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1. Introduction

Let R = 2N . Recall that E1 and E3 are the equivalence relations defined on the set RN as follows:

x E1 y iff ∃k0 ∀k � k0
(
x(k) = y(k)

);
x E3 y iff ∀k

(
x(k)E0 y(k)

);
where E0 is an equivalence relation defined on R so that

a E0 b iff ∃n0 ∀n � n0
(
a(n) = b(n)

)
.

The equivalence E3 is often denoted as (E0)
ω .

Kechris and Louveau in [10] and Hjorth and Kechris in [3,4] proved that any Borel equivalence relation E satisfying
E <B E1 , resp., E <B E3 , also satisfies the non-strict E �B E0 . Here <B and �B are resp. strict and non-strict relations of
Borel reducibility. Thus if E is an equivalence relation on a Borel set X 2 and F is an equivalence relation on a Borel set Y
then E �B F means that there exists a Borel map ϑ : X → Y such that

x E x′ ⇐⇒ ϑ(x) F ϑ(x′)

holds for all x, x′ ∈ X . Such a map ϑ is called a (Borel) reduction of E to F . If both E �B F and F �B E then they write
E ≈B F (Borel bi-reducibility), while E <B F (strict reducibility) means that E �B F but not F �B E . See the cited papers
[3,4] or e.g. [2,9] on various aspects of Borel reducibility in set theory and mathematics in general.
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The above mentioned results give a complete description of the �B -structure of Borel equivalence relations below E1

and below E3 . It is then a natural step to investigate the �B -structure below E13 , where E13 = E1 × E3 is the product of
E1 and E3 , that is, an equivalence on RN ×RN defined so that for any points 〈x, ξ〉 and 〈y, η〉 in RN ×RN , 〈x, ξ〉E13 〈y, η〉
if and only if x E1 y and ξ E3 η .

The intended result would be that the �B -cone below E13 includes the cones determined separately by E1 and E3 ,
together with the disjoint union of E1 and E3 (i.e., the union of E1 and E3 defined on two disjoint copies of RN ),
E13 itself, and nothing else. This is however a long shot. The following theorem, the main result of this note, can be
considered as a small step in this direction.

Theorem 1. Suppose that E is a Borel equivalence relation and E �B E13 . Then either E is Borel reducible to T2 or E1 �B E .

Recall that the equivalence relation T2 , known as “the equality of countable sets of reals”, is defined on RN so that
x T2 y iff {x(n): n ∈ N} = {y(n): n ∈ N} . It is known that E3 <B T2 strictly, and there exist many Borel equivalence relations
E satisfying E <B T2 but incomparable with E3 : for instance non-hyperfinite Borel countable ones like E∞ . The two cases
are incompatible because E1 is known not to be Borel reducible to orbit equivalence relations of Polish actions (to which
class T2 belongs).

A rather elementary argument reduces Theorem 1 to the following:

Theorem 2. Suppose that P0 ⊆ RN × RN is a Borel set. Then either the equivalence E13 � P0 is Borel reducible to T2 or E1 �B
E13 � P0 .

Indeed suppose that Z (a Borel set) is the domain of E , and ϑ : Z → RN × RN is a Borel reduction of E to E13 .
Let f : Z → 2N = R be an arbitrary Borel injection. Define another reduction ϑ ′ : Z → RN × RN as follows. Suppose that
z ∈ Z and ϑ(z) = 〈x, ξ〉 ∈ RN × RN . Put ϑ ′(z) = 〈x′, ξ〉 , where x′ , still a point in RN , is related to x so that x′(n) = x(n)

for all n � 1 but x′(0) = f (z) . Then obviously ϑ(z) and ϑ ′(z) are E13 -equivalent for all z ∈ Z , and hence ϑ ′ is still
a Borel reduction of E to E13 . On the other hand, ϑ ′ is an injection (because so is f ). It follows that its full image
P0 = ranϑ ′ = {ϑ ′(z): z ∈ Z} is a Borel set in RN × RN , and E ≈B E13 � P0 .

The remainder of the paper contains the proof of Theorem 2. The partition in two cases is described in Section 3.
Naturally assuming that P0 is a lightface Δ1

1 set, Case 1 is essentially the case when for every element 〈x, ξ〉 ∈ P0 (note
that x, ξ are points in RN ) and every n we have x(n) = F (x�>n, ξ��k, ξ�>k) for some k , where F is a Δ1

1 function E3 -
invariant w.r.t. the 3rd argument. It easily follows that then the first projection of the equivalence class [〈x, ξ〉]E13 ∩ P0 of
every point 〈x, ξ〉 ∈ P0 is at most countable, leading to the either option of Theorem 2 in Section 5.

The results of Theorems 1 and 2 in their either parts can hardly be viewed as satisfactory because one would expect it
in the form: E is Borel reducible to E3 . Thus it is a challenging problem to replace T2 by E3 in the theorems. Attempts to
improve the either option, so far rather unsuccessful, lead us to the following:

Theorem 3. In the either case of Theorem 2 there exist a hyperfinite equivalence relation G on a Borel set P ′′
0 ⊆ RN × RN such that

E13 � P0 is Borel reducible to the least equivalence relation F on P ′′
0 which includes G and satisfies ξ E3 η �⇒ 〈x, ξ〉 F 〈y, η〉 for all

〈x, ξ〉 and 〈y, η〉 in P ′′
0 .

The relation G here is induced by a countable group G of homeomorphisms of RN × RN preserving the second com-
ponent. (That is, if g ∈ G and g(x, ξ) = 〈y, η〉 then η = ξ , but y generally speaking depends on both x and ξ .) And
G happens to be even a locally finite group in the sense that it is equal to the union of an increasing chain of its finite
subgroups. Recall that E3 is induced by the product group H = 〈Pfin(N);�〉N naturally acting in this case on the second
factor in the product RN × RN . Regarding further details see Section 6.

Case 2 is treated in Sections 7 through 12. The embedding of E1 in E13 � P0 is obtained by approximately the same
splitting construction as the one introduced in [10] (in the version closer to [7]).

2. Preliminaries: extension of “invariant” functions

If E is an equivalence relation on a set X then, as usual, [x]E = {y ∈ X: y E x} is the E -class of an element x ∈ X , and
[Y ]E = ⋃

x∈Y [x]E is the E -saturation of a set Y ⊆ X . A set Y ⊆ X is E -invariant if Y = [Y ]E .
The following “invariant” Separation theorem will be used below.

Proposition 4. (5.1 in [1]) Assume that E is a Δ1
1 equivalence relation on a Δ1

1 set X ⊆ NN . If A, C ⊆ X are Σ1
1 sets and [A]E ∩

[C]E = ∅ then there exists an E -invariant Δ1
1 set B ⊆ X such that [A]E ⊆ B and [C]E ∩ B = ∅ .

Suppose that f is a map defined on a set Y ⊆ X . Say that f is E -invariant if f (x) = f (y) for all x, y ∈ Y satisfying
x E y .
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Corollary 5. Assume that E is a Δ1
1 equivalence relation on a Δ1

1 set A ⊆ NN , and f : B → NN is an E -invariant Σ1
1 function

defined on a Σ1
1 set B ⊆ A . Then there exist an E -invariant Δ1

1 function g : A → NN such that f ⊆ g .

Proof. It obviously suffices to define such a function on an E -invariant Δ1
1 set Z such that Y ⊆ Z ⊆ A . (Then let g be just

a constant on A � Z .) The set

P = {〈a, x〉 ∈ A × NN: ∀b
(
(b ∈ B ∧ a E b) �⇒ x = f (b)

)}
is Π1

1 and f ⊆ P . Moreover P is F -invariant, where F is defined on A × NN so that 〈a, x〉 F 〈a′, y〉 iff a E a′ and x = y .
Obviously [ f ]F ⊆ P . Hence by Proposition 4 there exists an F -invariant Δ1

1 set Q such that f ⊆ Q ⊆ P . Then

R = {〈a, x〉 ∈ Q : ∀y
(

y �= x �⇒ 〈a, y〉 /∈ Q
)}

is an F -invariant Π1
1 set, and in fact a function, satisfying f ⊆ R . Applying Proposition 4 once again we end the proof. �

3. An important population of Σ1
1 functions

Working with elements and subsets of RN ×RN as the domain of the equivalence relation E13 , we’ll typically use letters
x, y, z to denote points of the first copy of RN (where E1 lives) and letters ξ,η, ζ to denote points of the second copy
of RN (where E3 lives). Recall that, for P ⊆ RN × RN ,

dom P = {
x: ∃ξ

(〈x, ξ〉 ∈ P
)}

and ran P = {
ξ : ∃x

(〈x, ξ〉 ∈ P
)}

.

