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In the second half of XX Century two fundamental discoveries in
mathematics were made; they might not be known in detail to the
audience.

1 Two very different types of the real numbers (=reals) were
discovered: constructible reals and random reals.

2 Some absolutely undecidable problems were discovered
within one unique axiomatics (= the axiomatics of set theory
= ZFC axiomatics).

As Luzin said on the latter (1925), “the answers to these problems
are not known and will never be known”.
Apparently even a general idea of such undecidable problems did
not exist before Luzin. Moreover, opposite views prevailed.
I begin this talk with a short explanation of the two discoveries
mentioned.



First discovery

A real number x (which we understood as, e.g., a set of natural
numbers) is constructible, if (roughly speaking): there is a
formula ϕ(x , x1, . . . , xn) and an n -tuple α1, . . . , αn of
well-ordered sets of the rational numbers, such that

k ∈ x ⇐⇒ ϕ(x , α1, . . . , αn), ∀ k .

Such well-orderings are called ordinals or transfinite numbers.
Briefly, every constructible real x can be defined by an individual
formula ϕ and an n -tuple α1, . . . , αn of ordinals αi .
I will omit the accurate definition: it can be done by induction
introduced by Goedel and extensively studied in the domain of real
numbers by P.S. Novikov.



First discovery

I recall that, by definition, Borel sets (of reals) form the smallest
σ -ring of sets containing all intervals. Every Borel set B of reals
can be easily coded by a real number, say d , such that

B = Bd .

I will not give a precise definition of the coding but, for instance:
1 any open interval (a, b) is coded by a “fusion” of a and b

(so that all digits of the real a occupy even positions, while
the digits of b occupy odd positions);

2 an open set is coded as a union of the form
⋃

n(an, bn) : so
that codes dn of the intervals (an, bn) are joined in the real
d in the same manner as a matrix with the row dn by a
diagonal enumeration of all its elements.

And so on, for all Borel sets.



First discovery

Definition
A random real is any real number x , which avoids all Borel sets Bd
with null Lebesgue measure and a constructible code d , i.e.

x 6∈ Bd , for all constructible codes d with µ(Bd) = 0 .



Second discovery

The axiomatics of Zermelo–Fraenkel ZFC was designed (1908 –
1925) with the aim to make mathematical proofs more accurate,
and to codify all principles involved in the proofs. After many years
of studies in all areas of mathematics it is firmly established that
any mathematical argument can be converted to a proof based on
the ZFC axioms, or, briefer, a proof in ZFC.

The language of ZFC (it contains a single symbol ∈ ) and the
axiomatics ZFC are unique in the following sense. Any
mathematical argument and any construction can be formally
expressed in ZFC in the same manner as any theorem or
construction of the elementary geometry can be expressed in the
language and axiomatics of the Euclidean geometry.



Second discovery

Moreover, the axiomatics of ZFC has some computability
properties: there is a recursive function theory for arbitrary sets.
We won’t discuss it here.

In addition, some effectiveness properties in ZF (= ZFC sans
the axiom of choice) have been discovered: we can prove
∃ x ψ(x) , then there is a formal definition of such a set x by a
formula ϕ , i.e., ∃ x {ψ(x) ∧ [y ∈ x ⇐⇒ ϕ(y), ∀ y ]} .

This concludes Hilbert’s program of formalization of
mathematics.



Second discovery

Thus, any statement P for which P is unprovable and ¬ P is
unprovable in ZFC, is absolutely undecidable.

Such statements exist, often among the simplest and natural —
we’ll give some examples below. How to to understand this
situation is unclear, in fact they relate to the nature of the
cognizing subject.



Remark
Below, by a “model” we understand “a model of ZFC”.

It is clear that if there exist models M1 and M2 , such that

a sentence P is true in M1 but false in M2

— then P is absolutely undecidable.

Remark
One cannot consider in ZFC, e.g., “the set of all groups” (since
this leads to well-known paradoxes), yet one can consider “the set
of all groups with the support (underlying set) of a restricted
cardinality”. This is pretty sufficient in typical cases.



RESULTS

As said before: there exist absolutely undecidable problems! This
means the following, for example:

Theorem
There exist models M1 and M2 such that it is true in M1 that
“all reals are constructible”, and it is true in M2 that “the set of
all random reals has the full Lebesgue measure (=measure 1 inside
the unit interval [0,1])”.

Later we consider some other theorems of this kind. But now we
have a theorem about random reals:



RESULTS

Random reals are locally undistinguishable from each other in
the following sense:

Theorem
Let x be a random real and P(x) be any its property. Then there
is a Borel set X of positive measure such that :
x ∈ X ,
and every random real x ′ ∈ X satisfies the same property P(x ′) .



RESULTS

Definition
Projective sets are those sets, which can be obtained from Borel
sets by any finite sequence of operations of projection and
complement.

