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I n t r o d u c t i o n  

The internal set theory (IST) expounded by Nelson [1, 2] is considered now by specialists as one 
of the most successful axiomatizations of nonstandard methods. Not only it has found applications 
to various fields of nonstandard mathematics presenting tools simple, convenient and, at the same 
time, rather powerful for formalization of the "infinitesimal" reasoning, but also it becomes a subject 
of in-depth studies for its own sake (see [3-8]). 

As opposed to other axiomatizations of nonstandard methods, Nelson's theory is distinguished by 
the fact that it operates only with the two types of sets: standard and internal, whereas, for example, 
the systems proposed by Hrba~ek [9], Kawai [10], Henson and Keisler [11] (see a survey of the subject 
in [12]) are in a more complete agreement with the "constructive" version of nonstandard approach 
consisting in the direct construction of enlargements for standard structures (see [8, 13, 14]) and allow 
of the sets of the third type: external sets. 

The structure of IST, being clearer in this respect, simplifies the process of distinguishing gen- 
uinely topical logical questions, stating and solving the classical set theoretic problems of consistency, 
independence, and undecidability. 

IST results from adjoining the unary predicate st of standardness to the language of Zermelo-- 
Fraenkel set theory (ZFC) and three new axioms (idealization, standardization, and transfer; see them 
below) to the list of the axioms of ZFC, these new axioms regulating the properties of sets connected 
with the notion of standardness. 

Together with the above postulates, the following extension principle is sometimes used in the 
studies connected with IST (cf. [6-8]): 

(E) If  X ,  Y is a pair of standard sets and r is an st-E-formula such that, for each stan- 
dard x E X,  there is a y E Y satisfying r y), then there exists a function (1 such that ~(x) is defined 
and satisfies ~2(x, ~(x)) for every standard x E X.  Formally, 

VStx x 3y Y r y) v% c x [r e Y]. 

It is admissible that the formula (I) contains the standardness predicate as well as free variables 
other than x and y (in interpretation they are replaced by arbitrary sets, parameters). 

We will write VS~x E X q~(x) to denote Vx(stx -~ ~(x)), and 3 st will be understood i n a  similar 
sense. Note that the quantifiers 3 st, V st are conveniently called external, while the quantifiers 3 and V 
without the superscript st are called internal. The words "external" and "internal" are by no means 
connected with a position of a quantifier in a formula. Similarly, any st-E-formula not containing the 
predicate st is referred to as internal, while a formula containing this predicate is called external. 

It should be emphasized that (E) becomes false in IST if we replace 3Stx by 3x on the left-hand 
and right-hand sides. 

In [2] it was proved that (E) is a theorem of IST in case each external quantifier (in the above- 
indicated sense) of the formula ~ is of the form 3Stz E Z or MStz E Z, where Z is some standard set 
possibly depending upon a quantifier, and there are no occurrences of the standardness predicate st 
other than those with the quantifiers 3 st and V st of the type indicated (in what follows such formulas 
will be called ext-restricted). This result is quite sufficient to guarantee legitimacy for the applications 
of (E) known to the author; nevertheless, it does not answer the natural question about the general 
status of the extension principle in IST. The following theorem proposes a solution: 
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T h e o r e m  1. (E) is undecidable in IST. 

The proof of this theorem forms the bulk of the exposition. First, constructing an inner model, 
we will prove that (E) is consistent with the axioms of IST. (There is another (longer) way of prov- 
ing consistency for (E) by checking it in the model employed by Nelson in [1].) Second, we will 
construct a model of IST in which (E) fails for X = Y = N (the set of integers) and for a certain 
explicitly-given formula (I). In our example, the formula (I) negating (E) is of type II~ t, i.e. of the 
form VSta 3Stbc2(x,y,a, b), where 90 is an internal formula which, to our regret, must contain some 
nonstandard set as a parameter. Thus the problem to construct a model of IST in which (E) will be 
false for a formula without parameters (at least having only standard parameters) remains unsolved. 

The situation changes, however, if we omit the requirement that y belong to a given set; i.e., if 
we consider the following hypothesis: 

(El) W t x E X 3 y r  r 
It is easy to see that (El) implies (E); indeed, insert the formula ~5(x, y) & y E Y instead of ~(x, y) 
in (El). 

T h e o r e m  2. The hypothesis (El) is not deducible in IST even for formulas ~ without parameters. 

More precisely, we assert that there exists a formula ~(x, y) without parameters and of type lq ~t 2 
for which the negation of (El) is consistent with IST. 

The article is arranged as follows. In w we construct an inner model of IST in which (E) and (El) 
hold. This will prove consistency with IST axioms for (E) and (El) (clearly, the consistency of (E) 
ensues from that of (El)). Then, in w we prove an important technical theorem on expressibility by 
an appropriate external formula of validity for any internal formula with standard parameters. This 
theorem is used in w for constructing a model of IST in which the negations of (E) and (El) hold for 
some explicitly-defined matrix formulas r This completes the proof of Theorems 1 and 2. 

