VLADIMIR KANOVET* Elementary Extensions
MICHAEL REEKEN of External Classes
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Abstract. In continuation of our study of HST, Hrbacek set theory (a nonstandard set
theory which includes, in particular, the ZFC Replacement and Separation schemata in
the st-&-language, and Saturation for well-orderable families of internal sets), we consider
the problem of existence of elementary extensions of inner “external” subclasses of the
HST universe.

We show that, given a standard cardinal «, any set R C "k generates an “internal”
class S(R) of all sets standard relatively to elements of R, and an “external” class L[S(R)]
of all sets constructible (in a sense close to the Gédel constructibility) from sets in S(R) .
We prove that under some mild saturation-like requirements for R the class L[S(R)]
models a certain s-version of HST including the principle of x1-saturation; moreover, in
this case L[S(R')] is an elementary extension of L[S(R)] in the st-&-language whenever
sets R C R’ satisfy the requirements.

Key words: nonstandard set theory, inner subuniverses, constructibility, iterated elemen-
tary extensions.

Introduction

This paper is written in continuation of the series of articles [10]-[13] devoted
to set theoretic foundations of nonstandard mathematics in the framework
of HST, Hrbacek set theory, introduced in [11] on the basis of an earlier
version of Hrbagek [7].

HST is a theory in the st-€-language, containing the membership €
and the standardness st as the basic predicates. The universe H of all
sets (the universe of discourse) is arranged by HST so that it includes the
class S = {z : stz} of all standard sets, together with the bigger class
I={y: 3z (y€x)} of all elements of standard sets, called internal sets.

The universe I is postulated to be an elementary extension of S in
the €-language; in general, I behaves similarly to the universe of Nelson’s
internal set theory IST [16], except for the fact that now there do not exist
monstrous sets like an internally finite set containing all standard sets.

* Partially supported by DFG, NIOKR, MPS, and visiting appointments from Univer-
sity of Wuppertal and Max Planck Institute at Bonn in 1995-1996.

Presented by Robert Goldblatt; Received September 10, 1996

Studia Logica 60: 253-273, 1998.
©1998 Kluwer Academic Publishers. Printed in the Netherlands.



254 V. Kanovei, M. Reeken

On the other hand, the universe H of all sets satisfies in HST the
axioms of Separation and Collection in the st-€-language, which allows us
to easily operate with “external sets” (those naturally defined so that the
predicate st occurs in the definitions), which is impossible in theories like
IST where “external sets” are, generally speaking, not legitimate objects.

In addition, I is postulated to be x-saturated, for any well-orderable
cardinal x. Some amount of Choice is provided.! Section 1 of the paper
contains a brief introduction to HST .

The theory HST does not include the Power Set axiom, actually in-
compatible with the unrestricted Saturation property of I. To solve this
problem, we introduced in [12] a system of subuniverses H, C H, « being
an infinite standard cardinal, which model HST,, a version of HST with
the Saturation axiom suitably restricted by x (but stronger than simply
xT-Saturation) and also model the Power Set axiom.

The corresponding internal subclasses I, = H, NI are elementary sub-
models of T and of each other in the €-language. But the classes Hy are
NOT elementary extensions of each other, because they possess essentially dif-
ferent amounts of Saturation, which can be expressed in the st-€-language.

It was mentioned, in the discussion between W. A. J. Luxemburg and the
authors in the course of the Oberwolfach meeting (January/February 1994)
in nonstandard analysis, that to define representative families of classes of
“external” type (those which satisfy the Separation schema in the st-e-lang-
uage) being elementary extensions of each other would match some known
constructions in the model theoretic setting of nonstandard mathematics.

The paper is devoted to this problem.

It turns out that the core of the problem is to define classes which are
elementary submodels of some fixed I, in the st-€-language, not merely
in the €-language. For this purpose, we use classes S(R) C I, of all sets
standard relative to a finite sequence of elements of a given set R C *.
(A generalization of classes introduced by Gordon [6].) These classes are
easily provable to be elementary submodels of I, and T in the €-language.

! This differs, in more or less essential details, from other earlier systems of Hrbatek (8]
and Kawal [14], and significantly differs from a more recent development of Ballard and
Hrbacek [2] (based on an “anti-well-founded” standard set theory) and Ballard [1], and
from the “asterisk” setting of nonstandard analysis, see Chang and Keisler [4], being
perhaps closer to a theory introduced by Fletcher [5], at least because the stratified system
of subuniverses which Fletcher simply postulates to exist can be defined, even in a more
advanced form, as a system of inner classes in HST. This also differs from the “extended
use of IST ” by van den Berg [3], essentially a semi-formal treatment of those “external
sets” in IST which admit a special, although quite broad, kind of st-&-definition.
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To expand this property to the st-€-language, we use those sets R C *x
which realize certain types (or, in other words, are in a certain way saturated)
— they are called x-complete sets below. Some properties of the classes I
and I, described in [10, 12] are employed to prove that a “set-size” collection
of types captures the whole proper class of types to be, in principle, realized.
(We take advantage of the possibility to convert any st-&-formula to N
type, that is, to the form 3% V' (€-formula), equivalent in I, and then to
restrict the two leftmost quantifiers by appropriate standard sets.)

It is demonstrated in Section 2 that S(R) is an elementary submodel
of I, in the st-€-language, provided the set R C *s is x-complete. In
particular, S(R') is an elementary extension of S(£) in the st-&-language
provided the sets R C R' C *x are s-complete.

