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Abstract

We demonstrate that theories Z−, ZF−, ZFC− (minus means the absence of the Power
Set axiom) and PA2 , PA−

2 (minus means the absence of the Countable Choice schema) are
equiconsistent to each other. The methods used include the interpretation of a power-less
set theory in PA−

2 via well-founded trees, as well as the Gödel constructibility in said
power-less set theory.

Keywords: constructibility; theories without the PS axiom; second-order arithmetic; consistency
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1. Introduction
This paper contains a proof of the following theorem.

Theorem 1. Theories PA−
2 , PA2 , Z−, ZFC−, ZF− are equiconsistent.

Here, PA2 , resp., PA−
2 is a second-order Peano arithmetic with, resp., without the

(countable) AC , whereas Z− is Zermelo set theory without the well-orderability axiom
WOA , and ZFC−/ ZF− are Zermelo–Fraenkel set theories resp. with/without WOA ,
and all three of them without the Power Set axiom. See the exact definitions in Section 2
related to the second-order Peano arithmetic and to power-less set theories. We recall that
the Power Set axiom claims the existence of the power set of any given set, leading to set
theories much stronger than the second-order Peano arithmetic. Thus, the significance
of power-less set theories is related to the fact that they combine a rich set theoretic
environment with the foundational strength equal to a second-order arithmetic.

In fact, Theorem 1 has been known since at least the late 1960s; see, for example, [1].
However, no self-contained and more or less complete proof has apparently ever been
published (see the brief discussion in Mathoverflow around [2]). In fact, significant fragments
of the proof turned out to be scattered across various unrelated publications, from which
the overall picture of their interaction in obtaining the final result does not immediately
become clear. The first goal of this paper is to finally present these fragments in a coherent
and easy-to-read proof that includes all the necessary details, particularly those related to
the Gödel constructibility.

The proof of Theorem 1 consists of two parts. For the first part, we define (Sections 2
and 3) a set theory TMC , which extends Z− by (1) the existence of transitive closures,
(2) an axiom saying that any well-founded relation on ω admits a transitive model, and
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(3) the Countability axiom. This is a subtheory of ZF−+ Countability , which turns out to
be strong enough to prove the schema of Replacement in the case when the range of the
function declared to exist is a transitive class (Lemma 1). The second goal of this paper
is to highlight the foundational role of TMC as the theory of the set theoretic hull over a
universe of PA−

2 and a straightforward set theoretic counterpart of PA−
2 —in the same way

as ZFC− is the theory of the set theoretic hull over a universe of PA2 (with the countable
AC) and a straightforward set theoretic counterpart of PA2 .

Theorem 4 below provides interpretations of TMC in PA−
2 , as well as of ZFC− in PA2 ,

obtained by using well-founded subtrees of ω<ω as the domain of interpretation. This is a
well-known method, presented in [3–6] among other papers, as well as in Sections VII.3–6
of Simpson [7], and in [8] with respect to second-order set theory. The tree structure V ,
related to this interpretation, is defined and studied in Section 4. The ensuing Corollary 3
claims the existence of two groups of mutually interpretable and equiconsistent theories,
which include PA−

2 , Z−, TMC (group 1) and PA2 , ZF−, ZFC− (group 2).
The second part of the proof of Theorem 1 presents an interpretation of ZFC− in

TMC , contained in the following theorem, which is our second key result here. This
theorem involves Gödel’s class L =

⋃
α∈Ord Lα of all constructible sets.

Theorem 2 (TMC). The following set or class satisfies ZFC− :

L∗ =

{
L , in case when the ordinal ωL

1 does not exist,

LΩ =
⋃

α<Ω Lα , in case when ωL
1 = Ω does exist.

(a)

(b)

Theorem 2 provides an interpretation (namely, L∗ ) of ZFC− in TMC , hence connecting
groups 1 and 2 above, thereby implying the equiconsistency result of Theorem 1. This
interpretation is close to an interpretation defined by Simpson [7] (VII.4). We review
some other interpretations, including an early one defined in [9], in Section 12. Note the
additional advantage of Theorem 2: it gives a transitive “standard” (that is, with the true
membership) interpretations of ZFC− in TMC , a theory apparently weaker than ZFC−.

Theorem 2 is proven in Sections 7 and 8 on the basis of Gödel’s constructibility, as
developed in Sections 5 and 6 in the context of TMC . In particular, Section 7 contains
Theorem 6, a key result saying that, in TMC , a class of the form K =

⋃
α∈Ω Lα satisfies

ZFC− under certain conditions. This leads to the proofs of Theorems 2 and 1 in Section 8.
Regarding the class L as a whole, we may note that L does not necessarily satisfy

ZFC− under TMC , as Example 1 shows. Therefore, option (b) of Theorem 2 definitely
cannot be abandoned. Nevertheless, we prove the following theorem in Sections 9 and 10:

Theorem 3 (TMC).

(I) L ∩ P (ω) satisfies PA2 .
(II) L itself satisfies Z− , in particular, thus satisfying the schema of Separation.

The third goal of this paper is to present this new result.
The ensuing Corollary 5 states that, under PA−

2 , L ∩ P (ω) satisfies PA2 . Saying it
differently, L ∩ P (ω) is an interpretation of PA2 in PA−

2 .
Our proof of Theorem 1 leaves open the following question: is there a way to interpret

PA2 in PA−
2 , thus avoiding substantial use of set theoretic concepts and methods such

as constructibility? A possible approach to this goal, based on the ramified analytical
hierarchy, is outlined in Section 13.

Overall, this is a research and survey article, the purpose of which is to provide
proofs of such fundamentally important results, as indicated in Theorems 1–3, in a fairly
self-contained and easy-to-read form.
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2. Preliminaries
Second-order arithmetic. Recall that second-order arithmetic PA2 is a theory in the

language L(PA2) with two sorts of variables: for natural numbers and for sets of them.
We will use j, k, m, n for variables over ω and x, y, z for variables over P (ω) , reserv-

ing capital letters for subsets of P (ω) and other sets.
The axioms of PA2 are the Peano axioms for numbers plus the following:

• Induction: ∀ x
(
0 ∈ x ∧ ∀ n (n ∈ x =⇒ n + 1 ∈ x) =⇒ ∀ n (n ∈ x)

)
.

• Extensionality for sets: ∀ x, y
(
∀ k (k ∈ x ⇐⇒ k ∈ y) =⇒ x = y

)
.

• Comprehension CA : ∃ x ∀ k (k ∈ x ⇐⇒ Φ(k))—for every formula Φ in which x
does not occur, and in Φ , we allow parameters, that is, free variables other than k .

• Countable Choice ACω : ∀ n ∃ x Φ(n, x) =⇒ ∃ x ∀ n Φ(n, (x)n))—for any formula Φ
with parameters, where (x)n = {j : (n, j) ∈ x} , and (n, j) = 2n(2j+ 1)− 1 is a standard
bijection ω × ω onto ω .

The theory PA2 is also known as A2 (see, for instance an early survey [3]), as Z2

(in [10] or elsewhere). See also [1,7,11]. Let PA−
2 be PA2 sans ACω .