In fact, we shall prove that the following weaker versions of (E) and (E~): 
(g!) V"tx E X 3!y E Y ~(x, y) ~ 3!) V~tx E X [~(x, ~(x))&9(x) �9 Y], 
(El!) VStx �9 X a!y (I)(x,y) ~ ~y VStx �9 ~" ~(x,y(x)),  

in which the uniqueness requirement for y is added, are not deducible in IST. 

w Cons i s t ency  of the  Ex tens ion  Pr inc ip le  

We recall the statements of the additional IST axioms: 
Idealization (I). For every internal formula kS(x, a), 

vstfinA 3x Va E A O(x,a) e-~ 3x VSta ~P(x,a). 

Standardization (S). For every st-E-formula 4p(x) and any standard set X, 

3stY VStx Ix E Y ~-, x E X & qh(z)]. 

Transfer (T). For every internal formula q~(x) with standard parameters, 

3x 3% r 

Thus, IST is ZFC plus (I) plus (S) plus (T). 
Consistency with the axioms of IST for (E) and (El) will be proved in the following form: 

T h e o r e m  3 (IST). Let ~ be a standard infinite cardinal such that V x  is a model of ZFC. Then 
V x  is a model of IST in which (E) and (El) hold. 

Here we denote by Vx the xth level of the yon Neumann set hierarchy [15]. Thus, V0 = O, 
V~+I = P(N~) = {X : X C_ Va } for any ordinal a, and VA = Ua<AV~ for any limit ordinal A. 
Finally, V = U~EOrdV~ is the universe of all sets. 
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Proof .  We put V = V,,. By a V-restricted formula we will mean any st-C-formula whose quanti- 
tiers (external and internal) are restricted to the set V. It is clear that any assertion about the validity 
of internal formulas in V is expressible by a V-restricted formula; this fact gives grounds for our proof 
of the theorem. 

To check the transfer principle in V, i.e. the implication 

3z c v r  r t .  c v r 

for an internal V-restricted formula r with standard parameters (certainly, only parameters lying in V 
are of interest here; the result, however, remains true for arbitrary standard parameters), it suffices to 
apply the transfer principle of IST to the formula r & x C V (which is internal and has standard 
parameters). In precisely the same manner we can validate principles (S) and (I) in V; the relevant 
simple consideration is left to the reader. 

It remains to check that (El) holds in V, i. e. to verify the formula 

~Stx C X 3y C V •(x,y) --+ ~] C V 'v'Stx C X r 

where X E V is a standard set and (D is an arbitrary V-restricted st-E-formula. However, the specific 
feature of V-restricted formulas (in fact, of all st-E-formulas in which every external quantifier (in 
the sense indicated) is restricted to a suitable standard set) consists in the fact that, for them, (E) 
and (El) become theorems of IST; this was proved in [2]. Consequently, there exists a function ~ for 
which 

V% r X [~(x) C V & r (,) 

Moreover, it is required that /~ C V. To satisfy this additional condition, we let H be a finite set 
containing all the standard elements of V (the existence of such a set H was established in [1]). We 
put 

D=HNVAdom~I; E={xCD:~I(x) CV}; f = O [ E .  

Clearly, f is a function with finite domain of definition E C V and range in V; i.e., f r V. Moreover, 
the needed property (*) passes from ~ to f .  [] 

In the results like Theorem 3 (and, naturally, Theorems 1 and 2), a particular emphasis is attracted 
to the tools used in proving (say, for constructing a required model). In the above proof we have used 
as an assumption the existence of a cardinal x such that N,, is a model of ZFC; this assumption 
certainly falls outside the scope of either ZFC or IST (since the two theories are equiconsistent) and, 
in fact, it is even stronger than the hypothesis Cons ZFC of the formal consistency of ZFC. Thus, 
Theorem 3 (in the very form it was straightforwardly established) does not give a proof of consistency 
with IST for (E) and (El) in the most desirable form: 

Cons IST ~ Cons IST + (S) + (El). 

Consider, however, the theory ISTx that is obtained by enriching the language of IST with the 
additional constant x and appending to the list of the axioms of IST the axiom "x is a standard 
cardinal" together with the collection of axioms of the form "A is valid in Vx", where A ranges over 
all the axioms of ZFC. Denote the corresponding extension of ZFC by ZFCx. Of course, ZFCx is 
not the same as the result of adding to ZFC the single axiom that V,, is a model of ZFC (the latter 
version gives a stronger extension of ZFC). 