Section 3 shows how any class of the form S(R) (where R C *s) can
be expanded to an “external” class L[S(R)] C H, essentially the class of
all sets Godel-constructible in H, the HST universe, from sets = € S(R),
although in this case the constructibility appears in the form of a rather
elementary assembling of sets via definable well-founded trees. (In particular
the class H, itself turns out to be the same as L[L,].)

Moreover L[S(R)] is x*-saturated whenever aset R C *k is k-complete.

Finally since the construction of L[S(R)] is st-€-definable in S(R),
we conclude from the above that L[S(R)] is an elementary submodel of
H, = L[I,] in the st-€-language, hence a model of HST,, a theory which
adequately supports xT-saturated nonstandard mathematics. Furthermore
L[S(R")] is an elementary extension of L{S(R)] in the st-&-language pro-
vided R C R' C *s are s-complete sets.

Section 4 outlines an application to the problem of getting convenient
subuniverses with different “magnitudes” of infinitesimals.

Acknowledgements. The authors are pleased to mention useful conversa-

tions on the topic of the paper, personal and in written form, with D. Ballard,
E. Gordon, K. Hrbacek, H. J. Keisler.

1. A review of HST

For the convenience of the reader, we begin this section with a brief look
at the system of axioms and the set universe of HST, then turn to the
class of all well-founded sets, obtained from standard sets by a condensation
procedure, and finally consider the class of all internal sets. To save space,
we shall formulate a number of really simple facts without proof or only with
a hint. A complete development is given in our paper [13].
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1.1. The axioms

The abbreviations 3%z and V™z (ezternal quantifiers) will be used as
shorthands for “there exists a standard z” and “for all standard z”.

HST deals with three types of sets: standard, internal, and external.
Standard sets are those x satisfying staz. Internal sets are those sets z
which satisfy int s, where intz is the st-€-formula 3%y (z € y) (saying:
z belongs to a standard set). Thus the internal sets are precisely all sets
which are elements of standard sets. Ezternal sets are simply all sets.

We shall use S, I, H to denote, in HST, the classes of all standard
and all internal sets, and the universe of all sets, respectively.

We define °X = {z € X :stz}=XNS for any set X .

The list of axioms of HST contains the following three parts.

Azxioms for the external universe H. This part includes the ZFC
Pair, Union, Extensionality, Infinity axioms, the schemata of Separation
(= Comprehension), Collection, Replacement for all st-€-formulas, and the
following axiom of Weak Regularity: for any nonempty set X there exists
z € X such that x N X contains only internal elements.

This group misses the Power Set, Choice, and Regularity axioms of ZFC.
Choice (see below) and Regularity are added in weaker forms. This is not
a sort of incompleteness of the system; in fact each of the three mentioned
axioms contradicts HST .

Azioms for standard and internal sets. The first three of four
items in this group say that [ is a transitive class in H and an elementary
extension of S in the €-language; in addition, both § and I are ZFC
universes. (9% and @™ denote the relativization of a formula ® to the
classes S and I respectively.) The last item, Standardization, is of key
importance for the development of nonstandard mathematics in HST .

1) Transfer: ®%(z) == &n(r),
where @ is an €-formula containing only standard sets as parameters.

2) &%, where ® is an arbitrary axiom of ZFC in the €-language. Thus
the class S of all standard sets models ZFC .

3) Transitivity of the internal subuniverse 1: Y™z Vy €z (inty).
4) Standardization: VYX Y (°X = °Y).

Azioms for sets of standard size. A set of standard size is any set
of the form {f(z) : z € °X}, where X is a standard set. The following
three axioms refer to the notions of a finite set and a natural number, which
will be commented upon below.
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Saturation : if X is a set of standard size such that every X € X is internal
and the intersection ()X’ is nonempty for any finite nonempty X' C X
then N X is nonempty.

Standard size Choice : Choice in the case when the domain X of the choice
function is a set of standard size.

Dependent Choice : with its ordinary formulation. (Will not be used below.)

Blanket agreement. In the remainder of the paper, the reasoning goes
on in HST unless explicitly indicated otherwise.

LEMMA 1. If X CI1I then X CS for a standard set S.

Proor. Each z € X is internal, hence belongs to a standard set s. By
the Collection axiom of HST, there is a set B such that every z € X
belongs to a standard s € B. By Standardization, there exists a standard
set A containing the same standard elements as B does. Weput S=JA
and use the axiom of transitivity of I and Transfer. [ |

Remark. It was convenient to adjoin one more axiom, Eztension, and
an axiom schema BST™ (saying that all the axioms of a certain “internal”
nonstandard set theory, BST, hold in I ) to the list of HST axioms in
our earlier papers [11, 12]. In fact, those additional axioms can be obtained
as formal corollaries of the axioms formulated here (see [13]). We explain in
subsection 1.3 below how BST™ follows from HST .

1.2. Condensed universe

Let a well-founded set mean: a member of a transitive set X such that the
restriction € | X is a well-founded relation. Let V denote the class of all
well-founded sets in HST. Then V is a transitive subclass of the HST
universe H well-founded by the membership €.

We define, by &-induction, a standard set "z € S for any set z € V,
so that for any =z € V, *r is the unique (uniqueness — by Transfer, the
existence — by the axiom of Standardization) standard set X such that
°X = {*:y € z}. One easily shows that the map * is an €-isomorphism
of V onto S, hence by Transfer an elementary embedding of V into I,
the universe of all internal sets. In particular V models ZFC.

Clearly V is a transitive class, and y € V implies £ € V provided
z C y. Therefore many basic set theoretic notions, in particular ordinals,
cardinals, natural numbers, finite sets have one and the same meaning both
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in V and H. Furthermore all ordinals (therefore all cardinals and natural
numbers as well) in H belong to V as V comprises all well-founded sets.

