
where for ~, b e At(H) there exists a c e At(H) such that c ~a+S.2=<~,~(/~)~{LZ,~,c}>, y = 

<b, At(H)\{ a, b, c}>, and where for O, b e At(H) there exists a c e At(H) such that ~+~= 

+ c = b + c and z = <0, At(H)> in an arbitrary case. It is easily verified that x A y = 

x A z, but x A y # x A (y + z). Consequently, the quasi-identity for cosemidistributivity 

is fulfilled only in the congruence lattices of the graphs K n for n ~ i and /~(~,o, nz) for 

k e 0 and m e 0. 

The author thanks V. A. Gorbunov for guidance in the preparation of this article. 
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MODEL-COMPLETENESS OF A THEORY AND EVALUATION OF FORMULAS 

V. A. Lyubetskii UDC 510.67:512.55 

Macintyre in [i] considers special model-complete theories, which he defines by the 

condition that the reducing E-formula does not contain negations (he calls such theories 

positively model-complete). For example, one such is a field theory in which one can 

replace x ~ 0 by -~z(x'z = i). In the language of ring theory, this is essentially the 

only example. Probably, therefore, the author of [i], in deducing the basic theorem from 

[I] also in [2, p. 175], does this only for a field theory. 

In [i, p. 88] it is said, "We would like to see an extension of the above-indicated 

method to noncommutative biregular rings." In [2] this problem is extended in the following 

manner: "Will there be a model-companion of a theory of certain natural Boolean extensions? 

...a Boolean extension is a structure of sections of a sheaf over a Boolean space." A Bool- 

ean space is a complete disconnected compactum (a Stone space). 

In this note, some answers are presented to the questions of Macintyre and a connection 

is established between some traditional questions of the theory of algebraic systems and 

Heyting-valued (nonstandard in the broad sense) analysis. 

In [I], parallel with the language of ring theory, a general first-order language is 

also considered, including ring theory language, and also general sheaves (covering spaces) 
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over Stone spaces X. Moreover, it is natural to impose on the atomic predicates of this 

wider language in one form or another, conditions making them similar to the predicate =, 

and that little depends on the choice of the sheaf. In this note, we restrict ourselves 

to ring theory language and, correspondingly, a Pierce sheaf for an arbitrary ring (associa- 

tive and with i). It is similar only in that our results also pertain to the mentioned 

generalization in [I] in the general languages and sheaves over X, including in sheaves 

not over a Stone space. They appear in such a form in another paper of the author. 

Let us recall that any ring K is isomorphic to the ring (and it is identified further 

with it) of all global continuous sections of a sheaf ~defined on the topology Jof the 

Stone space X = X(K) of the Boolean algebra B = B(K) of all central idempotents of K (in- 

stead of B, J dc K is written). Moreover, the stalk (localization) Kp of ~(respectively, 

K) over a point p e X (p is a prime ideal in B) is defined as K/p, where p ~ p-K. The 

notation {Kp} I = ~ signifies the general validity of ~ in all stalks (localizations) of K. 

Here and further, as desired, one can not mention the sheaves, speaking only of a ring K 

and the family of its residue class rings Kp; also one can not mention the topology~-and 

the space X(K), operating only in terms relating to B(K). 

First of all, let us once again formulate the problem. Let T be a theory in ring 

language, including the ring axioms and the axiom 0 ~ i, and having a model-companion T*. 