It is easy to check that ISTx is equiconsistent with IST (and is a conservative extension of the 
latter); however, ISTx is strong enough to ensure provability in this theory of any axiom of IST as 
well as the validity of (E) and (El) in V~. The needed proof (in ISTx) practically mimics that of 
Theorem 3 and, therefore, is omitted. [] 
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w Truth Verification for Internal Formulas 

The purpose of the present section is to prove a theorem about t ruth verification for internal 
formulas with standard parameters by means of some external formula. This result partly interesting 
by itself is an important  technical tool which will be Used in w in proving independence for (E) 
and (El) .  Before stating the theorem exactly, we expose necessary definitions connected with encoding 
the E-language by means of finite sequences of symbols related to the logical Symbols and sets used 
as parameters.  

For the sake of simplicity, we assume that E-formulas are written only with the help of the logical 
symbols -,, &: , 3, E, =; the brackets ( and ); the variables v and vi, i E N; and, finally, the parameters, 
i.e. arbitrary sets which can replace free variables. The other logical connectives are well known to 
be expressible in terms of -% L: , and 3. 

Given a E-formula c2, the translation of it is understood to be the string r-qo7 obtained from qo by 
replacing 

the symbols "-,, & ,  3, E, =,  ( , )  with the integers 0, 1, 2, 3, 4, 5, 6; 
each of the variables vi with 8 + i and v with 7; 
each parameter  p (p E V) with the ordered pair (0, p). 

Thus, %2 n is a finite string whose entries are sets of a special type. All these strings compose the 
collection 

Form = { r ~ 7 :  ~, is a (well formed) E-formula } 

in which, for any X, we can distinguish 

Formx = { r-~-i E Form : all parameters of c 2 belong to X }. 

T h e o r e m  4. There exists an st-E-formula r(x) such that, for any internal formula (P(xl , . . . ,  xn), 
the following relation holds in IST: 

VStXl . . . V S t x n  [ ( ~ ( Z l , .  . . , X n )  e-e T ( r ' f ~ ( X l , . . .  , X n ) 7 ) ] .  

P r o o f .  We need one more definition. We will say that a formula !5 is subordinate to a formula cp 
if 15 is such a subformula of ~ in which some (possibly, all or none) free variables are replaced by 
parameters. In particular, ~ itself is subordinate to c 2. We put 

Form[p] = {r-~bq : 15 is subordinate to p }; Formz[c2] = Vormx NForm[!0]. 

For instance, C~(p)7 E Formx[3v ~(v)] for any p E X. 
Finally, we distinguish the translations of closed formulas by setting 

CForm = { r~n E Form:  ~ is a closed formula}, 

and define CFormx,  CForm[~], and CFormx[~] similarly. 
Note that the translation r-~-7 is standard (viewed as a finite string) if and only if ~ has only stan- 

dard parameters and the (natural) number of logical symbols in the expression of ~ is also standard. 
Now we give our key defini*ion. We denote by Sat(T) the conjunction of the following five formulas 

in st-E-language: 

T C_ CForm (T consists of translations of closed formulas); (1) 

VStp VStq [(r-p = q-~ E T ~ p = q) & (r-p E q7 E T ~ p E q)]; (2) 

vstr-~q vstr-@7 [r-~ ~; t~-7 E T e-+ (r-~7 E T &: r~7 E T)]; (3) 

vstr-~ q e T vstr-15 7 e CForm[~] (r-_,r E T e-~ c~b-~ ~ T); (4) 

vs%,(v) [r3v ,(v) e T 3Stp e T)]. (2) 
Thus, each set T satisfying Sat(T) has a structure adapted to determining the t ru th  within the 
universe S of standard sets by means of T. Namely, 
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L e m m a  5 (IST). In order that a given closed G-formula ~2 be true in S (or, which is tantamount 
by transfer, in the universe V of all sets), it is necessary and sufficient that either of the following two 
equivalent conditions be satisfied: 

3T [Sat(T) & r~-~ e T] and VT [Sat(T) -~ r_~-~ ~ T]. 

More precisely, for an arbitrary G-formula p(v) with free variables v = v~ , . . . ,  vn, the next relation 
holds in IST: 

VStxl...~/Stxn [~(Xl,. . . ,Xn) ~ ~T [Sat(T) ~z rc~(Xl,...,Xn) 7 G T] 

VT [Sat(T) --. r ~ ( X l , . . . , X n )  7 ~ T]]. 

The proof of the lemma should be understood in the sense just indicated. 

Proof .  We prove two auxiliary claims from which Lemma 5 ensues immediately. [] 

C l a i m  1. For every closed G-formula ~ with standard parameters, there exists a set T satisfying 
Sat(T) and containing at least one of the translations r~7 and r_~7. 

Proof .  Replace all the parameters in p with free variables. Let ~(v i , . . . , vn )  be the resulting 
formula and let ~2i(vi~,..., vi~(i)), 1 < i < m, i~ G N, be the list of all its subformulas (~2 inclusively). 
Take a set g which contains all standard sets (cf. [1]) and define 

Ti = { r~i(xl,...,x,~(i))-~ : x l , . . . , xn (o  E H & ~i (x l , . . . , x~( i ) )}  

[.J{ r ' - '~ i (Xl , . . . ,  Xn(i)) "7 : X l , . . . ,  Xn(i) E H ~ ~ i ( X l , . . . ,  Xn(i) ) }. 