Points of R = 2N will be denoted by a,b, c .
Assume that x ∈ RN . Let x�>n , resp., x��n denote the restriction of x (as a map N → R ) to the domain (n,∞) , resp.,

[n,∞) . Thus x�>n ∈ R>n , where >n means the interval (n,∞) , and x��n ∈ R�n , where �n means [n,∞) . If X ⊆ RN

then put X�>n = {x�>n: x ∈ X} and X��n = {x��n: x ∈ X} .
The notation connected with �<n and ��n is understood similarly.
Let ξ ≡k η mean that ξ E3 η and ξ�<k = η�<k (that is, ξ( j) = η( j) for all j < k ). This is a Borel equivalence on RN .

A set U ⊆ RN is ≡k -invariant if U = [U ]≡k , where [U ]≡k = ⋃
ξ∈U [ξ ]≡k .

Definition 6. Let F k
n denote the set of all Σ1

1 functions3 ϕ : U → R , defined on a Σ1
1 set U = domϕ ⊆ R>n × RN , and

≡k -invariant in the sense that if 〈y, ξ〉 and 〈y, η〉 belong to U and ξ ≡k η then ϕ(y, ξ) = ϕ(y, η) .
Let TF k

n denote the set of all total functions in F k
n , that is, those defined on the whole set R>n × RN .

Lemma 7. If ϕ ∈ F k
n then there is a Δ1

1 function ψ ∈ TF k
n with ϕ ⊆ ψ .

Proof. Apply Corollary 5. �
Definition 8. Let us fix a suitable coding system {W e}e∈E of all Δ1

1 sets W ⊆ R × RN × R (in particular for partial Δ1
1

functions R × RN → R ), where E ⊆ N is a Π1
1 set, such that there exist a Σ1

1 relation � and a Π1
1 relation � satisfying

〈b, ξ,a〉 ∈ W e ⇐⇒ �(e,b,a, ξ) ⇐⇒ �(e,b,a, ξ) (1)

whenever e ∈ E and a,b ∈ R , ξ ∈ RN .

Let us fix a Δ1
1 sequence of homeomorphisms Hn : R

onto−→ R�n . Put

W e
n = {〈

Hn(b), ξ,a
〉
: 〈b, ξ,a〉 ∈ W e

}
for e ∈ E,

T = {〈e,k〉: e ∈ E ∧ W e is a total and ≡k-invariant function
}
.

}
(2)

Here the totality means that domW e = R × RN while the invariance means that W e(b, ξ) = W e(b, η) for all b, ξ, η satis-
fying ξ ≡k η .

Note that if 〈e,k〉 ∈ T then, for any n , W e
n is a function in TF k

n , and conversely, every function in TF k
n has the form

W e
n for a suitable e ∈ E .

Proposition 9. T is a Π1
1 set.

3 A Σ1
1 function is a function with a Σ1

1 graph.
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Proof. Standard evaluation based on the coding of Δ1
1 sets. �

Corollary 10. The sets

Sk
n = {〈x, ξ〉 ∈ RN × RN: ∃ϕ ∈ Fk

n

(
x(n) = ϕ(x�>n, ξ)

)}
= {〈x, ξ〉 ∈ RN × RN: ∃ϕ ∈ TFk

n

(
x(n) = ϕ(x�>n, ξ)

)}
belong to Π1

1 uniformly on n, k . Therefore the set S = ⋃
m

⋂
n�m

⋃
k Sk

n also belongs to Π1
1 .

Proof. The equality of the two definitions follows from Lemma 7. The definability follows from Proposition 9 by standard
evaluation. �

Beginning the proof of Theorem 2, we can w.l.o.g. assume, as usual, that the Borel set P0 in the theorem is a lightface
Δ1

1 set.

Case 1: P0 ⊆ S . We’ll show that in this case E13 � P0 is Borel reducible to T2 .
Case 2: P0 � S �= ∅ . We’ll prove that then E1 �B E13 � P0 .

4. Case 1: simplification

From now on and until the end of Section 5 we work under the assumptions of Case 1. The general strategy is to
prove that for any 〈x, ξ〉 ∈ P0 there exist at most countably many points y ∈ RN such that, for some η , 〈y, η〉 ∈ P0 and
〈x, ξ〉 E13 〈y, η〉 , and that those points can be arranged in countable sequences in a certain controlled way.

Our first goal is to somewhat simplify the picture.

Lemma 11. There exists a Δ1
1 map μ : P0 → N such that for any 〈x, ξ〉 ∈ P0 we have 〈x, ξ〉 ∈ ⋂

n�μ(x,ξ)

⋃
k Sk

n .

Proof. Apply Kreisel Selection to the set{〈〈x, ξ〉,m
〉 ∈ P0 × N: ∀n � m ∃k

(〈x, ξ〉 ∈ Sk
n

)}
. �

Let 0 = 0N ∈ R = 2N be the constant 0 : 0(k) = 0, ∀k . For any 〈x, ξ〉 ∈ P0 put fμ(x, ξ) = 0μ(x,ξ)∧(x��μ(x,ξ)) : that is, we
replace by 0 all values x(n) with n < μ(x, ξ) . Then P ′

0 = {〈 fμ(x, ξ), ξ〉: 〈x, ξ〉 ∈ P0} is a Σ1
1 set.

Put S′ = ⋂
n

⋃
k Sk

n (a Π1
1 set by Corollary 10).

Corollary 12. There is a Δ1
1 set P ′′

0 such that P ′
0 ⊆ P ′′

0 ⊆ S′ . The map 〈x, ξ〉 �→ 〈 fμ(x, ξ), ξ〉 is a reduction of E13 � P0 to E13 � P ′′
0 .

Proof. Obviously P ′
0 is a subset of the Π1

1 set S′ . It follows that there is a Δ1
1 set P ′′

0 such that P ′
0 ⊆ P ′′

0 ⊆ S′ . To prove
the second claim note that fμ(x, ξ) E1 x for all 〈x, ξ〉 ∈ P0 . �

Let us fix a Δ1
1 set P ′′

0 as indicated. By Corollary 12 to accomplish Case 1 it suffices to get a Borel reduction of E13 � P ′′
0

to T2 .

Lemma 13. There exist: a Δ1
1 sequence {κn}n∈N of natural numbers, and a Δ1

1 system {F i
n}i,n∈N of functions F i

n ∈ TF κi
n , such that

for all 〈x, ξ〉 ∈ P ′′
0 and n ∈ N there is i ∈ N satisfying x(n) = F i

n(x�>n, ξ) .

Remark 14. Recall that by definition every function F ∈ TF k
n is invariant in the sense that if 〈x, ξ〉 and 〈x, η〉 be-

long to R>n × RN , ξ�<k = η�<k , and ξ E3 η , then ϕ(x, ξ) = ϕ(x, η) . This allows us to sometimes use the notation
like F i

n(x�>n, ξ�<k, ξ��k) , where k = κi , instead of F i
n(x�>n, ξ) , with the understanding that F i

n(x�>n, ξ�<k, ξ��k) is E3 -
invariant in the 3rd argument.

In these terms, the final equality of the lemma can be re-written as x(n) = F i
n(x�>n, ξ�<k, ξ��k) , where k = κi .