Coding in second-order arithmetic. It can be viewed as a certain disadvantage that
PA−

2 does not explicitly treat such objects as pairs, tuples, and finite sets of numbers, as well
as trees of tuples at the next level. However, these and similar (and, in fact, even more
complex) mathematical objects can be effectively encoded as single natural numbers or sets
of them. We refer to [7], Chap. I, and especially Section II.2, with respect to many examples.

Recall that SEQ = ω<ω, the set of all tuples (finite sequences) of numbers in ω . If
s ∈ SEQ and j < ω , then s⌢j ∈ SEQ is obtained by adjoining j as the rightmost term. Let
lh s denote the length (the number of terms).

Let s0 = Λ (the empty tuple), and, by induction, if n = (m, j)+ 1 ≥ 1 then, sn = sm
⌢j .

Clearly, SEQ = {sn : n < ω} and, in fact, n 7−→ sn is a bijection onto SEQ . Subsequently,
n = n(s) is viewed as the code of any s = sn ∈ SEQ , and a set x ⊆ ω is viewed as the code of
{sn : n ∈ x} ⊆ SEQ . Following [7] (esp. II.2), this enables us to freely consider tuples and
sets of them as if they properly exist, but still on the basis of PA−

2 .
Similarly, still based on PA−

2 , we can treat sets X ⊆ ω × ω , H ⊆ SEQ × SEQ , and the
like as properly existing.

Finite and infinite sequences of subsets of ω are within reach in PA−
2 as well, be-

cause each set x ⊆ ω is a code of the infinite sequence of sets (x)n = {j : (n, j) ∈ x} (see the
formulation of ACω above). Thus, they are, for instance infinite sequences of subsets of
SEQ .

Power-less set theories. We recall that the power-less set theory ZFC− is a subtheory of
ZFC obtained so that the following are achieved:

(I) The Power Set axiom PS is excluded—symbolized by the upper minus.
(II) The usual set theoretic Axiom of Choice AC of ZFC is removed (as it does not work

properly without PS), and instead the well-orderability axiom WOA is added, which
claims that every set can be well-ordered.

(III) The Separation schema Sep is preserved, but the Replacement schema Repl (too
weak in the absence of PS) is substituted with the Collection schema:

Coll : ∀ X
(
∀ x ∈ X ∃ y Φ(x, y) =⇒ ∃Y ∀ x ∈ X ∃ y ∈ Y Φ(x, y)

)
.

Note that Coll + Sep =⇒ Repl .

See [12–14] for a comprehensive account of main features of ZFC−.
See [15,16] and [17] (Sect. 2) or elsewhere for different but equivalent formulations of

Collection, such as in the following form in [15] (Chap. 6):
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Coll′ : ∀ X ∃Y ∀ x ∈ X
(
∃ y φ(x, y) =⇒ ∃ y ∈ Y φ(x, y)

)
.

This is apparently stronger than Coll above, but in fact, Coll′ is a consequence of
Coll , for Φ(x, y) := φ(x, y) ∨

(
y = 0 ∧ ¬∃ y φ(x, y)

)
in Coll.

• ZF− is ZFC− without the well-orderability axiom WOA ;

• Z− is ZF− without the Collection schema Coll .

Let TMC be Z− plus the following three axioms TrSups, MoClps, Countability:

• Transitive superset, TrSups: For any X , there is a transitive superset Y ⊇ X.
• Mostowski Collapse, MoClps: Any well-founded relation A on a set D = fld A :=

dom A ∪ ran A admits a transitive set X and µ : D onto X , satisfying, for all d ∈ D,
(*) µ(d) = {µ(j) : j A d}. By standard arguments, the map µ and the set X are unique.

• Countability:∀ x ∃ f ( f : x → ω is 1–1) , that is, all sets are at their most countable.

The name TMC reflects the initial letters of the additional axioms. Quite obviously,
TMC ⊆ ZF− + Countability ; see [15] (Theorem 6.15) for a proof of MoClps from Repl.

It follows from TrSups by Sep that the transitive closure TC(X) of any set X properly
exists. Recall that Y is transitive if ∀ x ∀ y (x ∈ y ∈ Y =⇒ x ∈ Y) , and the transitive closure
of X is the intersection of all transitive supersets of X .

The axiom MoClps is called Axiom Beta in [7] (Def. VII.3.8). It follows the ideas first
put forward by Mostowski [18,19]. Its different aspects were discussed in [9,20–22]. The
idea of using MoClps as an axiom in weak set theoretic systems is due to Simpson [23].

Recall that a binary relation A on D = fld A is well-founded if any set ∅ ̸= Y ⊆ D
contains some y ∈ Y with ∀ x ∈ Y ¬ (x A y) . Applying MoClps for A = ∈↾D , we obtain:

Corollary 1 (TMC , transitive collapse). Let D be any set. There is a unique transitive set X
and a unique collapse map τ : D onto X satisfying τ(x) = {τ(y) : y ∈ x ∩ D} for all x ∈ D.

Simpson’s approach. Simpson [7] (VII.3.3 and VII.3.8) considers a related theory
ATRset

0 in the ∈-language, containing the following axioms:

(a) Axiom of Equality: = is an equivalence relation and ∈ is = -invariant;
(b) Axioms of Extensionality and Infinity in their usual forms;
(c) Axiom of Rudimentary Closure, which asserts, for all u, v, w , the proper existence of

{u, v} , u ∖ v , u × v ,
⋃

u , ∈↾u , and the following:

u−1 = {⟨x, y⟩ : ⟨y, x⟩ ∈ u} ,

{⟨y, ⟨x, z⟩⟩ : ⟨y, x⟩ ∈ w ∧ z ∈ u} ,

{⟨y, ⟨z, x⟩⟩ : ⟨y, x⟩ ∈ w ∧ z ∈ u} ,

{v : ∃ x (x ∈ u ∧ v = w”{x}} .

(d) Axiom of Regularity in its usual form;
(e) Axioms TrSups, MoClps, Countability, as above.

Quite obviously, we have TMC ∖ Separation ⊆ ATRset
0 ⊆ TMC . Indeed, regarding

the second ⊆ , all operations, listed in (c) above, are properly convergent within any
transitive finite-subset-closed set. Now refer to Lemma 2 below.

Therefore, TMC as a whole coincides with ATRset
0 + Separation.

3. Development of the Intermediate Power-Less Theory
We proceed with a few simple results in TMC hardly available in Z−.
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Let a class-map be a (definable) class that satisfies the standard definition of a function
(that is, consists of sets that are ordered pairs, etc.).

Lemma 1 (TMC). Let F be a class-map, D = dom F any set. Then, F and the image R =

F ”D = {F(x) : x ∈ D} are sets in each of the two cases : (1) R is transitive, (2) there is a set Y
such that R ⊆ P (Y).

Proof. (1) By Countability we can without any loss of generality assume that D ⊆ ω . We
can also assume that F is 1–1; otherwise, replace D by the set

D′ = {k ∈ D : ∀ j ∈ D (j < k =⇒ F(j) ̸= F(k))} .

