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ABSOLUTENESS OF THE SOLOVAY SET X
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Abstract: We prove that the Solovay set X is absolutely definable in a sufficiently wide sense; in par-
ticular, 3 does not depend on the choice of the ground model.
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1. Introduction

The main result of Solovay’s classical article [1] consists in constructing a model as given in its title
and a second model in which only definable sets are measurable but the axiom of choice holds in contrast
to the first model where it fails. The key role in the construction of these models was played by the
“Important Lemma” of [1, Section 4.4], by which each generic extension of the ground model is a generic
extension of any intermediate model.

More exactly, if P = <]P’;<>1) is a forcing in a set-theoretic universe V, while t € V is a simple P-name
(i.e., t CP x V), G C P is P-generic over V, and X = ¢[G] is the corresponding valuation,? then there
is ¥ = YY(X) C P for which V[¥] = V[X], G C %, and G is S-generic over V[X]. Thus, V[G] is
a X-generic extension of the intermediate model V[X] C V[G].

The structure of intermediate models was considered later in [2-6] and elsewhere as well as in [7],
where it was established that, under the above conditions, ¥ = XY, (X) is generic over V in the sense of
the forcing P; = (P; <;) with the same domain P and order relation <; = SH\{;, which C-extends the given
order <. Thus, the intermediate model V[X| = V[X] becomes a generic extension of a given universe V.

The investigations of recent years [8,9] showed that, while dealing with complex iterated generic
extensions, the important role is played by the absoluteness of the definition of ZI},’t(X ) € P and the
order SHYt in the sense of independence of V. (Dependence on P, ¢, and X is obvious and unremovable.)
This independence was established in [9] ad hoc in one particular case. Here we prove the general result:

Theorem 1. Suppose that P = (P; <) € V is a forcing in a universe V, while t € V is a P-name,
G C PP is P-generic over V, and X = t[G] C V. Assume in addition that V is a generic extension of the

class L[P,t] C V. Then %Y, (X) = Egp’t] (X) and the relation <Y, is identical to ggp’t].

This theorem finds applications in the study of the intermediate models of extensions generic in the
sense of the Solovay “random” forcing (see [10]), which is one of the most applicable forcings in modern
set theory®) and which can find applications to models of other generic extensions such, for example, as
the generic extensions considered in [13, 14].

2. The Solovay Set ¥ and the Relation <;
The definition of ¥ = XY¥,(X) in the sense of [1] is as follows:
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Dp < ¢ means that the forcing condition ¢ is stronger than p.

DHG) = {x: Ip € G ((p,z) € t)} € V[G] is a G-valuation for t; t{G] C V.

3)See, for example, our article [11] on some applications of the Solovay “random” forcing. Avoiding further
references, we just mention the unpublished study by E. I. Gordon [12] where random forcing is used for proving
several theorems about extensions of Haar measures.
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DEFINITION 2 (under the conditions of Theorem 1). Put ¥ = EH\DQ(X) =gef P U§<19 Ag¢, where the
ordinal ¥ is defined in construction and the set sequence A¢ = Ag’ C PP is defined in V[X] by induction:

(1) Ap consists of all “conditions” p € P forcing # € t for some z € V. X or i ¢ t for some z € X.%

(2) Agyq consists of all “conditions” p € P for which there exists a dense set D € V in P satisfying
the following: if ¢ € D and p < ¢ then q € Ag.

(3) Ax = U<y A¢ for limit ordinals A.

Thus, each “condition” p € Ag directly contradicts the assumption that ¢ is a name for X, by (1),
and this contradiction is preserved by items (2) and (3) of the inductive definition for larger and larger
indices ¢, respectively, in a more and more indirect form. This C-increasing set sequence A¢ C IP stabilizes
at some limit ordinal ¥ € V, and we have the sets A = J;_y A¢ and ¥ =P\ A.

The relation <; = §H§’;, which is the second subject of our interest, is introduced as follows:

DEFINITION 3 ([7], under the conditions of Theorem 1). If p,q € P then p <; ¢ is defined when the
“condition” ¢ P-forces over V that p € E%’f(f[Q]).

In other words, for p SE‘,Q g, it is necessary and sufficient that p € EE‘,Q(X ) holds every time when
G C P is generic over V, with X =¢[G], and ¢ € G.

The following two results express the key properties of ZI}Q(X ) and the relations g%’,t in the context
of forcing. They are not used in the proof of Theorem 1 and are given just for completeness of exposition.

Proposition 4 (see [1, 4.4] or [15, 13.3.2]). In the notations of Definition 2, the set ¥ = LY,(X)
satisfies the conditions:
(i) X is closed downwards in IP; i.e., if ¢ € ¥, p € P, and p < q then p € ¥;
(i) VIZ] = VIX];
(ili) G C ¥ and G is X-generic over V[X]; therefore, V|G| is a ¥-generic extension of the model
VIX] = V[3;
(iv) if G’ C ¥ is ¥-generic over V[X] then G’ is P-generic over V too and t{G'] = X. O

Proposition 5 (see [7]). (i) <}, is a partial order on P. It belongs to V and extends the given order
< = <p, i.e., < C <Y, (or, equivalently, p < g that implies p <}, q).