The set T = [-)l<i<mTi is the one sought. [] 

C l a i m  2. For any closed E-formula ~ with standard parameters, if r~7 E T and Sat(T) holds 
then ~ is true in S as well as in V. 

Proof .  We proceed by induction on the number of symbols in the string r~7. The base of 
induction (i.e. the formulas x C y and x = y for standard x and y) is guaranteed by formula (2) of the 
definition of Sat, and the induction steps, by formulas (3)-(5). The only nontrivial case is the step -1 
that is considered separately. Thus, assume that r_~-~ E T; we are to prove that ~ is false. Observe 
immediately that r~7 ~ T in view of (4). 

Case 1. ~ is an atomic formula x C y or x = y with x and y standard. From (2) it ensues that 
x ~ y (respectively, x :fi y); for, r~7 ~ T. Hence, ~ is false. 

Case 2. ~ equals r & X- At least one of the translations r~b7 or r)/7 does not belong to T 
by (3); say, r r  ~ T. Then r~ r  E T by (4). So ~b is true by the induction hypothesis. Hence, r is 
false. 

Case 3. ~ equals - ~ .  Then r~b~ E T by (4), since r~-~ = r _ ~  ~ T. Consequently, r is true by 
the induction hypothesis; therefore, ~ is false. 

Case 4. ~ equals 3v r We are to prove that g,(x) is false if x is standard. From (5) we obtain 
rr  ~ T (for, rp-~ ~ T). Thus, r-~r E T by (4); i.e., g,(x) is false by the induction hypothesis. 

This completes the proofs of Lemma 5 and Theorem 4. Indeed, in the role of T we can take either 
of the two formulas of Lemma 5, 3T [Sat(T) ~ r~-~ G T] or VT [Sat(T) -~ r_~-~ ~ T]. [] 

w Independence of the Extension Principle 

The independence of a proposition (in our case, (E) or (El)) means that it is impossible to prove 
this proposition in the theory under consideration, i.e., here, in IST. We shall accomplish such a proof 
by way of constructing a model of IST in which (E) and (El) fail; moreover, (El) is violated for some 
formula (I) without parameters. 
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Our construct ing such a model  is carried out within ZFC under  some additional technical  suppo- 
sitions made  for the sake of convenience. We will use the technique based on the adequate  ultralimit  
construct ion of [1]; however, the specific features of the problem need not only the use of a special 
choice for the  initial model  of ZFC but  also a special way of its nons tandardly  enlarging, the choice 
and enlargement  slightly different from those of [1]. 

3.1.  A n  i n i t i a l  m o d e l .  We will assume, making our consideration in ZFC, the existence of a 
cardinal ~ such that  Vo is a model  of ZFC. In point of fact, our assumpt ion failing out the scope 
of ZFC and taken only for the sake of convenience can be el iminated in approximately  the same way 
as before in w i.e., by considering a suitable extension of ZFC. 

Now, let t~ be a cardinal satisfying the property indicated; so that  V~ is a model  of ZFC. It is 
convenient to assume v~ to be the least cardinal of the kind. 

One more  (final) assumpt ion  is that  we will presuppose (in our construct ing a model  of IST in 
ZFC) the axiom of constructibil i ty V = L. A consequence, of this axiom (that  is consistent with ZFC), 
essential for us is a well ordering of the universe of all sets by means of a certain explicitly-defined 
E-formula possessing the proper ty  that  the restriction of the order onto an arbitrary set of the form 
V~, where t~ is a cardinal, is definable in V~ and well orders V~ with order type ~ (cf. [15]). 

We now fix a "natural" enumerat ion c2k(Vl,... , Vm(k)), k E N, of all E-formulas wi thout  parameters  
and with a definite indication of the list of free variables: It is easy to check that ,  for any  n, there exists 
a cardinal x < t9 such that  Vx is an elementary submodel  of V# of all formulas qPk(Pl,.-. ,Pm(k)), 
k _< n, Pi E Vx. Let Xn denote the least of these cardinals x.  Clearly, zn  _< Xn+l for all n, 
x = sup{ xn : n E N } is a cardinal, and Vx is an elementary submodel  of V# of all E-formulas with 
parameters  in V~; consequently, Vx is a model  of ZFC. Therefore, ~ = t~. 

It is the set M = V~ that  we shall take as the initial model  of our construct ing the needed 
nons tandard  enlargement.  Our way of enlargment is connected with the use of definable functions for 
construct ing an ultrapower.  So we recall necessary definitions. 

First  of all, we will in t roduce a second denotation for Vo by designating V = Ve; that  this 
additional denota t ion is desirable can be explained by the fact that  V0 seems to play two different 
roles in our construction: it is the initial model  and besides the "universe" for analyzing definability. 

