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Abstract

We prove that any Borel Abelian ordered groupB, having a countable subgroupG as the largest
convex subgroup, and such that the quotientB/G is order isomorphic toR, the reals, is Borel group-
order isomorphic to the productR×G, ordered lexicographically. As a main ingredient of this proof,
we show, answering a question of D. Marker, that all Borel cocyclesR2→ Z are Borel coboundaries.
A Borel classification theorem for Borel orderedCCCgroups is proved. 2001 Elsevier Science B.V.
All rights reserved.
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Introduction

A Borel Abeliangroup (or: BA group) is any Abelian groupG= 〈G;+〉 such thatG is
a Borel subset of a Polish (complete metric separable) spaceX while the group operation
is a Borel function fromX 2 to X (or equivalently: the set{〈x, y, z〉: x + y = z} is a Borel
subset ofX 3). A BA ordered(BAO) group is any BA groupG = 〈G;+,<〉, endowed
with a Borel linear order< onG, compatible with the group operation, so thatx < x ′ and
y < y ′ impliesx + y < x ′ + y ′.

The notions ofgroup isomorphism(G-isomorphism),order isomorphism(O-isomor-
phism), andgroup order isomorphism(GO-isomorphism) have obvious meaning. We shall
be interested in the case when the isomorphisms are Borel maps (i.e., those with Borel
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graphs). The phrases like: “groupsG andG′ areG-isomorphic”, or “BorelG-isomorphic”,
or “Borel GO-isomorphic” are understood naturally.

We give [8] as a broad reference in matters of ordered groups.
Clearly G-isomorphic BA groups are not necessarily BorelG-isomorphic. For instance

the additive groups ofR 1 andC areG-isomorphic (as divisible torsion-free groups of the
same cardinality) but not BorelG-isomorphic. An example given by Hjorth shows that even
GO-isomorphic BAO groups are not necessarily BorelGO-isomorphic (see below). Thus
the “Borel” classification of BAO groups should be quite different from the ordinary one.
However, some particular cases still admit reasoning which leads to Borel isomorphisms.

Theorem 1. Suppose thatA is a BAO group,GO-isomorphic to a group of the formR×Z,
whereR is a Borel divisible subgroup ofR. ThenA is BorelGO-isomorphic toR ×Z. 2

The proof (Section 1) is rather easy: in this case, any isomorphism is Borel because every
Z-interval inA contains a unique element divisible by each naturaln. It is an interesting
question whether one can replace the condition thatA is GO-isomorphic toR × Z by a
weaker requirement thatA is order-isomorphic toR × Z as an ordered set. An example
(Section 6), based on a nonstandard model of arithmetic, shows that this can be false for
instance in the caseR =Q (the rationals). On the other hand, the caseR = R admits the
following theorem, which is essentially the main result of this paper:

Theorem 2. LetB be a BAO group having a countable subgroupG as the largest proper
convex subgroup. Suppose thatB/G is O-isomorphic toR. ThenB is BorelGO-isomorphic
toR×G ordered lexicographically.

The proof of this theorem (Sections 2–5) is not so elementary. We prove, using methods
of descriptive set theory, that there is a Borel subgroupB ′ ⊆ B which has exactly one
element in common with everyG-coset inB: this quickly leads to Theorem 2. (The
first step is to find a Borel setX ⊆ B, not necessarily a subgroup, having exactly one
element in common with everyG-coset inB, which is already a nontrivial fact, based on a
classification theorem for Borel equivalence relations, proved in [1].) To prove this selector
theorem, we show that all Borel cocycles inR×G are Borel coboundaries: this answers a
question of Marker [7].

It would be interesting to figure out whetherR can be replaced in Theorems 1 and 2
by another BAO group. Another possible direction of generalization of Theorem 2 is to
consider uncountable Borel subgroupsG, but this is bounded by a counterexample by
Hjorth, see Section 6.

The case of BorelCCC groups (i.e., those which do not admit uncountable sets of
pairwise disjoint open intervals3) admits a more comprehensive Borel classification,

1 In this paper,R always means: the additive group of the reals.
2 In this paper, all products of ordered groups are assumed to be ordered lexicographically. Subgroups ofR are
assumed to be ordered by the usual order of the reals.
3 For Borel linear orders,CCC is equivalent to separability, see, e.g., Corollary 4.5 in [2].
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mainly because for any such a groupA and a convex subgroupC ⊆A, the quotientA/C is
countable. The next theorem (proved in Section 7) shows that BAO divisibleCCC groups
can be characterized in terms of certain countable products of Borel subgroups ofR. We
have to give a few definitions.

For any ordered Abelian groupC, CQ:WO will be the set of all mapsw ∈ CQ such that
the non-zero domain|w| = {q ∈ Q: w(q) 6= 0} is well-ordered as a subset ofQ. Then
CQ:WO is an Abelian ordered group, with componentwise addition and lexicographical
order. In this case, a subgroupW ⊆ CQ:WO will be calledlocal-productif for anyw ∈W
andq0 ∈Q, the functionw′ ∈ CQ:WO, defined byw′(q0)=w(q0) whilew′(q)= 0 for any
q 6= q0, belongs toW . 4

Theorem 3. Assume thatA= 〈A;+,<〉 is a BAO divisibleCCC group. ThenA is Borel
GO-isomorphic to one of the following:

(i) a Borel local-product subgroupW of CQ:WO, whereC is a countable divisible
subgroup ofR, satisfying the following property: for any q ∈ ⋃w∈W |w|, the
“projection” {w � (−∞, q]: w ∈W } is at most countable;

(ii) a lexicographical product of the formW × B, whereB is an uncountable Borel
divisible subgroup ofR, 5 whileW is a countable local-product divisible subgroup
ofCQ:WO, C being a countable divisible subgroup ofR.