Then, the relation A = {⟨j, k⟩ : j, k ∈ D ∧ F(j) ∈ F(k)} is well-founded as isomorphic
to ∈↾R . On the other hand, by MoClps, A is isomorphic to ∈↾Y , where Y is a transitive
set. It follows that Y and R are ∈-isomorphic, and hence R = Y is a set. Finally, F ⊆ X × R
is a set by Separation.

(2) We, without any loss of generality assume that Y is transitive by TrSups. We can
assume as well that D ∩ Y = ∅ ; otherwise, put D′ = D × {Y} and change F accordingly.
Under these assumptions, put D1 = D ∪ Y and extend F to F1 by the identity on Y. Then,
the image F1 ”D1 = R ∪ Y is transitive; hence, a set by (1). Now R ⊆ F1 ”D1 is a set
by Sep.

A set Y is called finite-subset closed if ∀ z ⊆ Y (z finite =⇒ z ∈ Y). For any set X , let
the finite-closure FC(X) be the least finite-subset closed superset Y ⊇ X , if it exists.

Lemma 2 (TMC). For any set X, FC(X) properly exists.

Proof. To handle the case X = ω , let pk be k th prime, so p1 = 2, p2 = 3, and so
on. Let A = {⟨k, n⟩ : k ≥ 1 ∧ pk divides n} . Then, fld A = ω ∖ {0} , A is well-founded
(since k A n =⇒ k < n), and (†) for any finite u ⊆ fld A , there is n ∈ fld A satisfying
u = {k : k A n} . By MoClps there is a map µ : fld A onto a transitive set R , satisfying (*)
µ(n) = {µ(k) : k A n)} , for all n ∈ fld A . Then, easily R = FC(ω) by (†).

To handle the general case, we may assume that X is transitive, by TrSups. Let
h : ω onto X , by Countability. Then, h can be extended to a class-map H defined on the
bigger set R = FC(ω) so that H↾ω = h , and if u ∈ R ∖ ω , then H(u) = {H(n) : n ∈ u} .
Then, ran H = FC(X) (so far a class), and hence ran H is transitive and so is X . It follows
by Lemma 1 that both H and ran H = FC(X) are proper sets.

Lemma 3 (TMC). Let U, V be any sets. Then, U × V , Pfin(U) , U<ω properly exist (as sets).

Proof. X = U ∪ V =
⋃{U, V} is a set by Z−. Now, FC(X) is a set by Lemma 2, hence

U × V ⊆ FC(X) is a set by Sep. To prove the other claims, note that Pfin(U) , U<ω ⊆
FC(U) and use Lemma 2 and Sep.

Thus, TMC proves the existence of Cartesian products. Note that Z− does not prove
even the existence of ω × ω !

Lemma 4 (TMC). Let E be a strict well-ordering of a set U. Then, there is an ordinal λ and an
order isomorphism of ⟨U ; E⟩ onto ⟨λ ; ∈⟩ .

Proof. By Countability we can without any loss of generality assume that U ⊆ ω . Then,
E is a well-founded relation with fld E ⊆ ω . Apply MoClps . Then, λ = X is a transitive
set well-ordered by ∈ , that is, an ordinal.
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Corollary 2 (TMC). If α, β are ordinals, then there exist (as sets) ordinals α + β , α · β , αβ (in
the sense of the ordinal arithmetic.)

Proof. We have to define well-ordered sets, which represent the mentioned orders. For
instance, the Cartesian product α × β (a set by Lemma 3), ordered lexicographically, repre-
sents α · β . The exponent αβ is represented by the set

W = { f : D → α ∖ {0} : D ⊆ β is finite} ,

ordered lexicographically, with the understanding that each f ∈ D is by default extended
by f (ξ) = 0 for all ξ ∈ β ∖ D . Note that W ⊆ FC(β × α) is a set by Lemma 2.

4. The Set Theoretic Tree Hull over Second-Order Arithmetic
Following [7] (VII.3), we consider the collection WFT of all well-founded trees ∅ ̸=

T ⊆ SEQ = ω<ω . Recall the following:

• Λ is the empty tuple, ⟨k⟩ is the tuple with k as the single term;

• T ⊆ SEQ is a tree if s⌢j ∈ T =⇒ s ∈ T ;

• T is well-founded if ¬∃ g : ω → ω ∀m (g↾m ∈ T) ;

• s⌢j is obtained by adding j ∈ ω to s ∈ SEQ as the rightmost term, and if s, t ∈ SEQ ,
then s⌢t ∈ SEQ is the concatenation;

• If T is a tree and s ∈ T , then put Ts = {t ∈ SEQ : s⌢t ∈ T} ; thus, Ts is a tree as well,
and if T is well-founded then so is Ts .

Definition 1 (PA−
2 ). Let S, T ∈ WFT.

A set H ⊆ S × T is an S, T-bisimulation, if, for all s ∈ S and t ∈ T,

s H t ⇐⇒ ∀ s′ = s⌢j ∈ S ∃ t′ = t⌢k ∈ T (s′ H t′) ∧
∧ ∀ t′ = t⌢k ∈ T ∃ s′ = s⌢j ∈ S (s′ H t′) .

(1)

Define S ∼= T if there is an S, T-bisimulation H such that Λ H Λ .
Define S ∼∈ T if S ∼= Tu for some u ∈ T with lh u = 1 .
The structure V = ⟨WFT ; ∼=, ∼∈⟩ is considered in PA−

2 .
The V -interpretation ⌈Φ⌉V of an ∈-formula Φ (with parameters in WFT) is naturally

defined in the sense of interpreting =,∈ as resp. ∼=, ∼∈ , and relativizing the quantifiers to WFT .
Thus, for instance ⌈x = y⌉V is x ∼= y.

Note that the bisimulation relation ∼= between trees in WFT, and subsequently the
derived relation ∼∈ as well, are naturally formalized in PA−

2 in the frameworks of the
approach based on coding; see Section 2. It follows that, for any ∈-formula Φ with
parameters in WFT, the V -interpretation ⌈Φ⌉V of is a L(PA2)-formula.

The next theorem is a version of the interpretation results known since at least
Kreisel [1] and published somewhat later in [3–5,7] or elsewhere. The PA2 part of the
theorem is essentially Theorem 5.5 in [3]. The PA−

2 part is close to Theorem 1.1 and
Corollary 1.1 in [4] or VII.3.24 in [7].

Theorem 4 (PA−
2 /PA2 ). V is a well-defined structure : ∼= is an equivalence on WFT, ∼∈ is a

binary relation on WFT invariant with respect to ∼= .
Moreover, V satisfies resp. TMC/ZFC−. In other words, if Φ is an axiom of TMC , resp.,

ZFC− , then ⌈Φ⌉V is a theorem of resp. PA−
2 , PA2 .

