THE PROBLEMS OF RECONCILING GENE AND SPECIES TREES, MAPPING A GENE TREE INTO A SPECIES TREE, AND GENE TREE INFERENCE

Konstantin Gorbunov and Vassily Lyubetsky
Institute for Information Transmission Problems of the Russian Academy of Sciences; 19 Bolshoy Karetny per., Moscow, 127994, Russia; gorbunov@iitp.ru; lyubetsk@iitp.ru;

Problem 1. A long recognized problem is inference of a tree S that amalgamates a set of input gene trees. We further developed a traditional approach to find the tree S such that it minimizes the total cost (gene duplications and losses) of mappings of individual gene trees into S [1,2]. An algorithm is novel mathematically correct and possesses the cubic running time in n and in m, where n is the number of gene trees, and m is the total number of species. Is a correct inference of the tree S possible in polynomial time with the horizontal gene transfer events? Is a correct inference of a phylogenetic net S (instead of a species tree S) possible in polynomial time at least with gene duplication and loss events?

Our condition: the supertree S is sought for such that it contains the majority of clades from input trees G_{i}.
Our method: inductive joining trees S_{1} and S_{2} and rooting it at the joint node.

But: if horizontal gene transfers are allowed, the descendants of genes entering to S_{1} can transfer to S_{2}, which makes the precise optimization difficult.

And: if instead of trees there are phylogenetic nets, then species sets in S_{1} in S_{2} can intersect each other, which makes the precise optimization difficult.

Problem 2. We suggested a novel mathematically correct algorithm to map (reconcile) a gene tree G into S (with time slices) that possesses the cubic running time in |S|, [3-6]. Could one does the same for phylogenetic nets?

Our condition: a horizontal transfer is possible only between branches of the species tree S that lie in the same time slice. Our method: inductive bottom-up construction of embeddings of subtrees of G into subtrees of S.
a) Horizontal transfer with retention of a copy

d			
	e	d^{\prime}	
	e_{1}		e_{2}
	known by induction		known by induction

b) Horizontal transfer without retention of a copy $d|\quad e|$| | | |
| :---: | :---: | :---: | :---: |
| | | |
| $\begin{array}{l}\text { A boundary } \\ \text { of time slices }\end{array}$ | | |
| | d_{1}^{\prime} | |
| $\begin{array}{l}\text { known by } \\ \text { induction }\end{array}$ | | |

But: if instead of trees d there are phylogenetic nets, then the two scenarios in the point a) are not independent which makes the precise optimization difficult.

REFERENCES

[1] K.Yu. Gorbunov, V.A. Lyubetsky. The tree nearest on average to a given set of trees. Problems of Information Transmission, 2011, Vol. 47, No. 3, P. 274-288.
[2] K.Yu. Gorbunov, V.A. Lyubetsky. Fast Algorithm to Reconstruct a Species Supertree from a Set of Protein Trees. Molecular Biology (Moscow), 2012, Vol. 46, No. 1, P. 161-167
[3] K.Yu. Gorbunov, V.A. Lyubetsky. Reconstructing the evolution of genes along the species tree. Molecular Biology (Moscow), 2009, Vol. 43, No. 5, P. 881-893 (received December 9, 2008; accepted for publication January 20, 2009).
[4] K.Yu. Gorbunov, V.A. Lyubetsky. An algorithm of reconciliation of gene and species trees and inferring gene duplications, losses and horizontal transfers. Information Processes, 2010, Vol. 10, No. 2, P. 140144 (in Russian).
[5] J.-Ph. Doyon, C. Scornavacca, K.Yu. Gorbunov, G.J. Szollosi, V. Ranwez, V. Berry. An Efficient Algorithm for Gene/Species Trees Parsimonious Reconciliation with Losses, Duplications and Transfers. Article in the book: Comparative Genomics, Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, 2010, Vol. 6398, P. 93-108. [6] K.V. Lopatovskaya, K.Yu. Gorbunov, L.Yu. Rusin, A.V. Seliverstov, V.A. Lyubetsky. The evolution of proline synthesis transcriptional regulation in gammaproteobacteria. Moscow University Biological Sciences Bulletin, 2010, Vol. 65, No. 4, P. 211-212.

