
(T"* = (T*) under the condition that the notation (7*) means that the
axioms ®,+ &, are automatically added.

Corollary 1. If, under the conditions of part e of Theorem 18, the class %
is axiomatizable, then ®,+ ®,+ (T*)' is a Horn model companion of Th¥*.

In the next three corollaries we assume that 7 & 7%,

Corollary 2. If % is an axiomatizable subclass of the class of all biregular
rings and %* is a Boolean regular class, then ®;+ ®,+ (T*) is a Horn model
companion of 5.

Corollary 3. If & is an axiomatizable subclass of the class of all strictly
Rickartian rings and x* is Boolean prime, then ®+ ®,+ (T*)' is a Horn
model companion of Th%.

Corollary 4. If X is an axiomatizable subclass of the class of all Abelian
regular rings, then ®,+ ®,+ (T*) is a Horn model companion of Thi.

A class & is normal if for any K & o there is an L & 5 such that
KCLand L = @,.
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Corollary 1 to Theorem 19. Suppose that the theories T and T, satisfy the
conditions of Theorem 19. If % is a normal class, then % is embeddable
in J,.

We call a ring L a quasi-sheaf ring if the sheaf condition is fulfilled relative
to a regular Boolean algebra B & B (L).

Corollary 2 to Theorem 19. Suppose that in addition to the conditions of

Theorem 19 we have Va3f z = T =z fANfE T, N\fE T,), where T,
is a Horn theory. Then for the corresponding L we have L |= T, and L is a
quasi-sheaf ring (a sheaf ring if T, — ©;).

If we put T = T, then the ring L corresponding to K has the natural
properties of a ‘‘sheaf closure of K’ and the class J corresponding to 7 is
closed with respect to “‘sheaf closure”.

Proof of Theorem 19. Suppose that K satisfies the conditions of the
theorem. By Proposition 6 we have [T]s(x, = 1, so by Theorem 10, part b,
we obtain [7]s ) = 1. By Theorem 16, part e, the latter means that

I T]B,x- = 1or, which is the same, [K’ = Ts = 1, where B = B (K), and
the valuation is that defined in Example 8 (that is, a valuation in the
language ZF with set of parameters VB8: see Example 1), and the object

K' = ¥, was defined before Theorem 16, part e. We could also refer here
to Theorem 16, part a. By hypothesis, the formula

Vedf = T=2S fANTE TY)
is deducible in ZFC. Hence by accessibility in V2 we obtain
[[K, -C:—f//\f t: Tl:['B = 1,

where f € VB We write fB = L. Again by Theorem 16, part e, we obtain
K C L (in the sense of & — py) and it is sufficient to show that L & %, to
complete the proof of the theorem.

In fact, B can be embedded in B(L) by the rule b — b-1 + — 5-0 (the
right-hand side is the pasting of 1 and 0 in f). We denote this embedding

by h. We write L,y = L/h (py) = I (p,)- L, where pg on the left-hand side
is a point of the Stone space S (B) of the Boolean algebra B, and 4( p,) on
the right-hand side is an ideal in L. We show that Lp, coincides with the
“fibre” of f at the point p, that is, with the factorization of L by the
equivalence relation (b ~,t) < (k = tip & p,) (see §1.6), and we also
show that ([f = ¢ (&, . . ., E)s =0 {Lo)Eo (thdpy s - o oy &5,
where p, runs through §(3) and &, ..., k,, € L. The first assertion means:
o pyth(b)-(k — 1) =k —t) < Tk = t]y & py,. From left to right:
(T B =1 —h(b),(1—h(®) (k—1t)=0in L, next b e p,and
[A—h@®)h—1t)=0]p =1, 71b [k —t =0]s. For the converse,
suppose that b =tk = ] €& po, b < [h (b)-(k — t) = 0], and
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oL [h(b)-(k—1t) =0]p h(b)-(k—1t) = 0 in L and 7|b € p,,
h(T)b)-(k—1t) = k — t. The second assertion can be verified in the form
PoE[fE ¢ ®)]s © Lpy E ¢ (Ik]p,) for the connectives A, 7, and 3 by
induction on the length of the formula ¢ (see Theorems 4, 2, part a). Thus
{L(pd} k= Tr

For any p € X(L) we form p, = k™ (p) & 3. Then p, & S (B). We write

a = h (py), an ideal in L. Then a C 5 and L, = L/p = (Lla) (p/a) = L,/pla.
We note that ¢ = p/a has the properties: ¢ € B(L/a) and q is closed with
respect to \/ and does not contain [1],. Forif [1], = [e],, where ¢ € p,
then 1 —e=1¢,.r, e, S h(pe1l =e+epr=>(\Ve)l, e\ e=p,a
contradiction. We add to g all elements [/], from B(L/a) that are majorized
by some [e], from g: the g, obtained in this way is a proper ideal

in B(L/a) and g, = q. Thus L, = L,i§,, where ¢, & X, (L,) and by
hypothesis we obtain L, = T,.

I1.4. A model companion of a class of localizations. The completeness of
the theory of a locally axiomatizable class.

We now consider the question of the transfer of model completeness in the
“reverse direction” from the classes J* and & onto their local theories. To
this end in the general case it is useful to extend the notion of Boolean
primality of a class in the following way (see Proposition 8). Let %, and X
be two classes. We say that &, is Boolean prime for 5 if

VEeX¥V0LeX, (AcL=3p, = X(L)Ip s X (K)
VEce Kp=2pN EAN3Je=p (k=K =3Jec plek=FKI

However, in Theorem 20 it is sufficient to impose a weaker condition on the
classes &, and 2 than the condition “the class 9, is a model companion of
the class 27 and the classes %, % are mutually Boolean prime”. We
sometimes denote the latter condition by (*). The weak condition takes into
account special forms of the classes %, and #. We recall that the ring

L = C(X,, L) was defined for the ring L in the proof of Theorem 18, part c.

A class o7, is a weak model companion of a class ¥ if: 1) for any two rings
L, and L, in ¥ such that L,,L, i T,, and any Horn AEAE-formula ¢ with
constant parameters from L, (that is, parameters of the form A(x) = A,,
where Ay € L; and x runs through X,), if L,=q and L, € L,, then L, & ¢;
Dif KT, K = XX, the_n K can be embedded in an L from %, and if
LET,, L 3%, then L can be embedded in a K from & ; 3) if

KET, Ke s, and K € L, where L & %, then there exist p € X(K) and
P1EX() suchthat p 2 py N K and Vke KN p (ks p); 4)if

LE T,,L e x,,and L C K, where K & %, then there exist p € X(L) and
pi€EX(K)suchthatp 2p,NL and Vie L (l e p, = 1 = p). It is clear
that the condition () implies the fact that the class ¢, is a weak model
companion of the class %. In the next theorem we denote by T, the part
of T, consisting of formulae of the form FAE, that is, Ty = (T))eak-
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Theorem 20. Suppose that
{K|{K,} =Ty, K E Ty + @, + O} © 7, S {K | {Kp} E Ty},
# = {K |{Kp} E T}
and that the class , is a weak model companion of the class 7. If T — @
and T, |— @, then T, is a model companion of T.

(If T € Ty, then condition 4 in the definition of weak model companion
can be omitted.)

Proof. We shall prove the model completeness of 7;. Suppose that F; C F,
are two models for T; and ¢ is a primitive formula over F; such that

Fy | . We form the rings F; = C(X,, Fy) and F, = C(X,, Fy), F, C F,
(see the proof of Theorem 18, part ¢). The localizations of F,and F,
coincide with the localizations of F; and F,. Since T; — ®,, we have
{((F),} = T,. F, £ @, ~_ds, and what is more, all localizations of F,

(and F,) coincide with F, (respectively, with F,). In this situation we can
prove by induction on the length of arbitrary formula ¢ the following
generalization of Proposition 6:

{(F])p} = ¢ (;‘fv IR }‘z) = I(P (;'lv LEEIRY z-,;)}ﬁ'(}") =1,

where Ay, ..., A,, are constants from F,. The proof of Proposition 6 need
only be supplemented by the argument that (Fl)p is isomorphic to F, by the
rule Ifl; — f (z,), where x, corresponds to p. Thus, F,. F, € &,. For an
A-formula “1y (as well as for any formula with constant parameters) in a
normal ring we have [~ I¢JgF, = 1. By Theorem 12 we have F, = (Ti¢)’.
Then by hypothesis, we get F, = (7 «)’, and using Theorem 12 we find that
I 4o Fo= 1, that is, F, ~ (F,) E .

Let K be a model for a theory 7. Since T | &, we have K £ 5. By
hypothesis we get K © L & Jr,. Because the classes are Boolean prime we
can find p; € X(L) and p € X(X) such that p = p, [ K= {0}, that is,
p=p {1 K= {0}. Hence, K — L., k — [If];‘, is an embedding and again
by hypothesis we get L, &= T,. If T C T, then everything has been proved
and condition 4 in the definition of weak model companion has not been
used.

It remains to show that 7 can be model-embedded in T. Suppose that
L= T,. Weform L & »,. By hypothesis we have L & K & %, and we
can find p; € X(K), p € X(L) such that p 2 g = (p; N L), and p has the
corresponding properties. As we saw in the proof of Theorem 18, part ¢, p is
of the form (x,, po?, where po € X(L), that is, po = {0}. Therefore,
p={fe L |f(z) =0} and we put L— K/p;, e [“’]E.' By hypothesis
this is indeed an embedding. Hence we obtain an embedding of L in Kp,E=T.
Corollary. The class 3¢, of all Abelian regular rings does not have as a weak

(ordinary) model companion any class of the form %, (from Theorem 20),
where T, |— @, (respectively Ty \— “prime”).
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Proof. 1If such a %, is a model companion of %", then the theory T is a
model companion of the theory of fields, which is impossible.