Observe tha t  xn E V for all n. Indeed, it suffices to check that  x ,  < # for any n. Suppose the 
contrary; i.e., that  xn = v~ for all n > no, no E N. Then, since V is a model  of ZFC, for n = no + 1 
there is a cardinal x ,  z E V (and, consequently, x < t~), such that  Vx  is an elementary submodel  
of V of all the formulas ~k, k < n. As a result, xn _< x < v~. A contradiction. 

Let Def(V) denote  the collection of all the sets X ___ V that  are definable in V; i.e., X E Def(V) 
if and only if 

X {p E V :  c 2v(p) } = {p E V :  ?(p)  is true in V}  

for some E-formula c2 with parameters  in V and the single free variable p, where !~ V denotes the 
relativization of r to V, i.e. the result of replacement of each of the quantifiers 3z and Yz in 
by 3z E V and Vz E V respectively. 

L e m m a  6. The sequence (xn : n E N) does not belong to Def(V).  

P r o o f .  Assume to the contrary that  there exists a E-formula ~(n,  ~),  with parameters  in V, 
satisfying the relation 

Then  there exists an integer n such that  all the parameters  of c 2 belong to Vx ,  and, fur thermore,  V~,  
is an e lementary submodel  of Y of the formulas ~(v, x)  (with free variables v and , )  and 3xp(t , ,  x)  
(with the free variable v). The  formula S~p(n ,  z )  is t rue in V (to observe this, take z = ~ )  and, 
consequently, in V~,  as well. Hence, qv(n, ~) holds in V,, ,  and thus in V for some >r E Vx , .  However, 
the last is possible only in the case ~ = xn. Therefore, xn E Vx, ,  a contradiction.  [] 

In point  of fact, the sequence of the cardinals >r will be of principal value as grounds of our 
construct ing the needed counterexample with (E) and (El)  violated. Our main idea is to construct  a 
nons tandard  enlargement  of M by using only functions of Def(V). This will guarantee tha t  the map 
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k ~ ~<k will be out of our enlargement, whereas Theorem 5 will ensure that the this map is definable 
in the extension by means of an appropriate (external) formula. 

Now we fill in details. 

3.2. An  index  set and ul trafi l ter .  As the index set we take 

I = 7:'fin(M) = { i _C M :  i is finite }; 

it is clear that I E Def(V). The desired ultrafilter is given by the following 

T h e o r e m  7. There exists an ultrafilter U over I satisfying the following two properties: 
(a) i f a E M  t h e n { i E l : a E i } E U ;  
(b) if P C_ I x M,  P E Def(V) then the set {p E M : the set Ip = { i : (i,p) E P }  is in U} 

belongs to Def(V). 

Proof .  Construction of the desired ultrafilter U will be accomplished in three steps. 

1. Define U0 to be the collection of all sets of the type {i E I : a l , . . . , a n  E i}, where a l . . . , a n  E 
M. The family U0 clearly possesses the finite intersection property (FIP) which says that the inter- 
section of every finite subfamily of sets of U0 is nonempty. 

2. Fix an enumeration xk(i,p), k _> 1, of all &formulas without parameters and with two free 
variables. By the assumption made above, there exists a well ordered set V = Vo which is definable 
in V and whose order type is t~. Denote by p~ (a < ~) the ath element of V with respect to this 
order. Then the sequence (p~" a < t~} belongs to Def(V). We define 

Ak(c~) = { i E I :  xk(i,p~) is true in V } and Ck(o~ ) = I \ Ak(c~). 

Now by induction on k it is not hard to construct a collection of sets Tk C_ t~, Tk E Def(V), such that, 
with 

Uk = { Ak(a) : a E Tk} U { C k ( a ) : a  E ~ \ Tk},  

Uv.), = { Ak(o~) : c~ 6 Tk n o' } u { Ok(c,) E s, \ Tk }, 

the family U0 U-. �9 U Uk-1 U Uk7 possesses FIP for all k >_ 1 and 7 < t~. (To this end, it suffices to take 
into account the trivial fact that, of two mutually complementary sets, at least one can be adjoint to 
any family possessing FIP so as to obtain a family also possessing FIP.) 

3. We define /)co = Ukei~Uk (apparently, the family Uo~ possesses FIP) and enlarge Uoo to 
an ultrafilter U over I arbitrarily. It is easily seen that the ultrafilter obtained has the required 
properties. [] 

3.3. The  quant i f ie r  " the re  exist  sufficiently many."  The use of properties (a) and (b) of 
the ultrafilter U constructed is radically simplified in the framework of the formalism of generalized 
quantifiers. Define the new quantifier Q = Qv by 

Qi u(i) if and only if {i E I :  ?(i) is true in M} E U. 

The following properties of this additional quantifer ensues from the properties (a) and (b) of U and 
general properties of ultrafilters. 