Although it is not essential, it is convenient to consider that T ~ T ~. Let us form ~= 

{Kl{Kp}k T} andS{ ~ {KI{Kp} ~ T*, K~ #l A...A ~m}, where m ~ 0 and the formulas ~i ..... ~m 

depend only on the class ~. Let us restrict ourselves here to the case when m = 3 and ~l = 

V~ ~VS~ 4 (e/=~A4~=~A(~A~-jI~A~=~)A(~Ae~=~eAE~ ~----~ek = 0)) is the 

, = S ~ eA~ Horn formula exp re s s ing  the  p r o p e r t y  of " n o r m a l i t y "  of  K, ,= ~8_.gJ~#ogg ( L $= 8-----5 
= e) is a formula e 0 = e 0 A e0t I = tle 0 A (e 0 = 0-~0 = i) A (e 0 = e----->0 = i) A (e=0 V e0"e = 

expressing the lack of atomicity of K [or, what is the same, the lack of atomicity of B(K) 

or the absence of isolated points in X(K)]. This non-Horn formula can be replaced by a 

list of Horn formulas equivalent to it, since the class {KIK ~ $~} is closed with respect 

to filtered products. Finally, ~3 =Ve~(e~E -~et = te) is the Horn formula expressing 

commutativity of K. We show (Corollary "b" to Proposition 2) that each axiom of the class 

~$*of the form {Kp} ~ ? , where ? e T* is a Horn formula. 

Therefore, the class ~ is axiomatizable and, what is more, Horn. For one 

condition on ~ it is model-complete (theorem 2); that is, its theorey Th ~is model- 

complete. For one condition on the theory T*, the class $~is imbeddable in ; that is, 

W ~IJZeI~ K c h (Theorem 3) Therefore the class ~ • , is called a model-companion for 

(Naturally, the class ~* is called a model-companion for ~ ~, if these classes are 

mutually imbeddable and the class ~is model-complete; that is ~,~6~ ~ -->~L ). 

Therefore, if the class~ is axiomatizable, then Th~is a Horn model-companion for the 

theory Th ~ (Theorem 4). In this same theorem, for any (not necessarily axiomatizable) 

class K, there is indicated a dense Horn axiomatizable subclass, defined as the class of 

all models of T' (which is canonically determined according to an arbitrary initial'theory 
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T), for which the class ~is a model-companion; that is, the class ~ ~is a model-companion 

of the class ModT' or, in other words, the theory Th~'*is a Horn model-companion for T'. 

Let us provide two formulas: ~4 = ~B%$~ e = 0re = i) is "without idempotents" and 

~s = ~57~(e z=eAEy=y8~ e = 0ve = i) is "indivisible." 

In the conclusion of the statement of the problem, let us remark that the indicated 

manner of giving the class ~ is based on the traditional approach to studying algebraic sys- 

tems, in the framework of which the algebraic system is considered from the point of view 

of the family of all its localizations. From this point of view, such a method of giving 

a class is universal. 

The condition mentioned above on ~is such (the corresponding term, as also the other 

terms presented below, is conditional and pertains only to this note). Let us call the 

class of rings R, Boolean absolute if for any K e R we have VLE ~{~Z~VE,£ I([)(~ ~0 ~ 

C~zP, E~(~.Z ) Q K ~ (Pi N K)'K); that is, on a [dense in X(L)] set of points Pi, we have ~i n 

K = pln~ . One can clarify the sense of this condition so. We intend to consider the 

extensions K ~ L, K, L e R; that is, to consider in the language of the covering spaces, 

the surjective continuous function f: X(L) + X(K), f(Pi) = P = Pin B = Pi N K and family 

of homomorphisms ~Pi: Kp ~ Lpi, ~pi([k]p) = [k]pi. To the imbedding of K in L corresponds 

an imbedding of the covering spaces (X(K), E(K)) + (X(L), E(L)) of the form <f, {Ypllp i e 

X(L)}>. The kernel of the homomorphism ~Pi for an arbitrary point Pi • X(L) equals {[k]pl 

k • K, k e Pi} and our condition means precisely that the (dense in Pi) set of homomorphisms 

~Pl consists of monomorphisms. In other words, in a Boolean absolute class, the imbedding 

of K in L induces imbeddings of Kp in Lp~ for a dense set of points Pi, where p = f(Pi), 

Pi • X(L). 