Proof of Lemma 13. By definition P ′′
0 ⊆ S′ means that for any 〈x, ξ〉 ∈ P ′′

0 and n there exists k such that 〈x, ξ〉 ∈ Sk
n . The

formula 〈x, ξ〉 ∈ Sk
n takes the form

∃ϕ ∈ TFk
n

(
x(n) = ϕ(x�>n, ξ)

)
,

and further the form ∃〈e,k〉 ∈ T (x(n) = W e
n(x�>n, ξ)) . It follows that the Π1

1 set

Z = {〈〈x, ξ,n〉, 〈e,k〉〉 ∈ (P0 × N) × T : x(n) = W e
n(x�>n, ξ)

}
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satisfies dom Z = P0 × N . Therefore by Kreisel Selection there is a Δ1
1 map ε : P0 × N → T such that x(n) = W e

n(x�>n, ξ)

holds for any 〈x, ξ〉 ∈ P0 and n , where 〈e,k〉 = ε(x, ξ,n) for some k .
The range R = ranε of this function is a Σ1

1 subset of the Π1
1 set T . We conclude that there is a Δ1

1 set B such
that R ⊆ B ⊆ T . And since T ⊆ N × N , it follows, by some known theorems of effective descriptive set theory, that the set
Ê = dom B = {e: ∃k (〈e,k〉 ∈ B)} is Δ1

1 , and in addition there exists a Δ1
1 map K : Ê → N such that 〈e, K (e)〉 ∈ B (and ∈ T )

for all e ∈ Ê .
And on the other hand it follows from the construction that

∀〈x, ξ〉 ∈ P0 ∀n ∃e ∈ Ê
(
x(n) = W e

n(x�>n, ξ)
)
. (3)

Let us fix any Δ1
1 enumeration {e(i)}i∈N of elements of Ê . Put F i

n = W e(i)
n . Then the last conclusion of the lemma follows

from (3). Note that the functions F i
n are uniformly Δ1

1 , F i
n ∈ TF k

n for some k , in particular, for k = κi , where κi = K (e(i)) ,
and {κi}i∈N is a Δ1

1 sequence as well. �
Blanket Assumption 15. Below, we assume that the set P ′′

0 is chosen as above, that is, Δ1
1 and P ′′

0 ⊆ S′ , while a system of functions
F i

n and a sequence {κi}i∈N of natural numbers are chosen accordingly to Lemma 13.

5. Case 1: countability of projections of equivalence classes

We prove here that in the assumption of Case 1 the equivalence E13 � P ′′
0 is Borel reducible to T2 , the equality of

countable sets of reals. The main ingredient of this result will be the countability of the sets

C ξ
x = dom

([〈x, ξ〉]E13
∩ P ′′

0

) = {
y ∈ RN: y E1 x ∧ ∃η (

ξ E3 η ∧ 〈y, η〉 ∈ P ′′
0

)}
,

where 〈x, ξ〉 ∈ P ′′
0 — projections of E13 -classes of elements of the set P ′′

0 .

Lemma 16. If 〈x, ξ〉 ∈ P ′′
0 then Cξ

x ⊆ [x]E1 and Cξ
x is at most countable.

Proof. That Cξ
x ⊆ [x]E1 is obvious. The proof of countability begins with several definitions. In fact we are going to organize

elements of any set of the form C ξ
x in a countable sequence.

Recall that R = 2N . If u ⊆ N and b ∈ R then define u · a ∈ R so that (u · a)( j) = a( j) whenever j /∈ u , and (u · a)( j) =
1 − a( j) otherwise.

If f ⊆ N × N and a ∈ Rk then define f ·a ∈ Rk so that ( f ·a)( j) = ( f ” j) ·a( j) for all j < k , where f ” j = {m: 〈 j,m〉 ∈ f } .
Note that f · a depends in this case only on the restricted set f � k = {〈 j,m〉 ∈ f : j < k} .

Put Φ = Pfin(N × N) and D = ⋃
n Dn , where for every n :

Dn = {〈a,ϕ〉: a ∈ Nn ∧ ϕ ∈ Φn ∧ ∀ j < n
(
ϕ( j) ⊆ κa( j) × N

)}
.

(The inclusion ϕ( j) ⊆ κa( j) × N here means that the set ϕ( j) ⊆ N × N satisfies ϕ( j) = ϕ( j) � κa( j) , that is, every pair
〈k, l〉 ∈ ϕ( j) satisfies k < κa( j) .)

If 〈a,ϕ〉 ∈ Dn and 〈x, ξ〉 ∈ RN × RN then we define y = τ ξ
x (a,ϕ) ∈ RN as follows: y = 〈b0,b1, . . . ,bn−1〉∧(x��n) , where

the reals bm ∈ R (m < n) are defined by inverse induction so that

bm = F a(m)
m

(〈bm+1,bm+2, . . . ,bn−1〉∧(x��n),ϕ(m) · (ξ�<κa(m)
), ξ��κa(m)

)
. (4)

(See Remark 14 on notation. The element η = (ϕ(m) · (ξ�<κa(m)
))∧(ξ��κa(m)

) belongs to RN and satisfies η E3 ξ because
ϕ(m) is a finite set.)

Put τ ξ
x (Λ,Λ) = x (Λ is the empty sequence).

Note that by definition the element y = τ ξ
x (a,ϕ) ∈ RN satisfies y��n = x��n provided 〈a,ϕ〉 ∈ Dn , thus in any case

xE1 τ ξ
x (a,ϕ) . Thus τ ξ

x , the trace of 〈x, ξ〉 , is a countable sequence, that is, a function defined on D = ⋃
n Dn , a countable set,

and the set ranτ ξ
x = {τ ξ

x (a,ϕ): 〈a,ϕ〉 ∈ D} of all terms of this sequence is at most countable and satisfies x = τ ξ
x (Λ,Λ) ∈

ranτ ξ
x ⊆ [x]E1 .

Claim 17. Suppose that 〈x, ξ〉 ∈ P ′′
0 . Then Cξ

x ⊆ ranτ ξ
x — and hence Cξ

x is at most countable. More exactly if y ∈ C ξ
x and y��n =

x��n then there is a pair 〈a,ϕ〉 ∈ Dn such that y = τ ξ
x (a,ϕ) .

We prove the second, more exact part of the claim. By definition there is η ∈ RN such that 〈y, η〉 ∈ P ′′
0 and ξE3η . Put

bm = y(m), ∀m . Note that for every m < n there is a number a(m) such that
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bm = F a(m)
m

(〈bm+1, . . . ,bn−1〉∧(y��n),η
)

= F a(m)
m

(〈bm+1, . . . ,bn−1〉∧(y��n),η�<κa(m)
, η��κa(m)

)
for all m < n (see Blanket Assumption 15), and hence

bm = F a(m)
m

(〈bm+1, . . . ,bn−1〉∧(x��n),η�<κa(m)
, ξ��κa(m)

)
by the invariance of functions F i

m and because x��n = y��n . On the other hand, it follows from the assumption ξ E3 η that
for every m < n there is a finite set ϕ(m) ⊆ κa(m) × N such that η�<κa(m)

= ϕ(m) · (ξ�<κa(m)
) . Then

bm = F a(m)
m

(〈bm+1, . . . ,bn−1〉∧(x��n),ϕ(m) · (ξ�<κa(m)
), ξ��κa(m)

)
for every m < n , that is, y = τ ξ

x (a,ϕ) , as required. � (Claim and Lemma 16)

The next result reduces the equivalence relation E13 � P ′′
0 to the equality of sets of the form ranτ ξ

x , that is essentially
to the equivalence relation T2 of “equality of countable sets of reals”.

Corollary 18. Suppose that 〈x, ξ〉 and 〈y, η〉 belong to P ′′
0 . Then 〈x, ξ〉 E13 〈y, η〉 holds if and only if ξ E3 η and ranτ ξ

x = ranτ
η
y .

Proof. The “if” direction is rather easy. If ξ E3 η and ranτ
η
y = ranτ ξ

x then x E1 y because ranτ
η
y ⊆ [y]E1 and ranτ ξ

x ⊆
[x]E1 by Lemma 16.

To prove the converse suppose that 〈x, ξ〉 E13 〈y, η〉 . Then ξ E3 η , of course. Furthermore, x E1 y , therefore x��n = y��n

for an appropriate n . Let us prove that ranτ
η
y = ranτ ξ

x . First of all, by definition we have y ∈ C ξ
x , and hence (see the

proof of Claim 17) there exists a pair 〈a,ϕ〉 ∈ Dn such that y = τ ξ
x (a,ϕ) .

Now, let us establish ranτ ξ
x = ranτ ξ

y (with one and the same ξ ). Suppose that z ∈ ranτ ξ
x , that is, z = τ ξ

x (b,ψ) for a

pair 〈b,ψ〉 ∈ Dm for some m . If m � n then obviously z = τ ξ
x (b,ψ) = τ ξ

y(b,ψ) , and hence (as x��n = y��n ) z ∈ ranτ ξ
y .

If m < n then z = τ ξ
x (b,ψ) = τ ξ

y(a
′,ϕ′) , where a′ = b∧(a��m) and ϕ′ = ψ∧(ϕ��m) , and once again z ∈ ranτ ξ

y . Thus

ranτ ξ
x ⊆ ranτ ξ

y . The proof of the inverse inclusion ranτ ξ
y ⊆ ranτ ξ

x is similar.