Remark. The conditions 7 |— @, T, |— @, can also be weakened in
Theorem 20 and in this corollary.

A primitive formula is 1-primitive if it does not contain more than one
equality. We shall say that the class of formulae T is decidable by the
theory T if, for any formula ¢ in X, either 7 — @or 7 -~ " | q.

Theorem 21. a) Suppose that the set of all 1-primitive propositions is
decidable by the local theory T, and for all rings in the class

# = {K | {Kp} = T} the set B(K) is infinite. Then the set of all E-propositions
is decidable by Thi¥%.

b) If sr* is a Boolean absolute class and the set of all 1-primitive
propositions is decidable by the (model complete) theory T*, then
(Thor*)y = (@, + D, + (T*)) is a complete and model complete Horn
theory.

Proof. a) Suppose that K & 5 and ¢ is a primitive proposition. (The
condition imposed on K guarantees, for example, that K? is atomless.) Then
all Y;,, 1 <] <L, formed from ¢ in the same way as in the proof of
Theorem 18, part b, are 1-primitive propositions. By hypothesis, either 7' }—
foralll/or T — ’T\b,o for some /,. In the first case we have Vp (K, & /z\ 1)

We choose exactly L different points p,, ..., pp in X(K). By the Hausdorff
property they have pairwise disjoint neighbourhoods u,, ..., u;. The
proposition y, is fulfilled in p, for some k,(p,), ..., k,(p;) and the equalities
from , are fulfilled in an open-and-closed neighbourhood u inside u,.
Therefore, ky, ..., k, satisfy ¢, in u}. In the same way, ¢,, ..., t, satisfy ¢
in uy. We paste together all ky, ..., k,, and so on, and obtain %, ..., k, in
uy U ... Uu, satisfying . We extend these &, ..., k, to the complement of
uy U ... Uu, in such a way that all the equalities in { are fulfilled. Thus,
K E 4. In the second case we have Vp (Ky &~ 4,.), so (without using
normality or the atomless property) we obtain K = ~ ¢y. We now easily
find that the set of all E-formulae is decidable.

b) We at once obtain this assertion by part a and Theorem 18, parts a, b,
taking into account that in a model complete theory any formula is
equivalent to an E-formula.

Corollary. Under the conditions of Theorem 21, part b, if the theory T*is
recursively axiomatizable, then Thox* is decidable.

Remark. This theorem also remains true for an extension of the language of
rings by an arbitrary set of constants interpreted simultaneously in all rings
K in .
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I1.5. The transfer of a local theory into a locally axiomatizable class.
The theory T is “stronger” than the theory T', in other words, T is the
theory of fibres and T is the theory of global objects. Therefore, assertions
of the following type are of some interest: if T |— 4, then T'}—+', where
y' is obtained from Y by some syntactical translation (in other words: if ¢
holds in fibres, then ¢’ holds in global objects).

We denote by ¢— the formula in disjunctive normal form obtained from
" 19 by the classical transformation. We denote by ¢- the formula obtained
from y in prenex form by adding ~ 7] before each connective 3.

Proposition 9. Let K be a normal ring.

a) The predicate [¢ (k)]j7x) = 0 is expressible in K, that is, there is a
syntactical translation @ (z,, . . .. ) = @° (25, . . ., &,) Such that this
predicate is equivalent to K = ¢° (k) (compare with Theorem 12). Here ¢ is
in disjunctive normal form.

b) The predicate [@7 (k)] k) > e, e & B (K), is expressible in K in the
same sense (we denote by @ (zy, . . ., Zn) = @* (24, - . ., Z,, €) the
corresponding syntactical translation). Here, ¢ is in disjunctive normal form.

Proof. a) We first describe the syntactical translation ¢ «— ¢° If ¢ is
quantifier-free, that is, ¢ = \/v,, then

° = Vede VI, N ([ = e/\e-t = t-e/\e-ky=-¢e-1, /\ ..

N\ (€)= e /\egrty = tireg/\eo ks = €ty => ey <1 —e) A\ ...]l=e=0),

where k; = £, is one of the equalities, and k, # ¢, one of the inequalities, in

ll/s. Next,

QAre)® = Vz¢°, (V@) = Vedt,k (¢ = eNe-t = t-e A\ (e <L9 B)]om]) =
= e = 0)7

where the third factor in the premise is replaced by ¢'(k, k, e) according to

Theorem 12, part a.
It is clear that [\/y,]7&), = 01is equivalent to K |= ¢° and so forth by

induction.

b) We descr_i_be the syntactical translatign ¢ @ If @(E) is quantifier-
free, then @*(k, e) coincides with the ¢’(k, e) of Theorem 12, part a. Next,
(Vzo)* = Vz (¢*), and finally,

(Fzg)* = Ve AtIe, Vi, Tk [ = eo/\ey-t = t-eo/\eo 7= 0/\e;<e =

=e = aNe-t, = e A0 Aoy < e AGH (k, ep)l.
The proof is by induction.
Lemma 2. If K is a normal ring and [@(k)]sw) = 1, then [¢- (k)]rx) = 0,
where k C K B
Proof._ If g (lT)]_er(K) % 0, then by Theorem 10, part b, we obtain
T (k)]s 5= 0, that is, T¢-(k)]sx) 5= O, a contradiction.
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Theorem 22. If T — @, then (T' 4+ @,) — ((¢)° /\ o).

Proof. We verify the first assertion. Suppose that in an arbitrary ring K we
have K = (T’ + ®@,). By Theorem 12, part a, we obtain [ 7]+, = 1. Hence
by Theorem 10, part b, we obtain [ T]sx) = 1. By hypothesis we obtain
[olsx) = 1,and by Lemma 2 above and Proposition 9, part a, we have
[91]8u)=0, so K = (¢)°.

We verify the second assertion. Suppose that K (= (77 + @,). Then
IT}+—uw) = 1. We denote by T—— the Godel negative translation of any
formula in 7 (the formulae in 7 and the formula ¢ are in disjunctive normal
form). From the fact that K is normal we obtain [ 7]+ = 1. Since
TI'——~¢-- we have [¢—— ]+ = 1, where the relevance of normality is the
same as in Proposition 9b), and therefore A & ¢°.

Remark. A similar theorem is also true for other pairs in place of <7, B>.
The expressibility of all the above predicates also holds for other languages.
The condition that K be normal can be weakened, for example, by replacing
it by a condition of the kind {[% = O0]r«x,| k = K} & B (K). The language
of rings can be extended by any number of constants.

CuharTer lli

A NATURAL TRANSLATION OF CLASSICAL INTO INTUITIONISTIC THEORY
FOR ALGEBRAS WITH METRIC

Here we consider applications of Heyting-valued analysis distinct from that
in Ch. II. Namely, we consider the problem of passing from the classical
validity of a certain statement ¢ to the intvitionistic validity of . itself or of
a new statement ¢’ close to ¢ in meaning and form. This passage allows us
to employ the important merits of intuitionistic validity, such as effectiveness,
disjunctivity, or extensionality (see the end of §I.5 and [10], [9], [4]).
However, even the question of the precise definition of intuitionistic validity
is not uniquely solved, and it is not simple when we deal with theories of
abstract objects such as sets and algebras. One of the possible definitions
was given at the end of §1.5. This is Heyting validity, denoted by ¢cHea = ().
We emphasize that all considerations on the metamathematical level can be
studied within the framework of intuitionistic set theory HZF. In this
chapter we shall obtain results of the following kind: if ZFC (K k£ (p = ),
then cHa |= (K = (¢ = ¥)), where ¢ and ¥ can contain parameters k;, ..., k,
from K. Here ¢ are the conditions of a certain theorem, ¢ is its conclusion,
and K is the object to which the assertion ¢ = ¢ refers. Instead of
K = (¢ = ) we can obviously write the relativization ¢g = yx. Since the
question is, at least in the premise, one of deducibility, K should be
described by means of a formula. A broad (and the customary) language of
description is the language ZF, so suppose that K is described by a certain
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formula % in ZF, and that the relativization is realized by a variable f
satisfying x (-). Thus we arrive at the following form for the assertion: if
ZFC Vi (f) = Vky, .. k. (o =1y), then cHa = V& (f) =
= Vky, .. ., k., & f (g; = ), where ¢’ and 4’ are certain transforms of the
formulae ¢ and v, respectively. An assertion of this form will be proved in
Theorem 23, where we impose the condition on % (-) that it is a Dedekind
formula (for the definition see below), and in connection with Novikov’s
conjecture ([5], p.127) ¢ is any AE-formula and ¢ is an arbitrary formula.
It is natural that ¢ and 4 are written in the language corresponding to the
structure of K. In our case we assume that X is a ring and therefore ¢ and
P are formulae in the language of rings.

Takeuti and Titani [10], [42] also develop what they call a global
intuitionistic analysis. Namely, they prove the Heyting validity of many
elementary theorems of mathematical analysis and also the Heyting validity
of some theorems of the theory of functions of many compnlex variables (for
example, Weierstrass’s theorem). Establishing Heyting validity (which is the
subject of study in Chs. III, IV and partially in previous chapters) involves
considerable effort even in simple cases, because it is not closed with respect
to classical deducibility. Hence, the usual mathematical assertions are,
generally speaking, not all Heyting valid (a compensation is the effectiveness
that arises once Heyting validity has been established).