For example, if R is a class of biregular rings; that is ~Te e B(K) (<k> = e'K), then 

R = {KI{Kp} ~ is a "prime ring"; moreover, K is an automatically normal ring and R 0 is a 

Boolean absolute class (here <k> is a principle ideal). While, as an appropriate dense set 

of points Pi, one can take all of X(L). 

The second condition (on T*) mentioned above is that T* is a completely closed theory. 

Let us denote by Xi(K) the set of all proper ideals in B(K). Let us note that q = q'K is 

an ideal in K for any q e Xi(K ) and one can let Kq ~ KI~, X(K) E Xi(K)" Let us call the 

theory T closed if any model of it is imbedded in a model of it F, such that {Fp} ~ T. Let 

us call a closed theory T completely (totally) closed, for which we have one more condition 

F > ¢i ^ ¢3 (correspondingly for any model of it F, we have {Fql q e Xi(F)} ~ T). For 

example, if T ~ ¢,, then T is completely closed and totally closed; if T ~ ¢5, then T is 

totally closed. Let us call a theory T normally (commutatively) closed if it is closed 

and the corresponding F has the property F ~ ¢i (respectively, F ~ ¢~). For example, even 

the condition T ~ #~ is satisfied for the class R of strictly Rickart rings, which is given 

in the form R = {Kl{Kp} ~ #~.#-0-~ = Ovt = 0), k ~ ~i}. For another class R of abel- 

Jan regular rings, which is given in the form R = {KI{Kp} ~ "division ring"}, we immediately 
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have both conditions: this is a Boolean absolute class and T ~ ¢4. Let us recall that 

strict Rickartivity is characterized by the condition ~J~' • B(K), K* = e'K, where k* is 

a right annihilator of the element k of K; commutativity is property ¢3 and reguiarity i s 

understood in the sense of von Neumann. 

Let us recall the definition basic in a Heyting-valued analysis of a valuation [for 

the case of a ring language and a topology ~¢rin X(K): [~=~ = U{e • B(K)le'k = et} = 

{p • X(K)Ik(p) = t(p)} {let us note that the normality of K is equivalent to the fact that 

~=i~£2(X).V~,#6X). Further, [~v~]=[~]~[O] (also for ^ and n) [n~_]= $~ 
c f , , ~  

where °C is the interior of the complement [~=~]=Ot[O~<~l~£~), [~2~==~i[~ )Ilk • K}, 

where °N is the interior of the intersection. It is clear that [~{~t,...,ka~ 6 ~ (the para- 

meters are always from K). Finally, different rings have different valuations. A valuation 

is similarly defined for the language ZF; moreover, the parameters run over V ~ One can 

everywhere replace 3~'by an arbitrary Heyting algebra ~. In a reminder of ~, one sometimes 

writes [,]~ and, in a reminder of K, one sometimes writes ~]K. The connection of the 

languages of ring theory and ZF, and the valuations corresponding to them, is expressed 

next. For K, the object K' ~ Vfis defined and the translation of the formulas ~ of the 

ring theory language with parameters k i from K to the formulas {~'of ZF with parameters Pki 

£~t] = I) for which [~ (k I . kn)] K [~v{D, . . . .  ~ . from K' (in the sense [/~ • _ . . . . .  = 

Namely, Pk: K ~ ~, Pk(t) = [~-{J , where t runs over K; K': {Pklk • K) ~ {i}, +': {<ek, 

Pt, Pk+l>~l k, t e K} + {i} (it is similarly defined). Now the translation ~ .... ~v is 

clear: k ~ Pk, + + +' • + ' (x e K' , • , x ~ ). For all the details of this, see [3] and 

also below in Proposition 5. Typically, one denotes Pk simply k and omits ; that is, 

instead of ~v(p~ ,.,.,~ ~ , ,  one writes [~I~, ..... ~)]~.. Let us recall that ~ = {g e 

V~l[g ~ f]~ = I}, where 1 is the unit in ~ [3]. 