Note that any group of type (i) or (ii) is clearly aCCCgroup. In addition, types (i) and (ii)
are disjoint: indeed, any group of type (ii) contains an uncountable Archimedean convex
subgroup{0}×B, which is impossible for those of type (i). Examples for (ii) are trivial. As
for (i), consider the subgroupW ⊆QZ, which consists of thoseZ-sequencesw = {qz}z∈Z
satisfying the property that the set|w| = {z: qz 6= 0} ⊆ Z has only finitely many elements
below anyz0 ∈ Z.

1. Proof of Theorem 1

Thus letA= 〈A;+,<〉 be a BAO group,GO-isomorphic toG× Z, whereG is a Borel
divisible subgroup ofR, via aGO-isomorphismF . Prove thatA is BorelGO-isomorphic to
G×Z. We actually prove thatF itself must be a Borel map.

For x, y ∈ A, let x ≈ y mean thatx − y ∈ Z. Then≈ is a Borel equivalence relation.
Note that the setS = {F(r,0): r ∈ G} ⊆ A has exactly one point in common with each
≈-class. Thus, it suffices to check thatS is a Borel set.

To see this note that the elementsx ∈ S are only those (among allx ∈ A) which are
divisible inA by any naturaln. This yields a Borel definition forS. 2
4 Then, given a finite setq1 < q2 < · · · < qk of rationals,w ∈W , and anyci ∈W(qi )= {w(qi): w ∈W }, the
function w′, which differs fromw only in its valuesw′(qi) = ci , i = 1, . . . , k, belongs toW . Yet W is not
necessarily a product of the form

∏
q∈QWq .

5 That is, a subgroup of the additive group ofR.
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It would be interesting to figure out which conditions in this simple theorem are really
necessary, in particular, the requirement thatG is divisible.

On the other hand, the requirement, thatA is GO-isomorphic toG×Z, apparently cannot
be weakened to the following:A is O-isomorphic toG× Z as an ordered set, even in the
caseG=Q, see Section 6.

2. Borel selector theorem and the proof of Theorem 2

Our proof of Theorem 2 is based on the following theorem (the “Borel selector theorem”
of the title).

Theorem 4. Let B andG be as in Theorem2. Then there is a Borel subgroupB ′ ⊆ B
which has exactly one element in common with eachG-coset inB.

(A G-cosetis any set of the formb +G, whereb ∈ B.) Let us show how this implies
Theorem 2. We apply the following simple lemma.

Lemma 5. Any archimedean BAO groupB ′, order isomorphic toR, is BorelGO-isomor-
phic to〈R;+〉 (i.e., the additive group ofR).

Proof. Prove first thatB ′ is divisible. Indeed, suppose thatn > 2 anda ∈ B ′ is, say,B ′-
positive but there is nox ∈ B ′ such thatnx = a in B ′. Then the setsX = {x ∈ B ′: nx < a}
andY = {y ∈ B ′: ny > a} form a partition ofB ′ such that everyx ∈ X is < than any
y ∈ Y . SinceB ′ is order isomorphic toR, eitherX has a maximal element orY has a
minimal element. Consider the first case and letx be the largest element ofX. (Clearly
x is B-positive.) Thennx < a < ny for any y > x in B ′. It follows that the difference
d = a − nx > 0 in B ′ satisfies the requirement thatnz > d for any positivez ∈ B ′.
Now, using again the fact thatB ′ is order isomorphic toR, we presentd in the form
d = d1 + · · · + dn, where eachdi ∈ B ′ is (strictly) B-positive. To get a contradiction, it
remains to take, asz, theB-least amongd1, . . . , dn.

Now fix any B-positive elemente ∈ B ′. Thenqe ∈ B ′ is well-defined inB ′ for any
rationalq . Furthermore the setE = {qe: q ∈ Q} is cofinal and coinitial inB ′ since the
subgroup is Archimedean.

Prove thatE is dense inB ′ (in the order sense). Indeed otherwise there are elements
0< a < b in B ′ such that the interval[a, b] does not intersectE. Then the difference
d = b − a satisfiesqe > d in B ′ for any rationalq > 0. It follows thatmq < e in B ′ for
any naturalm, a contradiction sinceB ′ is Archimedean.

Now defineH(q) = qe for any rationalq . If x ∈ R is irrational then letH(x) be the
only element ofB ′ such thatH(x) > qe wheneverq < x is rational andH(x) < qe

wheneverq > x is rational. It follows from the above thatH is a BorelGO-isomorphism

R onto−→B ′. 2
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The subgroupB ′, given by Theorem 4, is a BAO group ordered similarly toR. Moreover
B ′ is archimedean sinceB hasZ as the largest convex subgroup. It remains to apply
Lemma 5. 2

3. Preliminaries for Theorem 4: reduction to cocycles

LetB = 〈B;+B〉 andG⊆ B be as in Theorems 2 and 4.

Lemma 6. There is a Borel setX ⊆ B which has exactly one common element with each
G-coset inB.

Proof. Consider a Borel equivalence relation:a E b iff a − b ∈G, onB. It follows from
the Glimm–Effros dichotomy theorem of Harrington, Kechris, and Louveau [1], thatE
satisfies one (and only one) of the two following requirements:

(i) E is smooth, i.e., there is a Borel mapF :B → R such that we havea E b ⇔
F(a)= F(b) for all a, b ∈ B.

(ii) The Vitali equivalence relationE0 on 2N 6 is Borel reducible toE, so that there is a
Borel mapF : 2N→ B such thatx E0 y⇔ F(x) E F(y).