(Q1) i f p E M t h e n Q i ( p E i ) ;  
(Q2) if P c_ I x M and P C Def(V), then {p E M : Qi ((i,p) E P)}  E Def(V); i.e., the 

class Def(V) is closed under the action of Q; 
(Q3) if vi [u(i) --~ ~b(i)] then Qiu(/) --~Qi~b(i); 
(Q4) Q/u( / )  & Qi ~b( i )~Qi  [u(i) & ~(i)1; 
(Q5) Qi --,u(i) ~ -, Qi u(i); 
(Q6) if i is not a free variable of U then U *-~Qi ~,; 
(Q7) Vi u(i) ~ Q i  u(i) ~ ~i u(i). 
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3.4.  T h e  c o n s t r u c t i o n  of  a n o n s t a n d a r d  e n l a r g e m e n t .  Let r > 1. We put  

I r = I x I x - . .  x I (r times), 

M T = { f :  f maps I r into M, f E Def(V) }; 

and let I ~  {0}  a n d M  ~  {(O,p) : p E M } .  Finally, we d e f i n e * M =  [.J M r. F o r f E * M ,  we l e t  
r>O 

r( f )  denote  the  unique integer r for which f E M r. 
Further ,  if f E *M, q >_ r = r ( f ) ,  and i = ( i ] , . . . , i r , . . . , i q )  E Iq, then  we define f[i] = 

f ( i l , . . . , i r ) .  In particular,  f[i] = f ( i )  for r = q. We also define f[i] = p for f = (O,p) E M ~ 
We int roduce the binary relations *E and *= that  make *M into a E-s t ruc ture  as follows: If 

r = max{r ( f ) , r (g ) }  then 

f *E g if and only if Q4  Q4-1 . . .  Qi,  (f[i] E g[i]), 

f *= g if and only if QiT Qir-1 . . .  Qi l  (fill = g[i]), 

where, naturally,  i = i l , . . . ,  iT. 
If s E M then  we define *s = (0, s); *s E M ~ 
Finally, we define the predicate of standardness *st by setting *st f  in *M if and only if there is 

an s E M such tha t  f *= s. Thus,  all elements of M ~ are s tandard in *M and there are no other 
s tandard  elements in *M. 

Now, for any st-E-formula with parameters  in *M, we can determine whether  it is t rue or false 
in *M by respectively replacing the symbols =,  E, and st with the symbols *=, *E, and *st. 

For any formula ~ with parameters  in * i ,  we define r(O) = max{ r ( f ) :  f occurs in (I) }. In case 
r >_ r(r and i E I T, we let (I)[i] denote the formula obtained from (I) by replacing each parameter  f 
with f[i]. Thus,  (I)[i] is a formula with parameters in i .  

T h e o r e m  8 ( the Log theorem).  Let ~ be a closed E-formula with parameters in *M and suppose 
that r >_ r( ~ ). Then 

r is true in *M ~ Q i r . . .  Qi] (O[ i ] , . . . , i r ]  is true in M) .  

P r o o f .  For a tomic formulas, the claim follows immediately from the definition. Now we proceed 
by induct ion on the number  of logical connectives and, in making the induct ion steps, we can confine 
ourselves with considering only the symbols -~, L: , and 3. 

The  induct ion steps with & and ~ cause no difficulties: the required result ensues immediately  
from the propert ies (Q4)-(Q6) of the quantifier Q. 

The  inductive step 3. Assuming that  the assertion is valid for a formula (I)(f) for an arbitrary 
f E *M, we will prove it for the formula 3zO(z) .  Denote r = r((I)). 

From left to right. Suppose that  3x (I)(x) is true in *M; i.e., (I)(f) holds with a suitable f E *M. 
Let p -- max{r ,  r ( f )} .  To diminish bulkiness, we conventionally agree to denote  by i and j finite 
sequences of the forms 

( i l , . . . ,  it) E I r and ( i ] , . . . ,  i t , . . . ,  ip) E I p, 

respectively, and to th ink of the expressions Qi and Qj as the sequences 

Q i r . . . Q i l  and Qip . . .  Q i r . . .  Qil .  

By the induct ion hypothesis,  we have Qj (I)(f)~]. Besides, it is clear that  (I)(f)[j] --~ 3x (I)(x)~] for 
all j. Consequently,  q j  3x (I)(/)~]. However, we have r(3x O(x)) = r ~_ p; therefore, the formula 
3x r  coincides simply with 3x (I)(x)[i]. Thus, the superfluous quantifiers Q can be eliminated, 
on replacing the prefix Qj  by Qi. 

