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Abstract

We demonstrate that theories Z~, ZF~, ZFC™ (minus means the absence of the Power
Set axiom) and PA,, PA, (minus means the absence of the Countable Choice schema) are
equiconsistent to each other. The methods used include the interpretation of a power-less
set theory in PA, via well-founded trees, as well as the Godel constructibility in said
power-less set theory.

Keywords: constructibility; theories without the PS axiom; second-order arithmetic; consistency
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1. Introduction

This paper contains a proof of the following theorem.
Theorem 1. Theories PA,, PAy, Z~, ZFC™, ZF ™~ are equiconsistent.

Here, PA;, resp., PA, is a second-order Peano arithmetic with, resp., without the
(countable) AC, whereas Z~ is Zermelo set theory without the well-orderability axiom
WOA, and ZFC™ / ZF~ are Zermelo-Fraenkel set theories resp. with/without WOA,
and all three of them without the Power Set axiom. See the exact definitions in Section 2
related to the second-order Peano arithmetic and to power-less set theories. We recall that
the Power Set axiom claims the existence of the power set of any given set, leading to set
theories much stronger than the second-order Peano arithmetic. Thus, the significance
of power-less set theories is related to the fact that they combine a rich set theoretic
environment with the foundational strength equal to a second-order arithmetic.

In fact, Theorem 1 has been known since at least the late 1960s; see, for example, [1].
However, no self-contained and more or less complete proof has apparently ever been
published (see the brief discussion in Mathoverflow around [2]). In fact, significant fragments
of the proof turned out to be scattered across various unrelated publications, from which
the overall picture of their interaction in obtaining the final result does not immediately
become clear. The first goal of this paper is to finally present these fragments in a coherent
and easy-to-read proof that includes all the necessary details, particularly those related to
the Godel constructibility.

The proof of Theorem 1 consists of two parts. For the first part, we define (Sections 2
and 3) a set theory TMC, which extends Z~ by (1) the existence of transitive closures,
(2) an axiom saying that any well-founded relation on w admits a transitive model, and
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(3) the Countability axiom. This is a subtheory of ZF~ + Countability, which turns out to
be strong enough to prove the schema of Replacement in the case when the range of the
function declared to exist is a transitive class (Lemma 1). The second goal of this paper
is to highlight the foundational role of TMC as the theory of the set theoretic hull over a
universe of PA, and a straightforward set theoretic counterpart of PA, —in the same way
as ZFC™ is the theory of the set theoretic hull over a universe of PA, (with the countable
AC) and a straightforward set theoretic counterpart of PA;.

Theorem 4 below provides interpretations of TMC in PA, , as well as of ZFC™ in PA;,
obtained by using well-founded subtrees of w<® as the domain of interpretation. This is a
well-known method, presented in [3-6] among other papers, as well as in Sections VIL.3-6
of Simpson [7], and in [8] with respect to second-order set theory. The tree structure V,
related to this interpretation, is defined and studied in Section 4. The ensuing Corollary 3
claims the existence of two groups of mutually interpretable and equiconsistent theories,
which include PA, , Z~, TMC (group 1) and PA,, ZF~, ZFC™ (group 2).

The second part of the proof of Theorem 1 presents an interpretation of ZFC™ in
TMC, contained in the following theorem, which is our second key result here. This
theorem involves Godel’s class L = [J,corq La 0f all constructible sets.

Theorem 2 (TMC). The following set or class satisfies ZFC™ :

" { L, in case when the ordinal w! does not exist, (a)

Lo = UgcqLe, incase when wl = Q) does exist. (b)

Theorem 2 provides an interpretation (namely, L*) of ZFC~ in TMC, hence connecting
groups 1 and 2 above, thereby implying the equiconsistency result of Theorem 1. This
interpretation is close to an interpretation defined by Simpson [7] (VIL.4). We review
some other interpretations, including an early one defined in [9], in Section 12. Note the
additional advantage of Theorem 2: it gives a transitive “standard” (that is, with the true
membership) interpretations of ZFC™ in TMC, a theory apparently weaker than ZFC™.

Theorem 2 is proven in Sections 7 and 8 on the basis of Godel’s constructibility, as
developed in Sections 5 and 6 in the context of TMC. In particular, Section 7 contains
Theorem 6, a key result saying that, in TMC, a class of the form K = |J,cq L satisfies
ZFC™ under certain conditions. This leads to the proofs of Theorems 2 and 1 in Section 8.

Regarding the class L as a whole, we may note that L does not necessarily satisfy
ZFC™ under TMC, as Example 1 shows. Therefore, option (b) of Theorem 2 definitely
cannot be abandoned. Nevertheless, we prove the following theorem in Sections 9 and 10:

Theorem 3 (TMC).
(I) LN ZPZ(w) satisfies PA;.
(I) L itself satisfies Z~ , in particular, thus satisfying the schema of Separation.

The third goal of this paper is to present this new result.

The ensuing Corollary 5 states that, under PA, , LN & (w) satisfies PA;. Saying it
differently, L N &7 (w) is an interpretation of PA, in PA, .

Our proof of Theorem 1 leaves open the following question: is there a way to interpret
PA; in PA, , thus avoiding substantial use of set theoretic concepts and methods such
as constructibility? A possible approach to this goal, based on the ramified analytical
hierarchy, is outlined in Section 13.

Overall, this is a research and survey article, the purpose of which is to provide
proofs of such fundamentally important results, as indicated in Theorems 1-3, in a fairly
self-contained and easy-to-read form.
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2. Preliminaries

Second-order arithmetic. Recall that second-order arithmetic PA; is a theory in the
language L£(PA;) with two sorts of variables: for natural numbers and for sets of them.

We will use j, k, m, n for variables over w and x,y, z for variables over & (w), reserv-
ing capital letters for subsets of &7 (w) and other sets.

The axioms of PA; are the Peano axioms for numbers plus the following:

e Induction: Vx (0 e xAVn(nex = n+1ex) = Vn(ne€x)).

*  Extensionality forsets: Vx,y (Vk (ke x < key) = x=y).

e Comprehension CA: FxVk(k € x <= P(k))—for every formula ® in which x
does not occur, and in @, we allow parameters, that is, free variables other than k.

e Countable Choice AC,,: VnIxP(n,x) = IxVnd(n,(x),))—for any formula ®
with parameters, where (x), = {j: (n,j) € x},and (n,j) = 2"(2j+1) — 1 is a standard
bijection w x w onto w.

The theory PA,; is also known as A; (see, for instance an early survey [3]), as Z;

(in [10] or elsewhere). See also [1,7,11]. Let PA; be PA; sans AC,,.

Coding in second-order arithmetic. It can be viewed as a certain disadvantage that
PA; does not explicitly treat such objects as pairs, tuples, and finite sets of numbers, as well
as trees of tuples at the next level. However, these and similar (and, in fact, even more
complex) mathematical objects can be effectively encoded as single natural numbers or sets
of them. We refer to [7], Chap.I, and especially Section II.2, with respect to many examples.

Recall that SEQ = w<%, the set of all tuples (finite sequences) of numbers in w. If
s € SEQ and j < w, then s7j € SEQ is obtained by adjoining j as the rightmost term. Let
1hs denote the length (the number of terms).

Let sp = A (the empty tuple), and, by induction, if n = (m,j) +1 > 1 then, s, = 5,,7j.
Clearly, SEQ = {s,:n < w} and, in fact, n — s, is a bijection onto SEQ. Subsequently,
n = n(s) is viewed as the code of any s = s, € SEQ, and a set x C w is viewed as the code of
{sn:n € x} C SEQ. Following [7] (esp. I1.2), this enables us to freely consider tuples and
sets of them as if they properly exist, but still on the basis of PA, .