Thus ranτ ξ
y = ranτ ξ

x . It remains to prove ranτ
η
y = ranτ ξ

y for all y, ξ, η such that ξE3η . Here we need another
block of definitions.

Let H be the set of all sets δ ⊆ N × N such that δ” j = {m: 〈 j,m〉 ∈ δ} is finite for all j ∈ N . For instance if ξ,η ∈ RN

satisfy ξE3η then the set

δξη = {〈 j,m〉: ξ( j)(m) �= η( j)(m)
}

belongs to H . The operation of symmetric difference � converts H into a Polish group equal to the product group
〈Pfin(N);�〉N .

If n ∈ N , 〈a,ϕ〉 ∈ Dn , and δ ∈ H then we define a sequence ϕ′ = Ha
δ(ϕ) ∈ Φn so that ϕ′(m) = (δ � κa(m)) � ϕ(m) for

every m < n .4 Then the pair 〈a, Ha
δ(ϕ)〉 obviously still belongs to Dn and Ha

δ(Ha
δ(ϕ)) = ϕ .

Coming back to a triple of y, ξ, η ∈ RN such that ξ E3 η , let δ = δξη . A routine verification shows that τ
η
y(a,ϕ) =

τ ξ
y(a, Ha

δ (ϕ)) for all 〈a,ϕ〉 ∈ D . It follows that ranτ
η
y = ranτ ξ

y , as required. �
Corollary 19. The restricted relation E13 � P ′′

0 is Borel reducible to T2 .

Proof. Since all τ ξ
x are countable sequences of reals, the equality ranτ

η
y = ranτ ξ

x of Corollary 18 is Borel reducible to T2 .
Thus E13 � P ′′

0 is Borel reducible to E3 × T2 by Corollary 18. However it is known that E3 is Borel reducible to T2 , and so
does T2 × T2 . �

� (Case 1 of Theorem 2)

6. Case 1: a more elementary (?) transformation group

Here we sketch the proof of Theorem 3; see [6] for a full proof. Arguing under the assumptions of Case 1, we define a
closed set

Π = {〈x, ξ〉 ∈ RN × RN: ∀n ∃〈a,ϕ〉 ∈ Dn
(
x = τ ξ

x (a,ϕ)
)}

.

4 Recall that δ � k = {〈 j, i〉 ∈ δ: j < k} .
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It satisfies P ′′
0 ⊆ Π by Claim 17. Suppose that pairs 〈a,ϕ〉 , 〈b,ψ〉 belong to Dn for the same n , and 〈x, ξ〉 ∈ RN × RN . Put

Gbψ
aϕ (x, ξ) = 〈y, ξ〉 ∈ RN × RN , where

y =

⎧⎪⎨⎪⎩
τ ξ

x (b,ψ) whenever x = τ ξ
x (a,ϕ),

τ ξ
x (a,ϕ) whenever x = τ ξ

x (b,ψ),

x whenever τ ξ
x (a,ϕ) �= x �= τ ξ

x(b,ψ).

In our assumptions, y��n = x��n and Gbψ
aϕ is a homeomorphism of RN × RN onto itself and of Π onto itself, and

Gbψ
aϕ = Gaϕ

bψ
. In addition we have ranτ ξ

x = ranτ ξ
y whenever 〈y, ξ〉 = Gbψ

aϕ (x, ξ) .

The group G of all superpositions of maps of the form Gbψ
aϕ , where 〈a,ϕ〉 , 〈b,ψ〉 belong to one and the same set Dn ,

is a countable group of homeomorphisms of RN × RN . Consider the equivalence relation G induced by G on Π . Thus
〈x, ξ〉 G 〈y, η〉 iff there exists a homeomorphism g ∈ G such that g(x, ξ) = 〈y, η〉 (and then by definition η = ξ ).

Now let us study relations between G and H , the group introduced in the proof of Corollary 18. For any δ ∈ H define
a homeomorphism Hδ of RN × RN so that Hδ(x, ξ) = 〈x, η〉 , where simply η = δ � ξ in the sense that

η(m, j) =
{

ξ(m, j) whenever 〈m, j〉 /∈ δ,

1 − ξ(m, j) whenever 〈m, j〉 ∈ δ.

(Then obviously δ = δξη .) If γ , δ ∈ H then the superposition Hδ ◦ Hγ coincides with Hγ �δ , where � is the symmetric

difference, as usual. Transformations of the form Gbψ
aϕ do not commute with those of the form Hδ , yet there exists a

convenient and easy to verify law of commutation:

Lemma 20. Suppose that n ∈ N and pairs 〈a,ϕ〉 and 〈b,ψ〉 belong to Dn , and δ ∈ H . Then the superposition Gbψ
aϕ ◦ Hδ coincides

with Hδ ◦ Gbψ ′
aϕ′ , where ϕ′ = Ha

δ (ϕ) and ψ ′ = Hb
δ (ψ) .

It follows that the set S of all homeomorphisms s : RN × RN → RN × RN of the form s = Hδ ◦ g�−1 ◦ g�−2 ◦ · · · ◦ g1 ◦ g0,

where � ∈ N , δ ∈ H , and each gi is a homeomorphism of RN × RN of the form Gbiψi
aiϕi

, and the pairs 〈ai,ϕi〉 , 〈bi,ψi〉
belong to one and the same set Dn, n = ni (then g�−1 ◦ g�−2 ◦ · · · ◦ g1 ◦ g0 ∈ G ), — is a group under the superposition.
For instance if g = Gbψ

aϕ and g1 belong to G (and 〈a,ϕ〉 , 〈b,ψ〉 belong to one and the same Dn ) then the superposition

Hδ ◦ g ◦ Hδ1 ◦ g1 coincides with Hδ ◦ Hδ1 ◦ g′ ◦ g1 = Hδ�δ1 ◦ (g′ ◦ g1), where g′ = Gbψ ′
aϕ′ and ϕ′ = Ha

δ1
(ϕ) , ψ ′ = Hb

δ1
(ψ) as

in Lemma 20.
Thus S is a more complicated group than the direct cartesian product of G and H , but on the other hand more

elementary than the free product (of all formal superpositions of elements of both groups). The action of S on RN × RN is
defined as follows: if s is as above then s ·〈x, ξ〉 = Hδ(g�−1(g�−2(· · · g1(g0(x, ξ)) · · ·))) . One can easily check that both the
group S and the action are Polish. On the other hand, the induced orbit equivalence relation S is equal to the conjunction
F of G and the equivalence relation E3 acting on the 2nd factor of RN ×RN , in the sense of Theorem 3 in the Introduction.

Moreover, we have 〈x, ξ〉 E13 〈y, η〉 iff 〈x, ξ〉 S 〈y, η〉 for any 〈x, ξ〉, 〈y, η〉 ∈ P ′′
0 .

The final step is the next lemma. Its proof, not really obvious, see in [6].

Lemma 21. G is the union of an increasing sequence of finite subgroups, therefore the induced equivalence relation G is hyperfinite.

� (Theorem 3)

The arguments above reduce further study of Case 1 of Theorem 2 to properties of the group S and its Polish actions.
This is an open topic, and maybe the local finiteness of G (by Lemma 21) can lead to more comprehensive results.

7. Case 2

Then the Σ1
1 set R = P0 ∩ H , where H = 2N � S is the chaotic domain, is non-empty. Our goal will be to prove that

E1 �B E13 � R in this case. The embedding ϑ : RN → R will have the property that any two elements 〈x, ξ〉 and 〈x′, ξ ′〉 in
the range ranϑ ⊆ R satisfy ξE3ξ

′ , so that the ξ ′ -component in the range of ϑ is trivial. And as far as the x -component
is concerned, the embedding will resemble the embedding defined in Case 1 of the proof of the 1st dichotomy theorem in
[10] (see also [8, Ch. 8]).

Recall that sets Sk
n were defined in Corollary 10, and by definition

〈x, ξ〉 ∈ H �⇒ ∀m ∃n � m ∀k
(〈x, ξ〉 /∈ Sk

n

)
�⇒ ∀m ∃n � m ∀k ∀ϕ ∈ Fk

n

(
x(n) �= ϕ(x�>n, ξ)

) }
(5)

in Case 2. Prove a couple of related technical lemmas.
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Lemma 22. Each set Sk
n is invariant in the following sense: if 〈x, ξ〉 ∈ Sk

n , 〈y, η〉 ∈ RN × RN , x��n = y��n , and ξ E3 η then
〈y, η〉 ∈ Sk

n .