Proof. Besides the papers cited above, the bulk of the theorem was established in [7] (VII.3).
Namely, using just ATR0 as the basis theory (which is a small part of PA−

2 ), Lemma VII.3.20
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in [7] proves that if Φ is an axiom of ATRset
0 , then ⌈Φ⌉V is a theorem of ATR0 (and then

of PA−
2 as well). Thus, to prove the PA−

2 part of Theorem 4, it suffices to check Sep in V.
Arguing in PA−

2 , assume that S ∈ WFT, X = {k : ⟨k⟩ ∈ S} , and Φ(x) is an ∈-
formula with parameters in WFT and with x as the only free variable. Trees of the form
Sk = {t ∈ SEQ : k⌢t ∈ S} , k ∈ X , belong to V and are the only (modulo ∼=) ∼∈-elements
of S in V . Now, using the PA−

2 Comprehension, we let Y = {k ∈ X : ⌈Φ(Sk)⌉V} . The set
T = {Λ} ∪ {t ∈ S : t(0) ∈ X} is a tree in WFT. We claim that ⌈T = {x ∈ S : Φ(x)}⌉V .

Indeed, assume that C ∈ WFT, C ∼∈ S , and ⌈Φ(C)⌉V . Then, C ∼= Sk for some k ∈ X ,
so that ⌈Φ(Sk)⌉V holds, and hence k ∈ Y. It follows that C ∼= Tk = Sk ∼∈ T. The proof of
the inverse implication is similar.

Finally, we prove the PA2 part of the theorem. Arguing in PA2, we have to addition-
ally check Coll in V . Thus, let S ∈ WFT and let Φ(x, y) be an ∈-formula with parameters
in WFT, satisfying ⌈∀ x ∈ S ∃ y Φ(x, y)⌉V , that is,

∀ A ∈ WFT ∃ B ∈ WFT
(

A ∼∈ S =⇒ ⌈Φ(A, B)⌉V
)
. (2)

But ∼∈-elements of S are, modulo ∼= , all trees Sk = {s ∈ S : k⌢s ∈ T} , where k ∈ K =

{k ∈ ω : ⟨k⟩ ∈ T} , and only them. Thus, (2) implies

∀ k ∈ K ∃ B ∈ WFT
(
⌈Φ(Sk, B)⌉V

)
.

Using ACω of PA2 , we obtain a (coded, see Section 2) sequence of trees Bk ∈ WFT with
⌈Φ(Sk, Bk)⌉V for all k . Now, T = ⟨Λ⟩ ∪ ⋃

k∈K k⌢Bk ∈ WFT, and each Bk is an ∼∈-element
of T . Thus, we have

∀ k ∈ K ∃ B ∼∈ T
(
⌈Φ(Sk, B)⌉V

)
, that is, ⌈∀ x ∈ S ∃ y ∈ T Φ(Sk, B)⌉V ,

as required.

Corollary 3 (of Theorem 4). Theories PA−
2 , Z−, TMC are mutually interpretable and hence

equiconsistent to each other. Theories PA2 , ZF−, ZFC− are mutually interpretable and equiconsis-
tent as well.

Corollary 3 is the first part of the proof of Theorem 1. The remainder of the proof
involves the ideas and technique of Gödel’s constructibility, and the goal will be Theorem 2,
which provides an interpretation of ZFC− in TMC .

5. Constructible Sets in the Intermediate Theory
We will make use of some keynote definitions and results related to constructible sets as

given in [7] (Sect. VII.4). We present these results based on TMC , whereas Simpson works
in ATRset

0 and in some other sub-theories of TMC in [7], which is not our intention here.

Lemma 5 (TMC , VII.4.1 in [7]). Let X be a nonempty transitive set. There exists a unique set
Def X consisting of all sets Y ⊆ X, definable over X by an ∈-formula with parameters from X.

This set Def X is obviously transitive, and X ∪ {X} ⊆ Def X.

Lemma 6 (TMC , [7], Lemma VII.4.2). Let u be a transitive set and β ∈ Ord. There is a unique
function f = fu

β such that dom f = β, f (0) = u, f (α + 1) = Def f (α) whenever α + 1 < β ,
and f (λ) =

⋃
α<λ f (α) for all limit λ < β .

The lemma enables us to define Lα[u] = fu
α+1(α) in TMC , legitimizing the standard

definition of relative constructible hierarchy for any set u ⊆ ω :
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L0[u] = ω ∪ {u} − to keep it transitive,

Lα+1[u] = Def Lα[u] for all α ,

Lλ[u] =
⋃

α<λ Lα[u] for all limit λ ,

L[u] =
⋃

α∈Ord Lα[u] = all sets constructible in u,

Lα = Lα[∅],

L = L[∅].


(3)

Theorem 5 (TMC). Suppose that u ⊆ ω , then the following conditions apply:

(i) Each Lα[u] is transitive and α ⊆ Lα[u] ;
(ii) If α < β then Lα[u] ∈ Lβ[u] and Lα[u] ⊆ Lβ[u] ;
(iii) If λ is the limit, then Lλ[u] is closed under the rudimentary operations (c) in Section 2 ;
(iv) (I) If λ ∈ Ord is the limit, then the map α 7−→ Lα[u] (α < λ) is definable over Lλ[u] with

u as the only parameter; (II) the class-map α 7−→ Lα[u] (α ∈ Ord) is definable over L[u] ,
with u as the only parameter .

Proof. See [7], Theorem VII.4.3 on (i), (ii), (iii). Regarding (iv), see Theorem VII.4.8 in [7]
or [24] (B.5, Lemma 4.1) in case u = ∅ .

What kind of set theory is provided in L[u] by TMC?

Lemma 7 (TMC). Let u ⊆ ω . All axioms of Z− , except perhaps for the Separation schema,
hold in L[u] and in any set Lλ[u] , where λ ∈ Ord is the limit.

Proof (sketch). This does not differ from the full-ZF case. Consider, for instance the Union
axiom. Let X ∈ L[u] , so that X ∈ Lα[u] , α ∈ Ord. As Lα[u] is transitive, the union
Y =

⋃
X ⊆ Lα[u] is definable over Lα[u] , hence Y ∈ Lα+1[u] = Def Lα[u] .

On the other hand, axioms of TMC do not imply that the schemata of Replace-
ment/Collection necessarily hold in L , as the next example shows.

Example 1. Arguing in the full-ZF theory, let M = Lϑ , where ϑ = (ℵω)L. Let N be the forcing
extension of M by ajoining a generic sequence of (generic) maps fn : ω onto (ℵn)L. Then, N is a
model of TMC . However, (L)N = M , and Repl/Coll definitely fail in M .

Unlike Repl/Coll, the Separation schema always holds in L under the TMC axioms
in the background set universe by Theorem 3(II), as proven in Section 10.

6. Definability and Well-orderings
Our goal here is to prove a few more delicate results related to the constructible

hierarchy. The next lemma presents a key definability result.

Lemma 8 (TMC). Let u ⊆ ω , λ be the limit, and Y ∈ Lλ[u] . Then, Y is definable over Lλ[u]
(i) by a formula with parameters Lδ[u] , δ < λ ; (ii) by a formula with parameters δ < λ and u.