Similarly, still based on PA, , we can treat sets X C w X w, H C SEQ x SEQ, and the
like as properly existing.

Finite and infinite sequences of subsets of w are within reach in PA, as well, be-
cause each set x C w is a code of the infinite sequence of sets (x), = {j: (n,]) € x} (see the
formulation of AC,, above). Thus, they are, for instance infinite sequences of subsets of
SEQ.

Power-less set theories. We recall that the power-less set theory ZFC™ is a subtheory of
ZFC obtained so that the following are achieved:

() The Power Set axiom PS is excluded—symbolized by the upper minus.

(II) The usual set theoretic Axiom of Choice AC of ZFC is removed (as it does not work
properly without PS), and instead the well-orderability axiom WOA is added, which
claims that every set can be well-ordered.

(III) The Separation schema Sep is preserved, but the Replacement schema Repl (too
weak in the absence of PS) is substituted with the Collection schema:

Coll : VX (Vx € XIy®(x,y) = IYVxe XIy e YP(x,y)).

Note that Coll + Sep = Repl.

See [12-14] for a comprehensive account of main features of ZFC™.

See [15,16] and [17] (Sect. 2) or elsewhere for different but equivalent formulations of
Collection, such as in the following form in [15] (Chap. 6):
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Coll : YX3YVxe X (Iyglx,y) = Iy € Yo(x,y)).

This is apparently stronger than Coll above, but in fact, Coll’ is a consequence of
Coll, for ®(x,y) := ¢(x,y) V (y =0A =3y ¢(x,y)) in Coll

e ZF is ZFC without the well-orderability axiom WOA;
e 7 is ZF~ without the Collection schema Coll.

Let TMC be Z™ plus the following three axioms TrSups, MoClps, Countability:
*  Transitive superset, TrSups: For any X, there is a transitive superset Y O X.
*  Mostowski Collapse, MoClps: Any well-founded relation A onaset D = fld A :=

dom A Uran A admits a transitive set X and u : D onto X, satisfying, forall d € D,

(*) u(d) = {u(j):j Ad}. By standard arguments, the map p and the set X are unique.
e Countability:Vx3 f (f : x — wis 1-1), that is, all sets are at their most countable.

The name TMC reflects the initial letters of the additional axioms. Quite obviously,
TMC C ZF~ + Countability; see [15] (Theorem 6.15) for a proof of MoClps from Repl.

It follows from TrSups by Sep that the transitive closure TC(X) of any set X properly
exists. Recall that Y is transitive if VxVy (x € y € Y = x € Y), and the transitive closure
of X is the intersection of all transitive supersets of X.

The axiom MoClps is called Axiom Beta in [7] (Def. VIL.3.8). It follows the ideas first
put forward by Mostowski [18,19]. Its different aspects were discussed in [9,20-22]. The
idea of using MoClps as an axiom in weak set theoretic systems is due to Simpson [23].

Recall that a binary relation A on D = fld A is well-founded if any set @ #Y C D
contains some y € Y with Vx € Y - (x Ay). Applying MoClps for A = €[ D, we obtain:

Corollary 1 (TMC, transitive collapse). Let D be any set. There is a unique transitive set X
and a unique collapse map T : D onto X satisfying t(x) = {t(y):y € xN D} forall x € D.

Simpson’s approach. Simpson [7] (VIL.3.3 and VIL.3.8) considers a related theory
ATR{" in the €-language, containing the following axioms:
(a) Axiom of Equality: = is an equivalence relation and € is = -invariant;
(b) Axioms of Extensionality and Infinity in their usual forms;

(¢) Axiom of Rudimentary Closure, which asserts, for all u,v, w, the proper existence of
{u,v}, u~v,uxv, Ju, € u,and the following:

il = {(ny) ) e ul,
[, (62 () e wnz e ul,
[y, (5 2): (rx) € wAz € ul,
{v:idx(x e unv=w"{x}}.

(d) Axiom of Regularity in its usual form;
(e) Axioms TrSups, MoClps, Countability, as above.

Quite obviously, we have TMC \ Separation C ATR§*" C TMC. Indeed, regarding
the second C, all operations, listed in (c) above, are properly convergent within any
transitive finite-subset-closed set. Now refer to Lemma 2 below.

Therefore, TMC as a whole coincides with ATR{" 4 Separation.

3. Development of the Intermediate Power-Less Theory
We proceed with a few simple results in TMC hardly available in Z™.
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Let a class-map be a (definable) class that satisfies the standard definition of a function
(that is, consists of sets that are ordered pairs, etc.).

Lemma 1 (TMC). Let F be a class-map, D = domF any set. Then, F and the image R =
F”D = {F(x):x € D} are sets in each of the two cases: (1) R is transitive, (2) there is a set Y
such that R C 2 (Y).

Proof. (1) By Countability we can without any loss of generality assume that D C w. We
can also assume that F is 1-1; otherwise, replace D by the set

D'={keD:VjeD(j <k = F(j) # F(k))}.

Then, the relation A = {(j, k):j,k € D A F(j) € F(k)} is well-founded as isomorphic
to €[ R. On the other hand, by MoClps, A is isomorphic to €[Y, where Y is a transitive
set. It follows that Y and R are €-isomorphic, and hence R = Y is a set. Finally, F C X x R
is a set by Separation.

(2) We, without any loss of generality assume that Y is transitive by TrSups. We can
assume as well that D NY = &; otherwise, put D’ = D x {Y} and change F accordingly.
Under these assumptions, put D; = DUY and extend F to F; by the identity on Y. Then,
the image F; "D; = RUY is transitive; hence, a set by (1). Now R C F;”D; is a set
by Sep. O

A set Y is called finite-subset closed if Vz C Y (z finite = z € Y)). For any set X, let
the finite-closure FC (X ) be the least finite-subset closed superset Y O X, if it exists.

Lemma 2 (TMC). For any set X, FC(X) properly exists.

Proof. To handle the case X = w, let py be kth prime, so p; = 2, p» = 3, and so
on. Let A = {(k,n):k > 1 A pydividesn}. Then, fldA = w \ {0}, A is well-founded
(since k An = k < n), and (1) for any finite u C fld A, there is n € fld A satisfying
u = {k:k An}. By MoClps there is a map p : fld A onto a transitive set R, satisfying (*)
pu(n) ={p(k):k An)}, forall n € fld A. Then, easily R = FC(w) by ().

To handle the general case, we may assume that X is transitive, by TrSups. Let
h : w onto X, by Countability. Then, i can be extended to a class-map H defined on the
bigger set R = FC(w) so that H{w = h,and if u € R\ w, then H(u) = {H(n):n € u}.
Then, ran H = FC(X) (so far a class), and hence ran H is transitive and so is X. It follows
by Lemma 1 that both H and ran H = FC(X) are proper sets. [J

Lemma 3 (TMC). Let U,V be any sets. Then, U x V, Pein(U), USY properly exist (as sets).

Proof. X =UUV = J{U,V} isasetby Z~. Now, FC(X) is a set by Lemma 2, hence
U x V C FC(X) is a set by Sep. To prove the other claims, note that P¢i,(U), U<V C
FC(U) and use Lemma 2 and Sep. O

Thus, TMC proves the existence of Cartesian products. Note that Z~ does not prove
even the existence of w x w!

Lemma 4 (TMC). Let E be a strict well-ordering of a set U. Then, there is an ordinal A and an
order isomorphism of (U ; E) onto (A; €).

Proof. By Countability we can without any loss of generality assume that U C w. Then,
E is a well-founded relation with fld E C w. Apply MoClps. Then, A = X is a transitive
set well-ordered by €, that is, an ordinal. [
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Corollary 2 (TMC). If «, B are ordinals, then there exist (as sets) ordinals « + B, a - B, aP (in
the sense of the ordinal arithmetic.)