Note that (ii) would imply that there is a Borel linear ordering of the set of allE0-classes
(induced by the order ofB), which is known to be impossible.7 Thus we have (i). Now, as
theE-equivalence classes (i.e.,G-cosets) are countable, the lemma follows from a classical
theorem of descriptive set theory.8 2

Let us fix such a Borel setX. For a, b ∈ X, let a ∗ b be the only element ofX which
belongs to the sameG-coset inB asa+B b. Then clearly〈X; ∗〉 is a BAO group (perhaps
not a subgroup ofB), order isomorphic toB/G, hence, toR. It follows that〈X; ∗〉 is Borel

GO-isomorphic to〈R;+〉 by Lemma 5. Leti :R onto−→X be a Borel isomorphism.
From now on let+ and− denote the real number addition and subtraction. Forx, y ∈R,

let f (x, y)= i(x)+B i(y)−B i(x + y). Thusf (x, y) ∈B and, moreover, it follows from
the choice ofi andX that in factf (x, y) ∈G becausei(x)+B i(y) andi(x + y) belong
to the sameG-coset ofB. We also havef (x, y)= f (y, x) and

f (x, y)+B f (x + y, z)= f (x, y + z)+B f (y, z) for all x, y, z ∈R. (1)

Thusf is acocycleR2→G.
Given a maph :R→G, the functionfh(x, y)= h(x)+B h(y)−B h(x + y) is clearly

a cocycle (i.e., it satisfies (1) andfh(x, y)= fh(y, x)). Cocycles of the formfh are called
coboundaries.

6 For x, y ∈ 2N, x E0 y means that the set{n: x(n) 6= y(n)} is finite.
7 This fact was first observed perhaps by Sierpiński [9]. We refer the reader to Kanovei [3] for a simple proof.
8 This theorem says the following. LetP be a Borel subset of the productX × Y of complete separable metric
spacesX,Y . Suppose that for anyx ∈X there is at most countably manyy ∈ Y such that〈x,y〉 ∈ P . ThenP can
be presented as a union of the formP =⋃n Pn, where eachPn is a Borel set such that anyx ∈X there is at most
oney ∈ Y satisfying〈x,y〉 ∈ Pn. See Kechris [6]. We apply it to the setP = {〈x,y〉: y ∈ B andx = F(y)}.
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This vocabulary allows us to add some generality to our considerations.

Theorem 7. Suppose thatG is a countable Abelian group. Letf :R2→ G be a Borel
cocycle.(That is, it satisfies 1 for+G andf (x, y) = f (y, x).) Thenf = fh for a Borel
maph :R→G.

Thus Borel cocycles are Borel-generated coboundaries. The question answered by this
theorem forG= Z (the integers) was suggested to us by Marker [7].

To show that this implies Theorem 4, leth :R→G be a Borel map given by Theorem 7:
so that we have

i(x)+B i(y)−B i(x + y)= h(x)+B h(y)−B h(x + y) for all x, y ∈R. (2)

DefineH(x)= i(x)−B h(x), for x ∈R. It is clear thatB ′ = {H(x): x ∈R} is still a Borel
subset ofB having exactly one common element with eachG-coset. Moreover,B ′ is a
group becauseH(x)+B H(y)=H(x + y) by (2). 2

4. Main lemmas for the proof of Theorem 7

Fix G = 〈G;+G,0G〉 and f as in Theorem 7. Letz ∈ R effectively code the Borel
mapf . Fix a countable transitive setM, which containsz andG and models a large finite
fragmentΦ of ZFC.9

Let COH be the Cohen forcing, viewed as the set of all non-empty rational open intervals
(a, b) in R. (Smaller intervals are stronger conditions.) Fix a pair of rational intervalsI and
J ofR such thatI contains only positive reals and is shorter thanJ , andI×J COH2-forces,
overM, thatf (ȧ, ḃ)= ĝ, for a fixedĝ ∈G, whereȧ andḃ are the names for generic reals
in the sense ofCOH2. 10

We need some additional notation. Definef (x, y, z)= f (x, y)+G f (x + y, z): this is
invariant under any permutation within{x, y, z} by (1). Define

f (x1, . . . , xn, xn+1)= f (x1, . . . , xn)+G f (x1+ · · · + xn, xn+1), (3)

by induction, so thatf (x1, . . . , xn) is invariant under any permutation within the set
{x1, . . . , xn}. The meaning of this extended version off is quite transparent:

f (x1, . . . , xn)= i(x1)+B · · · +B i(xn)−B i(x1+ · · · + xn),
assumingf is defined byf (x, y) = i(x)+B i(y)−B i(x + y), as in Section 3. Let, in
addition,f (z1)= 0G for any singlez1, for “arity” 1. It easily follows that

f (x1, . . . , xn, y1, . . . , yk)

= f (x1, . . . , xn)+G f (y1, . . . , yk)+G f (x1+ · · · + xn, y1+ · · · + yk). (4)

9 LetΦ contain first one million of the ZFC axioms and the schemata forΣ100 formulas.
10The use of forcing notation is mainly a figure of speech here. The given description ofI, J has the following
meaning. If a pair〈a,b〉 ∈ I × J does not belong to any closed nowhere dense subset ofI × J , having a code in
M, thenf (a, b)= ĝ.
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(Let, for brevity,x denote the stringx1, . . . , xn ands = x1+ · · · + xn. Argue by induction
onk. Fork = 1 apply (3). To carry out the step suppose that

f (x, y1, . . . , yk−1)= f (x)+G f (y1, . . . , yk−1)+G f (s, y1+ · · · + yk−1).