Ordinals and cardinals. We let Ord and Card denote the classes of
all ordinals and cardinals, in the sense of V or H, which is the same by
the above. Then S-cardinals (i.e. cardinals in S ) are sets of the form *
where s € Card, and only such sets; the same for ordinals.

We observe that the following properties are equivalent in HST for any
set X: 1) X is a set of standard size, 2) X is well-orderable, 3) X can
be put in 1—1 correspondence with a set in V, 4) X canbeputin 1—1
correspondence with a cardinal x = {£: £ < x} € Card.

In particular, the cardinality card X € Card is defined, in HST, for
all sets X of standard size, and only those sets.

Natural numbers. N will be the set of of all natural numbers, in V
or H. (Equally, N = w is the least limit ordinal.) It does not take much
effort to prove that "n = n for any n € N, therefore S-natural numbers
are precisely numbers in N. Furthermore *N is the set of all I-natural
numbers, which we shall call hypernatural numbers, following the tradition.
Using Standardization and Saturation, one easily proves that N is a proper
initial segment of *N.

Finite sets are those which admit a bijection onto a set of the form
n=1{0,1,2,...n—1} € N = w. Hyperfinite sets are those which admit a
bijection onto a set of the form n = {0,1,2,...,n—1} € *N.

One easily shows in HST that the collections X <% of all finite se-
quences of elements of X and Pg,(X) = {u C X : u is finite} are SETS for
any set X, using Collection, even in the absence of the Power Set axiom.

1.3. Internal sets

HST proves that I, the internal universe, models bounded set theory BST,
a theory? in the st-&-language, close to internal set theory IST of Nel-
son [16]. BST includes all of ZFC (in the €-language) together with:

Bounded idealization BI :
VA 3z € X Va e A®(z,a) < Jz € X V' B(z,a);

Standardization S : VX F'Y Viz[z€Y += z€ X & ®(z)];
Transfer T : 3z &(z) = Pz &(z);
Boundedness B : Va2 IX (z € X).

2 Explicitly introduced in [9], but equal to the “internal part” of a theory in [7].
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Here ® must be an €-formula in BI and T, and ® may contain only
standard sets as parameters in T, but ® can be any st-€-formula in S
and contain arbitrary parameters in BI and S. V"4 stands for: for all
standard finite A. X 1is a standard set in BI.

Thus BI is weaker than the Idealization I of IST (I results by re-
placing in BI the set X by the universe of all sets), but the Boundedness
axiom B (incompatible with IST ) is added.

PROPOSITION 2. The class 1 of all internal sets in H models BST .

PROOF. Only the Bounded Idealization BI needs some care. We prove
the direction == in BI. (The other direction is implied by the fact that
standard S-finite sets contain only standard elements — an easy consequence
of the HST Standardization.) Applying the HST Collection and Lemma, 1
we obtain a standard set A such that it is true in [ for all £ € X that
V' € A ®(z,a) == V*a ®(z,a). It remains to apply Saturation to the
family of sets X, = {z € X : ™ (z,a)}, a € 4. [

The proposition allows us to accommodate to HST the following two
important facts proved earlier for BST. Everything asserted to be a theorem
of BST becomes true in I in the HST setting.

THEOREM 3. (Theorem 1.5 in [10]) If ®(z1,...,z,) is @ st-€-formula
then there exists a €-formula @(a,b,z1,...,2,) such that BST proves

Vz,...Vz1 [®(21,...,20) & Fta Vb la,b,z1,...,2,)]. ]

Formulas of the form I*a V*'p (c-formula) are called 5\ formulas.
Thus in HST any st-€-formula is equivalent in I to a X' formula.

THEOREM 4. (Lemma 1.1 in [12]) Let @(a,b,z) be a €-formula. Then
BST proves that for any X there ezxist standard sets A and B such that

Vz e X [V pa,b,z) <= F%ac AV e B p(a,b, z)]. ]

2. Partially saturated classes and elementary submodels

It turns out that I admits various subclasses which are elementary submod-
els of [ in the €-language and contain all standard sets. We introduced in
(12} two types of such subclasses, having the additional advantage of mod-
eling the Power Set axiom in a certain “external envelope” of the subclass.
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2.1. Partially saturated classes

In particular we defined in [12] a s*-saturated subclass® I, C I for any
cardinal x. We present this construction here referring to [12] for some
technical details.

Let x € V be a fixed infinite cardinal from now on. We put

I, = {z:3weV(zre*w&-cardw <)}
= {2:3X(z€ X & cardgX < * in S)}
= {f(a):a < * & f is a standard function & dom f = *x} .

Note that S C I, C I. Obviously I, unlike I is not a transitive class.

THEOREM 5. [ is an elementary submodel of 1 in the €-language. Fur-
thermore, 1. is k*-saturated: if a family {X.:a <k} C L. satisfies the
finite intersection property (in H) then I, N Npcr Xa #0.

Proor. To see that I, is an €-elementary submodel of I, let ®(z) be
an &-formula containing sets in I, as parameters. Since each parameter
then necessarily belongs to a standard set of cardinality < *x in S, we can
use the ZFC Collection in S and Transfer to get a standard set X of
S-cardinality < *s such that Jz ®(z) = Iz € X &(z).