Proof. We have to define well-ordered sets, which represent the mentioned orders. For
instance, the Cartesian product « x 8 (a set by Lemma 3), ordered lexicographically, repre-
sents a - B. The exponent af is represented by the set

W={f:D— a~{0}:D C Bis finite},

ordered lexicographically, with the understanding that each f € D is by default extended
by f(¢) =0 forall { € B~ D. Note that W C FC(B x ) is a setby Lemma 2. O

4. The Set Theoretic Tree Hull over Second-Order Arithmetic

Following [7] (VIL.3), we consider the collection WFT of all well-founded trees & #
T C SEQ = w<%. Recall the following:

e A isthe empty tuple, (k) is the tuple with k as the single term;
e TCSEQisatreeifs”jeT = seT;
e Tiswell-foundedif ~3g:w - wVm(gmeT);

* 57jis obtained by adding j € w to s € SEQ as the rightmost term, and if 5,t € SEQ,
then s™t € SEQ is the concatenation;

e IfTisatreeand s € T, then put T° = {t € SEQ:s"t € T}; thus, T® is a tree as well,
and if T is well-founded then sois T°.

Definition 1 (PA, ). Let S,T € WFT.
Aset HC S x T isan S, T-bisimulation, if, forall s € Sand t € T,

sHt < Vs'=s"jeSIt =t"keT (S HY) A (1)
ANV =tkeT3s =s"jeS (S HY).

Define S = T if there is an S, T-bisimulation H such that A H A.

Define S € T if S = T" for some u € T with Thu = 1.

The structure V = (WFT; =, €) is considered in PA; .

The V-interpretation [®]" of an € -formula ® (with parameters in WFT) is naturally
defined in the sense of interpreting =, € as resp. =, €, and relativizing the quantifiers to WFT.

Thus, for instance [x =y]V

is x =2 y.

Note that the bisimulation relation = between trees in WFT, and subsequently the
derived relation € as well, are naturally formalized in PA; in the frameworks of the
approach based on coding; see Section 2. It follows that, for any €-formula ® with
parameters in WFT, the V-interpretation [®]" of is a £(PA;)-formula.

The next theorem is a version of the interpretation results known since at least
Kreisel [1] and published somewhat later in [3-5,7] or elsewhere. The PA, part of the
theorem is essentially Theorem 5.5 in [3]. The PA, part is close to Theorem 1.1 and
Corollary 1.1 in [4] or VIL.3.24 in [7].

Theorem 4 (PA; /PA;). V is a well-defined structure: = is an equivalence on WFT, € is a
binary relation on WFT invariant with respect to =2.

Moreover, V satisfies resp. TMC/ZFC™ . In other words, if ® is an axiom of TMC, resp.,
ZFC, then [®]V is a theorem of resp. PA; , PA;.

Proof. Besides the papers cited above, the bulk of the theorem was established in [7] (VIL.3).
Namely, using just ATR? as the basis theory (which is a small part of PA, ), Lemma VIIL.3.20
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in [7] proves that if ® is an axiom of ATRS®, then [®]" is a theorem of ATR® (and then
of PA, as well). Thus, to prove the PA, part of Theorem 4, it suffices to check Sep in V.

Arguing in PA;, assume that S € WFT, X = {k: (k) € S}, and ®(x) is an €-
formula with parameters in WFT and with x as the only free variable. Trees of the form
gk = {t € SEQ: k"t € S}, k € X, belong to V and are the only (modulo &) €-elements
of S in V. Now, using the PA, Comprehension, we let Y = {k € X: [®(S¥)]"}. The set
T={A}U{t € S:t(0) € X} is a tree in WFT. We claim that [T = {x € S: ®(x)}]".

Indeed, assume that C € WFT, C € S,and [®(C)]Y. Then, C = S for some k € X,
so that [®(S¥)]V holds, and hence k € Y. It follows that C = Tk = Sk € T. The proof of
the inverse implication is similar.

Finally, we prove the PA, part of the theorem. Arguing in PA;, we have to addition-
ally check Coll in V. Thus, let S € WFT and let ®(x,y) be an €-formula with parameters
in WFT, satisfying [Vx € S3y®(x,y)]", that is,

YA € WFT3B e WFT(AES = [®(A,B)]Y). )

But €-elements of S are, modulo 2, all trees Sk = {s €S:k"s € T}, where k € K =
{k € w: (k) € T}, and only them. Thus, (2) implies

Vk € K3IB € WFT ([®(S¥,B)T").

Using AC,, of PA;, we obtain a (coded, see Section 2) sequence of trees By € WFT with
[®(S,Bi)]Y forall k. Now, T = (A) U Ugex k" By € WFT, and each By is an € -element
of T. Thus, we have

Vke KIBE T ([®(S5B)]Y), thatis, [Vx € STy € Td(SK,B)]Y,
as required. O

Corollary 3 (of Theorem 4). Theories PA, , Z~, TMC are mutually interpretable and hence
equiconsistent to each other. Theories PAy, ZF~, ZFC™ are mutually interpretable and equiconsis-
tent as well.

Corollary 3 is the first part of the proof of Theorem 1. The remainder of the proof
involves the ideas and technique of Godel’s constructibility, and the goal will be Theorem 2,
which provides an interpretation of ZFC™ in TMC.

5. Constructible Sets in the Intermediate Theory

We will make use of some keynote definitions and results related to constructible sets as
given in [7] (Sect. VIL.4). We present these results based on TMC, whereas Simpson works
in ATRSEt and in some other sub-theories of TMC in [7], which is not our intention here.

Lemma 5 (TMC, VIL.4.1in [7]). Let X be a nonempty transitive set. There exists a unique set
Def X consisting of all sets Y C X, definable over X by an €-formula with parameters from X.
This set Def X is obviously transitive, and X U {X} C Def X.

Lemma 6 (TMC, [7], Lemma VIL.4.2). Let u be a transitive set and p € Ord. There is a unique
function f = g such that dom f = B, f(0) =u, f(a+1) = Def f(a) whenever a +1 < B,
and f(A) = Uy f(a) forall limit A < B.

The lemma enables us to define L, [u] = f%, , («) in TMC, legitimizing the standard

a+1
definition of relative constructible hierarchy for any set u C w:
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Lo[u] = wU{u} — to keep it transitive,

Lyt1[u] = Def Ly[u] forall «,

L, [u] = Ug<a La[u] forall limit A, 3
L[u] = Uxeora La[#] = all sets constructible in u,

L, = L.[9],

L = L[o].

Theorem 5 (TMC). Suppose that u C w, then the following conditions apply:

(i)  Each Ly[u] is transitive and o C Ly [u];

(i) If & < B then Ly[u] € Lg[u] and Lo[u] C Lglu];

(iti) If A is the limit, then Ly [u] is closed under the rudimentary operations (c) in Section 2 ;

(iv) () If A € Ord is the limit, then the map & — Ly[u] (a < A) is definable over Ly [u] with
u as the only parameter; (II) the class-map & — Ly[u] (« € Ord) is definable over L[u],
with u as the only parameter .

Proof. See [7], Theorem VII.4.3 on (i), (ii), (iii). Regarding (iv), see Theorem VII.4.8 in [7]
or [24] (B.5, Lemma 4.1)incase u = @. [

What kind of set theory is provided in L[u] by TMC?

Lemma 7 (TMC). Let u C w. All axioms of Z™~, except perhaps for the Separation schema,
hold in L{u| and in any set L) [u], where A € Ord is the limit.