Proof. (i) By definition, Y = {y ∈ Lα[u] : Lα[u] |= φ(y)} , where α < λ and φ may contain
parameters in Lα[u] . Arguing by induction on α , let φ(y) be φ(p, y) , where p ∈ Lα[u] is a
parameter. Then, p ∈ Lγ+1[u] for some γ < α by (3) above. According to the inductive
hypothesis, we have p = {z ∈ Lγ[u] : Lλ[u] |= ψ(z)} , where ψ has only sets Lδ[u] , δ < λ ,
as parameters. Then, Y = {y ∈ Lα[u] : Lλ[u] |= Φ(y)} , where

Φ(y) := ∃ p
(
y, p ∈ Lα[u] ∧ p = {z : z ∈ Lγ[u] ∧ ψ(z)} ∧ φ(p, y)Lα [u]

)
,
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and φ(p, y)Lα [u] means the formal relativization to Lα[u] , that is, all quantifiers ∃ a, ∀ a
are changed to resp. ∃ a ∈ Lα[u] , ∀ a ∈ Lα[u] . Then, φ′ has only the sets Lγ[u] , Lα[u] ,
and some Lδ[u] , δ < λ , as parameters. This proves part (i). We now infer part (ii) applies
to Theorem 5(iv).

Lemma 9 (TMC). Let u ⊆ ω and λ be the limit. There is a map H : D = ω × λ × λ<ω onto
Lλ[u] , definable over Lλ[u] with u as the only parameter.

Proof. By Lemma 8, each Y ∈ Lλ[u] has the form Y = {y ∈ Lα[u] : Lλ[u] |= φ(y)} for some
α < λ , where φ contains parameters δ < λ and u .

Given a triple of n, α, p of n ∈ ω , α < λ , and p = ⟨δ1, . . . , δk⟩ ∈ λk , let φn be the n -th
parameter-free ∈-formula. If

(†) δ1 . . . , δk < λ and φn is φn(v1, . . . , vk, v) with k + 1 free variables,

then define the set

H(n, α, p) = {y ∈ Lα[u] : Lλ[u] |= φ(δ1, . . . , δk, y)} .

If (†) fails, then put H(n, α, p) = ∅ . Then, H is definable over Lλ[u] with u as a parameter
by Theorem 5(iv) since it is defined in terms of the definable map α 7−→ Lα[u] .

Lemma 10 (TMC). Let u ⊆ ω . There is a well-ordering <L[u] of L[u] definable over L[u] with
u as the only parameter. If λ ∈ Ord is the limit, then there is a well-ordering <Lλ [u] of Lλ[u]
definable over Lλ[u] with u as the only parameter.

Proof. In the λ-case, let the map H : D onto−→ Lλ[u] be given by Lemma 9. The set
D = ω × λ × λ<ω ⊆ Lλ[u] is parameter-free definable over Lλ[u] . Thus, to define <Lλ [u] ,
it suffices to show that D admits a well-ordering <D parameter-free definable over Lλ[u] .
For that purpose, if

d = ⟨n, α, u = ⟨γ1, . . . , γm⟩⟩ ∈ D , d′ = ⟨n′, α′, u′ = ⟨γ′
1, . . . , γ′

m′⟩⟩ ∈ D ,

then let µ(d) = max{α, γ1, . . . , γm} and define d <D d′ , if and only if, any of the following
conditions are met:

(‡) µ(d) < µ(d′) ;
µ(d) = µ(d′) and m < m′ ;
µ(d) = µ(d′) , m = m′ , and u < u′ lexicographically in λm ;
µ(d) = µ(d′) , m = m′ , u = u′ , and n < n′ .

The well-ordering <L[u] of L[u] is then defined so that x <L[u] y if either (1) λx < λy ,
where λx is the least limit ordinal with x ∈ Lλx , or (2) λx = λy and x <Lλ [u] y .

7. The Key Technical Theorem
The purpose of this section is to formulate a convenient necessary condition for

obtaining ZFC− in some constructible domains. This will be Theorem 6 below, the key
theorem of the title. To simplify formalities, we define the following formula:

Definition 2 (TMC). Let A(u, Ω, K) be u ⊆ ω , and either the following conditions are met;

− (A) Ω = Ord , K = L[u] , and ω
L[u]
1 does not exist; in other words, every ordinal is countable

in L[u] ,

− (B) the ordinal Ω = ω
L[u]
1 exists, and K = LΩ[u] = L

ω
L[u]
1

[u] .

Thus, K =
⋃

α∈Ω Lα[u] in both cases (A), (B).

Lemma 11 (TMC +A(u, Ω, K)). If α ∈ Ω , then Lα[u] is ctble in L[u].



Axioms 2025, 14, 865 10 of 18

Proof. Let α ∈ Ω be the limit. By Definition 2, there is a map f ∈ L[u] , f : ω onto α .
Lemma 8 provides a set D = ω × α × α<ω ∈ L[u] and a map H ∈ L[u] , H : D onto Lα[u] .
We obtain a map h ∈ L[u] , h : ω onto Lα[u] by combining f and H in L[u] .

Lemma 12 (TMC + A(u, Ω, K)). Let X ∈ K, and F : X → K be a class-map definable over
L[u] . Then, ran F = {F(x) : x ∈ X} ⊆ Lγ[u] for some γ ∈ Ω ; hence F , ran F are sets.

Proof. By Lemma 11, we without any loss of generality suppose that X = ω . For any
k < ω , let δk be the least δ ∈ Ω satisfying F(k) ∈ Lδ[u] . Assume towards the contrary that
{δk : k < ω} is unbounded in Ω . Then, Ω =

⋃
k<ω δk .

In case (A), for any k , there are functions h ∈ L[u] , h : ω onto δk ; let hk be the
<L[u] -least of them. If n = 2k(2j + 1)− 1, then put G(n) = hk(j) . Then, G is a definable
class-map from ω onto Ω = Ord by construction. Thus, Ω and G are sets by Lemma 1
since Ω is transitive. This is a contradiction since Ord is not a set in TMC .

In case (B), Ω = ω
L[u]
1 . Define hk and G using the well-ordering <LΩ [u] of LΩ[u]

instead of <L[u] . Then G is a class-map from ω onto Ω = ω
L[u]
1 , definable over LΩ since

<LΩ [u] . Thus, G ∈ LΩ+1[u] ⊆ L[u] , and hence the ordinal Ω is countable in L[u] . This is a
contradiction.

Corollary 4 (TMC +A(u, Ω, K)). Assume that α ∈ Ω , m < ω , and G1, . . . , Gm : K → K be
class-maps definable over L[u] . There is a limit ordinal β ∈ Ω , β > α , satisfying Gk ”Lβ[u] ⊆
Lβ[u] for all k = 1, . . . , m.

Proof. Put G(x) = ⟨G1(x), . . . , Gm(x)⟩ . Use Lemma 12 to obtain a class-sequence α =

α0 < α1 < α2 < . . . of ordinals in Ω satisfying G”Lαn [u] ⊆ Lαn+1 [u] , ∀ n . Apply Lemma 12
again to show that β = supn αn ∈ Ω .

Assume A(u, Ω, K) . Say that β ∈ Ω reflects a formula φ(x1, . . . , xn), if the equivalence
φK(x1, . . . , xn) ⇐⇒ φLβ [u](x1, . . . , xn) holds for all xj ∈ Lβ . The following reflection lemma
is a standard consequence of Corollary 4.