Basically all “conventional” (e.g., known from the analysis,
geometry, algebra and so on) sets of reals are projective.

Theorem
There exist models M1 and M2 such that :
it is true in M1 that “there are non-measurable projective sets”,
while in M2 “all projective sets are measurable”.



RESULTS

We let:
CA be all sets, which can be obtained from Borel sets by just
a single operation of projection and just a single
operation of complement,
A2 be all sets which can be obtained from CA sets by just a
single operation of projection.

A more precise form of the last theorem is as follows:

Theorem
There exist models M1 and M2 such that :
it is true in M1 that “there is a non-measurable individually
defined projective set A2 ”,
while in M2 “all projective sets are measurable”.



RESULTS

Consider the following three properties of a family T of sets of
reals:
T has the kernel property ⇐⇒ any set X ∈ T is either

countable or it contains a subset Y , Borel
isomorphic to the interval [0, 1] ;

T has the measurability property ⇐⇒ all sets X ∈ T are
Lebesgue measurable;

T has the Baire property ⇐⇒ all sets X ∈ T have the Baire
property.

The latter means that X coincides with a Borel set modulo a set
Y of the 1st category (a meager set by Bourbaki), that is, Y is a
countable union of nowhere dense sets.



RESULTS

It turns out that the “imaginary” notion of random reals essentially
helps to prove some theorems in any model (that is, independently
of any axioms). For example:

Theorem (Lyubetsky)
“CA sets have the kernel property” =⇒
=⇒ “A2 sets have the measurability property”.

Theorem (Lyubetsky, Mansfield, Solovay, Stern)
“CA sets have the kernel property” =⇒
=⇒ “A2 sets have the measurability property” =⇒
=⇒ “A2 sets have the Baire property”.



RESULTS

Theorem (by many set theorists)
There is no other implication between the three sentences:
“CA sets have the kernel property”,
“A2 sets have the measurability property”,
“A2 sets have the Baire property”,

provable in ZFC.
That is, any other combination between them fails in an
appropriate model.



RESULTS

They similarly define the notions of:
a real x “constructible relatively to a given real a ”, and
a real x “random relatively to a given real a ”.

If a is constructible itself then any real constructible relatively to a
is simply constructible, and any real random relatively to a is
simply random. Any real a is constructible relatively to itself, but
no real a is random relatively to itself.

Theorem
“The set of all random reals relatively to any real a is a set of full
measure” ⇐⇒ “all A2 sets are measurable”.

Thus, the property of measurability of A2 sets and random reals
are closely related.



Variations of randomness

Let us return to the notion of randomness once again. Any other
family of “small” sets of reals can be considered instead of the
family of null sets. This may lead to notions of randomness really
different from the one above.

Definition (Example 1)
A generic real is any real number x which avoids all Borel meager
sets Bd with a constructible code d .

Theorem
There exist models M1 and M2 such that :
it is true in M1 that “all reals are constructible (thus, neither
random no generic)”,
and it is true in M2 that “the set of all random reals has the full
measure and the set of all generic reals is co-meager”.



Variations of randomness

Generic reals are locally undistinguishable from each other in
the same sense as random reals:
Theorem
Let x be random and P(x) be any its property. Then there is a
Borel co-meager set X such that x ∈ X and every generic real
x ′ ∈ X satisfies the same property P(x’).



Variations of randomness

Definition (Example 2)
A Martin-Löf real is any real number x which avoids all Borel sets
Bd with a computable code d and Bd has the form:
Bd =

⋂
n Un , where {Un} is a sequence of open sets.

This notion is among the fundamentals of the computability theory.

Definition (Example 3)
All "random graphs", that is, those countable graphs which,
roughly speaking, avoid typical singularities, are isomorphic to each
other, so there is basically a single random graph.

There exist other meaningful examples related to other families of
“small sets of reals”.



Variations of randomness

We recall a theorem above, which shows that measurability of A2
sets and random reals are closely related:

Theorem
“The set of all random reals relatively to any real a is a set of full
measure” ⇐⇒ “all A2 sets are measurable”.

A similar result holds for generic reals:

Theorem
“The set of all generic reals relatively to any real a is co-meager”
⇐⇒ “all A2 sets have the Baire property”.

Thus, the Baire property of A2 sets and generic reals are closely
related.



Variations of randomness

Analogously:

Theorem
“The set of all constructible reals relatively to any real a is
countable” ⇐⇒ “all CA sets have the kernel property”.

Thus, the kernel property of CA sets and constructible reals are
closely related.



Our original result

Now we turn to our original result presented here.

Definition
Let (X ,≤) be a partial quasi-order, that is, any transitive and
reflexive relation on a set X (“partial order”). A partial order
(X ,≤) is Borel if it is a Borel set as a set of pairs in X × X .
By Hausdorff, a pantachy in (X ,≤) is any maximal totally
ordered subset Y of X .