Proposition I. If K is a normal ring and {Kp} ~ T, where T is a model complete theory, 

then for any formula ~ we have two properties: ~I~ I ..... ~@K=[pefIK)IXp~ ~ (kl(p) ..... 

kn(P)) } and [ ~  is a clopen set, where k I ..... k n ~ K. 

Proof. For an atomic formula ~-~J = e0, where e 0 is from the definition of normal- 

ity for the element k - t. For the connectives V, A, ] everything is clear. For the con- 

nective J let us observe [.3~_~={p~fIKp~ J~}. Using model-completeness for ~_~# , we 

obtain a reducing E-formula and by normality of the ring, the valuation [~] is clopen. 

For F let us observe [~z~]~ [p~XI~p~ *{] ~O[[~(k)]Ik e K} and consider that {p • XIK p 

_~Xq ~} is clopen. 

COROLLARY I. If T is a positive model-complete theory, then K is a normal ring (that 

is, the condition of normality in Proposition 1 can be omitted for such T). 

This corollary is essentially noted in [I]. Without special assumptions about T, the 

equality from Proposition 1 is invalid even in the form [~]=/ <-------> [~p} ~ ~ - Therefore, the 

valuation is an instrument not reducing to the consideration of the set {p e X(K)IK p ~ ~}. 

However, we require the following: 
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COROLLARY 2. Let # be in prenex normal form. if [~]~ = i, then {Kp} ~ 9' 

Proof. For a quantifier-free ~ let us verify the stronger: p E[~]~ ~. By defin- 

ition, p e [~Y~ ---> Kp ~ k(p) = t(p) and p e ~=~J ~ Kp ~ kp # t(p). For V, A, it is 

obvious. For -~let us use accessibility (that is, in essence, the compactness of X), and 

for V, the flabbiness of a sheaf (that is, in essence, the epimorphicity of K ~ Kp). 

Remark. One can replace 1 by any clopen set. The normality of ~ consists in the fact 

that negations are found only in the atomic formulas. If K is a normal ring, then for a 

quantifier-free formula, so that negations may not be available, we have [~] = [o&%IKp~ ~j. 

Proposition 2. Let ~ (k I ..... k n) be any formula in prenex disjunctive form in the 

ring language and ~'(k I ..... k n) be obtained from ~ by transfer of the quantifier prefix Q, 

occurring in ~, and then by the assignment ~VB~=~ABI~=~BIA,,,n~(/-~) = OA~I=~ A 

...A e0 - A...]. Then , where eK. 

Proof. We consider that the quantifier-free part of ~ is of the form ~S " Then 

50[~s(~)~ = 1 is equivalent to the existence of a set {es} _c B(K), such that e s ~[~(~]K 

and U es = i. This is written by the above-indicated formula (where k I = t I is one of the 
5 

equations, and k 2 # t 2 is one of the inequalities in ~i)- If Q begins with _v v, then let 

us use accessibility in the clopen set. The case when Q begins with ~ is obvious. 

Remark. In Proposition 2 one can replace 1 by any clopen set and only accessibility 

is necessary from the sheaf and SE, in essence. Such a proposition is also true for other 

languages. The semantics of V usually evokes the most difficulties - Proposition 2 reduces 

it to a Horn formula. Type ~'is easily described according to the type ~. The express- 

ibility of this and a number of other predicates (see in particular Proposition 6 below) 

indicates that the forcing theory is expressed in an internal manner in the ring language, 

that gives the usual corollaries of this theory. 

The transition T ~ T', where by definition T' = {~I~ T} often is useful. The axioms 

of T' are easily written out according to the axioms of T. 

COROLLARY. a) If an arbitrary theory is described with the help of any set of proposi- 

tions of the form [~(~]K = i, then it is axiomatizable and even Horn. 

b) If ~ = {KI{Kp} ~ T, K ~ ~}, where T is model complete, then the class ~is Horn- 

axiomatizable, namely ~= {KIK ~ T', K ~ ~i}. In particular, the classY*is Horn-axiomatiz- 

able. 