Let us prove the saturation assertion. It suffices to obtainaset W € V of
cardinality card W < « such that the family of sets Y, = X, N *W satisfies
the finite intersection property. To get such a set W, we observe that for
any finite u C & the intersection I. N(N,c, X~ IS non-empty because I,
is an elementary submodel of I. (One easily proves that any finite subset of
I is an element of I, by induction on the number of elements.) Therefore,
using the HST standard size Choice axiom, we obtain a function f defined
on the set Pgy(x) € V so that, for each finite u C &, the value f(u) € V
satisfies card f(u) < & and *(f(u)) NNacy Xo # 0. Note that f € V since
V' is closed under subsets. It remains to define W = U,cp, () f(u) . n

2.2. Elementary submodels

Furthermore, the classes I, & being an infinite cardinal in V, admit even
smaller elementary submodels, based on the notion of relative standardness,
due to Gordon [6] (see Peraire [17] for an axiomatic treatment).

® The class of all internal sets of order %, introduced in [9]. In the particular case
£ = No, the definition was given by Luxemburg [15]. The general case was first considered
in a unpublished version of Hrbagek [8].
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Let £ and w be internal sets. The set z is w-standard, w-st z in brief,
iff there exists a standard function f such that f(w) is defined and equal
to z.* Let S[w]= {z:w-stz}; asubclass of I.

It turns out that the Gordon classes S[w] are simply ultrapowers of
V. Indeed, let w € I. By definition there exists a set W &€ V such that
w € *W. Consider the set U = U, = {U C W : w € U}, the associated
ultrafilter. Then each set U C W and U itself belong to V, soin fact U is
an ultrafilter over W in V. One easily proves that S[w] is €-isomorphic to
the U-ultrapower of V. (Conversely, given an ultrafilter U € V, we obtain,
using Saturation, a set w € I such that U = U, .)

Gordon [6] proved that the classes S[w] are elementary submodels of I
in the €-language. It is a much more difficult problem to obtain subclasses
of some T, containing all standard sets and being elementary submodels
of I, IN THE st-€-LANGUAGE, not merely in the €-language. We shall see
that some amount of saturation suffices !

Let us put S(R) = |Jycp<w S[w] for any set RCT.

(We recall that R<% is the set of all finite sequences of elements of R.
One easily proves that R<* C I, provided R C I, .)

In particular, by definition I, = S(*s) for any cardinal s € V.

DEFINITION 6. Let x € V be an infinite cardinal, A = 2% in V. A set
R C "k is w-complete if for each family {X, : v < A} € S(R) of sets X, C
", satisfying the finite intersection property (in H ), RN Ny Xa # 0.

Notice that the k-completeness of R C *s implies R = S(R)N*k.

Thus the s-completeness is a special type of (2%)*-saturation of S(R):
only families of subsets of *x are relevant. The next theorem proves that this
suffices for *k-saturation for sets not necessarily restricted by *. What is
even more important, this also solves the question of elementary submodels
in the st-€-language. It is not clear whether a smaller amount of Saturation
in Definition 6 would be sufficient.

THEOREM 7. Let « € V be an infinite cardinal. Suppose that R C *x
s a Kk-complete set. Then S(R) is an elementary submodel of 1. in the
st-€-language. In addition S(R) is x™-saturated (as in Theorem 5).

PrOOF. The proof of the property of being an elementary submodel pro-
ceeds by induction on the complexity of the formulas involved. Since clearly
S(R) C I, and on the other hand I, is definable in I by a st-e-formula

* Another definition of relative standardness also proposed in [6) defines w-stz iff
z € f(w) where f is a standard function such that f(w) is a hyperfinite set.
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with *k € S as the only parameter®, we have to prove the following: given
a st-€-formula ®(z) with parameters in S(R), if (1) there exists z € I,
satisfying ®(z) in I then (2) such a set z can be found in S(R).

First of all, we can suppose that ®(-) contains only standard sets and
some wy € R, n € N, as parameters, so ® will be written as ®(z, wq) .

We can further assume that ®(z,.) explicitly says that z is an [-ordinal
and z < *s, simply because S(R) C I, = S(*) .

It can be also assumed by Proposition 2 and Theorem 3 that ®(z,-) is a
5 formula with standard parameters. Since S C S(R), the leftmost quan-
tifier 3% can be eliminated, so that we finally can assume that ®(z,-) has
the form V**b (b, z,-), where ¢ is an e-formula with standard parameters.

The problem takes the form: if (1) there exists an I-ordinal ¢ < *s such
that V5'6 @(b,&,wp) in I then (2) such an ordinal ¢ exists in R. To show
this we restrict the variable b by a standard set of cardinality <*X in S.

As wy € R™ C [, there exists aset W € V such that cardW < k and
wg € *W. Let, in I, Ey = {{{,w) € * x*W : = ¢(b,{,w)} for all internal
b, so that =, € I for each b € I because ¢ is an €-formula. Applying in
I (which is an €-model of ZFC) the ZFC Collection and Choice, we get
aset B of cardinality <*\ in I such that Vb 3¥ € B (5, = Zy) .

Such a set B can be chosen in S by Transfer. Then, by Transfer again,
we have Vb 30 € B (B, = Ey). This implies, in T,

VE< s Yw €W [ = o(b,&,w) => F'be B-pbEw].
We observe that, since D is a standard set satisfying card B < *A in S,

there exists a surjection h mapping A = 2* (a cardinal in V ) onto the set
°B of all standard b € B. Now the last displayed formula takes the form:

VE< ™k Yw e W [V p(b &, w) <= Vv <Aph(v),6,w)]. (%)

Let us define X, = {€ < *x : ¢(h(v),€,wg)} for every v < A. Hypothesis
(1) implies M,y X, # 0. Then there exists £ € S(R) NN, <y X, (because
R is complete). But this implies Vb (b, &, wg) by (%), as required.