(ii) If G C P is generic over V and X = t[G] then ¥ = ©Y¥,(X) is generic over V in the sense of the
forcing <P; §I};>. O

3. Absoluteness of 3 and <;

PROOF OF THEOREM 1. PART 1. Let us prove that oY, (X) = E;{}P’ﬂ (X). By hypothesis, there exist

a forcing @Q = (Q;<q) € L[P,t] and H C @ Q-generic over L[P, t] satisfying V = L[P, t][H|. Recall that
by hypothesis G is P-generic over V; which, by the theorem on the product of forcings, implies that H
is Q-generic over L[P, t][G] too.
Returning to Definition 2, prove by induction that Ag’ =
It suffices to consider the induction step £ — £ + 1 in item (2) of Definition 2. Thus, suppose that

Agf = A?[P’t] = A¢, and it is required that AZH = A?E’t]. Since L[P,t] C V, we have A?ﬁ’ﬂ - Agﬂ_l.

For deducing the reverse inclusion assume that py € A2/+1 by means of a dense set D € V, D C P, as

in Definition 2(2). It is required to deduce pg € A?ﬁ’t].

We have D = 7[H], where 7 € L|P, ], 7 C @ x P (a suitable simple @-name for P). Assume without
loss of generality that

L[P,{]
A§ .

(e eTnd €eQng<qd)=(d,p) e (+)
DIf £ € V then # = P X z is a canonical name for z.
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There is a “condition” ¢y € H @Q-forcing
P[H] is dense A Vp € 7[H](po < p = p € A7) ()
over L[P, t[X], where A;” = @ x Ag is as usual a canonical Q-name for the set A¢ € L[P, ¢][X]. Consider
the sets
Di={peP:py<pAIgeQ(q <qgqA (gp)€T)}

and Dy = {p € P : py, p are incompatible in P}.%) Tt is clear that these sets belong to L[P, ] as well as
their union D' = D} U Dj}.

We assert that D’ is dense in P. Indeed, let p € P. If p is incompatible with py then at once p € D'.
If p is compatible with py then we may assume that pg < p. Since qo forces (}), there is a “condition”
q € H such that gy <¢g g and also some p’ € P for which p < p’ and ¢ forces p’ € 7[H]. Then (¢,p’) € 7
by (%) and p’ € D’, which was required.

We state also that if p € D' and pg < p then p € A¢. Indeed, p € Dj; therefore, p € D} by means
of some “condition” ¢ € @, and so go <g ¢q and (g, p) € 7. Then ¢ forces p € 7[H]; consequently, since g
also forces (f), we conclude that p € A¢, which was required.

By what was proved, the set D’ guarantees that pg € A?E’ﬂ, which finishes the induction step.

PART 2. Let us prove that §I}; is identical to g};t[P’ﬂ. Take p,q € P. We have to prove that the two
relations are equivalent:
(A) if G C P is P-generic over V, X = t[G], and g € G, then p € I¥,(X);

L[P.t]

(B) if G C P is P-generic over L[P,t], X = t[G], and ¢ € G, then p € Xp, ™ (X).

Here (A) = (B) follows from the already proven equality 2y, (X) = E;}P’ﬂ (X) because every set
generic over V is generic over the less model L[P,¢] C V.

For proving the reverse implication (B) = (A), suppose that (A) fails. This is forced by some
“condition” r € G, r > ¢, i.e., we have the following:

(C) if G C PP is generic over V, X =¢t[G], and r € G, then p & ZY,(X).
Verify that then (B) fails either. To this end, consider an arbitrary set G C P that is P-generic

over V and contains r. Let X = t[G]. Then p ¢ E¥,(X) by (C); therefore, p & Eﬁ,fgp’t] (X) by the above.
But ¢ also belongs to G since ¢ < p. Hence, (B) fails, which was required.

4. Questions

Question 6. The premise of Theorem 1 that the given universe V is a generic extension of its
subclass L[P, t] is a necessary element of our proof in the part connected with D’. Does Theorem 1 hold
without this premise about the genericity of V?

Question 7. It would be interesting to obtain an analog of our absoluteness theorem in terms
of the Boolean-algebraic version of forcing. Observe the following in this connection: The step from
an intermediate model V[X]| to a general extension V|G| is well studied in principle in the Boolean-
algebraic version and amounts to replacing the Solovay set ¥ by a subalgebra of the complete Boolean
algebra in which the forcing P embeds canonically (see, for example, [16, Lemma 69]). At the same
time, the step from the ground model V to an intermediate extension V[X] is not studied enough in this
regard, especially, in the context of our result in [7] on the genericity of ¥ in the sense of the changed
order <;. It is also important that complete Boolean algebras are not absolute themselves in passing
from one model to another, like, for example, the set R of the reals is not absolute in adding a new
real to the ground model. It is still unclear to us how surmountable these difficulties are on the way
to a Boolean-algebraic form of our Theorem 1.

The authors are indebted to the anonymous referee for the valuable remarks that made it possible
to expand and improve the exposition, in particular, to add Question 7.

5)Incompatibility means that there is no p’ € P for which py < p’ and p < p'.
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