Proof (sketch). This does not differ from the full-ZF case. Consider, for instance the Union
axiom. Let X € L[u], so that X € Ly[u], « € Ord. As L,[u] is transitive, the union
Y = U X C Ly[u] is definable over L, [u], hence Y € Ly 1[u] = Def Ly[u]. O

On the other hand, axioms of TMC do not imply that the schemata of Replace-
ment/Collection necessarily hold in L, as the next example shows.

Example 1. Arquing in the full-ZF theory, let 9 = Ly, where © = (Ry,)L. Let N be the forcing
extension of MM by ajoining a generic sequence of (generic) maps f,, : w onto (X,)L. Then, M isa
model of TMC. However, (L)”* = 9, and Repl/Coll definitely fail in 9.

Unlike Repl/Coll, the Separation schema always holds in L under the TMC axioms
in the background set universe by Theorem 3(1I), as proven in Section 10.

6. Definability and Well-orderings

Our goal here is to prove a few more delicate results related to the constructible
hierarchy. The next lemma presents a key definability result.

Lemma 8 (TMC). Let u C w, A be the limit, and Y € Ly [u]. Then, Y is definable over L, [u]
(i) by a formula with parameters Ls[u], 6 < A; (ii) by a formula with parameters 6 < A and u.

Proof. (i) By definition, Y = {y € Ly[u]: Ly[u] = ¢(y)}, where « < A and ¢ may contain
parameters in Ly [u]. Arguing by induction on «, let ¢(y) be ¢(p,y), where p € Ly[u] isa
parameter. Then, p € L, [u] for some 7 < a by (3) above. According to the inductive
hypothesis, we have p = {z € L, [u]:L,[u] |= ¢(z)}, where ¢ has only sets Ls[u], § < A,
as parameters. Then, Y = {y € Ly[u|:L)[u] = ®(y)}, where

O(y) = 3p (,p € Lalu] Ap = {z:z € Ly[u] Ap(2)} A g(py) 1Y),
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and ¢(p,y)"") means the formal relativization to L,[u], thatis, all quantifiers 34, Va
are changed to resp. 3a € Ly[u], Va € Ly[u]. Then, ¢’ has only the sets L [u], Ly[u],
and some Ls[u|, 6 < A, as parameters. This proves part (i). We now infer part (ii) applies

to Theorem 5(iv). [

Lemma 9 (TMC). Let u C w and A be the limit. Thereisamap H : D = w X A x A<% onto
L, [u], definable over L) [u] with u as the only parameter.

Proof. By Lemma 8, each Y € L, [u] has the form Y = {y € Ly[u]: Ly [u] = ¢(y)} for some
x < A, where ¢ contains parameters § < A and u.

Givena tripleof n,a,pof n € w, « < A,and p = (d1,...,0) € Ak let ¢n be the n-th
parameter-free €-formula. If
(t) 61...,0k < Aand ¢y is ¢u(vy,...,0r,v) with k+ 1 free variables,
then define the set

H(n,a,p) = {y € La[u]: Lr[u] = ¢(d1,-. ., y) }-

If (1) fails, then put H(n,a, p) = &. Then, H is definable over L, [u] with u as a parameter
by Theorem 5(iv) since it is defined in terms of the definable map a — Ly[u]. O

Lemma 10 (TMC). Let u C w. There is a well-ordering <y, of L[u] definable over L{u] with
u as the only parameter. If A € Ord is the limit, then there is a well-ordering <y 1,y of L[u]
definable over L [u] with u as the only parameter.

onto

Proof. In the A-case, let the map H : D — L, [u] be given by Lemma 9. The set
D = w x A x A=% C L, [u] is parameter-free definable over L, [u]. Thus, to define <y |,
it suffices to show that D admits a well-ordering <p parameter-free definable over L, [u].
For that purpose, if

d=(nue,u=y,...,ym)) €D, d = o, u=y,...,7.,)) €D,

then let p(d) = max{a,v1,...,vm} and define d <p d’, if and only if, any of the following
conditions are met:
) wu(d) <pu(d);

u(d) =wu(d) and m < m’;

u(d) =wu(d), m=m', and u < v’ lexicographically in A™;

uld)=u(d), m=m',u=u',and n<n'.

The well-ordering <y, of L[u] is then defined so that x <y, y if either (1) Ax < Ay,
where Ay is the least limit ordinal with x € L), or (2) Ax = Ay and x <y Wy o

7. The Key Technical Theorem

The purpose of this section is to formulate a convenient necessary condition for
obtaining ZFC™ in some constructible domains. This will be Theorem 6 below, the key
theorem of the title. To simplify formalities, we define the following formula:

Definition 2 (TMC). Let 2(u, ), K) be u C w, and either the following conditions are met;

- (A)Q=0rd, K=L[u],and wlL [ does not exist; in other words, every ordinal is countable
in L{u],
—  (B) the ordinal Q) = w}[u] exists, and K = Lq[u] = L i [u].
1

Thus, K = Ugeq La[u] in both cases (A), (B).

Lemma 11 (TMC + 2(u, Q,K)). If « € Q, then Ly[u] is ctble in L{u].
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Proof. Let « € Q) be the limit. By Definition 2, there is a map f € L[u], f : wonto .
Lemma 8 providesaset D = w x « X a<“ € L[u] andamap H € L[u], H : D onto Ly[u].
We obtain amap h € L{u], h : w onto L, [u] by combining f and H in L[u]. O

Lemma 12 (TMC + 2(u, ), K)). Let X € K, and F : X — K be a class-map definable over
L{u]. Then, ranF = {F(x):x € X} C Ly [u] for some v € Q); hence F, ranF are sets.

Proof. By Lemma 11, we without any loss of generality suppose that X = w. For any
k < w, let & be the least § € () satisfying F(k) € Ls[u]. Assume towards the contrary that
{0k:k < w} is unbounded in Q). Then, O = Uy, -

In case (A), for any k, there are functions & € L[u], h : w onto &; let hy be the
<p[y-least of them. If n = 2K(2j4+1) — 1, then put G(n) = h(j). Then, G is a definable
class-map from w onto () = Ord by construction. Thus, () and G are sets by Lemma 1
since () is transitive. This is a contradiction since Ord is not a set in TMC.

In case (B), Q) = wlL[”]. Define /i and G using the well-ordering <y, of Lo[u]
instead of <y[,j. Then G is a class-map from w onto () = w{‘[u] , definable over L since
<pqu)- Thus, G € Layi[u] C L{u], and hence the ordinal () is countable in L[u]. Thisis a
contradiction. [

Corollary 4 (TMC + 2(u, ), K)). Assumethat « € Q, m < w, and Gy,...,Gy : K— K be
class-maps definable over L{u]. There is a limit ordinal B € Q, B > a, satisfying Gy " Lglu] C
Lglu] forall k=1,...,m.

Proof. Put G(x) = (Gy(x),...,Gm(x)). Use Lemma 12 to obtain a class-sequence o =
wp < &y < ap < ... of ordinalsin Q) satisfying G"Ly, [u] C Ly, [u], Vn. Apply Lemma 12
again to show that § =sup, a, € Q). O

Assume 2(u, ), K). Say that B € Q) reflects a formula ¢(xy,...,xy,), if the equivalence
X (x1,...,xy) = (pLﬁ‘[”] (x1,...,%n) holds for all x; € Lg. The following reflection lemma
is a standard consequence of Corollary 4.

Lemma 13 (TMC + 2(u, ), K)). If « € Q and ¢ is a parameter-free formula, then there exists
a limit ordinal B € Q), B > a which reflects ¢ and every subformula of ¢.

Proof (sketch). We, without any loss of generality assume that ¢ does not contain V (oth-
erwise, replace V with —~3-). Let us enumerate ¢, ..., 1, all the sub-formulas of ¢
(including possibly ¢ itself) beginning with 3. If j < n, then we define a class-map G;
as follows.