The proof that the class S(R) is x*-saturated is entirely similar to the
proof of the saturation statement in Theorem 5. | |

2.3. The existence of complete sets

Thus the question of the existence of classes being st-&-elementary submod-
els of I, (for an infinite cardinal s in V) is reduced to the construction of

5 Tt is pointed out by the referee that the “occasional” definability of I, in I can
be avoided and the proof of the theorem can be carried out completely within I. where
appropriate versions of theorems 3 and 4 hold.
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complete (as in Definition 6) sets R C *s. We give the construction in the
particular but quite comprehensive case that R is a set of standard size.

THEOREM 8. Let k € V be an infinite cardinal. Suppose that Ry C *k
is a set of standard size. Then there erists a k-complete set R C *k of
standard size satisfying Rg C R.

PROOF. Let A = 2" in V. Suppose that @ C R C *s. We say that R
completes @ iff, for every set of the form {X, :v <A} C S(Q) such that
X, C *k for all v and the intersection X = Nu<x Xv is non-empty, the
intersection X N R is non-empty as well.

CLAIM 9. Let Q C *k be a set of standard size. Suppose that Q > )\ is
an infinite cardinal in V such that card@ < Q and Q* = Q. Then there
exists a set R C 'k of card R <) which completes Q.

PrRooF. To obtain a required set R, let us first of all enumerate all the
relevant A-sequences of sets X € S(Q), X C *«, by ordinals § < Q.

We present @ as Q@ = {py:y<}.

Let us consider, in V, a pair of functions, h: X x K<“ — P(k) and
g:A— Q<Y Let v < A Then g(v) = (y1,..., ) € Q<. We define
Wy = (Pyyy - Py ) € @Y, s0 that wy € (*&)<¥. Wc further put hy(w) =
h(v,w), for any w € k<%, so h, € V maps k< into P(x). We finally put
Xgh = (*(h))(w.), hence {Xg" : v < A} is a set of subsets of *, each
Xg" being a member of S$(Q) as all functions *(hy) are standard.

One easily proves that for every set of the form {X,:v < A} C S(Q)
such that X, C * for all v, there exists a pair of functions g, h € V of
this type satisfying X, = Xg" for all v < X.

We observe that, since Q* =, the set of all pairs of functions h, g of
the mentioned type has cardinality Q in V. Now the standard size Choice
axiom of HST allows to pick up a set Q' = {05:6 < 0} C *«, so that, for
any such a pair of functions g, h, there exists an index § < ) satisfying the
following: if the intcrsection [,y X§* is non-empty then o4 € Ny X20.
It remains to define R=Q U Q’. [ |

We come back to the proof of the theorem. In principle, had we a
sufficient amount of choice, the proof could be accomplished by setting
R = Ug<r+ Ra, where AT is the next cardinal (in V), R, = Us<a B
at limit steps «, and R,.; completing R, for all c. Apparently HST
does not directly provide such kind of constructions involving uncountable
Dependent Choice. However, an indirect reasoning leads to the goal.
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To begin with, let us consider U = *(x), the (standard) set of all
internal functions w : *2 — *s. For every u € U, we put

[u] = {u*y) :y< Q} ={uly) : v < Q & sty}.

Thus [u] is a subset of * of cardinality < . Conversely, it can be easily
proved using the HST Saturation axiom that each subset of *s of cardi-
nality < has the form [u] for some u € U. In particular, there exists
u® € U such that [u®] = Rp, the given set.

For u, v € U, we write u < v iff [v] completes [u] (see above).

Let ¥ = AT in V. We observe that 9 <  (because Q* = in V).
Therefore, to prove Theorem 8 it would be sufficient to define a <-increasing
scquence {(uq : @ <) of uy € U such that ug = uP.

Starting the construction of such a sequence, we note that the relation
u < v on the standard set P can be expressed in T by a st-é-formula
with standard parameters. It follows from Theorem 3 and Proposition 2
that u < v can be expressed by a 5 formula, 7. e. a formula of the form
3*ta V®b ¢(a, b, u,v), where ¢ is an €-formula with standard parameters.
By Theorem 4 the quantifiers 3%a and Vb can be restricted by standard
sets, say *A and *B. This presents the relation < in the form

u<uv iff Ja€ AVbeE B Qulu,v),

where A, B € V while Q. C I/ X I/ is an internal set for all a € A and
b€ B. Let us say that a € A witnesses u < v iff Vb€ B Qgp(u,v).

For any a < 9, we let A, be the set of all functions a:axa — A
such that there exists a function u:a — U satisfying u(0) = u® and the
requirement that a(3,v) € A witnesses u(8) < u(y) whenever 8 < v < a.
Then each function a € (J,<yAa, every set A,, and even the sequence
(Aq :a <) belong to V since this subuniverse is closed under subsets.

CrAM 10. If a <9 then every function a € A, can be extended by some
a.l < -Aa+]_ .

PROOF. By definition there is a function u: a — U such that u(0) = »°
and a(f,7y) witnesses u(f8) < u(y) whenever § <y <a. Thereis u e U
satisfying u(8) < u for all 8 < a. (Indeed if o« = 8+ 1 then this follows
from Claim 9. If « is a limit ordinal then we have u € U such that [u] =
Us<olu(B)].) Using standard size Choice we get a function f:a — A
such that f(8) witnesses u(f) < u for each 8 < a. Now expand a to the
required a’' € A, by a'(8,a) = f(B) forall < «. |
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Cramm 11. If a <9 is a limit ordinal and a function a:axa — A
satisfies a (B x f3) € Ag for all B <« then a€ A, .

PROOF. Suppose that 8 <y < a and b€ B. We let Hyg, be the set of
all internal functions 7 : Yo — U which satisfy Qa(s.4)s(n(*8),n(*y)) and
n(*0) = ul. The sets Hyg,, are internal because so are all Qg .

