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Following a research line suggested by Ilijas Farah, we prove that for any abelian Polish
σ -compact group H there exists an Fσ Radon–Nikodym ideal, that is, an ideal Z ⊆ P(N)

together with a Borel Z -approximate homomorphism f : H → H
N which is not Z -

approximable by a continuous true homomorphism g : H → H
N .
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0. Introduction

The main goal of this article is to generalize the important concept of Radon–Nikodym ideal introduced by Ilijas Farah
and prove that for uncountable abelian Polish groups there always exists an analytic non-Radon–Nikodym ideal; in case of
a σ -compact group the ideal is even Fσ .

Let G , H be abelian Polish groups, and Z be an ideal over a countable set A. We consider H A as a product group. For
s, t ∈ H A put

Δs,t = {
a ∈ A: s(a) �= t(a)

}
.

Suppose that Z is an ideal over A. A map f : G → H A is a Z -approximate homomorphism iff Δ f (x)+ f (y), f (x+y) ∈ Z for all
x, y ∈ G . Thus it is required that the set of all a ∈ A such that fa(x) + fa(y) �= fa(x + y) belongs to Z . Here fa : G → H is
the ath co-ordinate map of the map f : G → H A .

And Z is a Radon–Nikodym ideal (for this pair of groups) iff for any measurable Z -approximate homomorphism
f : G → HN there is a continuous exact homomorphism g : G → HN which Z -approximates f in the sense that
Δ f (x),g(x) ∈ Z for all x ∈ G . Here the measurability condition can be understood as Baire measurability, or, if G is equipped
with a σ -additive Borel measure, as measurability with respect to that measure.

The idea of this (somewhat loose) concept is quite clear: the Radon–Nikodym ideals are those which allow us to approxi-
mate non-exact homomorphisms by true ones. This type of problems appears in different domains of mathematics. Closer to
the context of this note, Velic̆ković [7] proved that any Baire-measurable FIN-approximate Boolean-algebra automorphism f
of P(N) (so that the symmetric differences between f (x)∪ f (y) and f (x∪ y) and between f (N� x) and N� f (x) are finite
for all x, y ⊆ N) is FIN-approximable by a true automorphism g induced by a bijection between two cofinite subsets of N.
Kanovei and Reeken proved in [3] that any Baire-measurable Q-approximate homomorphism f : R → R is Q-approximable
by a homomorphism of the form f (x) = cx, c being a real constant. (Q is the additive group of rational numbers.) See also
some results in [1,4,5].
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The term “Radon–Nikodym ideal” was introduced by Farah [1,2] in the context of Baire-measurable Boolean algebra
homomorphisms of P(N). Many known Borel ideals were demonstrated to be Radon–Nikodym, see [1,2,4,5]. Suitable coun-
terexamples, again in the context of Boolean algebra homomorphisms, were defined by Farah on the base of so-called
pathological submeasures. A different and, perhaps, more transparent counterexample, related to homomorphisms T → TN

(where T = R/N), is defined in [5] as a modification of an ideal introduced in [6]. The next theorem generalizes this result.

Theorem 1. Suppose that H is an uncountable abelian Polish group. Then there is an analytic ideal Z over N that is not a
Radon–Nikodym ideal for maps H → HN in the sense that there is a Borel and Z -approximate homomorphism f : H → HN not
Z -approximable by a continuous homomorphism g : H → HN . If moreover H is σ -compact then Z can be chosen to be Fσ .

Note that the theorem will not become stronger if we require g to be only Baire-measurable, or just measurable with
respect to a certain Borel measure on H—because by the Pettis theorem any such a measurable group homomorphism must
be continuous.

The remainder of the note contains the proof of Theorem 1. It would be interesting to prove the theorem for non-
abelian Polish groups. (The assumption that H is abelian is used in the proof of Lemma 7.) And it will be interesting to find
non-Radon–Nikodym ideals for homomorphisms G → HN in the case when the Polish groups G and H are not necessarily
equal.

1. Countable subgroup

Let us fix a group H as in the theorem, that is, an uncountable abelian Polish group. By 0 we denote the neutral element,
by ⊕ the group operation, by d a compatible complete separable distance (and we do not assume it to be invariant). The
first step is to choose a certain countable subgroup D ⊆ H of “rational elements”.

It is quite clear that there exists a countable dense subgroup D ⊆ H satisfying the following requirement of elementary
equivalence type.

(∗) Suppose that n � 1, c1, . . . , cn ∈ D , ε is a positive rational, Ui = {x ∈ H: d(x, ci) � ε}, and P (x1, . . . , xn) is a finite system
of linear equations with integer coefficients, unknowns x1, . . . , xn , and constants in D , of the form:

b1x1 ⊕ · · · ⊕ bnxn = r, where bi ∈ Z and r ∈ D.

Suppose also that this system P has a solution 〈x1, . . . , xn〉 in H such that xi ∈ Ui for all i. Then P has a solution in D
as well. (That is, all xi belong to D ∩ Ui .)

Let us fix such a subgroup D .