Let j < nand ¢; be 3y xj(y,x1,.--,%m). If p = (x1,...,xm) € K and thereis y € K
satisfying X]K (y,x1,...,xm), then let G;(p) be the <y, -least of these y. Otherwise let
Gj(p) = @. Each class-map G; is definable over L[u], such is the well-ordering <L[u]-

By Corollary 4, there is an ordinal g € Q, B > a, satisfying G;”Lg[u] C Lg[u] for
all j =1,...,n. Now, it easily goes by induction on the number of logical symbols that
reflects every subformula of ¢. In particular, it reflects ¢ itself, as required. O

Theorem 6 (TMC + 2(u, O, K)). The schemata of Separation and Collection hold in K.
Therefore, ZFC™ as a whole holds in K by Lemma 7.

Proof. Separation. Assume that ¢(x,y) is a parameter-free formula, « € OO, p € X = Ly [u].
We have to prove that Y = {x € X: ¢X(x,p)} € K. Let, by Lemma 13, a limit ordinal 8 € Q,
B > a reflect ¢(x,y), so that

Y ={xeX:o"M(x,p)} ={x e X:Lg[u] = @(x,p)} € Lgya[u] C K.
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Collection. Assume that ¢(x,y,z) is a parameter-free formula, « € Q, p € X = Ly[u],
and we have Vx € X 3y € K ¢X(x,y, p). By Lemma 13, there exists a limit ordinal g € Q,
B > a, which reflects 3y ¢(x,y,z), with all its subformulas, including ¢(x,y,z), so that
5

Vxe X3y € Lglu] o' (x,y,p), and Vx € X3y € Lg[u] 9™ (x,y, p)- O

8. Proof of Theorems 1 and 2

Theorem 1 is an elementary consequence of Theorem 2, so we concentrate on the latter.
In fact, all the necessary work has already been done.

Case (b) of Theorem 2. Arguing in TMC, we have case (B) of Definition 2 with u = &,
QO = w{“, K=1L*=1L Wb Then, (2, w{“, L") holds, and hence L* satisfies ZFC™~ by
Theorem 6.

Case (a) of Theorem 2. Similar, but via case (A) of Definition 2.

9. Proof of Theorem 3(I)

We may note that item (I) of Theorem 3 is a simple corollary of item (II), as proven
below in Section 10. However, we present here a different proof based on Theorem 6 above.
We argue in TMC. Prove that L N & (w) satisfies PA;.

Case 1: There is u C w such that w{“[u] does not exist. Then, ZFC™ holds in L[u] by
Theorem 6; hence, ZFC™ holds in L as well. This implies PA; in LN & (w), as required.

Case 2: a){“ (] € Ord exists for all u C w. In particular, Q) = w{“ € Ord exists, and Lq
is a model of ZFC™~ by Theorem 2. Therefore, it suffices to prove that LN #(w) C Lq.

This is a well-known result in ZFC and ZFC™, a part of Godel’s proof of CH in L.
Godel’s reasoning is doable in TMC, and a close claim is established in [7] in the course of
the proof of Theorem VIIL.4.34. However, the proof there involves quite special arguments.
For instance, the X, -theory of constructible hierarchy, which we do not plan to use in our
proof. Yet, there is a much simpler way to achieve the same goal, which is by reduction to
the ZFC™ environment.

Thus, let x € LN #(w). Then, x € L) for some A € Ord. We assert that

() thereis an ordinal & > A such that Ly is a model of ZFC™.

Indeed, by the axiom of Countability in TMC, there is a bijection & : wonto A. Let
u = {2/-3%:h(j) < h(k)}. Thus, u C w codes h. Note that ¢ = w{‘[u] € Ord by the Case
2 assumption, and Ly[u] is a model of ZFC~ by Theorem 6; hence, Ly = ZFC™ as well.
Thus, it suffices to show that A < 9.

Suppose to the contrary that ¢ < A. Then, Ly[u| = ZFC™, as stated above. In
addition, Ly[u| is a model of ordinal height ¢, and u € L, [u] C Ly[u], by construction.
But u effectively codes the ordinal A > ¢, which is a contradiction. This completes the
proof of ().

Choose ¢ by (). Thus, x € Ly. We do not claim that Q) = w{“ ?, but Q) obviously
remains a regular uncountable cardinal in Ly. This implies that Ly N & (w) C L by a
standard collapse argument by Godel. We conclude that x € L, as required.

10. Proof of Theorem 3(II), Sketch

We argue in TMC. Due to Lemma 7, it suffices to check the Separation schema in L.

We will make use of a series of deep results in [25], particularly those related to
countable index ordinals, that is, ordinals « satisfying (Ly+1 \ Ly) N 2 (w) # 2.

It is asserted in [25] that there exists a parameter-free closed €-formula ¢ such that,
for any transitive set M, o™ (the formal relativization) holds if M = L, for some limit
ordinal A, and in addition ¢ holds as well. Basically, o says that all sets are constructible
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and there is no largest ordinal. The required property is based on the absoluteness of Godel’s
construction for transitive sets satisfying some simple conditions [15]. It is explained in [15]
(Ch. 13) between Theorem 13.16 and Lemma 13.17 how such a formula ¢ can be constructed,
satisfying the desired property (13.13) there. See also [26] with a complete argument.

Now, suppose to the contrary that Sep fails in L, that is, there exist the following:
a transitive set B € L (say B = L, for some a) and a formula ¢(p, x) with a parameter
p € L,such that Y = {b € B:¢Y(p,b)} ¢ L (Y is a set in the TMC universe by Sep).
Taking the <y-least B and p with these properties, we reduce the general case to the
following:

(t) B = {b € L:06%(b)} is parameter-free definable in L, and ¢(x) is a parameter-free
formula, still satisfying Y = {b € B: ¢"(b)} ¢ L.

Assuming that the formulas ¢ and ¢ do not contain the quantifier V (replaced by —3-),

welet f1,..., fu be the Skolem functions for all existential subformulas of the formulas

(1) o, ¢(x),and the formula ‘B = {b € L:9(b)}’,

defined in L on the basis of the parameter-free definable well-ordering <.

Consider the closure M of BU {B} under fi,..., fix. By a standard combinatorial
argument, there is a class-map & defined on the set U = B<“ x w<%, such that M = ® " U.
Let T : M onto a transitive class N be a collapse map, thatis, 7(x) = {t(y):y € x N M}
for all x € M. (To define N, T apply Corollary 1 for sets My = MNLy, « € Ord, and let T
be the union of all partial collapse maps 1, : M, onto a transitive set Ny .)

Using Lemma 1 for the superposition of ® and 7, we conclude that N is a set.
Moreover, as B is transitive, we have B = 7(B) € N.

On the other hand, the class or set M is an elementary submodel of L with respect to
formulas (1) by construction. In particular, M |= o, hence N |= ¢ as well, and we conclude
by the choice of ¢ that N = L) for some limit A.

By the same argument (and because B = 7(B)), we conclude that Y = {b € B:
¢ (b)} € Ly, C L, which contradicts (1).

11. A Corollary in the Domain of Reals

Theorem 2 being proven implies the following corollary.

Corollary 5 (PA; ). LN & (w) satisfies PA;.
Saying it differently, LN 2 (w) is an interpretation of PA, in PA; .

Proof (sketch). Here, LN & (w) essentially means {x C w: constr(x)}, where constr(x)
is a certain X} formula of £(PA;) that expresses the constructibility of x C w by referring
to the existence of a real that encodes (similar to for instance encoding by trees in WFT) a
set theoretic structure that indicates the constructibility of x. Such a formula was explicitly
defined by Addison [27,28], but it implicitly can be found in studies by Godel [29] and
Novikov [30].