We assert that the intersection Hg = (1 ,cp, y<y<g Hoyy is non-empty
for any 8 < c. Indeed, since a [ (8 x ) € Ag, there exists a function u:
B — U such that a(y,7') witnesses u(y) < u(y') whenever v < v' < 3.
The HST Saturation axiom gives an internal function n defined on *a
and satisfying n(*y) = u(y) for all ¥ < a. Then € Hp.

Then the total intersection H = ()yep, gcyca Hbgy is non-empty by
Saturation. Let n € H. By definition, we have Qa(s,y)s((*B), n(*y)) when-
ever 8 < v < a and b € B. Now, to see that a € A,, let us define

u(8) =n(*8) forall < . ]

To complete the proof of Theorem 8, we note that claims 10 and 11
imply Ay # 0. Taking any a € Ay, we obtain, by definition, a ~<-increasing
sequence of terms u, = u(a) € U such that ug = u°, as required. [

3. External closure of an internal class

A general method of extending a class I C I to a subclass of H which
models an appropriate part of HST, in particular, models the schemata of
Separation and Collection in the st-€-language, was introduced in [12]. For
the benefit of the reader we start with a review of relevant notation.

3.1. Elementary external sets

It turns out that the internal subuniverse I “codes” information about
quite a big class of external sets. Of course I does not contain non-internal
sets. In particular sets like the set N of all standard natural numbers do
not belong to I. But actually HST allows to implicitly incorporate some
external sets in I.

Let an elementary erternal set mean an arbitrary (not necessarily inter-
nal) st-e-definable subset of an internal set. This looks like an unsound,
“metamathematical” definition, but fortunately sets of this type admit a
uniform description given by:

Cp = Useon Nycop na,b), where p=(4,B,n)€l, A and B are
standard sets, 7 being an internal func-
tion defined on A x B.
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(And, we recall, °S=5nN8§S.)
If pe 1 is not of the mentioned form then we set €, =0.

PROPOSITION 12. (see [11]) The class E = {€, : p € I} contains all
internal sets and satisfies Separation for all st-€-formulas. »

Thus E is quite a comprehensive class, containing all internal sets and
also those external sets which are st-&-definable in I; it is closed under
the Separation schema. On the other hand, one can determine in I, by
appropriate st-&-formulas, the truth of the elementary predicates C, € C,,
€p =Cy, stCy, so E has a definable model in the smaller universe I .

Take notice that each set X € [E satisfies X C I as internal sets contain
only internal elements.

3.2. Assembling sets from internal sets

Let Seq denote the class of all finite sequences of internal sets. (Then
Seq C I.) For t € Seq and a € I, let t"a be the sequence in Seq
obtained by adjoining @ as the rightmost additional term to ¢.

A tree is a non-empty (possibly non-internal) set 7' C Seq such that,
whenever t',t € Seq satisfy ¢’ C ¢, t € T implies ¢ € T. Thus every
tree T contains A, the empty sequence, and satisfies T C I. A tree T is
well-founded (wf tree, in brief) iff every non-empty set 7' C T contains a.
C-maximal in 7' element.

By Max7 we denote the set of all elements t € T, C-mazimal in T .

Let T be a wf tree. Associate a set F(t) with each ¢t € MaxT. If
t ¢ MaxT then define F(¢) as the collection of all already defined sets of
the form F(t"a). The following definition realizes this idea.

DEFINITION 13. A wf pair is any pair (T, F) such that T is a wf tree and
F is a function, F : MaxT — 1. In this case, the family of sets Fr(t)
(t € T) is defined, by induction on the “rank” of ¢ in T, as follows:

1) if t € MaxT then Fr(t) = F(t);
2) if te T\MaxT then Fr(t) = {Fr(t"a):t"a€T}.
We finally put F[T] = Fr(A). [
Let e.g. T ={A,(a)} and F(e) =z € L. Then F[T) = Fr(A) = {z).
DEFINITION 14. 7r is the class of all wf pairs (T, F) s.t. T, Fe E .6

8 This class of wf pairs was introduced in [12], as H . Note that T, F € E is not
sufficient for (T, F) € E because E contains only subsets of I.
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3.3. Sets constructible from internal sets

In principle the equality L[l] = {F[T] : (T, F) € 7} does not look like
the definition of any kind of constructibility. But it turns out that the
class L[I] defined this way is the least subclass of H which includes I
and satisfies HST (in particular the Separation and Collection schemata
in the st-c-language), which is preciscly what in general the class L[I]
should be (see our paper [13]). Furthermore this gives the same result as
the ordinary definition of constructible sets suitably accommodated to the
HST environment, but with much less effort in this particular case.

However we are rather interested in a proper definition of classes of the
form L[S(R)], R being a subset of I. (We shall consider only standard
size sets K of [-ordinals as in subsections 2.2 and 2.3.)

‘The plan will be as follows. We first recall the definition of L[I,], a class
which models a suitable x-version of HST, from [12]. Then, using the fact
that L[l,] is somehow st-€-expressible in I, (although L[I.] Z I, ) and,
on the other hand, that classes of the form S(R), where R is s-complete,
are elementary submodels of L[I] in the st-&-languagc, we simply restrict
the definition of L[I.] to S(R), getting the required class L[S(R)].

Let x be a fixed infinite cardinal in V, the desired amount of saturation
in the universes we are going to define.

DEFINITION 15. K, ={C,:pel,}.

One might define L[I;] as the collection of all sets of the form F[T]
where (T, F) is a wf pair in 7T such that both 7 and F belong to E,.
However this would not be a good definition because such a class is not
extensional: it contains different sets having the same elements in L[I,].
This obstacle led us to a more sophisticated definition in [12].