Lemma 13 (TMC +A(u, Ω, K)). If α ∈ Ω and φ is a parameter-free formula, then there exists
a limit ordinal β ∈ Ω , β > α which reflects φ and every subformula of φ .

Proof (sketch). We, without any loss of generality assume that φ does not contain ∀ (oth-
erwise, replace ∀ with ¬∃¬). Let us enumerate ψ1, . . . , ψn all the sub-formulas of φ

(including possibly φ itself) beginning with ∃ . If j ≤ n , then we define a class-map Gj

as follows.
Let j ≤ n and ψj be ∃ y χj(y, x1, . . . , xm) . If p = ⟨x1, . . . , xm⟩ ∈ K and there is y ∈ K

satisfying χK
j (y, x1, . . . , xm) , then let Gj(p) be the <L[u] -least of these y . Otherwise let

Gj(p) = ∅ . Each class-map Gj is definable over L[u] , such is the well-ordering <L[u] .
By Corollary 4, there is an ordinal β ∈ Ω , β > α , satisfying Gj ”Lβ[u] ⊆ Lβ[u] for

all j = 1, . . . , n . Now, it easily goes by induction on the number of logical symbols that β

reflects every subformula of φ . In particular, it reflects φ itself, as required.

Theorem 6 (TMC +A(u, Ω, K)). The schemata of Separation and Collection hold in K.
Therefore, ZFC− as a whole holds in K by Lemma 7.

Proof. Separation. Assume that φ(x, y) is a parameter-free formula, α ∈ Ω , p ∈ X = Lα[u] .
We have to prove that Y = {x ∈ X : φK(x, p)} ∈ K . Let, by Lemma 13, a limit ordinal β ∈ Ω ,
β > α reflect φ(x, y), so that

Y = {x ∈ X : φLβ [u](x, p)} = {x ∈ X : Lβ[u] |= φ(x, p)} ∈ Lβ+1[u] ⊆ K .
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Collection. Assume that φ(x, y, z) is a parameter-free formula, α ∈ Ω , p ∈ X = Lα[u] ,
and we have ∀ x ∈ X ∃ y ∈ K φK(x, y, p) . By Lemma 13, there exists a limit ordinal β ∈ Ω ,
β > α , which reflects ∃ y φ(x, y, z) , with all its subformulas, including φ(x, y, z) , so that

∀ x ∈ X ∃ y ∈ Lβ[u] φLβ [u](x, y, p), and ∀ x ∈ X ∃ y ∈ Lβ[u] φK(x, y, p).

8. Proof of Theorems 1 and 2
Theorem 1 is an elementary consequence of Theorem 2, so we concentrate on the latter.

In fact, all the necessary work has already been done.

Case (b) of Theorem 2. Arguing in TMC , we have case (B) of Definition 2 with u = ∅ ,
Ω = ωL

1 , K = L∗ = LωL
1

. Then, A(∅, ωL
1 , L∗) holds, and hence L∗ satisfies ZFC− by

Theorem 6.

Case (a) of Theorem 2. Similar, but via case (A) of Definition 2.

9. Proof of Theorem 3(I)
We may note that item (I) of Theorem 3 is a simple corollary of item (II), as proven

below in Section 10. However, we present here a different proof based on Theorem 6 above.
We argue in TMC. Prove that L ∩ P (ω) satisfies PA2 .

Case 1: There is u ⊆ ω such that ω
L[u]
1 does not exist. Then, ZFC− holds in L[u] by

Theorem 6; hence, ZFC− holds in L as well. This implies PA2 in L ∩ P (ω) , as required.

Case 2: ω
L[u]
1 ∈ Ord exists for all u ⊆ ω . In particular, Ω = ωL

1 ∈ Ord exists, and LΩ

is a model of ZFC− by Theorem 2. Therefore, it suffices to prove that L ∩ P (ω) ⊆ LΩ .
This is a well-known result in ZFC and ZFC−, a part of Gödel’s proof of CH in L .

Gödel’s reasoning is doable in TMC , and a close claim is established in [7] in the course of
the proof of Theorem VII.4.34. However, the proof there involves quite special arguments.
For instance, the Σ1 -theory of constructible hierarchy, which we do not plan to use in our
proof. Yet, there is a much simpler way to achieve the same goal, which is by reduction to
the ZFC− environment.

Thus, let x ∈ L ∩ P (ω) . Then, x ∈ Lλ for some λ ∈ Ord. We assert that

(∗) there is an ordinal ϑ > λ such that Lϑ is a model of ZFC−.

Indeed, by the axiom of Countability in TMC , there is a bijection h : ω onto λ . Let
u = {2j · 3k : h(j) < h(k)} . Thus, u ⊆ ω codes h . Note that ϑ = ω

L[u]
1 ∈ Ord by the Case

2 assumption, and Lϑ[u] is a model of ZFC− by Theorem 6; hence, Lϑ |= ZFC− as well.
Thus, it suffices to show that λ ≤ ϑ .

Suppose to the contrary that ϑ < λ . Then, Lϑ[u] |= ZFC− , as stated above. In
addition, Lϑ[u] is a model of ordinal height ϑ , and u ∈ Lω [u] ⊆ Lϑ[u] , by construction.
But u effectively codes the ordinal λ > ϑ , which is a contradiction. This completes the
proof of (∗).

Choose ϑ by (∗). Thus, x ∈ Lϑ . We do not claim that Ω = ω
Lϑ
1 , but Ω obviously

remains a regular uncountable cardinal in Lϑ . This implies that Lϑ ∩ P (ω) ⊆ LΩ by a
standard collapse argument by Gödel. We conclude that x ∈ LΩ , as required.

10. Proof of Theorem 3(II), Sketch
We argue in TMC. Due to Lemma 7, it suffices to check the Separation schema in L.
We will make use of a series of deep results in [25], particularly those related to

countable index ordinals, that is, ordinals α satisfying (Lα+1 \ Lα) ∩ P (ω) ̸= ∅ .
It is asserted in [25] that there exists a parameter-free closed ∈-formula σ such that,

for any transitive set M , σM (the formal relativization) holds if M = Lλ for some limit
ordinal λ , and in addition σL holds as well. Basically, σ says that all sets are constructible



Axioms 2025, 14, 865 12 of 18

and there is no largest ordinal. The required property is based on the absoluteness of Gödel’s
construction for transitive sets satisfying some simple conditions [15]. It is explained in [15]
(Ch. 13) between Theorem 13.16 and Lemma 13.17 how such a formula σ can be constructed,
satisfying the desired property (13.13) there. See also [26] with a complete argument.

Now, suppose to the contrary that Sep fails in L , that is, there exist the following:
a transitive set B ∈ L (say B = Lα for some α) and a formula φ(p, x) with a parameter
p ∈ L , such that Y = {b ∈ B : φL(p, b)} /∈ L (Y is a set in the TMC universe by Sep).
Taking the <L -least B and p with these properties, we reduce the general case to the
following:

(†) B = {b ∈ L : ϑL(b)} is parameter-free definable in L , and φ(x) is a parameter-free
formula, still satisfying Y = {b ∈ B : φL(b)} /∈ L .