In other words, a pantachy is a maximal chain in (X ,≤) .

Theorem (Hausdorff 1906, in ZFC)
Any partial order (X ,≤) contains a pantachy.

In fact, this was one of the first applications of the axiom of choice
AC in mathematics.



Our original result

Such partial orders can be pretty meaningful mathematically, for
instance:

Example (eventual domination, Paul Du Bois Reymond,
1870)
Let S be the set of all infinite sequences {xn} of reals. Define the
eventual domination order ≤∗ on S so that {xn} ≤∗ {yn} if
xn ≤ yn for all but finite n . This means

{xn} ≤∗ {yn} ⇐⇒ ∃m ∀ n ≥ m (xn ≤ yn).

Then (S,≤∗) belongs to P . There is a lot of other partial orders
in P .



Our original result

Haudorff wrote in 1907:
“to legitimate construct a pantachy seems completely
hopeless; the pantachy existence cannot be proved
without AC”.

The Hausdorff conjecture can be rendered, in modern terms, as
follows:

1 taking AC for granted, the pantachy existence cannot be
proved effectively for some partial orders (X ,≤) ;

2 without AC, the pantachy existence cannot be proved for
some partial orders (X ,≤) .

We have proved both parts 1 and 2. I will consider part 1 of the
Hausdorff conjecture, and then part 2.



Our original result

Definition
ROD = real-ordinal definable set X is a set which can be defined
by any formula containing only ordinals and reals (as parameters),
that is,

x ∈ X ⇐⇒ ϕ(x , α1, . . . , αn, b1, . . . , bm), ∀ x

where αi – ordinals, bj – reals.

The class of all ROD sets is considered as the largest class of
effective sets in modern set theory. It contains, for instance, all
Borel sets and even all projective sets.



Our original result

Theorem (Kanovei – Lyubetsky, a vague formulation)
There is a model M and a reasonably large class P of Borel
partial orders such that no order in P has ROD pantachies in M .

Now we define the class P .



Our original result

Definition
A partial order (X ,≤) is locally bounded if for any countable
subset Y of X there exists an element x ∈ X such that y < x
strictly for all y ∈ Y .
Let P be the class of all Borel locally bounded partial orders
defined on a subset of the reals (or any other complete separable
metrizable space).



Our original result

Theorem (Kanovei – Lyubetsky, a precise formulation)
There is a model M such that no order in the class P has ROD
pantachies in M .

This result applies for the eventual domination order (S,≤∗) and
for many other similar partial orders.

Conclusion

In support of the Hausdorff conjecture: it is established that there
is a model in which many typical Borel orderings do not have ROD
pantachies.



Our original result

Now about part 2 of the Hausdorff conjecture:

Theorem (Kanovei – Lyubetsky)
There is a model of ZF (= ZFC without the axiom of choice!) in
which the eventual domination partial order (S,≤∗) has no
pantachy of any kind.



Comments

Fundamentally interesting is the case when an explicitly defined
set T does not contain explicitly defined elements.

Example
The set T of all sections (=selectors) of the quotient R/Q (reals
/ rationals) is easily definable but it doesn’t include any definable
elements. In other words: the type of T = R/Q is very simple, but
if Y ∈ T then Y is not a Borel set, and moreover, Y is not even
projective or Lebesgue measurable in some model.

Our original result presented above also belongs to this category.
The set T of all maximal chains in a given partial order ≤ is
easily definable, but in some cases one cannot define any particular
maximal chain.



Comments to the proof

To prove the original results above, we employ a model known as
the Solovay model. This model M is famous by the fact that it is
true in M that all projective sets are Lebesgue measurable, and
they also have the Baire property and the kernel property.

Our proof is based on two auxiliary theorems (known since 1990s)
on the Solovay model.



Comments to the proof

The first of those auxiliary theorems is as follows.

The class of all Borel sets can be divided into classes, that is, “0
class”, “1 class” and so on, where

“0 class” is the class of all open and closed sets (of reals),
“1 class” is the class of all countable unions and intersections
of the “0 class” sets,

and so on by transfinite induction.

Theorem (Stern)
In the Solovay model: for any Borel class K there is no
uncountable ROD sequences of pairwise different sets in K .



Comments to the proof

The second of the auxiliary theorems also needs a few definitions.
The set 2<ω1 of all transfinite countable dyadic sequences is
naturally ordered by inclusion (that is, the extension of sequences).

An antichain in 2<ω1 is any set A of sequences in which no
sequence is an extension of another sequence in A .

Any antichain A is then linearly ordered by the lexicographical
order.

Theorem (Kanovei)
In the Solovay model: any Borel linear quasi-order is order
isomorphic to a ROD antichain, ordered lexicographically, in the
set 2<ω1 of all transfinite countable dyadic sequences ordered by
inclusion.



The end

Thank you for your attention