An algebra with metric is a set

K, +, —, -,0,1,t-1l, where +:K*— K, — K- K, -: K*—
— K, 0,1= K, || -l: K—-R,

and R is described as the set of Dedekind cuts A = (X, A;) in @. Here @ is
described as usual in terms of the sequence of natural numbers which, in
turn, is defined as the smallest inductive set w. This definition of R can be
written in the usual way in the language of set theory ZF. In the usual way
we define the predicates connected with 2 (and other number systems). For
example, the predicate - << - on R is defined by the formula

(<< p)¢>3FreQ(r= M A re p). The functional symbol || - i can be
read as “metric”. In what follows we assume that an algebra with metric is
interpreted as a ring with absolute value. In this chapter (as well as in the
previous one) the structure of rings is chosen as an example, and we can also
consider general algebraic systems. The usual formulae in the language ZF
describing the structure of the ordered rings @, ©..,, R and the structure

of the ring C (as the set of pairs of Dedekind cuts) will be denoted by

%y, %qy Rg, and x,.

We denote by B the algebra B (Q) defined at the end of §I.2 (but with £
in place of H). We denote by [-Jo and [ - j» the valuations in the language
ZF with sets of parameters V' and V2, respectively (see Example 1), where
of course V¥ C VB,
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A formula % (-, . . .,-)in the language ZF is called a Dedekind formula if
the following three conditions are satisfied:

1) HZF (= Nf, +, —, «, 0, L, | - {2 (f, 4+, —, -, 0, L, | -1 =( +,
—, +y 0, 1,1l - I|) is an algebra with metric), where % also includes the formula
xgand +, —, +, 0, 1, -l are ordinary set-theoretic variables whose notation
reminds us only of their meaning.

VM (f -l Ml @G- Sl -MIs ANGENA f @) [k=
= t¢> [k — t]| = 0]n))), where f is assumed to be an extensional element
in V<,

IVR[x (- - DI < &) = [l ke =1k lsls) N (f () N\ ()~
— [k j t -i; t]ls /\ ...)), where the dots on the right-hand side denote the

same condition for the other operations. The subscripts £ and B indicate that
the terms are computed in ¥ and V2, respectively. Condition 1 is trivial
and conditions 2 and 3 assert a kind of weak absoluteness of the formula x.

Example 13. 1) Suppose that % (f, +, —, -, 0, 1, | - || ) says: f is the set of
Dedekind cuts in @ closed with respect to the usual ring operations in R,
together with these operations in f and the “norm” ||z}l = |z | =

= max { z, —z}, thatis, x (f, .. | -l) =V fxs(x) \ Vz, ye

Ef(e+y, 2y, 0,1 f/\ ..., where % also contains the formula %,.

It follows from Proposition 10 below and Theorem 3, part e that this formula
is a Dedekind one. It describes in ¥ and in V2 two families consisting of the
rings of all real numbers in Rq and Rg, respectively. Here Re = {x | x5 (2)}is
the object defined in V'S by the formulaxg, and Rg is the corresponding object
in VB, Of course, it is usually B-globally valid that Ro 7= Rs. However, by
Proposition 10, it is B-globally valid that [Re © Rz]. These objects can be
explicitly defined, for example, by Rg (z) = [%; (z) o, where x4 (z)]Jo > 0, and
Re (2) = [xs (z)]s, where [x; (z)]z > 0.

2) Suppose that » says: f is the set of pairs of Dedekind cuts in @ closed
with respect to the usual ring operations in C, together with these operations
in it, and with the norm in f equal to (A, W)l = A2+ u2. Again, it follows
from Proposition 10 that this formula is a Dedekind one. It describes in V%
and in V% two families consisting of all number rings in Ce and Ca,
respectively.

3) By similar Dedekind formulae we can describe the families of “‘number”
rings in various hypercomplex systems over @, R, or C.

4) In all the cases we have mentioned we can add to % the formula
Vze fAy = f(x = 0\/ z-y = 1) and so obtain the corresponding families
of fields or division rings.

5) In all the cases we have mentioned we can add to x the condition of
real or algebraic closure: Vz= fAy=f(z >0=y> =z) \ Va,, ...
conr GaneEfAz = f(ap + ... + o™ =0) or Va,, ..., a,
= fIr = f(ay + ... + a,x" = 0). These axiom schemes can be expressed in
an equivalent way by a single formula in the language ZF. In this way
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practically all the usual classes of “number” rings and fields (and also groups
and algebras) can be described by Dedekind formulae, which means that
Theorem 23 (below) can be applied to them.

Proposition 10. We have vthe following relationg:
a) 1=[{z|%(2) =Ql={[{zlx ()= @JB’ T =[{z|n ()} =
= (Q>o)v]‘2 = ﬂ_-{x‘ %y (1)} = (@> o)VI[BvW"a (7'\ o < Txs (T>.LBa Eh(r)ern(x)]Iu,
b)[xs (x)]a < [z = <A ApJa,where D(A) = D) = {F | r & Qand A (7) =
= [3u, v(z = <u. .,) /\ Fe u)la A s (@] Ay F) =[3u, v (z = <u, D A\
NF o A[xs (=
c) [rs (@) [\ %3 (y)]]n < [z < ylo < [= < yls)

D s DA% We<L[z+y=1 + yle and the same is true for x,
and the other operations, a

e) [xs @)Je <[l zlle = || zlls]s and the same is true for =, (the norms
for R and C are defined as above).
Proof. a) The first relations are obvious. _Using them we find that the
formula g has the form 3Ju, v, vEQA z= {u, W A 3Ir, s

Qe u/\SEU)/\VrEQ TMreuN\re v)/\VrEQ(:Eu*\:ﬁlsE
Eu(r<s))/\VreQ'rE ve dsesvis<<n)) AVr, \‘E@(r<s—$r:

e u\/s<v)]. Then
Po@l =V [LrS QLA 1=VI( AauW) 3 EWWAPS QRN
Alz =@l A(V FEhAFSR A
N, G EbATFEl~NANTEuTaw_Y u@AF<TIA
NN E v, mb(s)/\[[s@]o»/\
NN, O <sk—[FEue VISE )]

To pass to the valuation in V2 in the fourth, fifth, and sixth factors it is
sufficient to show that we can replace u, v by u', v’ € V¥ such that
v{([u=uv ANv=vaA[u=uv /\v—v]]B) where w = [u, vC@]Q
and 9 (v’) = D (v') = Q. These elements u’ and v’ are automatically
extensional in ¥ and in V8. So we can replace u, v by extensional
functions u, v including {# | r &= ®} in their domains (by Theorem 3b)), and

we put u' = u | {f|r& Q} and the same for v’. Then we have
v [Vy(yE ue yec u)gsince w< (uly) — [y u'la), where
y € D (u). Hence, we also get the same relation for { - s. Therefore,

w ANE AV @) = OAN @ ()< Ve @ AT <) AN ()~
« \/ V' (s)/\ [ < ¥]a) carries over to B.
E=3/]

In the same way [, (x)Jo = \/ [%35 (¥) A\ %3 (2)Ie ATa=<y,3>]Jo carries over
Hs 2
to B.
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b) We note that A and A, are automatically extensional functions in ¥
and in VB, We employ u’ and v’ as above and so obtain the inequality

[xs (@ ANw Alz=<&" vDJa Ao < (@ ()= 2 (F) AV (F) <= 24 (7)),
where r& Q.
Then we replace the right-hand side by [u’ = L /\ v = A,]q, then by
Tz = <A, A DTq, and finally we sum over all u, v.
¢) We define -<<-by (< y)=Fr = Q (re P, (2) A rE P, (y)), where
Py(+) and Py(*) are the first and the second members of an ordered pair.
We write w == [%3 (z) A\ %3 (y)Jo. Using b) we obtain

v <[z =AM A v =<, pole.

Then we have w Afr<yo=w A[FreQrehAre pa =
=wAVhOArF=wvAlEre QremArenis= v Alz<yls
d) We define z + y= {1 =Q |Ire P, x)Is€ P, @) 1< r + 5)),
{teQ |Ires P, (z) Is e P, (y)(1 > r -+ )} >. Using b) we get
w==lus (1) A % @]e <[z=<, 2> Ay = <p, ppole. It is easy to verify
that v xg (x +y)]e < [#s (x + ¥)I». and also the global validity of the
fact that + is a function. To complete the proof we have to verify the
inequality

vL{te | Frerdsepi<r+dh={eC|TrerTsc pit<r+
-+ S)}B].n /\ .oy

where the first term can be replaced by the function

i=[Frerdsspit<r+ 9k
on @, inthe sense that [f = t = Q |IrerIss p(t<r + )k = 1.
But in B this function is equal to the second term.
e) This follows directly from parts ¢ and d.

Lemma 3. Let @ be an arbitrary formula in the language of rings transformed
classically into the form without = and with ~ | only in atomic formulae,
and suppose that ¢* is obtained from ¢ by replacing all subformulae of the
form T} (k = t) by (0 < lk—tl?). Then we have

ety ool - WIa AFGD Ao Af ) < [of Ky - - oy Edle—
— o gy - - - Ka)]s)-

Here gy is the relativization of @ by a set-theoretic variable f (the parameters
of ¢ are from D(f)), and the terms and the predicate - << . occurring in ¢*
are interpreted operationally by means of the formulae » and %g.

Proof. For .-=. we pass to B with the same terms (operationally computed
in £2) and using Proposition 10 we replace them by terms operationally
computed in B. For the connectives we easily apply induction; for example,
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for V we obtain

DRATE A ATEIN A\ (@)= [0 (2l <
<A, F@=DRATEIN - N EATE@ Ale R ok <
< A, 0@ =10 2)ls) = Ve for (i, )]s O

Lemma 4. Let y be an E-formula in the language of rings transformed
classically into the form without = and with "] only in atomic formulae, and
suppose that Y is obtained from y by replacing all subformulae of the
form 7] (k = t) exactly as in Lemma 3, and all subformulae of the form

k =t by the formula || k — ti| > << &, 1, where the &, are arbitrary
elements from Q. Then we have

[ (Fo ool Dl AT B A e A S ) < @97 Gers - - -, K] >
- {[‘p.;- (kl’ LR ] kn):[n)-

Proof. The atomic case reduces to the computation of the terms in 8 and £
and the absoluteness of - << . (Proposition 10, part ¢). For the connective 3
the proof is the usual one. ]

If ¥ is a AE-formulae, then we extend the definition of the translation ¥*
given in Lemma 4: all quantifiers V are rewritten without any change and
we then bind all variables &, ¢ by universal quantifiers (in the group of initial
quantifiers V). The translation we have just defined for an arbitrary
AFE-formula ¥ in the language of rings is called translation in the conclusion
and that defined in Lemma 3 of arbitrary formulae g in the language of
rings is called translation in the premise. Now for ¢ and ¢ we define the
translation of the formula @ = ¥ as ¢+ => P*.