Addingf (s + y1+ · · · + yk−1, yk), we getf (x, y1, . . . , yk) on the left, and

f (x)+G f (y1, . . . , yk−1)+G f (yk, y1+ · · · + yk−1)+G f (s, y1+ · · · + yk)
on the right by (1), which equals the right-hand side of (4) by (1).)

Lemma 8. Letx1, . . . , xn, y1, . . . , yn ∈ I beCOH-generic11 reals overM, such thatx1+
· · · + xn = y1+ · · · + yn. Thenf (x1, . . . , xn)= f (y1, . . . , yn).

Proof. Argue by induction onn. We start withn= 2. Letx, y, x ′, y ′ ∈ I be COH-generic
overM, andx + y = x ′ + y ′; prove thatf (x, y)= f (x ′, y ′).

Let us suppose thatx < x ′ < y ′ < y. As I is shorter, there is a realα ∈ J , COH-ge-
neric overM[x, x ′, y, y ′], 12 such thatα′ = α + (x ′ − x) ∈ J . Note that each of the pairs
〈x,α′〉, 〈y,α〉, 〈x ′, α〉, 〈y ′, α′〉, is COH2-generic overM. Therefore

f (x, y,α,α′)= f (x,α′)+G f (y,α)+G f (x + α′, y + α)= 2ĝ+G f (γ, γ ′),
f (x ′, y ′, α,α′)= f (x ′, α)+G f (y ′, α′)+G f (x ′ + α,y ′ + α′)= 2ĝ+G f (γ, γ ′)

by (4), whereγ = x + α′ = x ′ + α andγ ′ = y + α = y ′ + α′, so thatf (x, y,α,α′) =
f (x ′, y ′, α,α′). However, on the other hand, we have

f (x, y,α,α′)= f (x, y)+G f (α,α′)+G f (x + y,α+ α′), and

f (x ′, y ′, α,α′)= f (x ′, y ′)+G f (α,α′)+G f (x ′ + y ′, α + α′),
so thatf (x, y)= f (x ′, y ′) becausex + y = x ′ + y ′.

We carry out the step. Assume thatx1 + · · · + xn + xn+1 = y1 + · · · + yn + yn+1.
Consider first the case whenxn+1 = yn+1. Thenx1 + · · · + xn = y1 + · · · + yn, hence
f (x1, . . . , xn)= f (y1, . . . , yn) by the assumption. On the other hand, by definition,

f (x1, . . . , xn, xn+1)= f (x1, . . . , xn)+G f (x1+ · · · + xn, xn+1),

and the same forf (y1, . . . , yn, yn+1), as required.
Consider the general case. Assume thatx1 andy1 are the smallest whilexn+1 andyn+1

the largest among respectivelyxi , yi . Let, for instance,x1< y1. Let ε > 0 be a real,COH-

11A real is COH-generic overM if it does not belong to any closed nowhere dense set of reals having a code in
M. To define this in a more classical way would mean to specify a complicated list of countably many relevant
nowhere dense closed sets.
12M[x1, . . . , xn] will denote a countable transitive model of the fragment of ZFC introduced in footnote 11,
containing the realsx1, . . . , xn and all sets inM. We do not bother here thatM[x1, . . . , xn] is not uniquely
defined and may contain more ordinals thanM does. Note that if a realx is COH-generic overM[x1, . . . , xn]
then each pair〈x,xi 〉 is COH2-generic overM. It is not so clear how to carry out this argument classically in
forcing-free terms.
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generic overM[x1, y1, . . . , xn+1, yn+1], satisfyingε < y1−x1, and such thatyn+1+ δ still
belongs toI , whereδ = y1− x1− ε. Definex ′i andy ′i so that

x ′1= x1+ ε, x ′n+1= xn+1− ε, y ′1= y1− δ, y ′n+1= yn+1+ δ,
(these reals areCOH-generic overM by the choice ofε), while x ′k = xk andy ′k = yk for
26 k 6 n. Thus,x2= x ′2 andy ′2= y2, so, by the particular case,

f (x1, . . . , xn+1)= f (x ′1, . . . , x ′n+1) and f (y1, . . . , yn+1)= f (y ′1, . . . , y ′n+1).

Similarly, f (y ′1, . . . , y ′n+1)= f (x ′1, . . . , x ′n+1), becausey ′1= x ′1 by definition. 2
Lemma 9. Assume that16 k < n, 16 k′ < n′, and realsx1, . . . , xn, y1, . . . , yk ∈ I and
x ′1, . . . , x ′n′ , y

′
1, . . . , y

′
k′ ∈ I are COH-generic overM. Suppose further that

x1+ · · · + xn = y1+ · · · + yk = s and x ′1+ · · · + x ′n′ = y ′1+ · · · + y ′k′ = s′.
Then(n′ − k′)[f (x1, . . . , xn) −G f (y1, . . . , yk)] = (n − k)[f (x ′1, . . . , x ′n′) −G f (y ′1, . . . ,
y ′
k′)].

(If g ∈G andm ∈ ω thenmg denotes theG-sum ofm copies ofg.)