Assuming that the formulas φ and σ do not contain the quantifier ∀ (replaced by ¬∃¬),
we let f1, . . . , fm be the Skolem functions for all existential subformulas of the formulas

(‡) σ , φ(x) , and the formula ‘B = {b ∈ L : ϑ(b)} ’,

defined in L on the basis of the parameter-free definable well-ordering <L .
Consider the closure M of B ∪ {B} under f1, . . . , fm . By a standard combinatorial

argument, there is a class-map Φ defined on the set U = B<ω ×ω<ω , such that M = Φ ” U .
Let τ : M onto a transitive class N be a collapse map, that is, τ(x) = {τ(y) : y ∈ x ∩ M}
for all x ∈ M. (To define N, τ apply Corollary 1 for sets Mα = M ∩ Lα , α ∈ Ord, and let τ

be the union of all partial collapse maps τα : Mα onto a transitive set Nα .)
Using Lemma 1 for the superposition of Φ and τ , we conclude that N is a set.

Moreover, as B is transitive, we have B = τ(B) ∈ N .
On the other hand, the class or set M is an elementary submodel of L with respect to

formulas (‡) by construction. In particular, M |= σ , hence N |= σ as well, and we conclude
by the choice of σ that N = Lλ for some limit λ .

By the same argument (and because B = τ(B)), we conclude that Y = {b ∈ B :
φLλ(b)} ∈ Lλ+1 ⊆ L , which contradicts (†).

11. A Corollary in the Domain of Reals
Theorem 2 being proven implies the following corollary.

Corollary 5 (PA−
2 ). L ∩ P (ω) satisfies PA2 .

Saying it differently, L ∩ P (ω) is an interpretation of PA2 in PA−
2 .

Proof (sketch). Here, L ∩ P (ω) essentially means {x ⊆ ω : constr(x)} , where constr(x)
is a certain Σ1

2 formula of L(PA2) that expresses the constructibility of x ⊆ ω by referring
to the existence of a real that encodes (similar to for instance encoding by trees in WFT) a
set theoretic structure that indicates the constructibility of x . Such a formula was explicitly
defined by Addison [27,28], but it implicitly can be found in studies by Gödel [29] and
Novikov [30].

As for the proof itself, recall that the PA−
2 structure V satisfies TMC by Theorem 4.

Therefore, we have ⌈L ∩ P (ω) satisfies PA2 ⌉V by Theorem 2. Yet, the V -reals are iso-
morphic to the true reals in the background PA−

2 universe. We conclude that, in PA−
2 ,

L ∩ P (ω) satisfies PA2 .

Corollary 5 can be compared with its better-known ZF version:

Proposition 1 (ZF , Theorem 1.5 in [4]). If X ⊆ P (ω) is a β-model of PA−
2 , then X ∩ L is a

β-model of PA2 plus constructibility.
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The proof of the proposition in [4] involves Lemma 1.4, which cites Theorem 1 in [25],
as presented in Proposition 2(ii) below. Another path to Proposition 1, quite complicated
in its own way, is given in [31,32]. It is definitely tempting to accomodate these proofs of
Proposition 1 to the case X = P (ω) towards Corollary 5 under the TMC axioms. Yet, we
are not going to pursue this plan here as it will definitely involve more complex arguments
than the above proof of Theorems 2 and 3.

12. Some Other Models
Here, we briefly describe three other interpretations of ZFC− in TMC , which are

designed rather similar to L∗ of Theorem 2.

Model 1. Consider the least ordinal Λ such that the set LΛ is not countable in LΛ+1 —
provided such ordinals exist, and otherwise Λ = all ordinals. Put L† =

⋃
α∈Λ Lα . It is

demonstrated in [9] that L† is an interpretation of ZFC− in TMC .

Model 2: version of Model 1. Consider the least ordinal Ξ such that the difference
LΞ+1 ∖ LΞ contains no sets x ⊆ ω—the first index ordinal as defined in [25]—provided such
ordinals exist, and otherwise Ξ = all ordinals. Arguments close to those in [9] show that
L‡ =

⋃
α∈Ξ LΞ L† is an interpretation of ZFC− in TMC .

Model 3. Simpson defines in [7] (VII.4.22) the set or class HCL of all sets x that belong
to transitive sets X ∈ L , countable in L , and proves that HCL is an interpretation of ZFC−

in TMC yet again. But it looks like HCL is just equal to L∗ of Theorem 2.

13. Ramified Analytical Hierarchy—A Shortcut?
Cutting Theorem 1 to the equiconsistency of PA2 and PA−

2 (second-order arithmetic
with, resp., without the countable Choice ACω ), one may want to manufacture a true
second-order arithmetical proof, not involving set theories like Z−, ZFC−, ZF−, TMC .
The above proof (Section 8) definitely does not belong to this type, since it involves TMC
in a quite significant way. In this section, we survey a possible approach to this problem.

Using earlier ideas of Kleene [33] and Cohen [34], a transfinite sequence of countable
sets Aα ⊆ P (ω) is defined in, for instance [25], (§ 3) by induction so that

A0 = Pfin(ω) = all finite sets x ⊆ ω

Aα+1 = Def Aα for all α

Aλ =
⋃

α<λ Aα for all limit λ

A =
⋃

α∈Ord Aα = all ramified analytic sets


, (4)

where Def Aα = {x ⊆ ω : x is definable over Aα with parameters} in the second line.
Thus, a set x ⊆ ω belongs to Def Aα if x = {n : Aα |= φ(n)} for some formula φ of
L(PA2) with parameters in Aα , and X |= . . . means the formal truth in the L(PA2)-
structure ⟨ω ; X⟩ . The following is routine.

Lemma 14. If x ∈ Aα and y ⊆ ω is arithmetical in x , then y ∈ Aα .

In spite of obvious similarities with the Gödel constructible hierarchy (3), the ramified
analytic hierarchy is collapsing below ω1 :

Lemma 15 (Cohen). There is an ordinal β0 < ωL
1 such that Aβ0 = Aβ0+1 = Aγ for all γ > β0 .

Then, obviously, A = Aβ0 and A |= PA−
2 .

Proof. By the cardinality argument, there is an ordinal β with Aβ = Aβ+1 . Then, Aβ |=
Sep . Let κ = β+, the least cardinal bigger than β . Consider a countable elementary
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submodel M of Lκ containing β , and let H : M onto−→ Lλ be the Mostowski collapse. Let
β0 = H(β) ; then, β0 < λ . As the construction of the sets Aα is obviously absolute for L ,
we have Aβ0 |= Sep as well, and then Aβ0 = Aβ0+1 , as required.

The following theorem is essentially Lemma 2.2 in [35].

Theorem 7 (ZF). A = Aβ0 satisfies PA2 with the choice schema ACω .

Proof. To sketch a proof of this profound result, we need to have a look at the ramified
analytic hierarchy from a somewhat different angle. This involves a “shift” in Gödel’s
hierarchy and ensuing classification of ordinals:

• Let Mα = Lω+α for all α . In particular, M0 = Lω = all hereditarily finite sets, but
still, similarly to (3), Mα+1 = Def Mα , ∀ α , and the union is taken at limit steps. (See,
for instance note 2 on p. 499 in [25] or Section 5 in [36], where “L0 = hereditarily
finite sets” is defined outright.) Needless to say that Mα = Lα for all α ≥ ω2 .