DEFINITION 16. 70, is the collection of all wf pairs (T, F) € 7 such that
both T and F belong to E,, T C I, F: MaxT — I, and T does
not contain elements ¢ € T such that there exists a set I € I, satisfying
INl,=Fr@t)#1.7

We set L[l = {F[T]:(T,F) € 7} (denoted by H, in [12]).

The restriction imposed on elements of the tree 7' in the definition is
not harmful: the removed sets can be suitably replaced by internal sets.

" Elements t of this type are called r-illegal in [12]. Alternatively one could get the
same result by the following change in the definition of F[T]. For any t € Max 7T, if ¢ is
not illegal then still Fr(t) = {Fr(t"a):t"a € T}. Otherwise Fr(t) = I, where I € L
witnesses that ¢ is illegal. With this change, one eliminates the notion of illegality.
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To match the universe L[I,], we let HST, be the theory containing:

(1) All of HST, with the following reservations: first, cardX < s in
Saturation, and second, the domain of the choice function claimed to
exist in the standard size Choice axiom is a set of cardinality < &;

(2) The Power Set axiom.

Of course (1) is weaker than HST, but the difference is relevant only
to the amount of Saturation and standard size Choice. As soon as we fix a
particular application, where all the cardinals involved are naturally bounded
by a certain cardinal, the possibilities (1) offers are practically equal to those
of HST; but we now have the Power Set axiom !

The following theorem is proved in [12] (Theorem 3.10).

THEOREM 17. L[I.] models HSTy. In addition INLJ[
set X C L[Ix] of cardinality card X <« belongs to L]

I] = Lc and each
I]. =

It follows that I is the class of all formally internal sets in L[I,] (those
satisfying the formula intz, i.e. X (z € X)).

3.4. Definability of the construction

We now prove that the construction of L[I.] can be expressed in I, by
suitable st-e-formulas. The principal step is to get definability in E, the
class of all elementary external sets; the result then will be strengthened to
definability in [ and finally to I, .

LEMMA 18. The class ® C E x E and the relations F[T| = F'[T"] and
F[T] € F'[T'] (in four arguments) and st F[T]| (in two arguments) are
definable in E by parameter-free st-€-formulas. The class T, is definable
in E by a st-€-formula which contains only *x € S as a parameter.

Proor. Consider the class 7t of all wf pairs (T, F). It would be sufficient
to prove that the notion of being a well-founded tree is absolute for E. In
other words we have to prove that if a tree 7' € E, T C Seq is well-founded
in E then it is well-founded in H, the universe of all sets.

We observe that, since E satisfies Separation (in the st-€-language)
and contains all internal sets, the well-foundedness of T in E implies the
existence of a rank function in K, mapping T into S-ordinals. But such a
function witnesses that 7 is well-founded in the universe as well.

As for the equality I'[T] = F'[T'], it actually means the existence of
a “computation” of truth values of equalities of the form Fr(t) = Fp.(t')
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(where t € T and ' € T') by induction on the ranks of ¢ in T and ?
in T', which gives true for the final equality Fr(A) = FJ.(A). Assuming
that T, T, F, F' belong to E, the unique existing computation belongs to
E because this class satisfies Separation.

The other relations, € and st, can be reduced to the equality. |

COROLLARY 19. There ezxist st-€-formulas P(-,-,-), ST(-, ), EQ(-, ),
and IN(-,-,-,-) such that for any infinite cardinal « € V and all sets p, p',
q, ¢ € I, we have

P(*k,p,q) istruein I, iff (C,Cp) € W, ;

ST(p,q) istruein I, iff stC,[Cy] ;

IN(p,q,p',q") istruein L, iff Cp[Cq] € Cp[Cy] ;
[Cq] = Cp[€¢]

ProoF. Consider the first item; the other three of them are treated sim-
ilarly. It follows from Lemma 18 that there exists a st-e-formula P'(,-,-)
such that, for all T, F € E, (T,F) € T, iff P'(*, T, F) istrue in E.

By the definition of E there exists another st-&-formula P/(-,-,-) such
that (€4, Cp) € T, iff P'(*s,p,q) is truein I.

Let P(.,-,-) be a I§' formula equivalent in I to P”(,-,-) (we refer to
Theorem 3). Notice that P, as any other ©§ formula, is absolute for I,
because this class is an elementary submodel of I in the €-language and
contains all standard sets. [

P
EQ(p,q,p,q) istruein I, iff &

3.5. Constructibility over internal subuniverses

Suppose now that s € V is an infinite cardinal, as above, and R C *k,
so that S C S(R) C I, = S(*s) C I. The following definition introduces
“lightface” counterparts of the notions above.

DEFINITION 20. Let R C *s. 7(R) is the collection of all wf pairs (T, F)
€ T, such that T'=C, and F = €, for some p, ¢ € S(R).

We define L[S(R)] = {FI[T]: (T,F) e m.(R)}.

In particular .(*) = T, and L[S(*k)] = L[L,].

This is also a kind constructibility: the definition can be converted to a
sort of ordinary definition of the class of all sets constructible (in the HST
universe H ) in the usual sense from sets in S(R), although with some care
as S(R) is a non-transitive proper class.
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THEOREM 21. Suppose that R C *s is a k-complete set. Then L[S(R)]
is an elementary submodel of L[I;] in the st-€-language. In particular

L[S(R)] models HST, (by Theorem 17). In addition,
(i) LIS(R))NI =S(R) and L[S(R)]N* = R;
(ii) any set X C L[S(R)] of cardinality card X < x belongs to L[S(R)];
(iii) the class S(R) is x*-saturated in L[S(R)] : if {Xs:a < s} is
a family of internal sets X, € S(R) satisfying the finite intersection
property then the intersection L[S(R)] N MNycr Xa i nonempty.