Proof. If z is a string of reals (perhaps, containing only one term) thenz[m] will
denote the concatenation ofm-many copies ofz. Let x denote the stringx1, . . . , xn. Let
x′,y,y ′ have analogous meaning. Note thatf (x[n′−k′],y ′[n−k]) = f (x′[n−k],y[n′−k′]) by
Lemma 8. (The strings to whichf is applied havenn′ − kk′ terms and the sum equal to
(n′ − k′)s + (n− k)s′ each.) It follows from (4) that the left-hand side and the right-hand
side of the last equality are equal respectively to

f
(
x[n′−k′]

)+G f (y ′[n−k])+G f ((n′ − k′)s, (n− k)s′);
f
(
x ′[n−k]

)+G f (y[n′−k′])+G f ((n− k)s′, (n′ − k′)s);
so that

f
(
x[n′−k′]

)+G f (y ′[n−k])= f (x′[n−k])+G f (y[n′−k′]). (∗)
It follows from (4), by induction onm, thatf (x[m])=mf (x)+G f (s[m]) andf (y[m])=
mf (y)+G f (s[m]) for anym; hence

f
(
x[n′−k′]

)−G f (y[n′−k′])= (n′ − k′)(f (x)−G f (y)).
Similarly,f (x ′[n−k])−G f (y′[n−k])= (n−k)(f (x′)−Gf (y′)). We conclude, by(∗), that
(n′ − k′)(f (x)−G f (y))= (n− k)(f (x′)−G f (y ′)), as required. 2

5. Proof of Theorem 7

We are going to prove thatf = fh, i.e.,f (x, y)= h(x)+G h(y)−G h(x + y), where a
Borel “shift” h :R→G is a superposition of three more elementary Borel maps.
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There is a big enough naturalm such that there exist realsx, y ∈ I , COH-generic overM
and satisfyingmy = (m+ 1)x. By Lemma 9, the elementq ′ = f (x[m+1])−G f (y[m]) ∈G
(hence∈M) does not depend on the choice ofm, x, y, and we havef (x1, . . . , xn) −G
f (y1, . . . , yk) = (n− k)q ′ whenever 16 k 6 n and the realsxi, yj ∈ I areCOH-generic
overM and satisfyx1+ · · · + xn = y1+ · · · + yk.

Step1. Puth1(x)=−G q ′, ∀x. Let f1(x, y)= f (x, y)+G fh1(x, y)= f (x, y)−G q ′.

Corollary 10. Assume that realsx1, . . . , xn, y1, . . . , yk ∈ I are COH-generic overM, and
x1+ · · · + xn = y1+ · · · + yk. Thenf1(x1, . . . , xn)= f1(y1, . . . , yk).

Proof. Let, for instance,k < n. Note that fh1(z1, . . . , zm) = −G (m − 1)q ′, hence
f1(x1, . . . , xn) −G f1(y1, . . . , yk) = f (x1, . . . , xn) −G f (y1, . . . , yk) −G (n − k)q ′ =
0G. 2

Recall thatI = (a, b), a rational interval inR, lies to the right of 0. DefinenI = (na,nb).
There is a realC > b > 0 such that[C,+∞)⊆⋃n nI .

Let x > C. Thenx = x1+ · · · + xn for some realsx1, . . . , xn ∈ I , COH-generic overM.
We consistently define, using Corollary 10,F(x)= f1(x1, . . . , xn). Clearly (the graph of)
F is analytic, thereforeF : [C,+∞)→G is a Borel function.

Step2. Puth2(x)= F(x) for x > C andh2(x)= 0G for x < C. In particularh2(x)= 0G
for x ∈ I . Let f2(x, y)= f1(x, y)+G fh2(x, y). Easilyf2(x1, . . . , xn)= 0G for all COH-
generic realsx1, . . . , xn ∈ I such thatx1+ · · · + xn > C.

Lemma 11. f2(x, y)= 0G for all x, y > C.

Proof. Let x = x1+ · · · + xn andy = y1+ · · · + yk, wherexi, yj ∈ I are COH-generic
overM. It follows from (4) that

f2(x1, . . . , xn, y1, . . . , yk)= f2(x1, . . . , xn)+G f2(y1, . . . , yk)+G f2(x, y).

But f2(x1, . . . , xn, y1, . . . , yk)= f2(x1, . . . , xn)= f2(y1, . . . , yk)= 0G by the above. 2
Step3. LetCx =max{C,C − x}. Defineh3(x)=−G f2(x,Cx), so that

fh3(x, y)=−G f2(x,Cx)−G f2(y,Cy)+G f2(x + y,Cx+y), (?)

and putf3(x, y)= f2(x, y)+G fh3(x, y).

Lemma 12. f3(x, y)= 0G for all x, y.

Proof. For anyz, we havef3(x, y)= f3(x, z)+G f3(x + z, y)−G f3(x + y, z). By (?),
this transforms straightforwardly to

f2(x, z)+G f2(x + z, y)−G f2(x + y, z)−G f2(x,Cx)

−G f2(y,Cy)+G f2(x + y,Cx+y).
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Takez=max{Cx,Cx+y,Cy − x}. Then, in particular,

f2(x, z)−G f2(x,Cx)= f2(x + z,Cx)− f2(x +Cx, z)= 0

by Lemma 11. Each of the other two pairs gives 0 analogously.2
To accomplish the proof of Theorem 7, note that the maph1 is obviously Borel,h2 is

Borel becauseF is Borel (see above), so thatf2 andh3 are Borel, too. Howeverf is equal
to−fh3 by Lemma 12, so thatf is a Borel-generated coboundary.2

6. Two counterexamples

This section presents two counterexamples which show that Theorem 1 cannot be easily
generalized in certain directions.

A counterexample order isomorphic toQ×Z

Proposition 13. There is an abelian ordered groupA, such thatZ is the only proper
convex subgroup ofA andA/Z GO-isomorphic toQ (henceA is O-isomorphic toQ× Z
as an ordered set), but notG-isomorphic toQ× Z.