• An ordinal α is an index if (Mα+1 ∖ Mα) ∩ P (ω) ̸= ∅ .

We will refer to a result established in [25], using Theorems 1 and 9 by a complex
mixture of set theoretic and recursion theoretic methods. A set E ⊆ ω × ω is a code (or
arithmetical copy, as in [25,37]) of Mα if it is isomorphic to ∈↾Mα via a bijection of fld E
onto Mα .

Proposition 2.

(i) If α ≤ β0 + 1 then Aα = Mα ∩ P (ω) .
(ii) If β is an index then there is a code of Mβ in Mβ+1 .

Proof (sketch). (ii) Suppose that β is the limit, as argued in Section 10 with B = ω and
Mβ = Lω+β instead of L , so that Y = {k ∈ ω : φMβ(k)} /∈ Mβ . In the notation of Section 10,
we still have N = Mλ for a limit λ . Note that λ < β is impossible since Y ∈ Mλ+1 ∖ Mβ .
λ > β is impossible as well since N is the transitive collapse of M ⊆ Mβ .

Thus, λ = β , and hence Mβ is ∈-isomorphic to M .
On the other hand, M ∈ Mβ+1 as a definable subset of Mβ . Moreover, the inductive

construction of M as the closude of ω under a finite list of functions definable over Mβ can
be represented as a construction of a relation E ⊆ ω × ω , still definable over Mβ , and such
that ⟨ω ; E⟩ is isomorphic to ⟨M ; ∈⟩ and hence to ⟨Mβ ; ∈⟩ by the above.

In other words, E ∈ Mβ+1 is a code of Mβ , as required.
If β = ν+ k , where ν is the limit and 1 ≤ k < ω , then we have to go back to Section 10

and, using σ , define a closed formula σk by induction on k , such that, for any transitive
set M , (σk)

M holds if M = Lν+k for some limit ordinal ν . Namely, put σ0 := σ as in
Section 10, then let σk+1 say: “there is a transitive set X with (σk)

X and (all sets) = Def X”.
Then, go through the arguments in the limit case, mutatis mutandis.
(i) This claim goes by induction, using (ii) as the key argument. See [25] for details.

□ (Proposition)

Beginning the proof of Theorem 7 itself, note that the equality Aβ0 = Aβ0+1 immedi-
ately implies Comprehension in Aβ0 . The proof of ACω takes more effort. We claim the
following:

(I) β0 is not an index, whereas each α < β0 is an index;
(II) β0 is a limit ordinal—Lemma 2.5 in [35].

To prove (I), note that, by the choice of β0 and Proposition 2(i), β0 is not an index
since (Mβ0+1 ∖ Mβ0) ∩ P (ω) = (Aβ0+1 ∖ Aβ0) ∩ P (ω) = ∅ , whereas every α < β0 is
an index by similar reasons.
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To verify (II), suppose to the contrary that β0 = α + 1. By (I) and Proposition 2(ii),
there is a code x ⊆ ω of Mα in Mβ0 and hence in Aβ0 by Proposition 2(i). In particular, x
codes all sets in Mα ∩ P (ω) . Therefore, we can extract a part y ⊆ ω of x , which codes all
those sets so that

Mα ∩ P (ω) = {(y)n : n < ω} , (5)

(see Section 2 on (x)n ), and in addition, y is arithmetical in x .
Then, y ∈ Aβ0 by Lemma 14. But each z ∈ Aβ0 is arithmetical in y by (5). This is a

contradiction since Aβ0 |= PA−
2 by Lemma 15.

Now, coming to ACω , we are going to prove that

∀ n ∃ x Φ(n, x) =⇒ ∃ y ∀ n Φ(n, (y)n) (6)

holds in Aβ0 , where Φ is a PA2 formula possibly with parameters in Aβ0 .
By Lemma 10, there exists a well-ordering <Lβ0

of Mβ0 , definable over Mβ0 . (β0

is limit by (II).) Assuming that the left-hand side of (6) holds in Aβ0 , we let xn be the
<Lβ0

-least element x ∈ Aβ0 = Mβ0 ∩ P (ω) satisfying Aβ0 |= Φ(n, x) .
The set y = {(n, j) : j ∈ xn} is then definable over Mβ0 , hence y ∈ Def Mβ0 = Mβ0+1 .

We conclude that y ∈ Aβ0+1 by Proposition 2(i). Finally y ∈ Aβ0 , because Aβ0 = Aβ0+1

by the choice of β0 . Thus y witnesses the right-hand side of (6) since (y)n = xn by
construction. □ (Theorem 7)

It remains to note that the construction of the ramified analytical hierarchy is purely
analytical and can be described by suitable L(PA2) formulas. In principle, the proof of
Theorem 7 remains valid in TMC mutatis mutandis . For instance, as ω1 may not exist in
TMC , the case β0 = Ord has to be taken care of. Let

β0 =

{
the least β with Aβ = Aβ+1 − if such ordinals β exist,

Ord, the class of all ordinals − otherwise,
(7)

so that A =
⋃

α∈β0
Aα in both cases. It can be an interesting problem to maintain the

construction and the proof of Theorem 7 entirely by analytical means on the base of PA−
2 ,

thereby giving a pure analytical proof of the ensuing equiconsistency of PA−
2 and PA2 .

14. Conclusions and Problems
In this study, the methods of second-order arithmetic and set theory were employed

to giving a full, and self-contained in major details, proof of Theorem 1 on the formal
equiconsistency of such theories as second-order arithmetic PA−

2 and Zermelo–Fraenkel
ZFC− without the Power Set axiom (Theorem 1). In addition, Theorems 2 and 3 contain
new results related to constructible sets.

The following problems arise from our study.

Problem 1. Regarding the axiom TrSups (Transitive superset, Section 2), is it really independent
of the rest of TMC axioms? On the other hand, can TrSups be eliminated from the above proofs of
the main results?

Problem 2. Find a purely analytical proof of Theorem 7 in PA−
2 that does not involve V of

Definition 1, or any similar derived set theoretic structure, explicitly or implicitly.

We expect that the methods and results of this paper can be used to strengthen and
further develop Cohen’s set theoretic forcing method in its recent applications to theories
ZFC− and PA2 in [38]. The technique of definable generic forcing notions has been recently
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applied for some definability problems in modern set theory, including the following
applications:

− A model of ZFC in [39], in which minimal collapse functions ω
onto−→ ωL

1 first appear
at a given projective level;

− A model of ZFC in [40], in which the Separation principle fails for a given projective
class Σ1

n , n ≥ 3 ;

− A model of ZFC in [41], in which the full basis theorem holds in the absence of
analytically definable well-orderings of the reals;

− A model of ZFC in [42], in which the Separation principle holds for a given effective
class Σ1

n , n ≥ 3.

It is a common problem, in relation to to all these results, to establish their PA2 -
consistency versions similar to Theorem 1.
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