Theorem 23. Let » be a Dedekind formula in the language ZF, ¢, } any
formulae in the language of rings, and y an AE-formula. If

ZFCHNE . G- e (f e 1) =
=SV, kS F e By e k) =0 Ry R,
then we have
cHa =V ool N Gr e e nll )= Vhyy o b
e flg ke v o b)) =Y Gy, .o E)D.
Proof. Let
Lol =V k.. Lk, =D (f), and
a= ([ (fy ol e AT BN o A T ATQS Gy, -, K)o

By Lemma 3 we obtain u <[o} (%, . . ., k,)]s. Since x is a Dedekind
formula we have

<[ e - DB AF RN o AT Ra) A Tey (g, -y k)]s
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By hypothesis we obtain u < [y ()Js, and so u < [; (k)Is. We put

Y k) =V .. o tn Ve, . . 8 =Qse AL, ... L = 1 R).
Then
Vi, . o ot €ET(HVE, .. 8= Qs o (@< F ) N oo NS (Em) =
—~[3L, ..., L fyk & (€]l
that is,

a/Nf () A oo AT () <TITE fx (ks £, ©)]s.
By Lemma 4 we have

ATEIN o A ftm) < [T € Mk, ¢, E)]a,
u << [[V—t e Ve Qs Al I (i?,.i,g)]g.

Remark. We denote by c¢Ba = ¢ the predicate VB ([ s = 1), where B
runs through all complete Boolean algebras and ¢ is a formula in the
language ZF with parameters from V. In Theorem 23 the condition

ZFC t— (-) can obviously be replaced by the condition c¢cBa = (-). In all
that has been said above we can include multi-basis algebraic systems within
the notion of algebras with metric, which is really useful in applications, and
we can also replace R and C generated by the standard @ by other systems
generated by any other standard sets described by formulae.

that is,

Example 14. We begin with the Lin-Seidenberg theorem: an injective
polynomial map of the complex line C into the complex plane C? has at
most one critical point. This theorem can be written as an AE-proposition ¥
in the language of rings:

“‘p = Vao, « ey Ay, boy b '*bmazl’ ZZVu!v(zl ZZZ\/f(zl)':i&j (22) \/g(zl)#
# gV W#EOVEmM=£=0Vf ©)*£0VgpM#0Vu=nr),

where in the classically equivalent way we can rearrange the quantifiers

3z, 5, and Vu, v. Here f(x) = ao+ ... +a,x", gx) = bot+ ... +b,x™,
G.8:C— C?, and (', g’ is the gradient, whose vanishing implies a critical
point. Thus, this theorem says: C k= ¢. In accordance with Ch. II, the
proposition ¢ is valid in all algebraically closed fields K of characteristic O

or even p = p,, where p, is a fixed constant (this is just the Robinson-
Tarski theorem), and also in a broad class of rings K in the sense that K &= 1.
For the sake of brevity we consider the case of fields: a certain Dedekind
formula x, describes the above class of fields (if we restrict ourselves to
subsets of C). Therefore Theorem 23 reads:

cHa = Vi, oo ol <1l I (F, - < 11 - D)= (@)F)

Similarly, a quite arbitrary proposition of the form ¢ = v, where ¥ is an
AE-formula, that is valid in R or C (or ®, or in the ring of locally constant
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functions on the Cantor set, and so on) is also valid by the corresponding
completeness theorem, in a suitable class of rings described by a Dedekind
formula. Therefore, by applying Theorem 23 we obtain its natural
intuitionistic version. For example, this will hold for Artin’s theorem. We
consider this example in the case of two-basis algebra. It is well known that
any splitting field K (of a polynomial A, over a field P) has the following
property: if K contains one root of any polynomial A that is irreducible
over P, then K contains all its roots. This description of the fields P, K is
given by a Dedekind formula %,. Let @ be a natural description of the fact
that % is irreducible over P and has a root in K. Since ¢ contains neither ==
nor |, we have ¢* = ¢. We put ¢y = 3z, . . ., z,, & K (h splits over

X1, ..., Xpp). Then ¢* = Ve& Qs 3z, . . ., 2, (...). By applying Theorem 23
we obtain cHa = ¢p, x = (¢")k. Finally, in the same way, we can show
the Heyting validity of Hilbert’s Nullstellensatz. Writing these theorems in
various ways and changing the form of the formula %, we obtain their various
intuitionistic variants.

CHAPTER IV
HEYTING COVIPLETION OF LOCALLY COMPACT TOPOLOGICAL SPACES

In this chapter we consider a further application of Heyting-valued
analysis. Here by global validity (or Q2-global validity) we understand global
validity with respect to the valuation in the language ZF with the set of
parameters V¢ (see Example 1). This valuation is denoted by -} (ori - o).

Let 2 and 2, be two complete Heyting algebras. We denote by Q2 the
set of all morphisms (in the sense of the cHa-structure {\/, A, 0, 1>)of the
algebra €2, into the algebra Q, and in Q% we fix the structure of a complete
Heyting algebra with respect to the order (f < g) = Vu = Q, (f (w) < g (v)).
Next, we consider the case when 2, is the topology of a fixed topological
space or a ring Y, and in this case we shall write Y in place of Q7¥. Here
Y is equipped with the canonical structure of an algebra over the original
ring of “scalars” Y. From 1977 onwards and in various forms the idea has
been realized that the algebra Y in a “non-standard sense” (that is, in the
sense of £2-global validity) coincides with Y. In particular, important
properties of the ring Y carry over to Y. What is more, homomorphisms
into Y in this non-standard sense coincide with homomorphisms into Y,
and important properties of Y-valued homomorphisms carry over to
Y .valued ones. In this chapter and in the appendix we give some realizations
of this idea. Namely, it is shown in Theorem 24 that Y in fact coincides

with ?, where Y is the completion in ¥ of Y as a metric or uniform
space. Hence, many properties of Y carry over to Y and then to 37, and
therefore to Y. In the appendix (Theorem 25) it is shown (in the case
when £ is a Boolean algebra) that: a) Y*-valued functionals on a Banach
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space coincide with Y-valued functionals on it, b) Banach algebras over the
ring Y coincide with Banach algebras over the ring Y, in particular their
spectra correspond to each other, and ¢) continuous families of commutative
locally compact groups can be identified in a non-standard sense with a
single such group, and in particular their groups of characters correspond to
each other. Of course, these heuristic considerations are not precise
formulations.

In what follows X = X(£2) is the Stone space of the algebra £2. A set
O= J (X)is called Q-dense if there is a family {u;} < Q such that
0= U u; and \/Qu, = 1. Of course, an -dense set is dense (in the

topology (X)) and if, for any element of J (X), dense implies 2-dense,
then § is a Boolean algebra. In the same way we define the sets © that are
§2-dense at u, where u is any element of § (of course © & § (X)and

O < u). The topology J (Y) on Y is always denoted by & and its elements
by «, 8, v. We recall that u runs through §2 and © runs through J (X). We
denote by Cq(X, Y) the set of all continuous Y-valued functions defined on
open sets @, where each © is dense in an element u of 2, factorized by
being equal on an open and £2-dense set. We denote by Cg,, (X, Y) (or
briefly C,(X, Y)) the set of functions in C(X, Y) defined on sets that are
Q-dense in u. The most important is the space C;(X, Y). In what follows
we assume that the reader is familiar with the notions of the theory of
uniform spaces, for example, in Bourbaki, General Topology (1968), Ch. II.

Suppose that {[(Iv’, 3, &> is a uniform space with basis of neighbourhoods s
and basis of topology j]}g = 1. Let Y be the object in V' that is (in the

sense of global validity) the set of all minimal Cauchy filters in Y. However,
it is more convenient to define Y as the set of all bases of minimal Cauchy

filters in the uniform space ¥, contained in J°
Example 15. Let £ be the topology of some fixed topological space, and
letY =QorY = R. Itiseasy tosee ([1], [10], [42]) that the algebra

(@)% (see the definition in §1.6) is isomorphic to the algebra of locally
constant continuous functions of the form Z — ), and the same is true for

(R)*2. We have: [R is the Cauchy completion of the metric space @]g = 1.

Therefore, we can regard R as the set of real numbers in ¥'® given by the
Cauchy definition (namely, by means of sequences), and consequently the
Cauchy real (non-standard) numbers in V' can be identified with the simple
part of the algebra € (Z, R) of all continuous functions. We denote by R?
the object in V¥ that satisfies the natural definition of the Dedekind

completion of the ordered set @ (see the proof of Proposition 10, part a. Then

(R%)A2 can be identified with the whole algebra € (Y, R). The isomorphism
has the form A ~ f where [A = <A, 4> & R%Je = 1and f (z) = U, L) is



Valuations and sheaves. On some questions of non-standard analysis 95

a cut in ® ({A, A, clearly denotes a cut in Q),sothat re U=z Feik
and r& L = z = [r = MJa. Hence, in particular, (P)’\ can be embedded
in (R%)A in a canonical way, and usually R == R%, There is yet another
natural way of completing @ which is classically equivalent to the completion

via Cauchy sequences. We regard @ as a uniform space. We denote by R’
the object in V' that is the set of all minimal Cauchy filters in the uniform

space @ A minimal Cauchy filter can be defined by a simple set of intervals
in @, and therefore it is a “constructive” object. Theorem 24 in particular

says that (R")"2 is isomorphic to Cy(X, Y), where R’ is just §. The Stone
space X contains the absolute Z of the space Z, and so there is a continuous
surjective map x: Z — Z. Hence, € (Z, R) can be embedded in Cy(X, Y) in
a canonical way by the map f «— fox, which explains the mutual relations of
R,R% and R in V2.