Proof. We make use of a nonstandard modelM of Peano arithmetic. Adding the negative
part−M appropriately, we obtain an Abelian groupG =M ∪ −M. For x, y ∈G, define
x ≈ y iff x− y ∈ Z. Note that there exists an≈-classX such that none ofx ∈X is divided
by 2n for all finite n. (Indeed, fix an infinitely largem ∈M. The≈-classX of the number
x ∈M, closest to the fraction 2m/3, is as required.) To see thatA=⋃q∈Q qX is not group
isomorphic toQ× Z note that the productQ× Z contains, in eachZ-interval{q} × Z, an
elementx = 〈q,0〉 divided inQ×Z by any number 2n, n ∈N, while on the other handX,
which is aZ-interval inA, does not contain any elementx of this kind. 2
A counterexample with uncountable convex subgroup

The following example13 shows that Theorem 2 fails, generally speaking, for uncount-
able Borel convex subgroupsG. We considerR2 as the product of two copies of the addi-
tive group of the reals. Define prX A= {x: ∃y (〈x, y〉 ∈ A)} and prY A= {y: ∃x (〈x, y〉 ∈
A)} for any setA⊆R2.

Proposition 14. There is a Borel subgroupA ofR2 such that
(i) prX A=R;
(ii) for any realc, A does not completely include the liney = cx.

Proof. Let Y ⊆R be an uncountable closed set such thatq1y1+ · · · + qnyn 6= 0 whenever
q1, . . . , qn ∈ Q \ {0} while y1, . . . , yn are pairwise different elements ofY . (In particular

13Communicated by G. Hjorth in May 1998 and presented here with his permission.
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0 /∈ Y .) LetF be a Borel 1–1 map ofR ontoY . DefineA to be theQ-closure of the graph
of F , that is, the set of all points of the form〈

q1x1+ · · · + qnxn, q1F(x1)+ · · · + qnF (xn)
〉 ∈R2,

whereq1, . . . , qn ∈ Q while x1, . . . , xn ∈ R. ClearlyA is a Borel group satisfying (i). Let
us show that (ii) also holds. First of allA does not contain any point of the form〈x,0〉,
except for〈0,0〉. Now let c 6= 0. If A entirely includes the liney = cx then prY A = R.
Then clearlyY is a Borel basis ofR as a vectorspace overQ, which is impossible.14 2

Assume thatA is such a group. ThenA0= {y: 〈0, y〉 ∈A} is a Borel subgroup ofR since
A is a group. We assert thatA is GO-isomorphic toR×A0 viewed as a lexicographically
ordered Borel group: then in particular,A0 is the only proper convex subgroup ofA. To
prove the assertion it suffices to define an additive map (homomorphism)f :R→R such
that〈x,f (x)〉 ∈A for anyx. (Then the map sending any〈x, y〉 ∈R×A0 to 〈x,f (x)+ y〉
is an isomorphism ofR × A0 ontoA, as required.) To define such a mapf , let us first
of all choose a setB ⊆ R which is a Hamel basis ofR as aQ-vectorspace. The values
f (b) for b ∈ B can be chosen arbitrarily. Then, anyx ∈R\B admits a unique presentation
in the formx = r1b1+ · · · + rmbm, whereri are rationals andbi ∈ B. In this case define
f (x)= rif (b1)+ · · · + rmf (bm).

However,A andR×A0 are not Borel isomorphic even as groups! Indeed, assume that

F :A
onto−→R×A0 is a Borel group isomorphism. ThenF(〈x,0〉)= 〈f (x), g(x)〉 for anyx,

wheref,g :R→R are Borel homomorphisms (i.e.,f (x+y)= f (x)+f (y) and similarly
for g), and, by (ii), there is noc such thatg(x) = cf (x) for all x. In this case, there is a
realc such that the sets

X+ = {x > 0: f (x) > cg(x)
}

and X− = {x > 0: f (x) < cg(x)
}

are non-empty. Of those at least one set is co-meager on an interval[a, b], where 0< a < b.
Let this be, e.g.,X+. A simple argument shows that each realz > 0 has the form
z= rx + qy, wherer, q are positive rationals whilex, y ∈ [a, b], so thatz ∈X+ as well.
It follows thatX− is empty, a contradiction.

7. CCC groups

It turns out that the difference between (i) and (ii) of Theorem 3 can be traced down to the
structure ofgalaxies—convex subgroups ofA, the given group, of the form

⋃
n[−nx,nx],

wherex ∈A. By theCCC assumption,A cannot contain a countable galaxy other than{0}
(unlessA itself is countable)—and then the type ofA is (i) in the case when there is no
minimal galaxy, and (ii) otherwise. (In the “otherwise” case,B is just the minimal non-{0}
galaxy inA.)

14 If Y contains a rationalr then theQ-closure ofY \ {r} is a Borel selector for the Vitali equivalence relation,
which is impossible. IfY does not contain a rational then 1= q1y1+ · · · + qnyn for someyi ∈ Y and rationals
qi 6= 0. Replaceq1 by 1 inY , getting the first case.
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The assumption thatA is divisible cannot be dropped. Indeed, there is (Section 6) an
Abelian ordered groupA, order isomorphic but not group isomorphic toQ×Z. If it were
of type (i) (but non-divisible), then, asA has only one proper convex subgroup,A would
be a subgroup ofC×C for a countable groupC ⊆R. But this easily leads to isomorphism
betweenA andQ×Z, which is a contradiction.

Another simple argument shows thatC ⊆R cannot be one and the same countable group
for anyA in (i) or (ii). As a counterexample, take, asA, a countable divisible subgroup of
R, notGO-isomorphic to any subgroup ofC.