From right to left. Suppose that  Qi 3x (I)(x)[i] holds. The  set 

P = { (i,x} : i e Ir&x e M and (I)(x)[i] is true in M } 
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belongs to Def(V) by (Q2). For each i E I r, we denote by f( i)  the set p E M that is the least 
element (with respect to the canonical well ordering mentioned in Subsection 3.1 and given by the 
axiom of constructibility) among those satisfying (i, p) E P, in case such a set p exists; while f(i) = o,  
otherwise. Taking into account the definability in V of the indicated well ordering restricted to V, we 
conclude that f is definable in V; i.e., f E *M. However, by definition, 

Vi E F (3x~5(x)[i] ~ q~(f)[i]); 

whence Qi 3x (I)(x)[i] --+ Qi O(f)[i]. The left-hand side of the last implication coincides with the 
right-hand side of the equivalence of the theorem for the formula 3x (I)(x) and, consequently , the 
left-hand side is true by our assumption. Therefore, the right-hand side is true as well. Hence, by the 
induction hypothesis, we have (I)(f) in *M and, finally, 3x (I)(x) in *M. [] 

Corol lary .  Let ~ be a closed E-formula with parameters in M and let *~ 5e obtained from qo by 
replacing each parameter p E M with * p. Then 

holds in M if and only if *~ holds in *M. 

Proof l  It is clear, for *T[i] coincides with c 2. [] 

T h e o r e m  9. (*M, *=, *E, *st) is a model of IST. 

Proof .  The corollary to the Log theorem means nothing else than the validity of the transfer 
principle in *M. Hence all the axioms of ZFC are also valid in *M. The standardization principle 
in *M is guaranteed by the following property of the initial model: if y C_ x E M then y E M. So we 
are left with proving only the idealization principle. 

Thus, let c2(x , a) be a E-formula with parameters in *M and let r = r(~). We are to prove that 

VStfinA 3x Va E A ~(x ,a)  ~ 3x VSta ~(x ,a)  

holds in *M (the reverse implication in (t) needs no separate examining; for, it ensues easily from the 
standardization principle which implies that all the elements of any standard set are standard [1]). 

In accord with the Log theorem, the left-hand side of the implication can be rewritten in the form 

vfinA C_ M Qir . . .  Qil 3x Va E A (~o(x,a)[il , . . . , ir]).  

Recall that I consists of all the finite subsets of M; therefore, it is quite possible for us to replace 
the letter A with i, bearing in mind that i E I. Define a function A. : i r + l  __. M by setting 
f I ( i l , . . . ,  it,  i) = i. Then the left-hand side of (I) takes the form 

ViQir . . .  Qil (3x Va E A V(x ,a ) ) [ i l , . . . , i r ,  i]. 

Certainly, we can replace Vi with Qi. Again from the Log theorem it follows that 3x Va E .4 ~(x, a) E 
*M. 

Now, in view of the definition of standardness in *M, for the derivation of the right-hand side 
of (I), it suffices to check that *a E A is true in *M for an arbitrary a E M. By the Log theorem, this 
is tantamount to 

Qi Qir . . .  Qil (a E -4[i l , . . . ,  it, i]), 

i.e. Qi Qir . . .  Qil  (a E i) by the definition of A; and the last ensues immediately from property 
(Q1). [] 

3.5. V io l a t i on  of ( E l )  in *M. Returning to the cardinals x~ of Subsection 3.1, we see that, 
for each integer n, there is a certain E- formula (I)~(x) which defines the cardinal xn in the sense that 
the following assertion is true: ~,~ is the unique set for which (I)~(x) holds. This claim together with 
Lemma 6 will play the central role in our proving that (El) fails in *M. 
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We shall actually obtain the falsity of (El)  in two different forms: first, with the uniqueness 
requirement  on the left-hand side, i.e., in the form (El!), but  for a formula (I) which is more involved 
than  formulas of type  II~t; second, for a matr ix  formula of type II~ t exactly but  wi thout  uniqueness. 

Thus,  let r( . )  be the formula given by Theorem 4 of w Denote by (I)(n, ~) the formula 

T h e o r e m  10. The following example of (El!) fails in * M : 

VStn E 1~ ~!x r  x) ---+ 39 MStn E N r  

P r o o f .  Validate the left-hand side in *M: To this end, given a fixed integer n, prove that  
3!~q)(*n,x)  in *M. To verify existence for x,  we take x = *xn. Then  (I),(x) holds in M and, 
consequently, (I)n(*x) holds in *M by transfer. From the choice of the formula 7 and the definition 
of q) it ensues tha t  (I)(*n, *x) holds in *M, as required. To prove uniqueness, suppose that  (I)(*n, >2) 
is t rue in *M. Then  x ~ is a s tandard cardinal in *M; i.e., we can assume tha t  x ~ = *x  for some 
cardinal x E M.  Reversing the foregoing arguments,  we deduce that  x = zn.  