We now present another description of this object based on sheaves and
Theorem 16, part d. We call a u-morphism a map f: &, > § satisfying the
usual conditions of a morphism but with the condition f (1) = 1g replaced

by f (1g,) = u, where u is a fixed element of 2. We denote the set of all

u-morphisms by Q% We form the following presheaf ¥ (-)on Q: & (u) == Qi
Vu e Q and py (f) = (-) /\ v. This is a sheaf on &. By Theorem 16, part d

we form the object &’ such that Q% = (F)"e. If as above Q, = J(Y), then
the object &’ will be denoted by 5. Theorem 24 says that Fy = ¥. We
write Fy = U {F (w) | u = Q}. In what follows, p, g, r always run through
the set §

Thus, we have introduced external objects ¥y and CQ(X Y), Y and
Ci(X, Y) (from the class V), and internal objects ¥y and Y (from the class
V). We intend to establish that they are in fact the same: ¥y = Co (X, Y),
Y2=C, (X,Y),F (1) =Y2and §y = ¥, Y2 = (Fy)"2. We make some
details more precise before proving these assertions.

Let Q, = J (Y), where Y is a topological space, and in Y we choose the
umformlzatlon of the topology J of Y by means of a certain basis = of
open symmetric neighbourhoods in Y.

The space § N (and also Q¥) defined above will be called the £-completion
of the topological space Y.

Remark. Tt can be shown [44] that the object ¥y has the following simpler
description (compared to that in Theorem 16, part d): Fy: §y — Q, where for

any p & QY we put Fy (p) = u. Here p € V¥, since J, on which p is
defined, is identified with {& |a &= J} < V9.
We recall that a Hausdorff space Y is called uniformly locally compact if

there is a neighbourhood o, such that Vy = Y (o, (y) is compact), where the
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bar denotes closure, as usual. A uniformly locally compact space is always
complete and paracompact. We recall that the topology on Y is defined by
the basis of neighbourhoods = by taking the basis of the topology to be
{o () ly= Y, o= Z). Inthe case when £ is a Boolean algebra Theorem 24
is in fact close to Theorems 1 and 4 of [11], and is in part contained in the
note [14].
In the sets ¥y and Cq(X, Y) we define the valuations
p=dh=A{p@— ¢g@la=d (Y)} and
U =glh=i({zs 0N 0 |f(2) =g ()}°),
where Oy and O, are the domains of the corresponding functions. Here the

symbol ° as usual denotes the interior and j (©) is the smallest open-and-
compact set containing @, that is, j (0) = \Vau;, where O = {Ju; (thisj is

also used implicitly in the definition of £2-dense sets). Thus we have two
valuations: (Fy, [-=-}i» and <Cq (X, Y), [-=-I-

If we have certain operations defined in Y, then we extend them to Fy
and Cqo(X, Y) in the following canonical way:

e+ lay=\V{pE) NaW I +rvsa}

and (f+g)(x) = f(x)+g(x), where z & ©; [ O, and similarly for the
operations — and *. If some K acts on Y, then we define the action of ¥k
on ¥y in a similar way, namely:

(epl) =V {EB) AN g® By o}
Moreover, Y can be canonically embedded in Q7 ) and Cp(X, Y) by the

oy a} and y ~ f,, where f,(x) = y.

formulae y — §, where j (o) = {0 for ye£a

In particular, if ¥ has distinguished elements O and 1, then we obtain 0 and

1. We usually identify y and y. The fact that these operations are well
defined and extend the corresponding operations in Y is verified in
Theorem 24, part a.

As always, the terms appearing in the valuations [-]; and [- . are
understood operationally. For the valuation [-]g 7, defined in accordance

with Example 8, the operations can be defined in two ways. The first is
that + (p, ¢, 1) = p (") Ag (M Ar ) AL[p + g = rle, that is, + is
understood as a non-standard graph. The second can be applied in the case
when  is uniformly continuous on Y, and then + is extended from Vto¥
by continuity in accordance with Theorem 24, part b, and this extension is
taken as the definition of the operation on Y. Both cases give the same result.

Theorem 24. Let Y be an arbitrary locally compact topological space (with
a basis 3 of symmetric open neighbourhoods).
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a) The valuations {¥F v, [-1,) and {Cq (X, Y), [ - 12> are equal and the

corresponding bijection = is stratified, that is, QF ~ C.(X,Y) IfYisa
topological ring (topological group), then the valuations remain equal, that
is, the bijection = also preserves the operations in ¥y and Cq(X, Y). Here

Q7 and Cqo(X, Y) are algebraic systems of the same kind as Y for any u € §)
and Y is embedded in them.

b) We have [§y = ¥]o = 1. The valuations [-], and -1, 7 are equal,

and we also have Y2 =~ (Fy)2.

¢) If Y is a topological ring (topological group), then it is globally valid
that “‘the object &y is an algebraic system of the same kind as Y. If Y is a
conditionally complete lattice (module, with abstract norm, with norm,
Banach space), then the same is globally valid for ¥ -

Proof. We establish the bijection ¢ between §y and Cq(X, Y) which plays
the main role in this theorem. We recall that p, ¢, » run through the set Fy.

Let p = QF and x €Eu. We put Y(p) = fp, where j; (x) == lim p7* (J ;) and
J . is the family of all open-and-compact subsets of X containing a fixed
point x € X (that is, & is the basis of the topology on X at the point x).
Such a p=1 (i7,) is the basis of a filter of sets in ¥ since p is a morphism.
We choose an arbitrary open covering of the whole of Y by relatively
compact sets {a, | ¥ & Y}. Since p is a morphism, the set

S,=UA{p()ly=Y}

is Q-dense inu = p(Y). Now let x €S,. Then Jy (=, &= p! (9,)). It is

easy to see that this last condition means that for any o = ¥ the basis

p! (F.) contains a set of order 02 Therefore, p~ (5 .) is the basis of a

Cauchy filter. Since Y is complete, lim p™* (¥ ,) exists. Thus, fp is defined

on the whole of §,. The set S, does not depend on the choice of the

covering {a, |y = Y}: suppose that {f,} is another. Then

:sz p(x)=Up@,)sinced, =B, U ... JBy,and pa,)<<pB.) U -
1

- Up @) < Up@,) Weshow that the function f,: S, > Y is

continuous. Let xq €.5,, ¥o = f,(xy), and o, & Z. We consider the
neighbourhood 6,(y,). We choose a ¢ such that 0* C o, and o(y) is
relatively compact for all y € Y, which is possible by the condition imposed
on Y. Then {o (y) | y = Y} is a covering of Y of the same sort as above,
and therefore S, = (J p (o (y)). For certain y we have x4 € p(o(y)). This

v

p(o(y)) is the required neighbourhood of x,. If x; € p(o(y)) N S,, then

V1= fp (z)) = o (y) and y, = o (y). Therefore, ¥, ¥o € 0% ¥) and v, € 0%(y,).
We also denote by f, the equivalence class in Cq(X, Y) represented by fp

Thus ¢: QF — €, (X, Y).
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We show that the map ¢ is injective. Suppose that p # ¢ and let
u==p ()= g (Y), that is, there is an a & J such that p(a) € g(a)
(otherwise we interchange p and g). Also suppose that fa coincides with f,
on a set © which is £2-dense in u. 1If, for all § such that § C «, we have
pBY N S, N Sg N ©< q(a), then p(B) & g(a). For we can easily prove
that j (G, N O,) =7 (@) N j(©,),and since Y (PP S o} =ocandpisa
morphism we have \ﬁ/p (B) = p (Up) = p (&) and p(a) < g(«), a contradiction.

Therefore, we can find 8 such that 8 C «, z = (p (B) N Sp N Sq N ©) and
x € q(a), that is, x € p(f)\g(a), z = (S, [ S ) ©) = ©. Hence

fp(x) €8 C o and fq(x) € a by assumption. By the definition of limit and
taking into account the fact that g is monotone, we obtain x € g(«), which
gives a contradiction. We show that ¢ is surjective. Let f: © — Y be a
continuous map, where the set @ is open and §2-dense in u. We put

p(a) = j(f~ o)) € Q, p: § — Q. This p is a morphism, since j is a
cHa-morphism of the form § (X) — Q, that is, p = Q7. We form fp and
S,. If z = 8, N O, then f(x) = f,(x), since f (z) = lim p™* (§,). For if
fx) € a, then x € p(a), @ = p* (). Thus f and f, coincide on an
§2-dense set S, [ O, that is, y(p) = f. We note a useful formula

p(a) = j(f, '(a)), where here and in what follows f, = y(p). Thus

P: Q7 «— C, (X, Y) for all u € Q. The bijection ¥ preserves the valuations

[-1and [ thatis, \ (p (@) = g (@) =] ({ | /5 (2) = fq (2)}", which by
definition also implies the equality of these two valuations. For if

fo(x) = f,(x) and x € p(B), where B C «a, then f,(x) € B, f,(x) € &, x € q(w),
that is, {z | f, (2) = fo P AP B) S g (), [f» =Ffde AP (B) < g(a)

[fp = fole << (P (@) < g (a)). Conversely, if f,(x) # f,(x) and

<= Q (p (o) < g (a)), then there exist a, p &= J such that a N § = Q,

fo(x) € @, fo(x) €. Then
tEp@AIBANG@E—>pE) <P APP) =3

a contradiction. We obtain

[p=¢h<)(P@—qgl@)={z]f@) =1 (=)}

which gives the required equality.