2. The index set

Let rational ball mean any subset of H of the form {x ∈ H: d(c, x) < ε}, where c ∈ D (the center), and ε is a positive
rational number.

Definition 2. Let A, the index set, consist of all objects a of the following kind. Each a ∈ A consists of:

– an open non-empty set U a � H,
– a partition U a = U a

1 ∪ · · · ∪ U a
n of U a onto a finite number n = na of pairwise disjoint non-empty rational balls U a

i ⊆ H,
and

– a set of points ra
i ∈ U a

i ∩ D such that, for all i, j = 1,2, . . . ,n:
(1) either ra

i ⊕ ra
j is ra

k for some k, and (U a
i ⊕ U a

j ) ∩ U a ⊆ U a
k ,

(2) or (U a
i ⊕ U a

j ) ∩ U a = ∅.

Under the conditions of Definition 2, if 0 ∈ U a
i then si = 0: for take j = i.

Lemma 3. A is an infinite (countable) set.

Proof. For any ε > 0 there is a ∈ A such that U a a set of diameter � ε: just take na = 1, ra
1 = 0, and let U a = U a

1 be the
ε
2 -nbhd of 0 in H. �

The next lemma will be used below.

Lemma 4. If y1, . . . , yn ∈ H are pairwise distinct then there exists a ∈ A such that na = n and yi ∈ U a for all i = 1, . . . ,n.
i
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Proof. As the operation is continuous, we can pick pairwise disjoint rational balls B1, . . . , Bn such that yi ∈ Bi for all i and
the following holds: if 1 � i, j � n then either there exists k such that (Bi ⊕ B j) ∩ B ⊆ Bk , where B = B1 ∪ · · · ∪ Bn , or just
(Bi ⊕ B j) ∩ B = ∅. Put U a

i = Bi .
To obtain a system of points ra

i required, let P (x1, . . . , xn) be the system of all equations of the form xi + x j = xk with
unknowns xi , x j , xk , where 1 � i, j,k � n and in reality yi + y j = yk . It follows from the choice of D that this system has
a solution 〈r1, . . . , rn〉 such that ri ∈ U a

i ∩ D for all i. In other words we have: ri + r j = rk whenever yi + y j = yk . Let ra
i = ri .

This ends the definition of a ∈ A as required. (An extra care to guarantee that U a = ⋃
1�i�n U a

i is a proper subset of H is
left to the reader.) �
3. The ideal

Let Z be the set of all sets X ⊆ A such that there is a finite set u ⊆ H satisfying the following: for any a ∈ X we have
u � U a .

The idea of this ideal goes back to Solecki [6], where a certain ideal over the set Ω of all clopen sets U ⊆ 2N of measure 1
2

(also a countable set) is considered. In our case the index set A is somewhat more complicated.

Lemma 5. Z is an ideal containing all finite sets X ⊆ A, but A /∈ Z .

Proof. If a ∈ A then the singleton {a} belongs to Z . Indeed by definition U a is a non-empty subset of H. Therefore there
is a point x ∈ H � U a . Then u = {x} witnesses A ∈ Z . To see that Z is closed under finite unions, suppose that finite sets
u, v ⊆ H witness that respectively X , Y belong to Z . Then w = u ∪ v obviously witnesses that Z = X ∪ Y ∈ Z . Finally by
Lemma 4 for any finite u = {x1, . . . , xn} ⊆ H there is an element a ∈ A such that u ⊆ U a . This implies that A itself does not
belong to Z . �
Proposition 6. Z is an analytic ideal. If H is σ -compact then Z is Fσ .

Proof. We claim that X ∈ Z iff there are a natural n and a partition X = ⋃
1�k�n Xk such that for any k the set Xk ⊆ A

satisfies
⋃

a∈Xk
U a �= H. Indeed suppose that X ∈ Z and this is witnessed by a finite set u = {x1, . . . , xn} ⊆ H, that is,

u � U a for all a ∈ X . It follows that X = ⋃
1�k�n Xk , where Xk = {a ∈ X: xk /∈ U a}. Clearly xk /∈ ⋃

a∈Xk
U a . To prove the

converse suppose that X = ⋃
1�k�n Xk ⊆ A and

⋃
a∈Xk

U a �= H for all k. Let us pick arbitrary points xk ∈ H �
⋃

a∈Xk
U a for

all k. Then u = {x1, . . . , xn} witnesses X ∈ Z , as required.
It easily follows that Z is analytic.
Now suppose that H = ⋃

�∈N
H� , where all sets H� are compact. Then the inequality

⋃
a∈Xk

U a �= H is equivalent to
∃� (H� �

⋃
a∈Xk

U a). And by the compactness, the non-inclusion H� �
⋃

a∈Xk
U a is equivalent to the following statement:

H� �
⋃

a∈X ′ U a for every finite X ′ ⊆ Xk . Fix an enumeration A = {an}n∈N . Put A � m = {a j: j < m}. Using König’s lemma, we
conclude that X ∈ Z iff there exist natural �, n such that for any m there exists a partition X ∩ (A � m) = ⋃

k<n Xk , where
for every k we have H� �

⋃
a∈Xk

U a . And this is a Fσ definition for Z . �
4. The main result

Here we prove Theorem 1. Define a Borel map f : H → HA as follows. Suppose that x ∈ H and a ∈ A, na = n. If x ∈ U a
i ,

1 � i � n, then put fa(x) = x � ra
i . (� in the sense of the group H.) If x /∈ U a then put simply fa(x) = 0.