As for the proof itself, recall that the PA, structure V satisfies TMC by Theorem 4.
Therefore, we have [LN & (w) satisfies PAy | by Theorem 2. Yet, the V-reals are iso-
morphic to the true reals in the background PA, universe. We conclude that, in PA,,
LN £ (w) satisfies PA;. O

Corollary 5 can be compared with its better-known ZF version:

Proposition 1 (ZF, Theorem 1.5in [4]). If X C & (w) isa B-model of PA, , then XN L isa
B-model of PA; plus constructibility.
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The proof of the proposition in [4] involves Lemma 1.4, which cites Theorem 1 in [25],
as presented in Proposition 2(ii) below. Another path to Proposition 1, quite complicated
in its own way, is given in [31,32]. It is definitely tempting to accomodate these proofs of
Proposition 1 to the case X = & (w) towards Corollary 5 under the TMC axioms. Yet, we
are not going to pursue this plan here as it will definitely involve more complex arguments
than the above proof of Theorems 2 and 3.

12. Some Other Models

Here, we briefly describe three other interpretations of ZFC~ in TMC, which are
designed rather similar to L* of Theorem 2.

Model 1. Consider the least ordinal A such that the set L is not countable in L1 —
provided such ordinals exist, and otherwise A = all ordinals. Put L' = (Jycp Ly. It is
demonstrated in [9] that L is an interpretation of ZFC™ in TMC.

Model 2: version of Model 1. Consider the least ordinal & such that the difference
Lz 11 \ Lg contains no sets x C w—the first index ordinal as defined in [25]—provided such
ordinals exist, and otherwise & = all ordinals. Arguments close to those in [9] show that
Lt = Uxez Lz L isan interpretation of ZFC™ in TMC.

Model 3. Simpson defines in [7] (VI1.4.22) the set or class HCL of all sets x that belong
to transitive sets X € L, countable in L, and proves that HCL is an interpretation of ZFC™
in TMC yet again. But it looks like HCL is just equal to L* of Theorem 2.

13. Ramified Analytical Hierarchy—A Shortcut?

Cutting Theorem 1 to the equiconsistency of PA; and PA, (second-order arithmetic
with, resp., without the countable Choice AC,, ), one may want to manufacture a true
second-order arithmetical proof, not involving set theories like Z~, ZFC™, ZF~, TMC.
The above proof (Section 8) definitely does not belong to this type, since it involves TMC
in a quite significant way. In this section, we survey a possible approach to this problem.

Using earlier ideas of Kleene [33] and Cohen [34], a transfinite sequence of countable
sets Ay C & (w) is defined in, for instance [25], (§3) by induction so that

A = Ptin(w) = all finite sets x C w
A,.1 = Def A, forall « @
Ay = Ug<r Ay for all limit A '
A = Uxeord A« = all ramified analytic sets
where DefA, = {x C w:x is definable over A, with parameters} in the second line.

Thus, a set x C w belongs to Def A, if x = {n: A, = ¢(n)} for some formula ¢ of
L(PAy) with parameters in A,, and X |= ... means the formal truth in the £(PA;)-
structure (w; X). The following is routine.

Lemma 14. If x € A, and y C w is arithmetical in x, then y € A,.

In spite of obvious similarities with the Godel constructible hierarchy (3), the ramified
analytic hierarchy is collapsing below wj :

Lemma 15 (Cohen). There is an ordinal o < w{“ such that A | = A 11 = A, forall v > .
Then, obviously, A = A | and A =PA, .

Proof. By the cardinality argument, there is an ordinal B with Ag = Ag,1. Then, Ay =
Sep. Let x = BT, the least cardinal bigger than B. Consider a countable elementary
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onto

submodel M of L, containing 8, and let H : M — L, be the Mostowski collapse. Let
0o = H(B); then, o < A. As the construction of the sets A, is obviously absolute for L,
wehave A | = Sep aswell, and then A | = A ,;,asrequired. [

The following theorem is essentially Lemma 2.2 in [35].
Theorem 7 (ZF). A = A | satisfies PAy with the choice schema AC,, .

Proof. To sketch a proof of this profound result, we need to have a look at the ramified
analytic hierarchy from a somewhat different angle. This involves a “shift” in Godel’s
hierarchy and ensuing classification of ordinals:

e Let My = Ly4, for all a. In particular, My = L, = all hereditarily finite sets, but
still, similarly to (3), M1 = Def M, V&, and the union is taken at limit steps. (See,
for instance note 2 on p. 499 in [25] or Section 5 in [36], where “Ly = hereditarily
finite sets” is defined outright.) Needless to say that M, = L, forall « > w?.

* Anordinal « is an index if (M1 \My) N Z(w) # @.

We will refer to a result established in [25], using Theorems 1 and 9 by a complex
mixture of set theoretic and recursion theoretic methods. A set E C w X w is a code (or
arithmetical copy, as in [25,37]) of M, if it is isomorphic to € [ M, via a bijection of fld E
onto My.

Proposition 2.
@) Ifa< o+1then Ay =M;N Z(w).
(i) If B isan index then there is a code of Mg in Mg, 1.

Proof (sketch). (ii) Suppose that § is the limit, as argued in Section 10 with B = w and
Mg = L p instead of L, so that Y = {k € w: oMo (k)} ¢ Mg .. In the notation of Section 10,
we still have N = M, for a limit A. Note that A < g is impossible since Y € M) 11 \ Mg.
A > B is impossible as well since N is the transitive collapse of M C Mg.

Thus, A = B, and hence Mg is €-isomorphic to M.

On the otherhand, M €¢ M p+1asa definable subset of M B Moreover, the inductive
construction of M as the closude of w under a finite list of functions definable over My can
be represented as a construction of a relation E C w X w, still definable over M B/ and such
that (w; E) is isomorphic to (M; €) and hence to (Mg; €) by the above.

In other words, E € Mg, isa code of Mg, as required.

If B =v+k, where v is the limitand 1 < k < w, then we have to go back to Section 10
and, using o, define a closed formula o} by induction on k, such that, for any transitive
set M, (cx)M holds if M = L, for some limit ordinal v. Namely, put oy := ¢ as in
Section 10, then let 01 say: “there is a transitive set X with (c;)% and (all sets) = Def X”.

Then, go through the arguments in the limit case, mutatis mutandis.

(i) This claim goes by induction, using (ii) as the key argument. See [25] for details.

O (Proposition)

Beginning the proof of Theorem 7 itself, note that the equality A | = A || immedi-
ately implies Comprehension in A . The proof of AC,, takes more effort. We claim the
following:

)] o is not an index, whereas each o <  is an index;
(1) ¢ is a limit ordinal—Lemma 2.5 in [35].

To prove (I), note that, by the choice of ( and Proposition 2(i), ¢ is not an index
since (M ;1 ~\M )N Z(w) = (A 11~NA )N P(w) =D, whereas every & < g is
an index by similar reasons.
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To verify (II), suppose to the contrary that ¢ = a + 1. By (I) and Proposition 2(ii),
thereisa code x C w of M, in M | and hence in A | by Proposition 2(i). In particular, x
codes all sets in M, N & (w). Therefore, we can extract a part y C w of x, which codes all
those sets so that

My N 2 () = {(y)uin < @}, ©)

(see Section 2 on (x);), and in addition, y is arithmetical in x.
Then, y € A | by Lemma 14. But each z € A
contradiction since A | |= PA, by Lemma 15.

, is arithmetical in y by (5). This is a

Now, coming to AC,,, we are going to prove that
Vnax®(n,x) = JyvVnd(n, (y)) (6)

holdsin A, where ® is a PA; formula possibly with parametersin A .

By Lemma 10, there exists a well-ordering <p, . of M 0 definable over M 0 (o
is limit by (II).) Assuming that the left-hand side of (6) holds in A , we let x, be the
<r  leastelementx € A | =M N P (w) satisfying A | = ®(n,x).