Proof. Otherwise there is a Δ1
1 function ϕ ∈ TF k

n such that y(n) = ϕ(y�>n, η) . Then x(n) = ϕ(x�>n, η) as well because
x��n = y��n . We put

u j = ξ( j) � η( j) = {
m: ξ( j)(m) �= η( j)(m)

}
for every j < k , these are finite subsets of N . If a ∈ 2N and u ⊆ N then define u ·a ∈ 2N so that (u ·a)(m) = a(m) for m /∈ u ,
and (u ·a)(m) = a(m) for m /∈ u . If ζ ∈ RN then define f (ζ ) ∈ RN so that f (ζ )( j) = u j ·ζ( j) for j < k , and f (ζ )( j) = ζ( j)
for j � k .

Finally, put ψ(z, ζ ) = ϕ(z, f (ζ )) for every 〈z, ζ 〉 ∈ R>n × RN . The map ψ obviously belongs to TF k
n together with ϕ .

Moreover

x(n) = ϕ(x�>n, η) = ψ
(
x�>n, f (η)

) = ψ(x�>n, ξ)

because f (η)�<k = ξ�<k , and this contradicts to the choice of 〈x, ξ〉 . �
The next simple lemma will allow us to split Σ1

1 sets in RN × RN .

Lemma 23. If P ⊆ RN × RN is a Σ1
1 set and P � Sk

n then there exist points 〈x, ξ〉 and 〈y, η〉 in P with

y�>n = x�>n, η E3 ξ, η�<k = ξ�<k, but y(n) �= x(n).

Proof. Otherwise ψ = {〈〈y�>n, η〉, y(n)〉: 〈y, η〉 ∈ P } is a map in F k
n , and hence P ⊆ Sk

n , contradiction. �
8. Case 2: splitting system

We apply a splitting construction, developed in [5] for the study of “ill”founded Sacks iterations. Below, 2n will typically
denote the set of all dyadic sequences of length n , and 2<ω = ⋃

n 2n = all finite dyadic sequences.
The construction involves a map ϕ : N → N assuming infinitely many values and each its value infinitely many times

(but ranϕ may be a proper subset of N ), another map π : N → N , and, for each u ∈ 2<ω , a non-empty Σ1
1 subset

Pu ⊆ R = H ∩ P0 — which satisfy a quite long list of properties.
First of all, if ϕ is already defined at least on [0,n) and u �= v ∈ 2n then let νϕ [u, v] = max{ϕ(�): � < n ∧ u(�) �= v(�)}.

And put νϕ[u, u] = −1 for any u .
Now we present the list of requirements 1 ◦ –8 ◦ .

1 ◦ : if ϕ(n) /∈ {ϕ(�): � < n} then ϕ(n) > ϕ(�) for each � < n ;
2 ◦ : if u ∈ 2n then Pu ∩ (

⋃
k Sk

ϕ(�)) = ∅ for each � < n ;

3 ◦ : every Pu is a non-empty Σ1
1 subset of R ∩ H ;

4 ◦ : Pu∧ i ⊆ Pu for all u ∈ 2<ω and i = 0,1 .

Two further conditions are related rather to the sets Xu = dom Pu .

5 ◦ : if u, v ∈ 2n then Xu�>νϕ [u,v] = Xv�>νϕ [u,v] ;
6 ◦ : if u, v ∈ 2n then Xu��νϕ [u,v] ∩ Xv��νϕ [u,v] = ∅ .

The content of the next condition is some sort of genericity in the sense of the Gandy–Harrington forcing in the space
RN × RN , that is, the forcing notion

P = all non-empty Σ1
1 subsets of RN × RN.

Let us fix a countable transitive model M of a sufficiently large fragment of ZFC .5 For technical reasons, we assume that
M is an elementary submodel of the universe w.r.t. all analytic formulas. Then simple relations between sets in P in the
universe, like P = Q or P ⊆ Q , are adequately reflected as the same relations between their intersections P ∩ M , Q ∩ M
with the model M . In this sense P is a forcing notion in M .

A set D ⊆ P is open dense iff, first, for any P ∈ P there is Q ∈ D , Q ⊆ P , and given sets P ⊆ Q ∈ R , if Q belongs to
D then so does P . A set D ⊆ P is coded in M , iff the set {P ∩ M: P ∈ D} belongs to M . There exists at most countably
many such sets because M is countable. Let us fix an enumeration (not in M ) {Dn: n ∈ N} of all open dense sets D ⊆ P
coded in M .

5 For instance remove the Power Set axiom but add the axiom saying that for any set X there exists the set of all countable subsets of X .
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The next condition essentially asserts the P -genericity of each branch in the splitting construction over M .

7 ◦ : for every n , if u ∈ 2n+1 then Pu ∈ Dn .

Remark 24. It follows from 7 ◦ that for any a ∈ 2N the sequence {Pa�n}n∈N is generic enough for the intersection
⋂

n Pa�n �=
∅ to consist of a single point, say 〈g(a), γ (a)〉 , and for the maps g, γ : 2N → RN × RN to be continuous.

Note that g is 1 − 1 . Indeed if a �= b belong to 2N then a(n) �= b(n) for some n , and hence νϕ [a � m,b � m] � ϕ(n) for
all m � n . It follows by 6 ◦ that Xa�m ∩ Xb�m = ∅ for m > n , therefore g(a) �= g(b) .

Our final requirement involves the ξ -parts of sets Pu . We’ll need the following definition. Suppose that 〈x, ξ〉 and 〈y, η〉
belong to RN × RN , p ∈ N , and s ∈ N<ω , lh s = m (the length of s ). Define 〈x, ξ〉 ∼=s

p 〈y, η〉 iff

ξ E3 η, x�>p = y�>p, and ξ(k) � η(k) ⊆ s(k) for all k < m = lh s,

where α � β = { j: α( j) �= β( j)} for α,β ∈ 2N . If P , Q ⊆ RN × RN are arbitrary sets then under the same circumstances
P ∼=s

p Q will mean that

∀〈x, ξ〉 ∈ P ∃〈y, η〉 ∈ Q
(〈x, ξ〉 ∼=s

p 〈y, η〉) and vice versa.

Obviously ∼=s
p is an equivalence relation.

The following is the last condition:

8 ◦ : there exists a map π : N → N , such that Pu ∼=π�n
νϕ [u,v] P v holds for every n and all u, v ∈ 2n (and then Xu�>νϕ [u,v] =

Xv�>νϕ [u,v] as in 5 ◦ ).

9. Case 2: splitting system implies the reducibility

Here we prove that any system of sets Pu and Xu = dom Pu and maps ϕ, π satisfying 1 ◦ –8 ◦ implies Borel reducibility
of E1 to E13 � R . This completes Case 2. The construction of such a splitting system will follow in the remainder.

Let the maps g and γ be defined as in Remark 24. Put

W = {〈
g(a), γ (a)

〉
: a ∈ 2N

}
.

Lemma 25. W is a closed set in RN × RN and a function. Moreover if 〈x, ξ〉 and 〈y, η〉 belong to W then ξ E3 η .

Proof. W is closed as a continuous image of 2N . That W is a function follows from the bijectivity of g , see Remark 24.
Finally any two ξ, η as indikated satisfy ξ(k) � η(k) ⊆ π(k) for all k by 8 ◦ . �

Put X = domW . Thus W is a continuous map X → RN by the lemma.

Corollary 26. There exists a Borel reduction of E1 � X to E13 � W .

Proof. As W is a function, we can use the notation W (x) for x ∈ X = domW . Put f (x) = 〈x, W (x)〉 . This is a Borel, even
a continuous map X → W . It remains to establish the equivalence

x E1 y ⇐⇒ f (x)E13 f (y) for all x, y ∈ X . (6)

If x E1 y then W (x)E3W (y) by Lemma 25, and hence easily f (x)E13 f (y) . If x E1 y fails then obviously f (x)E13 f (y) fails,
too. �

Thus to complete Case 2 it now suffices to define a Borel reduction of E1 to E1 � X . To get such a reduction consider
the set Φ = ranϕ , and let Φ = {pm: m ∈ N} in the increasing order; that the set Φ ⊆ N is infinite follows from 1 ◦ .