Thus the map V¥ is the required bijection between ¥y and Cq(X, Y).

Let Y be an algebraic system as above (or any other with positive axioms).
The sum of the functions p and q (as well as f,, and f,;) is computed by first
passing to p (-) A u and ¢ (-) A\ u, where u = p (Y) A ¢ (Y) (respectively,
to fp  ©and fy } O, where O = D (fp) | D (fy)), and then by addition. It
is clear that @ is Q2-dense in u. Therefore, it is sufficient to verify that the
operations are well-defined and ¢ is an isomorphism for p, g € €,. We take
such p and g. We show that the sum p+ ¢ belongs to Q7 (and the same will
hold for all operations). For we have (p+¢)(®) =0,(p + ¢) (Y) =
=pMINg@)y=1u, (p+ (" a)="\ {pB)/ p{)} where
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P BYA ¢ Tp + g () A (p + 9 (a:). Conversely,

(P + g)o)) AP+ g)a) = VAPEIN ) AP B A gl &
S Pt SaN{P BN BIA g Nv) 1B NP2+ Nvc
Cooy ) a << (p+9) (o ) ay)

From this we find that any function p+¢ is monotone, and in particular
Ve + g) (@) < (p + ¢) (U a)l. If we can verify the reverse inequality we

shall have proved that (p+¢) is a u-morphism. To this end (and mainly for
the proof of the next part of the theorem) we need the following lemma.

Lemma 5. Let Y be a uniform locally compact space and suppose that

p: T — Q is a function such that p(P) = 0, p(Y) = u (Where u € ), and
pNB)=rp @) Ap@B) Then the following three properties of p are
equivalent. The first: p (| o;) = \‘/p (et;) (“full additivity™); the second:

p@)=\{p®) IPSa B iscompact})(“compact regularity”); the third:
pl@)=V{p@ldces @ S a)amdVoc I (Vip@lac

< o} = p (X)) (“uniform regularity”). The property of uniform regularity
does not depend on the choice of the basis of neighbourhoods Z.

Proof. a) We first verify the second assertion of the lemma:

ViPEB)lIosZe@) o)} =V{P@)ldone (0 @) c )

which follows from the definition of the basis of the filter. In the same way
we verify the second property. We turn to the first assertion and we number
the three properties consecutively by 1, 2, and 3. Obviously, 1 = 2 and it

is easy to see that 2 = 3. The implication 3 = 1 is non-trivial. We choose a

new basis of neighbourhoods £, = {0 (] 0, | 0 & X}, where 0, is such that

0, (y) is compact for all y € Y. By what has already been proved, it also
has the property of uniform regularity. In what follows the variables of the
form o, 0y, ..., run through Z,. Suppose that o(8) C a. We choose g, such
that 03(8) € a. Since

rM=Vi@lco}<Vipl, ) lyel}

we have
BV B®AP@ W lveYIV{p o, @) lyse )

Suppose that y € 0,(8). Then o3(») € a, 0,(¥) € «, and 0,(») is compact.

Therefore, p B) <\ {p (0, ) | 0, () S @, 0, (y) is compact } <
<V{PWITSa, 7 iscompact}, p(a) <V {p W ITE @, Tis
compact }. We have thus proved that 3 = 2. Suppose that § C «; U a, and
B is compact. We show that p (B) < p (a;) \/ p (@) and hence by compact
regularity, which we have already proved, we tind that the function p is
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finitely additive. For any y € 8 we can find 0, such that (o} () = &) \/
V (62 (y) = a,). We obtain a covering of B by such 0,’s, choose a finite

—

subcover o, (y,), . v, (Un)> and puto =g, ~ ... [ o, . We obtain
VyieB (o (y) & a, \/ o (y) & a,), since any y is contained in say o,, (y,),
which is contained in @; or «,, and if, for example, o, (y,) & «,;, then

o) S o Weputfy={yveflolyyca}andf={y=ploy) < o}
Then B = B; U B, and o(B,) € a,, 0(B,) € a,. We choose g, such that 62 C
and obtain 6%(8;) € oy, 0%(B,) € oy, and 0,(8) = 0,(8,) U 0,(B,). We have
already proved the useful relation p (B) < \/ {p (0, (¥)) |y = o, (B)}

(for arbitrary ). We extend it as follows.

PPNV AP @0 ) S )V (V{plon ) 10y (4) E ar)) <

< Pizm) VY op (@)
It remains to obtain the full additivity of the function p from its compact
regularity and finite additivity. Suppose thata = Ua,, B< « and B is

compact. Then S o, U ... Ua, and p B) < p (a]) VoV pim) K
< \vp (2;). Hence p (a) < \/p (o;) and Lemma 5 is proved.

We continue with the proof of part a of Theorem 24. We verify the
compact regularity of the function p+gq. Since p (&) = \/ {p (£) I'f = o,
B is compact} and ¢ (o) = \/ {g (%) | 'y C a.. v is compact}, we have
P~ @iz)=NVA{p (@) \glx)la + a Ca) <\ {p (ﬁ)/\q(*)lﬁ+
+ 7S a7 and ¥ are compact } < A{p (B) Ng () [P +r1Sa. BT 7
is compact}< e+ B+DIf-rSa pTvis Compact}\

SV {p =g )i $ Ca, 6 is compact}. By Lemma 5 (its simple part)
we find that (p 4 ¢) & Q5.

Finally, we show that the bijection { preserves the operations in the
sheaves & y and Cqo(X, Y), namely, that ¢ (p -+ ¢) = fpse and f, + fo =
=P (p) + ¢ (¢)(and similarly for other operations). For fu, and f,+f, are
defined on a set @ which is -dense in u = p(Y) = q(Y). We compare them
at a point £ & @, that is, we compare z = lim (p + ¢)™? (J,) and y,+ y,,
where y, = lim p (¥ ,), ¥y, = lim ¢! (J,). Let o be any neighbourhood of
the point (y;+y,) € Y. We choose a neighbourhood & such that (y;+y,) €8
and § C a. We choose &, &, such that y; € oy, y, € &, and o+, 6.

Then x € p(@,), x €q(a,), x E(p+q)a,+a,), and z Ea; +a, C § Ca. Hence

nty, =z
We shall demonstrate that Y is embedded in &y and in fact in the set of

global elements of Y. If y, # y,, then obviously ¥, 5= ¥;. In addition

(y; + Y2)Y = ¥ + ¥» (and similarly for all operations in Y). For using the

fact that the operation + is continuous we obtain (y, + y,)v (@) =

= V{inB NAL®wI+vySal.
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b) The global validity of the proposition
Vo,0, =30, e Z (oo Moy ATPSeAo=01AT0, =
SR =)
means that (¥, 3> is a uniform space with the basis 2 of the filter of
neighbourhoods In the same way we verify the global validity of the fact

that g is one of the bases of the topology 1n the uniform space Y.
We shall use the defmltlon of the object ¥y given in the remark on p.95.
We recall that b = ¥ == b is ““a basis of the minimal Cauchy filter in the

”»

uniform space <Y, 3> contained in the basis of the topology J ”. Instead of

the expression in quotation marks we shall say briefly: ‘b is a basis in g of
the minimal Cauchy filter”’. It remains to show the global validity of the

following proposition: “b e Fy <« bis a basis in J g of the minimal Cauchy
filter™. .
We recall that the last notion means the following: 1) b 3,

2)Va, ﬁeb(aﬂﬁeb) ) Vo, =9 (@SB A ae b:=)psb),

HIeesd @), &b 6)VosIqas s eebAaXaCo),
T Ve bIp=bloe= 2 (0 (B) < a).

From left to right: let p & QF, and we have to show that u < Tpis a
basis in § of the minimal Cauchy filter]. We have 1) /\ (p (2)—[& =

D=1 N G@Ap@->[ENHEr) =1, since
ENE=EnpVi=1 3 A @EcPINEe)~Ber) =
since[& pl=p(a), 4 \O{[[&EP]] =\Vp{@)=u
NP eErl=p@)=0,[2&P1=1 OAVP@A[E X EC T =
since & X & =(aXa)V and {p(a)|a XaCo}=p(¥)=nu,

DYAN'Z (a)*ﬁ\/ EBAITH S =A@~ \é p ) =1,

a - Ry } a o(f)a
since [6 () = (o ()3 = 1 and chiefly p (@) = \/ {p B) | Jo (o (B) < a)}.

We now verify the above equivalence from right to left. Let [& be a basis
n § of the minimal Cauchy filter] = u & Q. We put p ()= [& = b] A u
and show that [p = b]j> vand pe= Q7 | which proves the required
implication. We have u Az €b] <[z = IAz = b] < \/[z =& Nz b]<
<VE=dIAr@<V=&naep] <[z €p] since [& & p] =

= \ﬂ/ B e bV hrupNe = 5]} = p (a). Conversely, 1 = é\(p (@) = [& e b)),
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since p (@) <C "2 = b7. We verify the second assertion: p () =

=[P sb]Au=0, pM=[YebjAuu andug\.‘/[&eb]]/\
AN@ESYAisb]-[Y & )<Y = b], thatis p(¥) = y;
pleNp) =[nNpveblAu=[E=s]A [ = b]A v =r@ APB);
P =E= A Au<ES A e]- VB eIABE &) <

<\V{p B) 130 (o (B) S o)}, thatis, P (@) =\ {pP) 3o (c () Za)
and V{pl)la*Co}=V{adsbjAula*Co} >[Taec

eJ (a=b A\ a* §)] >u, thatis, p has the property of uniform
regularity. By Lemma 5 we find that p is fully additive.
¢) This can be proved by a direct computation of valuations. [ ]

Remark. There are known theorems on the transfer of properties of Y (as
well as of any structure with Y as the domain) to Y, and then from ¥ to Y
(by continuity, and only this step is non-trivial), and finally to Q7 ~ C, (X,Y),
as has been done in the preceding chapters. The construction similar to Y
can be performed for locally compact spaces, metric spaces, and certain
classes of topological spaces of a similar kind. It can also be done with
arbitrary £2, in place of Jy. It is also possible to associate in a canonical
way with every p an Q-valued measure u, with p equal to the mean of this
measure. We can define integration of functions with respect to u, in such

a way that x fdu, = f (p). In the Boolean-valued case, integration and

various integral representations with Boolean-valued measures are considered
in particular in {11] and [15].