The set y = {(n,]):j € xn} is then definable over M, hence y € Def M j =M ;.
We conclude that y € A |1 by Proposition 2(i). Finally y € A |, because A = A 1
by the choice of (. Thus y witnesses the right-hand side of (6) since (y), = x, by
construction. O (Theorem 7)

It remains to note that the construction of the ramified analytical hierarchy is purely
analytical and can be described by suitable £(PA;) formulas. In principle, the proof of
Theorem 7 remains valid in TMC mutatis mutandis. For instance, as w; may not exist in
TMC, the case § = Ord has to be taken care of. Let

{ the least p with Ag = Agy;  — if such ordinals f exist, )
O =

Ord, the class of all ordinals — otherwise,

so that A = e ,An in both cases. It can be an interesting problem to maintain the
construction and the proof of Theorem 7 entirely by analytical means on the base of PA;,
thereby giving a pure analytical proof of the ensuing equiconsistency of PA, and PA;.

14. Conclusions and Problems

In this study, the methods of second-order arithmetic and set theory were employed
to giving a full, and self-contained in major details, proof of Theorem 1 on the formal
equiconsistency of such theories as second-order arithmetic PA, and Zermelo-Fraenkel
ZFC~ without the Power Set axiom (Theorem 1). In addition, Theorems 2 and 3 contain
new results related to constructible sets.

The following problems arise from our study.

Problem 1. Regarding the axiom TeSups (Transitive superset, Section 2), is it really independent
of the rest of TMC axioms? On the other hand, can TrSups be eliminated from the above proofs of
the main results?

Problem 2. Find a purely analytical proof of Theorem 7 in PA, that does not involve V of
Definition 1, or any similar derived set theoretic structure, explicitly or implicitly.

We expect that the methods and results of this paper can be used to strengthen and
further develop Cohen’s set theoretic forcing method in its recent applications to theories
ZFC™ and PA; in [38]. The technique of definable generic forcing notions has been recently



Axioms 2025, 14, 865 16 of 18

applied for some definability problems in modern set theory, including the following
applications:

— A model of ZFC in [39], in which minimal collapse functions w ontg w! first appear
at a given projective level;

— A model of ZFC in [40], in which the Separation principle fails for a given projective
class E%, n>3;

— A model of ZFC in [41], in which the full basis theorem holds in the absence of
analytically definable well-orderings of the reals;

— A model of ZFC in [42], in which the Separation principle holds for a given effective
class Z%, n>3.
It is a common problem, in relation to to all these results, to establish their PA;-

consistency versions similar to Theorem 1.

Author Contributions: Conceptualization, V.K. and V.L.; methodology, V.K. and V.L.; validation,
VK., formal analysis, VK. and V.L; investigation, V.K. and V.L.; writing—original draft preparation,
V.K,; writing—review and editing, V.K. and V.L.; project administration, V.L.; funding acquisition,
V.L. All authors have read and agreed to the published version of the manuscript.

Funding: The research was carried out within the framework of the state assignment of the Institute
for Information Transmission Problems of the Russian Academy of Sciences, approved by the Ministry
of Education and Science of the Russian Federation.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors are thankful to Ali Enayat, Gunter Fuchs, Victoria Gitman, and Julia
Kameryn Williams for their enlightening comments that made it possible to accomplish this research.
The authors are grateful to the anonymous referees for their comments and suggestions, which
significantly contributed to improving the quality of the publication.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Kreisel, G. A survey of proof theory. J. Symb. Log. 1968, 33, 321-388.

2. Williams, J.K. Interpretation of ZFC ~ in 2nd Order Peano Arithmetic. (Answer No. 1, Dated 7 Dec 2022). Mathoverflow. 2022.
Available online: https://mathoverflow.net/questions /436107 (accessed on 26 April 2025).

3.  Apt, KR; Marek, W. Second order arithmetic and related topics. Ann. Math. Log. 1974, 6, 177-229. https://doi.org/10.1016,/0003
-4843(74)90001-1.

4. Marek, W. w-models of second order arithmetic and admissible sets. Fundam. Math. 1978, 98, 103-120. https://doi.org/10.4064/
fm-98-2-103-120.

5. Zbierski, P. Models for higher order arithmetics. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 1971, 19, 557-562.

6.  Zbierski, P. Non standard interpretations of higher order theories. Fundam. Math. 1981, 112, 175-186. https://doi.org/10.4064/
fm-112-3-175-186.

7. Simpson, S.G. Subsystems of Second Order Arithmetic, 2nd ed.; Perspectives in Logic; Cambridge University Press: Cambridge, UK;
ASL: Urbana, IL, USA, 2009; pp. xvi+444.

8.  Williams, J.K. The Structure of Models of Second-order Set Theories. arXiv 2018, arXiv:1804.09526. Available online: https:
/ /arxiv.org/abs/1804.09526 (accessed on 17 October 2025).

9. Kanovei, V.G. Theory of Zermelo without power set axiom and the theory of Zermelo-Fraenkel without power set axiom are
relatively consistent. Math. Notes 1981, 30, 695-702. https://doi.org/10.1007/BF01141627.

10.  Schindler, T. A disquotational theory of truth as strong as Z, . |. Philos. Log. 2015, 44, 395-410. https://doi.org/10.1007/s10992-0

14-9327-5.


https://mathoverflow.net/questions/436107
https://doi.org/10.1016/0003-4843(74)90001-1
https://doi.org/10.1016/0003-4843(74)90001-1
https://doi.org/10.4064/fm-98-2-103-120
https://doi.org/10.4064/fm-98-2-103-120
https://doi.org/10.4064/fm-112-3-175-186
https://doi.org/10.4064/fm-112-3-175-186
https://arxiv.org/abs/1804.09526
https://arxiv.org/abs/1804.09526
https://doi.org/10.1007/BF01141627
https://doi.org/10.1007/s10992-014-9327-5
https://doi.org/10.1007/s10992-014-9327-5

Axioms 2025, 14, 865 17 of 18

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

Friedman, H. On the necessary use of abstract set theory. Adv. Math. 1981, 41, 209-280. https://doi.org/https://doi.org/10.101
6/0001-8708(81)90021-9.

Antos, C.; Gitman, V. Modern Class Forcing. In Research Trends in Contemporary Logic; Daghighi, A., Rezus, A., Pourmahdian, M.,
Gabbay, D, Fitting, M., Eds.; College Publications: Garden City, NY, USA, 2023. Available online: https://philpapers.org/go.pl?
aid=ANTMCEF (accessed on 6 December 2022).

Gitman, V.; Hamkins, J.D.; Johnstone, T.A. What is the theory ZFC without power set? Math. Log. Q. 2016, 62, 391-406.
https://doi.org/10.1002 /malq.201500019.

Gitman, V.; Matthews, R. ZFC without power set II: Reflection strikes back. Fundam. Math. 2023, 264, 149-178. https:
//doi.org/10.4064/fm206-11-2023.

Jech, T. Set Theory, The Third Millennium Revised and Expanded ed.; Springer: Berlin/Heidelberg, Germany; New York, NY,
USA, 2003; pp. xiii+769. https:/ /doi.org/10.1007 /3-540-44761-X.

Zarach, A.M. Replacement — collection. In Godel "96. Logical Foundations of Mathematics, Computer Science and Physics—Kurt
Godel’s legacy; Springer: Berlin/Heidelberg, Germany, 1996; pp. 307-322.

Devlin, K.J. Constructibility; Perspect. Log.; Cambridge University Press: Cambridge, UK; Association for Symbolic Logic (ASL):
Urbana, IL, USA, 2016. https://doi.org/10.1017/9781316717219.