Finally define f (x) = { fa(x)}a∈A . Clearly f is a Borel map.
The maps fa do not look like homomorphisms H → H. Nevertheless their combination surprisingly turns out to be an

approximate homomorphism!

Lemma 7. f : H → HA is a Borel and Z -approximate homomorphism.

Proof. Let x, y ∈ H and z = x ⊕ y. Prove that the set

Cxy = {
a: fa(x) ⊕ fa(y) �= fa(z)

}

belongs to Z . We assert that this is witnessed by the set u = {x, y, z}, that is, if a ∈ Cxy then at least one of the points x,
y, z is not a point in U a . Or, equivalently, if a ∈ A and x, y, z belong to U a then fa(x) ⊕ fa(y) = fa(z).

To prove this fact suppose that a ∈ A and x, y, z ∈ U a . By definition, U a = U a
1 ∪ · · · ∪ U a

n , where n = na and U a
i are disjoint

rational balls in H. We have x ∈ U a
i , y ∈ U a

j , z ∈ U a
k , where 1 � i, j,k � n. Then by definition

fa(x) = x � ra
i , fa(y) = y � ra

j , fa(z) = z � ra
k .

Therefore fa(x) ⊕ fa(y) = x ⊕ y � (si ⊕ s j). (Here we clearly use the assumption that the group is abelian.) We assert that
ra ⊕ ra = ra—then obviously fa(x) ⊕ fa(y) = fa(z) by the above, and we are done.
i j k
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Note that z = x ⊕ y ∈ U a , hence (U a
i ⊕ U a

j ) ∩ U a �= ∅. We conclude that (2) of Definition 2 fails. Therefore (1) holds,
ra

i ⊕ ra
j = ra

k′ for some k′ and (U a
i ⊕ U a

j ) ∩ U a ⊆ U a
k′ . But the set (U a

i ⊕ U a
j ) ∩ U a obviously contains z, and z ∈ U a

k . It follows

that k′ = k, ra
k′ = ra

k , ra
i ⊕ ra

j = ra
k , as required. �

Lemma 8. The approximate homomorphism f is not Z -approximable by a continuous homomorphism g : H → HA .

Proof. Assume towards the contrary that g : H → HA is a continuous homomorphism which Z -approximates f . Thus if
x ∈ H then the set Δx = {a : fa(x) �= ga(x)} belongs to Z , where, as usual, ga(x) = g(x)(a). Note that all of these projection
maps ga : H → H are continuous group homomorphisms since such is g itself.

Thus if x ∈ H then Δx ∈ Z, and hence there is a finite set ux ⊆ D satisfying the following: if a ∈ A and ux ⊆ U a then
a /∈ Δx , that is, fa(x) = ga(x). Put

Xu = {
x ∈ H: ∀a ∈ A

(
u ⊆ U a ⇒ fa(x) = ga(x)

)}

for every finite u ⊆ D . These sets are Borel since so are maps f , g (and g even continuous). Moreover H = ⋃
u⊆D finite Xu

since every x ∈ H belongs to Xux . Thus at least one of the sets Xu is not meager, therefore, is comeager on a certain rational
ball B ⊆ H. Fix u and B . By definition for comeager-many x ∈ B and all a ∈ A satisfying u ⊆ U a we have fa(x) = ga(x).

Arguing as in the proof of Lemma 4, we obtain an element a ∈ A satisfying the following properties: u ⊆ U a , U a ∩ B �= ∅,
but the set B � U a is non-empty and moreover is not dense in B . Fix such a. Thus there exists a non-empty rational ball
B ′ ⊆ B that does not intersect U a . By definition fa(x) = 0 for all x ∈ B ′ , and hence ga(x) = 0 for comeager-many x ∈ B ′ by
the choice of B . We conclude that ga(x) = 0 for all x ∈ B in general, because g is continuous.

Now, let na = n. Then U a = U a
1 ∪ · · · ∪ U a

n . Recall that the intersection B ∩ U a of two open sets is non-empty by the
choice of a. It follows that there exists an index i, 1 � i � n, and a non-empty rational ball B ′′ ⊆ B ∩ U a

i . Then by definition
fa(x) = x � r for all x ∈ B ′′ , where r = ra

i . Therefore ga(x) = x � r for comeager-many x ∈ B ′′ , and then ga(x) = x � r for all
x ∈ B ′′ since g is continuous.

To conclude, ga , a continuous group homomorphism, is constant 0 on a non-empty open set B ′ , and is bijective on
another non-empty open set B ′′ . But this cannot be the case. �

Lemmas 7 and 8 complete the proof of Theorem 1.
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