PROOF. Recall that S(R) is a st-€-elementary submodel of I, = S(*s)
by Theorem 7. Therefore L[S(R)] is actually an elementary submodel of
L[I.] in the st-€-language, by Corollary 19.

(i) Suppose that = € IL[S(R)]NI. Then z € I, as L[S(R)] C L[I,]
while L[I.]NI =1, by Theorem 17. By definition there exist p, ¢ € S(R)
such that z = F[T| where T = Gy, F = €4, and (T,F) € 7,. We
can easily define sets A and ¢, for any internal z in an absolute way so
that €y = {A} and €y, = {(A,z)} for all z; then clearly (€),C4 )€ Ty
whenever z € [, and Cy [€)] = . We conclude that the statement “there
erists x satisfying EQ(p,q, A, d»)” istrnein I, by the choice of the formula
EQ (see Corollary 19). Then it is true in S(R) as well because S(R) is a
st-€-elementary submodel of I, by Theorem 7. This yields a set 2’ € S(R)
such that ' = F[T]; in other words, = € S(R).

(ii) Let X C L[S(R)] be a set of cardinality cardX < «. By the
HST standard size Choice axiom we have X = {z, : a < s} where
To = Fo[Toa] and (Ty, Fa) € Te(R) for all o < k. Using the axiom of
Standardization and Theorem 7 (the fact that S(R) is sxt-saturated) we
easily present the sets T, and F, in the form T, = Ci(va) and F, =€ (%)
where %, f € S(R) are functions defined on *s.

It is clear that X = F[T], where the wf pair (T, F) is defined by

= {AtU{(fa) : o < kK &t € T,} and F((*a)™) = Fu(t) for all
a <k and ¢ € MaxTy,. On the other hand, one obtains in S(R) (using the
functions ¢, f) sets p, ¢ € S(R) such that 7 = €, and F = €, Thus if
(T, F) belongs to 77, then X € L[S(R)] by definition.

It remains to consider the case when (T,F) & .. As (T,F) is com-
posed from pairs in 7T, this can happen only in the case when A is k-illegal
(see footnote 7), i.e. there exists a set I € I, satisfying I N1, = FT] =
X # I. Let us check that this is impossible. Indeed, by Lemma 2.3 in [12],
if I €I, and the intersection NI, is a set of standard size (as our set X
is) then actually I C I, which is a contradiction.

(iii) Each X, belongs to S(R) by (i). Now use Theorem 7. [
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4. An application

It was demonstrated by Gordon [6] that an adequate nonstandard treatment
of some patterns of standard reasoning in analysis (especially those involving
real functions of several variables) needs infinitesimals and infinitely large
numbers of different magnitude. More exactly, given an infinitesimal a > 0,
we have to involve a “much smaller” infinitesimal 8 > 0.8 This is of course
equivalent to the following: given an infinitely large integer n, define a
“much bigger” number m > n.

Classes of the form L[S(R)] provide a good environment for such kind
of reasoning in HST .

Let x € V be an infinite cardinal, the amount of saturation we look for.

Assume we consider at the moment a class L[S(R)] generated by a
k-complete set R C *x which is a set of standard size. It easily follows
from the HST Saturation axiom and Theorem 21(i) that there exists a
hypernatural number m € *N bigger than all numbers n € *N in L[S(R)].
We are interested to adjoin such a number to L[S(R)].

It follows from Theorem 8 that there exists a k-complete set R’ C *x
containing m and all elements of R .

Now the class L[S(R')] is an elementary extension of L[S(R)] in the
st-&-language, containing m, by Theorem 21. Moreover L[S(R')] (as well
as L[S(R)]) is a kT-saturated universe and a model of HST, .

We recall that HST, is a k-version of HST including (unlike HST)
the Power Set axiom. Such a theory allows to freely develop x'-saturated
nonstandard analysis.

5. A problem

Let R C *k. The class S(R) admits another type of “external envelope”.
Indeed let 7'(R) denote the class of all wf pairs (T, F) € 7t such that both
T and F are subsets of S(R). The class A(R) of all sets of the form F[T)
where (T, F) € 7'(R) may then be viewed as the collection of all sets one
can assemble in H from sets in S(R) .

® Consider for instance a double limit lim;_,olimy—0 F(x,y) where F is a standard
function. In the spirit of nonstandard analysis one should pick up an infinitesimal o and
consider the limit lim, .o F(a,y) of F(a,y) as a function of y. It is inappropriate to
replace y by an arbitrary infinitesimal 3 as F(a,y) as a function of 4 is a nonstandard
function. The point is that 3, the second infinitesimal, must be “much smaller” than «,
to handle the case in proper way. Taking 8 so that |8 smaller than any a-standard
positive infinitesimal, one gets an adequate treatment of the case as it is shown by Gor-
don [6].
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Classes A(R) give a little bit more than those of the form L[S(R)] :
in particular they also model HST,; but in addition they model the full
Choice (in the form that every set can be well-ordered; in fact it is true in
A(R) that all sets are sets of standard size), only provided R is a sct of
standard size. (We refer to [12], Section 4, where a similar type of universes,
denoted there by H,, is considered.)

The problem is to find reasonable requirements for sets of standard size
R C R' C * which would guarantee that A(R) is an elementary sub-
model of A(R') (at least in the €-language). The method applied for the
classes L[S(R)] does not work as the construction of A(R) now cannot be
expressed in S(R) .
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