Suppose that n ∈ N . Then ϕ(n) = pm for some (unique) m : we put ψ(n) = m . Thus ψ : N
onto−→ N and the preimage

ψ−1(m) = ϕ−1(pm) is an infinite subset of N for any m . Define a parallel system of sets Yu ⊆ RN , u ∈ 2<ω , as follows. Put
YΛ = RN . Suppose that Yu has been defined, u ∈ 2n . Put p = ϕ(n) = pψ(n) . Let K be the number of all indices � < n still
satisfying ϕ(�) = p , perhaps K = 0 . Put Yu∧ i = {x ∈ Yu: x(p)(K ) = i} for i = 0,1 .

Each of Yu is clearly a basic clopen set in RN , and one easily verifies that conditions 4 ◦ –6 ◦ are satisfied for the sets
Yu and the map ψ (instead of ϕ in 5 ◦ , 6 ◦ ), in particular

6∗ : if u, v ∈ 2n then Yu�>νψ [u,v] = Y v�>νψ [u,v] ;
7∗ : if u, v ∈ 2n then Yu��νψ [u,v] ∩ Y v��νψ [u,v] = ∅ ;

where νψ [u, v] = max{ψ(�): � < n ∧ u(�) �= v(�)} (compare with νϕ above).
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It is clear that for any a ∈ 2N the intersection
⋂

n Ya�n = { f (a)} is a singleton, and the map f is continuous and 1–1.
(We can, of course, define f explicitly: f (a)(p)(K ) = a(n) , where n ∈ N is chosen so that ψ(n) = p and there is exactly K
numbers � < n with ψ(�) = p .) Note finally that { f (a): a ∈ 2N} = RN since by definition Yu∧1 ∪ Yu∧0 = Yu for all u .

We conclude that the map ϑ(x) = g( f −1(x)) is a continuous map (in fact a homeomorphism in this case by compact-

ness) RN onto−→ X = domW .

Lemma 27. The map ϑ is a reduction of E1 to E1 � X , and hence ϑ witnesses E1 �B E1 � X and E1 �B E13 � W by Corollary 26.

Proof. It suffices to check that the map ϑ satisfies the following requirement: for each y, y′ ∈ RN and m ,

y��m = y′��m iff ϑ(y)��pm = ϑ(y′)��pm . (7)

To prove (7) suppose that y = f (a) and x = g(a) = ϑ(y) , and similarly y′ = f (a′) and x′ = g(a′) = ϑ(y′) , where a, a′ ∈ 2N .
Suppose that y��m = y′��m . We then have m > νψ [a � n,a′ � n] for any n by 7∗ . It follows, by the definition of ψ , that
pm > νϕ [a � n,a′ � n] for any n , hence, Xa�n��pm = Xa′�n��pm for any n by 5 ◦ . Therefore x��pm = x′��pm by 7 ◦ , that is,
the right-hand side of (7). The inverse implication in (7) is proved similarly. � (Lemma)

It follows that we can now focus on the construction of a system satisfying 1 ◦ –8 ◦ . The construction follows in Sec-
tion 12, after several preliminary lemmas in Sections 10 and 11.

10. Case 2: how to shrink a splitting system

Let us prove some results related to preservation of condition 8 ◦ under certain transformations of shrinking type. They
will be applied in the construction of a splitting system satisfying conditions 1 ◦ –8 ◦ of Section 8.

Lemma 28. Suppose that n ∈ N , s ∈ N<ω , and a system of Σ1
1 sets ∅ �= Pu ⊆ RN × RN , u ∈ 2n , satisfies Pu ∼=s

νϕ [u,v] P v for all

u, v ∈ 2n . Assume also that w0 ∈ 2n , and ∅ �= Q ⊆ P w0 is a Σ1
1 set. Then the system of Σ1

1 sets

P ′
u = {〈x, ξ〉 ∈ Pu: ∃〈z, ζ 〉 ∈ Q

(〈x, ξ〉 ∼=s
νϕ [u,w0] 〈z, ζ 〉)}, u ∈ 2n,

still satisfies P ′
u

∼=s
νϕ [u,v] P ′

v for all u, v ∈ 2n , and P ′
w0

= Q .

Proof. P ′
w0

= Q holds because νϕ[w0, w0] = −1 . Let us verify 8 ◦ . Suppose that u, v ∈ 2n . Each one of the three numbers
νϕ[u, w], νϕ[v, w], νϕ[u, v] is obviously not bigger than the largest of the two other numbers. This observation leads us to
the following three cases.

Case a: νϕ[u, w0] = νϕ[u, v] � νϕ[v, w0] . Consider any 〈x, ξ〉 ∈ P ′
u . Then by definition there exists 〈z, ζ 〉 ∈ Q

with 〈x, ξ〉 ∼=s
νϕ [u,w0] 〈z, ζ 〉 . Then, as P w0

∼=s
νϕ [v,w0] P v is assumed by the lemma, there is 〈y, η〉 ∈ P v such that

〈y, η〉 ∼=s
νϕ [v,w0] 〈z, ζ 〉 . Note that 〈z, ζ 〉 witnesses 〈y, η〉 ∈ P ′

v . On the other hand, 〈x, ξ〉 ∼=s
νϕ [u,v] 〈y, η〉 because νϕ[u, w0] =

νϕ[u, v] � νϕ [v, w0] . Conversely, suppose that 〈y, η〉 ∈ P ′
v . Then there is 〈z, ζ 〉 ∈ Q such that 〈y, η〉 ∼=s

νϕ [v,w0] 〈z, ζ 〉 .

Yet P w0
∼=s

νϕ [u,w0] Pu , and hence there exists 〈x, ξ〉 ∈ P ′
u with 〈x, ξ〉 ∼=s

νϕ [u,w0] 〈z, ζ 〉 . Once again we conclude that

〈x, ξ〉 ∼=s
νϕ [u,v] 〈y, η〉 .

Case b: νϕ[v, w] = νϕ[u, v] � νϕ[u, w] . Absolutely similar to Case a.

Case c: νϕ[u, w0] = νϕ [v, w0] � νϕ [u, v] . This is a symmetric case, thus it is enough to carry out only the direction
P ′

u → P ′
v . Consider any 〈x, ξ〉 ∈ P ′

u . As above there is 〈z, ζ 〉 ∈ Q such that 〈x, ξ〉 ∼=s
νϕ [u,w0] 〈z, ζ 〉 . On the other hand, as

Pu ∼=s
νϕ [u,v] P v , there exists a point 〈y, η〉 ∈ P v such that 〈y, η〉 ∼=s

νϕ [u,v] 〈x, ξ〉 . Note that 〈z, ζ 〉 witnesses 〈y, η〉 ∈ P ′
v :

indeed by definition we have 〈y, η〉 ∼=s
νϕ [v,w0] 〈z, ζ 〉 . �

Corollary 29. Assume that n ∈ N , s ∈ N<ω , and a system of Σ1
1 sets ∅ �= Pu ⊆ RN × RN , u ∈ 2n , satisfies Pu ∼=s

νϕ [u,v] P v for all

u, v ∈ 2n . Assume also that ∅ �= W ⊆ 2n , and a Σ1
1 set ∅ �= Q w ⊆ P w is defined for every w ∈ W so that still Q w ∼=s

νϕ [w,w ′] Q w ′

for all w, w ′ ∈ W . Then the system of Σ1
1 sets

P ′
u = {〈x, ξ〉 ∈ Pu: ∀w ∈ W ∃〈y, η〉 ∈ Q w

(〈x, ξ〉 ∼=s
νϕ [u,w] 〈y, η〉)}

still satisfies P ′
u

∼=s
νϕ [u,v] P ′

v for all u, v ∈ 2n , and P ′
w = Q w for all w ∈ W .

Proof. Apply the transformation of Lemma 28 consecutively for all w0 ∈ W and the corresponding sets Q w0 . Note that
these transformations do not change the sets Q w with w ∈ W because Q w ∼=s

νϕ [w,w ′] Q w ′ for all w, w ′ ∈ W . �
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Remark 30. The sets P ′
u in Corollary 29 can as well be defined by

P ′
u = {〈x, ξ〉 ∈ Pu: ∃〈y, η〉 ∈ Q wu

(〈x, ξ〉 ∼=s
νϕ [u,wu] 〈y, η〉)}

where, for each u ∈ 2n , wu is an element of W such that the number νϕ[u, wu] is the least of all numbers of the form
νϕ[u, w] , w ∈ W . (If there exist several w ∈ W with the minimal νϕ[u, w] then take the least of them.)