Beginning the proof of Theorem 3, let us assume thatA = 〈A;+,<〉 is a BAO CCC

group. AsA is divisible, any convex subgroupH ⊆ A and the corresponding quotient
A/H are divisible (Abelian ordered) groups. Let, forH a convex subgroup ofA,H -coset
or coset of sizeH mean a subset ofA of the forma +H , wherea ∈ A. Cosetwill mean
H -coset for some convex subgroupH  A.

Lemma 15. For any cosetX, a representativer(X) ∈X can be chosen so that
(a) r(X)+ r(Y )= r(X+ Y ) for any two cosetsX, Y of equal size;
(b) if X′ ⊆X andr = r(X) ∈X′ thenr(X′)= r.

Proof. A partial representative function, or PRF, is any functionF such that
(i) the domainX = domF consists of cosets andF(X) ∈X for anyX;
(ii) if X ∈X , X ⊆ Y , andY is a coset thenY ∈ X ;
(iii) if X ∈ X then any cosetY  X, such thatF(X) ∈ Y , belongs toX , too, and

F(X)= F(Y );
(iv) if X,Y ∈ X have equal size andq, s are rationals then the cosetZ = qX + sY

belongs toX andF(Z)= qF(X)+ sF (Y ).
It clearly suffices to prove that, ifF is a PRF andX = domF does not contain a cosetK,
then we can extendF so that the extended domain containsK.

ChooseF(K) ∈K arbitrarily. LetK+ be the set of all cosetsL such thateitherL⊆K
andF(K) ∈ L orK ⊆ L. LetK=K+ \X . Note thatK+ is linearly ordered by⊆, whileK
is an initial segment ofK+ by (ii), containingK. Now defineF(L)= F(K) for all L ∈K.

LetX ′ (the extended domain) be the set of all cosetsZ = qX+ sL, where cosetsX ∈ X
andL ∈K have equal size. PutF(Z)= qF(X)+ sF (L).

We prove that the extendedF satisfies (ii) and (iii). (That (i) and (iv) hold is clear. Recall
thatA, hence all convex subgroups ofA, are divisible.)

(ii) Suppose thatZ = qX + sL, whereX ∈ X andL ∈ K have the same size whileq ,
s are rationals. Assume thatZ  Z′, whereZ′ is a coset; prove thatZ′ ∈ X ′. LetX′ and
L′ be cosets of the same size asZ′, satisfyingX  X′ andL  L′; clearlyX′, L′ exist,
are unique, belong to respectivelyX andK+ (by (ii) for X ), andZ′ = qX′ + sL′. If now
L′ /∈K thenL′ ∈ X andZ ∈ X by (ii) for X . OtherwiseZ ∈ X ′ by definition.

(iii) Let againZ = qX+ sL, whereX andL are as above, whileZ′  Z is a coset and
F(Z) ∈Z′. Prove thatZ′ ∈ X ′ andF(Z′)= F(Z). By definitionF(Z)= qF(X)+sF (L).
LetX′ andL′ be the cosets of the same size asZ′, containing respectivelyF(X) andF(L),
hence, satisfyingX′  X, L′  L, X′ ∈ X ′, L′ ∈K, F (X′)= F(X), and, by definition,
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F(L′)= F(L). Moreover, in this case clearlyF(Z′)= qF(X′)+ sF (L′), so thatZ′ ∈ X ′
andF(Z′)= F(Z). 2

Using the lemma, let us fix a representativer(X) ∈ X for any cosetX so that (a) and
(b) are satisfied. Then, given a convex subgroupH of A, theH -coordinatecH (x) =
x − r(x +H) belongs toH for any x ∈ A. Note thatcH (x) = 0 andr(x + H) = x for
all x in the particular caseH = {0}.

Recall that agalaxyis a convex subgroup of the form Galx =⋃n∈N[−nx,nx]. The set
G of all galaxiesG⊆A, G 6= {0}, is at most countable by theCCC assumption. (However
there can be continuum-many convex subgroups which are not galaxies: all of them are
increasing countable unions of galaxies.)

For any galaxyG⊆ A, there is a largest convex subgroup ofA strictly smaller thanG:
it will be denoted byG− (possiblyG− = {0}), so thatG−  G.

Lemma 16. If G ∈ G is not⊆-least inG then the quotientG/G− is GO-isomorphic to
a countable divisible subgroup ofR. If G is the⊆-least inG thenG/G− = G is Borel
GO-isomorphic to a Borel divisible subgroup ofR.

Proof. The first part is clear asG/G− is a countable Archimedean group. Consider the
second part. Now,G− = {0}, henceG/G− = G is an Archimedean BAO group. Let us
prove thatG is BorelGO-isomorphic to a Borel subgroup of the reals.

Fix a ∈G, a > 0 inG. For anyx ∈G, letQx = {q ∈Q: qa < x}. ThenQx is a proper
(asG is Archimedean) initial segment inQ. PutF(x)= supQx .

ThenF :G→ R is a Borel map. Moreover, asG is Archimedean,F is 1–1, hence the
image ranF is a Borel subset ofR. Finally it is a routine exercise to check thatF is a
GO-isomorphism. 2

OrderG by inverse inclusion, so thatG≺G′ iff G′  G.
ConsiderΠ =∏G∈G(G/G−), a BA product group with componentwise addition. Thus

elements ofΠ are functionsw defined onG and satisfyingw(G) ∈G/G− for all G ∈ G.
For anyw ∈ Π , let |w| = {G ∈ G: w(G) 6= 0}. We shall be especially interested in the
subgroupΠWO = {w ∈ Π : |w| is well-ordered by≺} of Π . Note that, unlikeΠ , ΠWO

is an ordered (lexicographically) coanalytic but, generally speaking, non-Borel subgroup
ofΠ .