Mostowski, A. An undecidable arithmetical statement. Fundam. Math. 1949, 36, 143-164. https://doi.org/10.4064/fm-36-1-143-164.
Mostowski, A. Formal system of analysis based on an infinitistic rule of proof. In Infinitistic Methods, Proceedings of the Symposium
on Foundations of Mathematics, Warsaw, Poland, 2-9 September 1959; Pergamon Press: Oxford, UK, 1961; pp. 141-166.

Barwise, J.; Fisher, E. The Shoenfield absoluteness lemma. Isr. J. Math. 1970, 8, 329-339. https://doi.org/10.1007 /BF02798679.
Barwise, J. Admissible Sets and Structures. An Approach to Definability Theory; Perspect. Math. Log.; Springer: Berlin/Heidelberg,
Germany, 1975.

Abramson, F.G.; Sacks, G.E. Uncountable Gandy ordinals. ]. Lond. Math. Soc. II Ser. 1976, 14, 387-392. https://doi.org/10.1112/
jlms/s2-14.3.387.

Simpson, S.G. Set theoretic aspects of ATRq . In Logic Colloquium '80, Proceedings of the European summer meeting of the
Association for Symbolic Logic, Prague, Czech Republic, 24-28 August 1980; Elsevier: Amsterdam, The Netherlands, 1982; Volume 108,
pp- 255-271.

Barwise, J., Ed. Handbook of Mathematical Logic. Reprint; Studies in Logic and the Foundations of Mathematics; Elsevier:
Amsterdam, The Netherlands, 1982; Volume 90.

Boolos, G.; Putnam, H. Degrees of unsolvability of constructible sets of integers. J. Symb. Log. 1969, 33, 497-513. https:
//doi.org/10.2307 /2271357.

Boolos, G. On the semantics of the constructible levels. Z. Math. Log. Grundl. Math. 1970, 16, 139-148. https://doi.org/10.1002/
malq.19700160204.

Addison, ].W. Separation principles in the hierarchies of classical and effective descriptive set theory. Fundam. Math. 1959,
46,123-135. https://doi.org/10.4064/fm-46-2-123-135.

Addison, ].W. Some consequences of the axiom of constructibility. Fundam. Math. 1959, 46, 337-357. https://doi.org/10.4064/
fm-46-3-337-357.

Godel, K. The Consistency of the Continuum Hypothesis; Annals of Mathematics Studies, No. 3; Princeton University Press:
Princeton, NJ, USA, 1940. https://doi.org/10.1515/9781400881635.

Novikov, PS. On the consistency of some propositions of the descriptive theory of sets. Transl. Ser. 2 Am. Math. Soc. 1963,
29, 51-89. Translation from Tr. Mat. Inst. Steklova 1951, 38, 279-316.

Enderton, H.B.; Friedman, H. Approximating the standard model of analysis. Fundam. Math. 1971, 72, 175-188. https:
//doi.org/10.4064/fm-72-2-175-188.

Enderton, H.B. Constructible B-models. Z. Math. Log. Grund. Math. 1973, 19, 277-282. https://doi.org/10.1002/malq.19730191
409.

Kleene, S.C. Quantification of number-theoretic functions. Compos. Math. 1958, 14, 23-40.

Cohen, PJ. A minimal model for set theory. Bull. Am. Math. Soc. 1963, 69, 537-540. https://doi.org/10.1090/50002-9904-1963-10
989-1.

Marek, W.; Srebrny, M. Gaps in the constructible universe. Ann. Math. Log. 1974, 6, 359-394. https://doi.org/10.1016/0003-484
3(74)90005-9.

Jockusch, C.G., Jr.; Simpson, S.G. A degree-theoretic definition of the ramified analytical hierarchy. Ann. Math. Log. 1976, 10, 1-32.
https:/ /doi.org/10.1016/0003-4843(76)90023-1.

Leeds, S.; Putnam, H. An intrinsic characterization of the hierarchy of constructible sets of integers. In Logic Colloqu’69,
Proceedings of the Summer School and Colloquium in Mathematical Logic, Manchester, UK, 3-23 August 1969; Elsevier:
Amsterdam, The Netherlands, 1971; pp. 311-350.


https://doi.org/https://doi.org/10.1016/0001-8708(81)90021-9
https://doi.org/https://doi.org/10.1016/0001-8708(81)90021-9
https://philpapers.org/go.pl?aid=ANTMCF
https://philpapers.org/go.pl?aid=ANTMCF
https://doi.org/10.1002/malq.201500019
https://doi.org/10.4064/fm206-11-2023
https://doi.org/10.4064/fm206-11-2023
https://doi.org/10.1007/3-540-44761-X
https://doi.org/10.1017/9781316717219
https://doi.org/10.4064/fm-36-1-143-164
https://doi.org/10.1007/BF02798679
https://doi.org/10.1112/jlms/s2-14.3.387
https://doi.org/10.1112/jlms/s2-14.3.387
https://doi.org/10.2307/2271357
https://doi.org/10.2307/2271357
https://doi.org/10.1002/malq.19700160204
https://doi.org/10.1002/malq.19700160204
https://doi.org/10.4064/fm-46-2-123-135
https://doi.org/10.4064/fm-46-3-337-357
https://doi.org/10.4064/fm-46-3-337-357
https://doi.org/10.1515/9781400881635
https://doi.org/10.4064/fm-72-2-175-188
https://doi.org/10.4064/fm-72-2-175-188
https://doi.org/10.1002/malq.19730191409
https://doi.org/10.1002/malq.19730191409
https://doi.org/10.1090/S0002-9904-1963-10989-1
https://doi.org/10.1090/S0002-9904-1963-10989-1
https://doi.org/10.1016/0003-4843(74)90005-9
https://doi.org/10.1016/0003-4843(74)90005-9
https://doi.org/10.1016/0003-4843(76)90023-1

Axioms 2025, 14, 865 18 of 18

38. Kanovei, V,; Lyubetsky, V. Jensen Aln reals by means of ZFC and second-order Peano arithmetic. Axioms 2024, 13, 96.
https://doi.org/10.3390/axioms13020096.

39. Kanovei, V,; Lyubetsky, V. Definable minimal collapse functions at arbitrary projective levels. J. Symb. Log. 2019, 84, 266-289.
https://doi.org/10.1017/js1.2018.77.

40. Kanovei, V,; Lyubetsky, V. Models of set theory in which separation theorem fails. Izv. Math. 2021, 85, 1181-1219. https:
//doi.org/10.1070/IM8521.

41. Kanovei, V,; Lyubetsky, V. The full basis theorem does not imply analytic wellordering. Ann. Pure Appl. Log. 2021, 172, 102929,
https://doi.org/10.1016/j.apal.2020.102929.

42. Kanovei, V.,; Lyubetsky, V. A model in which the Separation principle holds for a given effective projective Sigma-class. Axioms
2022, 11, 122. https:/ /doi.org/10.3390/axioms11030122.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3390/axioms13020096
https://doi.org/10.1017/jsl.2018.77
https://doi.org/10.1070/IM8521
https://doi.org/10.1070/IM8521
https://doi.org/10.1016/j.apal.2020.102929
https://doi.org/10.3390/axioms11030122

	Introduction
	Preliminaries
	Development of the Intermediate Power-Less Theory
	The Set Theoretic Tree Hull over Second-Order Arithmetic
	Constructible Sets in the Intermediate Theory
	Definability and Well-orderings
	The Key Technical Theorem
	Proof of Theorems 1 and 2
	Proof of Theorem 3(I)
	Proof of Theorem 3(II), Sketch
	A Corollary in the Domain of Reals
	Some Other Models
	Ramified Analytical Hierarchy—A Shortcut?
	Conclusions and Problems
	References