11. Case 2: how to split a splitting system

Here we consider a different question related to the construction of systems satisfying conditions 1 ◦ –8 ◦ of Section 8.
Given a system of Σ1

1 sets satisfying a 8 ◦ -like condition, how to shrink the sets so that 8 ◦ is preserved and in addition 6 ◦
holds. Let us begin with a basic technical question: given a pair of Σ1

1 sets P , Q satisfying P ∼=s
p Q for some p, s , how

to define a pair of smaller Σ1
1 sets P ′ ⊆ P , Q ′ ⊆ Q , still satisfying the same condition, but as disjoint as it is compatible

with this condition.
Recall that dom P = {x: ∃ξ (〈x, ξ〉 ∈ P )} for P ⊆ RN × RN .

Lemma 31. If P , Q ⊆ RN × RN are non-empty Σ1
1 sets, p ∈ N , s ∈ N<ω , P ∼=s

p Q , and (P ∪ Q ) ∩ Sk
p = ∅ , where k = lh s , then

there exist non-empty Σ1
1 sets P ′ ⊆ P , Q ′ ⊆ Q such that still P ′ ∼=s

p Q ′ but in addition (dom P ′)��p ∩ (dom Q ′)��p = ∅ .

Note that P ∼=p
s Q implies (dom P )�>p = (dom Q )�>p .

Proof. It follows from Lemma 23 that there exist points 〈x0, ξ0〉 and 〈x1, ξ1〉 in P such that 〈x0, ξ0〉 ∼=s
p 〈x1, ξ1〉 but

x1(p) �= x0(p) . Then there exists a number j such that, say, x1(p)( j) = 1 �= 0 = x0(p)( j) . On the other hand, there
exists 〈y0, η0〉 ∈ Q such that 〈xi, ξi〉 ∼=s

p 〈y0, η0〉 for i = 0,1 . Then y0(p)( j) �= xi(p)( j) for one of i = 0,1 . Let say

y0(p)( j) = 0 �= 1 = x0(p)( j) . Then the Σ1
1 sets

P ′ = {〈x, ξ〉 ∈ P : ∃〈y, η〉 ∈ Q
(
x(p)( j) = 1 ∧ y(p)( j) = 0 ∧ 〈x, ξ〉 ∼=s

p 〈y, η〉)};
Q ′ = {〈y, η〉 ∈ Q : ∃〈x, ξ〉 ∈ P

(
x(p)( j) = 1 ∧ y(p)( j) = 0 ∧ 〈x, ξ〉 ∼=s

p 〈y, η〉)}
are Σ1

1 and non-empty (contain resp. 〈x0, ξ0〉 and 〈y0, η0〉 ), and they satisfy P ′ ∼=s
p Q ′ , but (dom P ′)��p ∩(dom Q ′)��p = ∅

because y(p)( j) = 0 �= 1 = x(p)( j) whenever 〈x, ξ〉 ∈ P ′ and 〈y, η〉 ∈ Q ′ . �
Corollary 32. Assume that n ∈ N , s ∈ N<ω , and a system of Σ1

1 sets ∅ �= Pu ⊆ RN × RN , u ∈ 2n , satisfies Pu ∼=s
νϕ [u,v] P v

for all u, v ∈ 2n . Then there exists a system of Σ1
1 sets ∅ �= P ′

u ⊆ Pu , u ∈ 2n , such that still P ′
u

∼=s
νϕ [u,v] P v , and in addition

(dom P ′
u)��νϕ [u,v] ∩ (dom P ′

v)��νϕ [u,v] = ∅ , for all u �= v ∈ 2n .

Proof. Consider any pair of u0 �= v0 in 2n . Apply Lemma 31 for the sets P = Pu0 and Q = P v0 and p = νϕ [u0, v0] . Let
P ′ and Q ′ be the Σ1

1 sets obtained, in particular P ′ ∼=s
νϕ [u0,v0] Q ′ and (dom P ′)��νϕ [u0,v0] ∩ (dom Q ′)��νϕ [u0,v0] = ∅ . Then

by Corollary 29 there is a system of Σ1
1 sets ∅ �= P ′

u ⊆ Pu such that still P ′
u

∼=s
νϕ [u,v] P ′

v for all u, v ∈ 2n , and Pu0 = P ′ ,

P v0 = Q ′ — and hence(
dom P ′

u0

)
��νϕ [u0,v0] ∩ (

dom P ′
v0

)
��νϕ [u0,v0] = ∅.

Take any other pair of u1 �= v1 in 2n and transform the system of sets P ′
u the same way. Iterate this construction sufficient

(finite) number of steps. �
12. Case 2: the construction of a splitting system

We continue the proof of Theorem 2 — Case 2. Recall that R = P0 ∩ H is a Σ1
1 set. By Lemma 27, it suffices to define

functions ϕ and π and a system of Σ1
1 sets Pu ⊆ R together satisfying conditions 1 ◦ –8 ◦ . The construction of such a

system will go on by induction on n . That is, at any step n the sets Pu with u ∈ 2n , as well as the values of ϕ(k) and
π(k) with k < n , will be defined.

For n = 0 , we put PΛ = R . (Λ ∈ 20 is the only sequence of length 0 .)
Suppose that sets Pu ⊆ R with u ∈ 2n , and also all values ϕ(�) , � < n , and π(k) , k < n , have been defined and satisfy

the applicable part of 1 ◦ –8 ◦ . The content of the inductive step n �→ n + 1 will consist in definition of ϕ(n) , π(n) , and sets
Pu∧ i with u∧i ∈ 2n+1 , that is, u ∈ 2n (a dyadic sequence of length n ) and i = 0,1 . This goes on in four Steps A, B, C, D.
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12.1. Step A: definition of ϕ(n)

Suppose that, in the order of increase,{
ϕ(�): � < n

} = {p0 < · · · < pm}.
For j � m , let K j be the number of all � < n with ϕ(�) = p j .

Case A: K j � m for all j � m . Then consider any u0 ∈ 2n and an arbitrary point 〈x0, ξ0〉 ∈ Pu0 . Note that by (5) of
Section 7 there is a number p > max�<n ϕ(�) such that 〈x0, ξ0〉 /∈ ⋃

k Sk
p . Put ϕ(n) = p .

We claim that the sets P ′
u = Pu �

⋃
k Sk

ϕ(n) still satisfy condition 8 ◦ (and then 5 ◦ for X ′
u = dom P ′

u ). Indeed suppose that

u, v ∈ 2n and 〈x, ξ〉 ∈ P ′
u . Then 〈x, ξ〉 ∈ Pu , and hence there is a point 〈y, η〉 ∈ P v such that 〈x, ξ〉 ∼=π�n

νϕ [u,v] 〈y, η〉 . It remains

to show that 〈y, η〉 /∈ ⋃
k Sk

ϕ(n) . Suppose towards the contrary that 〈y, η〉 ∈ Sk
ϕ(n) for some k . By definition ϕ(n) > νϕ[u, v] ,

therefore x��ϕ(n) = y��ϕ(n) . It follows that 〈x, ξ〉 ∈ Sk
ϕ(n) by Lemma 22, contradiction.

Case B: If some numbers K j are < m then choose ϕ(n) among p j with the least K j , and among them take the least
one. Thus ϕ(n) = ϕ(�) for some � < n . It follows that in this case Pu ∩ (

⋃
k Sk

ϕ(n)) = ∅ for all u ∈ 2n by the inductive
assumption of 2 ◦ . Put P ′

u = Pu .
Note that this manner of choice of ϕ(n) implies 1 ◦ , 2 ◦ and also implies that ϕ takes infinitely many values and takes

each its value infinitely many times. In addition, the construction given above proves:

Lemma 33. There exists a system of Σ1
1 sets ∅ �= P ′

u ⊆ Pu satisfying 8 ◦ and P ′
u ∩ (

⋃
k Sk

ϕ(n)) = ∅ for all u ∈ 2n .

12.2. Step B: definition of π(n)

We work with the sets P ′
u such as in Lemma 33. The next goal is to prove the following result:

Lemma 34. There exist a number r ∈ N and a system of Σ1
1 sets ∅ �= P ′′

u ⊆ P ′
u satisfying P ′′

u
∼=(π�n)∧r

νϕ [u,v] P ′′
v for all u, v ∈ 2n .