Appendix
EVALUATION IN BOOLEAN ALGEBRAS

In the papers [11] and [15] there are many thorough computations of
valuations in Boolean algebras in the context of the questions of functional
analysis, and the theory of integration and integral representations, and there
are also general theorems on Boolean valuations. Following these papers, we
present here some examples of specific arguments characteristic of Boolean-
valued analysis. The details omitted are contained in these papers. The
results presented below partially carry over to arbitrary complete Heyting
algebras and to classes of such algebras, for example Stone algebras. The
mathematical content of the appendix as well as its general plan are
described at the beginning of Ch. IV.
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If the valuation under consideration has its range in a fixed complete
Boolean algebra B, then there arises a quite specific situation. First of all, it
is concerned with the following: if ZFC |— ¢.then {@]s = 1, where [-Js is
the valuation in the language ZF with set of parameters V2 (see Example 1
and Theorem 8, part a). We can consider the following thesis: “if an
assertion ¢ of traditional mathematics is valid, then ZFC |— @”. Therefore,
“all objects and assertions of traditional mathematics exist in V2 and are
globally valid in VB, respectively”. What is more, they even exist in the
stronger sense that follows from the fact that the valuation is accessible in
the language of VB, see Theorem 4. As a result it is considerably easier to
work with valuations in Boolean algebras, and in particular with the
valuation in the language ZF. In addition, it is often convenient to use in
arguments (see below) the facts that the valuation [q7zis Boolean in the
language ZF, f(g) is Boolean, where f € VB, and the Stone space X (3)is
Hausdorff (extremally disconnected). The theory of valuations in Boolean
algebras is sometimes called Boolean-valued analysis, but before we turn to
it let us say a few words on Robinson’s non-standard analysis.

It follows at once from Theorem 3, part d that

(iq (fl’ EEERX] fu)ZZ, == 1) = CCP (:Eh LIRS ] Zn)}l = 11

where ¢ is any bounded formula, £ is an arbitrary Heyting algebra, and
Z, = Q, V4 12 We call all objects of the form £ in V' standard objects
(“*sets’), that is, we identify the class V with the class {# | £ = V}, the class
of standard objects. The objects from VR \ V% are called non-standard or
fuzzy objects (“‘sets”). The above equivalence says that global validity on
the class of standard objects coincides with global validity on the class of all
objects (for bounded formulae with standard parameters). Essentially new
possibilities arise in the case when this equivalence is true for all formulae
with standard parameters. This is true if £ is a particularly simple complete
Boolean algebra, namely if Q is a discrete complete Boolean algebra, that is,
2 is the lattice of all subsets of a fixed set / (we denote this by & (I)). The
theory of ¢ (J)-valuations is sometimes called Robinson’s non-standard
analysis. Of course, Robinson’s non-standard analysis can be presented
without mentioning any valuations formally. However by }fos’s theorem,
validity in an ultraproduct ( I1 K,)/D | o (K], . . ., [k,]) is equivalent to
a=l

the fact that [ (&, . . ., k,)] = 1, where
lel={es Kk @y (@), ..o K (@)}

Therefore, 3 (I)-valuations enter Robinson’s non-standard analysis in a
substantial way. One might think that many of the achievements of
Robinson’s analysis are also possible in Heyting-valued analysis. We recall
the axiomatics of Robinson’s non-standard analysis given in Nelson’s paper
[16]. This is also interesting because the corresponding system of notions
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can be directly transferred to Boolean-valued Heyting-valued analyses, for
which we can also give the corresponding axiomatics. We describe Nelson’s
axiomatics in a quite informal way. Let M be the “world of objects (sets)”
and S (a part of the world M) the “world of standard objects (sets)”’. The
language (which we denote by ZFS) used to describe the properties of the
world M is the usual language ZF supplemented by a one-place predicate
st(x), “x is standard”, and it is clear that (M = st (z)) = (z = §). Next,
A ={y= M | M = (y = z)} is called an external standard set if x € S, and
an external set it x € M, and a set z that cannot be represented in the form
z = x\ for any x € M is called strictly external. Nelson writes *z instead of
xz/ (the same notation is generally used in Robinson’s non-standard analysis).
Any formula of the language ZF is called internal. The axioms are all the
usual axioms of the theory ZFC formulated for internal formulae together
with three new axioms (the intended role of the axioms is that they are
valid in M):

1) ¢ & ¢* for all internal formulae ¢ containing only standard parameters,
where ¢ denotes the relativization of ¢ by the predicate s#(*) (in this way
the universes M and S cannot be distinguished by internal formulae with
standard parameters). In what follows the notation V" denotes the
relativization of the quantifier ¥z by the predicate “st (z) /\ z is finite”.

2) V' 3aVy = zq (x, y) & 2V Yyeg (z, y) for all internal formulae q

with any parameters (in this way everything that is true for all standard
finite sets is also true for all standard sets).

VI YViz z =y« ze x N ¢ (2)), where ¢ is any formula with
parameters (a delicate connection between standard and non-standard sets).

We turn to Boolean-valued analysis and consider as examples some
questions of duality.

a) Everywhere in what follows 3 is an arbitrary fixed complete Boolean
algebra and "-]s is a valuation in the language ZF with range in 3 and
family of parameters V2 (see Example 1).

Let .7* be a real or complex Banach space (we denote the field of scalars
by K), &'* the adjoint Banach space over K, and D the unit ball (with
boundary) in &Z"*. The operatlon (*)” was defined in Theorem 24. Then L“j
is a Banach space over [\_‘f = 1, We denote by 2 the object in V2 such that
?_:"/ is the unit ball (with boundary) in (7)*] = 1. If & € D (that is,

: & — K), then we exterd it by uniform continuity to k(where [[7; < K
is a tunctlonal with norm < 1] = 1) defined on &. This extension will be
denoted by 7. (We can extend any umformly continuous function in
exactly the same way.) We put y(h) = 7. Of course, we have h e (275/\)
We put § = {<k, ¥ (R)> | h < D}_. Of course, we have [y D~ I] =

In D we take the uniform structure with subbase of the filter of
neighbourhoods of the form

{{<h1v hy> & D? | | by (z) — hy (2) I<ella=Z, e ®>0},
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which, by definition, induces in D a topology called weakly dual. ") We
recall that it is the weakest topology in D such that all functions h(x): D = K
(where & is variable and z = & is fixed) are continuous. This topology is
convenient because the ball D is compact in it, and consequently we can
apply Theorem 24 to the uniform topological space D. In particular, D and
D are uniform spaces (in ¥®8). In the same way we can define a uniform
structure in & inducing in 2 a topology which by analogy we can call
globally weakly dual. It has the properties of the weakly dual topology
mentioned above. It is easy to see that a subbase of the filter of
neighbourhoods of this topology is

{<hp b & TP Ay (2) — Ry (2) | < e} lre= 377 e &< (R>0)V}

Lemma 6. We have: [y: D~ (as well as )~ 1Y is a uniformly continuous
injection (of uniform structures with weakly dual topologies) and a local
isomorphism ]| = 1 and [the image of Y is dense in D ]=1.

Proof. The computation of the first valuation is not complicated (we note
that ()™ = A M Z). To compute the second it is sufficient to nrove the
assertion:

VY = P10 (T) Vhy € $Ve & (Rx0)V b, &=
EDVzE Y (1} (k) (@) — 1y (2) 1 <e),
where $fin (Z) is the set of all finite subsets of Z. Since the equality
Pin () = (Ptin ())V is globally valid, we have to verify that
VY = Pt () Vh, & TrVe =
€ Q>0 V {x/e\yl[l (he (£)) — by @) | <E] |y = D} = 1.

Let Y = {z,,.. ., z,}. Thus, we verify that

\//\Tl(h (Z:)) — Rk (20) | <E] = 1.

hy 1=1

It is sufficient to consider the case when llA;ll < 1.

We first consider the case when Y = {z;, . . ., Za} is a linearly independent
system in &. We denote by L the linear subspace of & spanned by Y.
Then [L is spanned by the basis Y = {#;, . - -» Z} over K in ] =1. We

take the norm in L induced from &. We restrict k; to L and obtain hY,

which satisfies 12} < 1. We put & = kg (£), - <2 Ay = hy (Z,),
=My, - - - Ay & B We denote by f = <fys - . -, fop the dual basis to

the basis (&, . . ., #,y in I and by g an isomorphism of (K)* and (Z)* of

the form p — p, f, 4 ... 4 p.f,, which exists since any two norms on a

(This is often called the weak* topology. (Translator)
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finite-dimensional space are equivalent. The function g,: (K)" — R given by
g W) =llpf, + ...+ nf. Il is continuous. Therefore,

BeQeVpsR (| p—r|<bsa@<NI=1

where || is any of the usual norms in (K)" (for example, max | p; |).
1<i<n}

Hence, we have [Ap = (K" (Ip — M <EAlmAh + ...+ ll <1
and \/...\/[Ifi —A|<<BAI G, A< 1] = 1. The argument that
<K

wEK g
follows is for one term with valuation equal to b,, b, > 0. This u in K"

defines a functional by (i, f): L = K. Then [ | (i, f) < 1] > b,, that is,
l(u, /)1 < 1. By the Hahn-Banach theorem we can extend (u, f) to .2
without increasing the norm, and so obtain the required functional #, on D.