For anyx ∈A, definewx ∈Π as follows:wx(G)= cG(x)+G− for any galaxyG ∈ G.
Thuswx(G) ∈G/G− for anyG, so thatwx ∈Π .

Lemma 17. The mapx 7→wx is a BorelGO-isomorphism ofA onto a local-product sub-
group ofΠWO.

Proof. It follows from (a) thatcG(x)+ cG(y)= cG(x + y) for any galaxyG. Therefore
wx(G)+wy(G)=wx+y(G) for anyG ∈ G, so thatwx +wy =wx+y .



298 J.R.P. Christensen et al. / Topology and its Applications 109 (2001) 285–299

We prove thatx 7→wx is 1–1. Letx 6= y ∈G. Consider the galaxyG=Gal(x−y). Then
x − y ∈ G \G−, so that clearlycG(x)− cG(y) = x − y /∈ G−, hencewx(G) 6= wy(G).
The proof thatx 7→wx is order-preserving is similar.

We prove thatwx ∈ ΠWO for anyx. Suppose on the contrary that there is a sequence
G0 G1  G2  · · · of galaxiesGk ∈ G such thatcGk (x) /∈G−k —hencecGk+1 /∈Gk , for
all k. ThenG=⋃k Gk is a convex group. By definitioncG(x)= x − r(x +G) ∈G, thus
∈Gk for somek. It follows thatr(x+G) ∈ x+Gk , hence,∈ x+Gk+1, so thatr(x+G)=
r(x +Gk+1) by (b). NowcGk+1(x) = x − r(x +Gk+1) = x − r(x + G) = cG(x) ∈ Gk ,
which is a contradiction.

We prove that the map is Borel. It suffices to check thatx 7→wx(G) is a Borel map for
any galaxyG 6= {0}. By theCCCassumption,A/G is countable, hence, the mapx 7→ cG(x)

is Borel. If nowG− = {0} thenwx(G)= cG(x). If G− 6= {0} then the quotientG/G− is
countable, so that the mapwx(G)= cG(x)+G− takes only countably many values and is
easily seen to be Borel.

Finally let us show that the rangeW = {wx : x ∈ A} is a local-product group. By
definition it suffices, givenG ∈ G andX ∈ G/G−, to find x ∈ A such thatwx(G) = X
while wx(H) = H− for any galaxyH 6= G. Let x = r(X). Thenx + G = G, so easily
r(x + G) = 0 by (a). It follows thatcG(x) = x − r(x + G) = x = r(X) andwx(G) =
x +G− = X. If H ⊆G− is a galaxy thenr(x +H)= r(X) by (b), thereforecH (x)= 0
andwx(H) = H−, as required. If a galaxyH satisfiesG  H , thenx ∈ H− and easily
wx(H)=H−. 2

Now, to prove Theorem 3, we have to verify that the groupW = {wx : x ∈ A} ⊆ΠWO

satisfies either (i) or (ii) of Theorem 3.
Case1. There is no≺-maximal, hence⊆-minimal, galaxy inG. This leads us to (i).

Indeed, fixG ∈ G and define, for anyw ∈Π , the restrictionw�≺G =w � {G′ ∈ G: G′ ≺G}.
ThenW�≺G = {w�≺G: w ∈W } cannot be uncountable becauseW clearly contains a set
of W�≺G-many disjoint open intervals (sinceW is local-product, see above). It remains
to note that, in this case, every quotientG/G− (whereG ∈ G) is a countable divisible
subgroup ofR, by Lemma 16. Take asC the group closure of their union inR.

Case2.H is a≺-maximal, hence⊆-minimal, galaxy inG. ThenH/H− =H is a Borel
divisible subgroup ofR by Lemma 16. Assume thatH is uncountable. (If it is countable
we get (i) as in case 1.) Then, identifying anyw ∈W with the pair〈w�≺H ,w(H)〉, we get
a BorelGO-isomorphism betweenW andW ′ = (W�≺H)×H , which easily leads to (ii) of
Theorem 3. 2

Clearly the possibility of characterization moduloBorel isomorphism follows from the
CCC assumption. The argument, generally speaking, does not work in the non-CCC case.
More exactly, the only part affected in the reasoning is that the mapx 7→ wx is Borel.
We should prove the following: ifA is a BAO divisible group andH ⊆ A a convex Borel
subgroup then there is aBorel choice of a representativer(X) ∈ X for anyX ∈ A/H ,
satisfying (a). Hjorth’s counterexample in Section 6 shows that this is not always possible.
At the moment, only the case of a countableH andA/H isomorphic toR admits a positive
solution (Theorem 2).
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As for non-Borel isomorphisms, our arguments easily prove that
(i) Every Abelian ordered divisible groupA is GO-isomorphic to a local-product group

W ⊆Rξ :WO, for a linear orderξ of cardinalitycardξ 6 cardA.
(ii) In addition, ifA is Borel thenξ can be chosen among orders2α, α < ω1. (By a

theorem in [2], any Borel linear order is Borel order isomorphic to a Borel subset of
2α , viewed as a lexicographical order, for someα < ω1.)

Final remarks. The methods developed for the proof of Theorem 2 have been used in
[4,5] to prove some other results related to the additive group of the reals, in particular:

(1) Suppose thatG is a countable subgroup of the additive group of the reals, and a
Baire measurable mapf :R→ R satisfiesf (x + y) − f (x) − f (y) ∈ G for all
x, y. Then there is a realc such thatf (x)− cx ∈G for all x.

(2) Suppose that⊕ is a Borel Abelian group operation onR, such that the difference
(x ⊕ y) − (x + y) takes only countably many values. Then〈R;⊕〉 is Borel
isomorphic to〈R;+〉.
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