Invalidate the r ight-hand side: Suppose on the contrary that  k E *M is such that  (I'(*n, k(*n))  
holds in *M for any n. Pu t  r = r(&). By the Lo~ theorem, we have 

x = xn ~ Qi~ . . .  Qi] (*x = k (*n) ) [ i l , . . . , i r ]  

in V for any n and x. However, ) E Def(V), the map  s ~ *s belongs to Def(V),  and Def (V) i s  closed 
under  the action of the quantifier Q by the property (Q2) of Q. Hence, the sequence (xn : n E N} 
belongs to Def(V),  which contradicts Lemma 6. [] 

To construct  the second example of refutation for (El) ,  we use a slightly different matr ix  formula; 
namely, 

~ ( n , T )  =def n C ~I & st n ~; Sat(T) & ~st~ (rdpn(~)-7 E T). 

T h e o r e m  11. The following example of (El)  fails in *M: 

VStn E N 3T  c2(n,T ) -~ 3fF VStn E N ~(n ,T (n ) ) .  

P r o o f .  Validate the left-hand side: Given a natural  n, the set T fitting the left-hand side appears 
by applying (in the framework of *M) Claim 1 of the proof of Lemma 5 to the formula (I)n(*~n). 

Invalidate the r ight-hand side: Were there an element 2r E *M possessing the indicated property, 
we would again obtain the definability in V of the sequence of cardinals xn; for, we have 

= xn ~ Qir . . .  Qi l  (r(I)n(*x)n E 2~(*n))[ i] , . . . , i r ]  

for any n and g (on applying further the property (Q2) of the quantifier Q, which yields a contradiction 
to Lemma  6). [] 

Now, a few words about  complexity of the matr ix formulas ~ and qo used in our counterexamples.  
Simple analysis shows that  the formula Sat of w is of type  H~ t (to be more precise, it is expressible as 
a formula of type  II~ t with the help of elementary transformations).  It follows that  c 2 is also a formula 
of type II~ t (in the  same sense). Furthermore,  the t ru th  formula r of w is constructed from Sat in 
such a way tha t  it can be rewrit ten in either of the following two forms: 3 T  a(T,  .) and VT ~r(T, .), 
where ~r and 7r are formulas of types II~ t and E~ t, respectively. It is convenient to denote these two 
types of formulas by 3H~ t and VE~ t. Thus, the formula (I) of Subsection 3.5 can be t ransformed to 
either of the two forms: 3II~ t and VE~ t. 

A natura l  question arises whether  it is possible to refute (El!) (i.e., with uniqueness on the left- 
hand side) for a formula (I) of type H~ t. The  answer is negative as least for the formulas (I) having 
only s tandard  parameters .  The  author  succeeded in proving (El!) in IST for all formulas (I), with 
only s tandard  parameters ,  of the form QX, where X is an internal formula and Q is a quantifier prefix 
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containing only external quantifiers (in the sense indicated in the Introduction)i Theorem 11 also 
cannot be improved in the case of standard parameters; for, it happens that (El) holds in IST for all 
matrix E~ t formulas with standard parameters. 

3.6. V io l a t i on  of (E) in *M. The refutation of (E) will be also given in two variants: first, 
assuming uniqueness on the left-hand side; second, in the general case. We will make use of a finite 
set H such that S C_ H (i.e., H contains all the standard sets; the existence of such a set H was proved 
in [1]). Let u denote the number of elements in H, let K = { 1, 2, . . . ,  u }, and let h be a bijection 
of K onto H. Consider the formula 

tI/(n,]~) = clef /cC ]s ~; O(tt, h(~:)) ~ sth(k),  

where ~ is the formula of Theorem 10, and let X = Y = N. 

T h e o r e m  12. The following example of (E!) fails in *M : 

Proof .  Assume on the contrary that this implication holds in *M. The left-hand side of (E!) is 
true in *M (give n n fixed, take k = h- l (~n)) .  Therefore, the right-hand side must be also true; i.e., 
we have a function ~:: N ---, K such that h(~(n)) is standard and satisfies O(n, h(~:(n))) for all n E N. 
It sumces to put s = h([~(n)) for all n E N. The function ~ ensures the right-hand side of (El!) 
for the formula O of Subsection 3.5, which contradicts Theorem 10. [] 

It is easily seen that the formula ~, together with ~, can be related to any of the classes 3II~ t 
and gE~ t. 

To refute (E) (without uniqueness on the left-hand side) in *M for a matrix formula of type II~ t, 
we consider the formula 

r  =deft  C_ 1s ~ ~(n,h"t) (where hnt = {h(/~): k E t}),  

and the sets X = N and Y = -]:)fin ( l~) .  

T h e o r e m  13. The following example of (E) fails in *M : 

Proof .  Reduce the claim to Theorem 11. [] 
It is clear that in the proposed method of refuting (E) in the model *M we cannot hope to 

eliminate the parameters u, K, and h (those are nonstandard; moreover, h is not even an element 
of a standard set). It is likely that a proof of independence for (E) needs another construction for a 
matrix formula and, perhaps, another construction of the model itself. 
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