Next b, << ATl B — A; | << €], where we have [i; = hy (£;) and

M o= hy (%)) = h, (2;), since #; & L. By summing over all b, we obtain the
required result.

If Y is a linearly dependent system, then we choose a maximal linearly
independent subsystem of it and apply the previous argument, with simple
valuations for the vectors not included in the basis.

By Lemma 6 we can extend ¢ to D, that is, [¥: O — 9] = 1. For
p € DB we put 92 (p) = s, where [ (p) = s] = 1 and s & DA. Thus
PA: DB — PA. If we consider the extension of ¥ as a graph, then PA can

be obtained as (p)A. Hence, we have the following theorem.

Theorem 25a). The map A is an isomorphism of Cy(X, D) and TN, where
X is the Stone space of the algebra B. (In the spirit of Theorem 9 the
properties of D in VB carry over to Ci(X, Y).)

Remark. 1) It is clear from the proof that a similar assertion holds for fields
other than KX, and also for other weak topologies.

2) If in Theorem 24 Y is a space of functions (as it is, for example, in
Theorem 25, part a, then an f in Cy(X, Y) can be expressed more descriptively
in the form f (p, z) = f (p) (z), where p runs through & (f), an open 2-dense
set in X, and x runs through & (f (p)). Such a class of functions “of two
variables” is usually well described in ordinary terms. In this way, a
question about functions of two or more variables can be reduced to the
same question in V2 for functions of a smaller number of variables or of
one variable (this has applications, for example, in complex analysis). In the
situation of Theorem 25, part a, C4(X, D) coincides with the set D (X, &', K)
of all continuous functions f (p, z): @; X & — K, where Oy is a dense open
set in X and Vp (f (p, z) is linear and homogeneous and |f(p, x)I < lx1) is
factorized as before.
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b) Let A4 be a Banach algebra (with identity e) over C with continuous
involution * : 4 = A satisfying the condition A(x*) = h(x)", where h € D
(see below) and ~ is complex conjugation (such an algebra is called self-
conjugate). Here D denotes the set of all complex homomorphisms of 4
into € (except the one which is identically zero), that is, (A, x+ X, ¥) =
= A0(x) + M 0( ), p(xy) = @(x)p(y). Hence it follows that p(e) = 1 and ¢
is continuous. The function A(x), where /i is variable (running through D)

and x € A is fixed, will be denoted by Z, that is, #: D - C. In what
follows we shall need the property: Vz & A4 (x is invertible in A & Vh & D
(h(x) # 0)), which is true if, for example, the algebra is commutative (see
for example W. Rudin, Functional Analysis, p.265). Therefore, for simplicity,
we assume that 4 is a commutative algebra. We put

Ix, ey X (ers « v v €y) = D (cie — z;) (cie — z)*: C" >4
=1
(with variables ¢ = {c,, ..., ¢,? and parameters ¥ = {z,, . . ., z,,}), and this

function is continuous. It is clear that (f,(c) is not invertible in 4) &
SIheE A lg =h(x) /\---/\en=~h(z,)). The set G(4) of all invertible
elements of 4 is open and the set F(4) of all non-invertible elements in A4 is
closed. We write S(4, xi, ..., x,) = fix }(F(A4)), and this set is closed in C".

The set D with the weakest topology under which all functions {Z | z = 4}
are continuous is a compact set, and is sometimes called the spectrum of the
algebra A. We can apply Theorem 24 to it. We denote by 7 the object in
V8 such that [9 is the spectrum of the Banach algebra AT = 1. We note
that the same description of the algebra A that was given for the algebra A

is globally valid. If # € D, then we extend %, where Th: A >Cisa
homomorphism } = 1, onto A by uniform continuity, and denote this

extension by 7. Of course, h &= DA. We put Y(h) = % and
¢ = {<h by |k =D}, Of course, [$: D — 29 = 1. Finally, we put
YA = ()2, where P is understood as the graph of the map V.

Lemma 7. Ifﬁl is a Banach algebra as above, then (G(4))™ = G(/T),
(F(4))™ = F(A), and
S, 2, .. 5 8)= A 2, ..,5)7 =S, 2,... ),
where ~ denotes the closure, and
S evnedES A 2y w2V The D
e=h@E)N...Neca=Ph(Z)).

Lemma 8. If A is a Banach algebra as above, then the following assertion is
globally valid “1!) is a uniformly continuous injection (as well as the map

inverse to V), and the range of ¢ is dense in D"
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Proof. The first assertion is simple. We verify the second. Let
Y = {xl, c oo ZTn}, € & Qs and 2y & DA, We have to establish that

\/{/\ Llhe (#:) — hy (£) | <<€ | Ry = D}] = 1. We write ¢, = hy (%), . . .

e Cha=hy(%), and ¢ =<y, .. > C". Then c= S (4, 4y, « . -, 1)
(it is sufficient to compute 4, on f,(c)). By Lemma 7 there is a
¢ =4y, -y =S (4, 7y, ..., x,)V such that |¢' — ¢ | << &. Hence

VAL =MIA. . Alen =MW1y o A>ES A, 70y - 2)) =1,
and we denote the components by bx,,.-.,xn- There is an &, € D such that
Ay = hy(xy), ..., Ay = hy(x,). The valuation of the fact that [hi —¢; | <,
where AY = 7;2 (#;), is equal to b;_,,,,_,;\", and we sum over all bx,,...,xn-

By thus extending P to D by uniform continuity we obtain the following
theorem.

Theorem 25b). If A is a commutative self-adjoint Banach algebra with
continuous involution, then YA is an isomorphism of Cy(X, D) and I, where
X is the Stone space of the algebra B. As usual, the properties of D in VB
carry over to Cy(X < D).

¢) Let G be a commutative locally compact group that is also uniformly
locally compact. Then we can apply Theorem 24. We denote by G its
character group, that is, the continuous homomorphisms of G into the unit
sphere S (the operations in G* are defined pointwise, and the topology is
given by the basis at the identity consisting of all

O, 8) ={xE6 1)< A}

where ¢ runs through all compact sets in G and A runs through all
neighbourhoods of the identity in §; see for example L.S. Pontryagin,
Topological groups, Ch. V, Princeton 1958).

It is globally valid that Gisa group of the same kind as G. If x € G,
then [%: G — S is a character | = 1, and we can extend it by continuity to
G (as always, we denote the extension by ¥). Of course, we have

7 = (G)]'=1. We put ¥ () = ¥ and Y = {G, © | x € 6%}, and finally
4A = ()7, where v is understood as a graph. It is clear that [¥: (GHY - &)
is a monomorphism } = 1. We show that [ is continuous ] = 1. Any
element of the basis at the identity of the topology on G is given by a

compact set ¢’ in G and & € (Qs,)V. There is a compact set ¢ in G such
that € 2D ¢. Therefore, it is sufficient to consider the neighbourhood of the

identity in (G)* given by the compact set T and ¥ > 0. In G* we take a
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neighbourhood of the identity of the form © = O (c, €). Then [b is a

neighbourhood in (G*)V, ¥ (@) = © (¢, €)7 = 1. It is easy to see that (§)™?
is also continuous. - B

We extend ¥ to (G1)™ by continuity and so obtain a monomorphism
which is a homeomorphism onto its range, ¢ : (GT)™ = (5)+.

We denote by I' the image of ¢ in (G)*. Then I is a locally compact
subgroup of (G)*. We define an isomorphism i between G and I'* by
g %c~ ¥, | T, where X, is the character of (5)* that corresponds to
evaluating g at a point. Such an i is an epimorphism, since any character on
I can be extended to (5)+ (using Pontryagin duality).

To show that i is a monomorphism it is sufficient to verify that its kernel

{g€cIVieT (@ =) ={g€C|VyE G) @ (1) (e) = e)}is
trivial, that is, to verify that (A {[X(g) = 1] Iy =6} =1) = Tg=¢] = 1),
and Vx € G (X () = ¢] = 1) = [g =¢]. We have the relation

{ (w) = g (x* (w)), where w is an arbitrary Borel set on the sphere S and

i (-)and g(-) are the measures on § corresponding to {inS and g in G by
the formula g (w) == [f;* (w)], where [+] denotes the factorization by thin
sets. We consider the weakest topology on G such that all x in GT are
continuous. It is Hausdorff and contained in the original topology in G.
Therefore, they coincide on any compact subspace of G, and the measures
& (-)and g(*) on G also coincide on the elements of this new topology.
Therefore, they coincide on the closed sets in this new (weak) topology. If
O is an open relatively compact set in G, then there is a set « open in the
weak topology such that © = @ [ u and # is closed in the weak topology.

Therefore, g (0) = g (O) N\ g (1) = 4 (O) A & (u) = é (0). Hence the
measures g(*) and ¢ (-) coincide, that is, g = €] = 1.

Thus, i is an algebraic isomorphism of Gand T'*. Itis easy to see that i
is also a homeomorphism. By Pontryagin duahty we have an isomorphism
ip T — (G). Weputp =ioy:(GH >T > (G)* and, as always, A = ()"
where ¢ on the right-hand side is understood as a graph. From this we
obtain the following theorem.

Theorem 25c¢). If G is a commutative locally compact group, then ¢/ is an
isgmorphism of C, (X, G*) and ((G)")A. (In the usual sense, the properties of
(G)*t in V& carry over to Cy(X, G*).)
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author is also most grateful to L.A. Bokut’, S.D. Denisov, V.G. Kanovei,
V.Ya. Lin, G.E. Mints, Yu.l. Manin, D.P. Skvortsov, and V.A. Uspenskii for
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