Proof. Let 2n = {u j: j < K } be an arbitrary enumeration of all dyadic sequences of length n ; K = 2n , of course. The
method of proof will be to define, for any k � K , a number rk ∈ N and a system of Σ1

1 sets ∅ �= Q k
u j

⊆ P ′
u j

, j < k , by
induction on k so that

(∗) Q k
ui

∼=(π�n)∧rk
νϕ [ui ,u j ] Q k

u j
for all i < j < k . (Where (π � n)∧r is the extension of the finite sequence π � n by r as the new

rightmost term.)

After this is done, r = rK and the sets P ′′
u = Q K

u prove the lemma.

We begin with k = 2 . Then P ′
u0

∼=π�n
νϕ [u0,u1] P ′

u1
by 8 ◦ , and hence there exist points 〈x0, ξ0〉 ∈ P ′

u0
, 〈x1, ξ1〉 ∈ P ′

u1
such

that 〈x0, ξ0〉 ∼=π�n
νϕ [u0,u1] 〈x1, ξ1〉 . Then ξ0 E3 ξ1 , so that there is a number r ∈ N with ξ0(n) � ξ1(n) ⊆ r2 . Note that for any

p ∈ N and any points 〈x, ξ〉, 〈y, η〉 ∈ RN × RN , 〈x, ξ〉 ∼=(π�n)∧r
νϕ [u0,u1] 〈y, η〉 is equivalent to the conjunction

〈x, ξ〉 ∼=π�n
νϕ [u0,u1] 〈y, η〉 ∧ ξ(n) � η(n) ⊆ r.

It follows that the sets

S0 = {〈x, ξ〉 ∈ P ′
u0

: ∃〈y, η〉 ∈ P ′
u1

(〈x, ξ〉 ∼=(π�n)∧r
νϕ [u0,u1] 〈y, η〉)} and

S1 = {〈y, η〉 ∈ P ′
u1

: ∃〈x, ξ〉 ∈ P ′
u0

(〈x, ξ〉 ∼=(π�n)∧r
νϕ [u0,u1] 〈y, η〉)}

are Σ1
1 and non-empty (contain resp. 〈x0, ξ0〉 and 〈x1, ξ1〉 ), and they obviously satisfy S0 ∼=(π�n)∧r

νϕ [u0,u1] S1 . Therefore by Corol-

lary 29 there exists a system of Σ1
1 sets ∅ �= Q 2

u ⊆ P ′
u , u ∈ 2n , such that Q 2

u0
= S0 , Q 2

u1
= S1 , 8 ◦ still holds, and in

addition Q 2
u0

∼=(π�n)∧r2
νϕ [u0,u1] Q 2

u1
. Put r2 = r .

Now let us carry out the step k �→ k + 1 . Suppose that rk and sets Q k
u j

, j < k , satisfy (∗) . Of all numbers νϕ[u j, uk] ,
j < k , consider the least one. Let this be, say, νϕ[u�, uk] , so that � < k and νϕ[u�, uk] � νϕ[u j, uk] for all j < k . As above

there exists a number r and a pair of non-empty Σ1
1 sets S� ⊆ Q k

u�
and Sk ⊆ Q k

uk
such that S�

∼=(π�n)∧r
νϕ [u�,uk] Sk . We can

assume that r � rk . Put

Q ′
u = {〈y, η〉 ∈ Su j : ∃〈x, ξ〉 ∈ S�

(〈x, ξ〉 ∼=(π�n)∧r 〈y, η〉)}

j νϕ [u�,u j ]
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for all j < k . The proof of Lemma 28 shows that Q ′
u j

are non-empty Σ1
1 sets still satisfying (∗) in the form of

Q ′
ui

∼=(π�n)∧r
νϕ [ui ,u j ] Q ′

u j
for i < j < k — since r � rk , and obviously Q ′

u�
= S� . In addition, put Q ′

uk
= Sk . Then still Q ′

u�
∼=(π�n)∧r

νϕ [u�,uk]
Q ′

uk
by the choice of S� and Sk . We claim that also

Q ′
u j

∼=(π�n)∧r
νϕ [u j ,uk] Q ′

uk
for all j < k. (8)

Indeed we have Q ′
u j

∼=(π�n)∧r
νϕ [u j ,u�] Q ′

u�
and Q ′

u�
∼=(π�n)∧r

νϕ [u�,uk] Q ′
uk

by the above. It follows that Q ′
u j

∼=(π�n)∧r
p Q ′

uk
, where p =

max{νϕ[u j, u�], νϕ[u�, uk]} . Thus it remains to show that p � νϕ[u j, uk] . That νϕ[u�, uk] � νϕ[u j, uk] holds by the choice
of � . Prove that νϕ[u j, u�] � νϕ[u j, uk] . Indeed in any case

νϕ[u j, u�] � max
{
νϕ[u j, uk], νϕ[u�, uk]

}
.

But once again νϕ[u�, uk] � νϕ[u j, uk] , so νϕ[u j, u�] � νϕ[u j, uk] as required.

Thus (8) is established. It follows that Q ′
ui

∼=(π�n)∧r
νϕ [ui ,u j ] Q ′

u j
for all i < j � k . We end the inductive step of the lemma by

putting rk+1 = r . � (Lemma)

12.3. Step C: splitting to the next level

We work with the number r and sets P ′′
u such as in Lemma 34. Put π(n) = r . (Recall that ϕ(n) was defined at Step A.)

The next step is to split each one of the sets P ′′
u in order to define sets Pu∧ i , u∧i ∈ 2n+1 , of the next splitting level.

To begin with, put Q u∧ i = P ′′
u for all u ∈ 2n and i = 0,1 . It is easy to verify that the system of sets Q u∧ i , u∧i ∈ 2n+1 ,

satisfies conditions 1 ◦ –8 ◦ for the level n+1 , except for 7 ◦ and 6 ◦ . In particular, 2 ◦ was fixed at Step A, and 8 ◦ in the form
that Q u∧ i

∼=π�(n+1)

νϕ [u∧ i,v∧ j] Q v∧ j for all u∧i and v∧ j in 2n+1 (and then 5 ◦ as well) at Step B — because (π � n)∧r = π � (n + 1) .

Recall that by definition all sets involved have no common point with
⋃

k Sk
ϕ(n) by 2 ◦ . Therefore Corollary 32 is appli-

cable. We conclude that there exists a system of non-empty Σ1
1 sets Wu∧ i ⊆ Q u∧ i , u∧i ∈ 2n+1 , still satisfying 8 ◦ , and also

satisfying 6 ◦ .

12.4. Step D: genericity

We have to further shrink the sets W u∧ i , u∧i ∈ 2n+1 , obtained at Step C, in order to satisfy 7 ◦ , the last condition not
yet fulfilled in the course of the construction. The goal is to define a new system of Σ1

1 sets ∅ �= Pu∧ i ⊆ Wu∧ i , u∧i ∈ 2n+1 ,
such that still 8 ◦ holds, and in addition Pu∧ i ∈ Dn for all u∧i ∈ 2n+1 , where Dn is the n -th open dense subset of P coded
in M .

Take any u0
∧i0 ∈ 2n+1 . As Dn is a dense subset of P , there exists a set W0 ∈ Dn , therefore, a non-empty Σ1

1 set, such
that W0 ⊆ Wu0

∧ i0 . It follows from Lemma 28 that there exists a system of non-empty Σ1
1 sets W ′

u∧ i ⊆ Wu∧ i , u∧i ∈ 2n+1 ,
still satisfying 8 ◦ , and such that W ′

u0
∧ i0

= Q 0 .

Now take any other u1
∧i1 �= u0

∧i0 in 2n+1 . The same construction yields a system of non-empty Σ1
1 sets W ′′

u∧ i ⊆ W ′
u∧ i ,

u∧i ∈ 2n+1 , still satisfying 8 ◦ , and such that W ′′
u1

∧ i1
= W1 ⊆ W ′

u1
∧ i1

is a set in Dn .

Iterating this construction 2n+1 times, we obtain a system of sets Pu∧ i satisfying 7 ◦ as well as all other conditions in
the list 1 ◦ –8 ◦ , as required. � (Construction and Case 2 of Theorem 2)

� (Theorems 2 and 1)
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