Proof. b) On one side, we use Proposition 1 and, in the converse, Corollary 2 to Propo- 

sition i. 

THEOREM I. If ~= {KI{Kp} ~ T, K ~ ~l}, where T is an AE-theory (or in the absence of 

the condition K ~ ~l, an AE-positive theory), then the class ~ is Horn-axiomatizable, name- 

ly 3{= {K]K ~ T', K ~ ~l}- 
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Proof. It is known [3, p. 388] that under these conditions the relation {Kp} ~ ~ is 

equivalent to [~]f = i. Then, let us use Proposition 2. Hence, Corollary "b" to Proposi- 

tion 2 is obtained, since the model-complete theory is an AE-theory. 

Let us extend the theorem of Macintyre, which was spoken of at the beginning of the 

note, to the following: 

THEOREM 2 If is a Boolean absolute class, then it is model-complete. 

LF~. For any K ~ ~and any primitive formula ~ with parameters from K, there exists 

a formula ~i with those same parameters equivalent to ]~ in each extension L _m K, L e ~, 

which has the form ~ =-~V ~0 ~0, where the block ~ runs over L, after which disjunction 

(concerning which, the sign V speaks) can be encountered, and e 0 is a special variable in 

B(L) and @0 is the conjunction of atomic formulas and formulas being the implication of 

two atomic formulas. 

Proof. As in [i], let us form according to ~ the ~e-subformulas of ~, containing all 

the equations from ~ and one inequality from ~ (one can consider that ~ contains among the 

inequalities also 0 ~ i). It was in essence proved in [I] that under the condition of norm- 

ality and the lack of atomicity of L, there is satisfied (further, Proposition i is taken 

into account everywhere): (4 ~ ~)--~-~ (V~[~e]L# ~A U [~]~ X). Therefore (t ~ ]9)--~ 

(~[~] =O)V/U [~ < I), where instead of # and X, we write 0 and i. 
~D 'i 

The first disjunctive term can be rewritten in an equivalent manner, sequentially so: 

3/(~I ~3= I), according to the model-completeness of the theory T*, there is an E-formula 

' with a quantifier-free part V ~es, equivalent to ]~e in the models for T*; that is e s ' 

3 £( [~9~] = i), according to accessibility ~] on the clopen set, we obtain 3~(~ [~] = 

V G -o ,  ,.. g4: I), taking into account commutativity 3~- [$~,=$!A 

~ e 0 ~ i - e~t) A...], where k I = t I is one of the equations, and k 2 ~ t 2 is one of the 

inequalities in ~I" 

Similarly, for the second disjunctive term: Jpa%~(D~,J~ ~pE[~1~£])~ ~]~i7~ 

~g~#0A6l ]~e] e e), according to the model-completeness of T*, there is an E-formula ~l 

with a quantifier-free part V ~is, for which ~B e B (e ~ 0 A [~] e e), by accessibility 
S 

['~ on the clopen set, we obtain ~f~E~ 8~OA~ [~ e e), by commutativity 3f~e~e 0 ~ E ~  

0~$~=~^... ( ~  => e 0 ~ 1 - e) A ] where k~ = t~ and k= * t= from ~i~ 

Proof of Theorem 2. Let K ¢ L, K, L ~. We want to transfer q~ from K to L. By 

Lemma 7 G~ in K and in L are equivalent to the same formula (with those same parameters) ~i. 

Therefore, it is sufficient to transfer ~ from K to L; that is, to transfer ~ e0~ 0, more 

precisely• to transfer implication. This requires a strengthening, since B(L) can be wider 

than B(K); on account of com~nutativity B(K) S B(L). It is given that~ ~ ~#~i+~,~=O~e 0 ~ e), 
where k, e ~ K. Itis necessary to prove~ ~,~I~=0~'e0 ~ e). Let us assume that e0k = 0, 

e 0 ~ B(L), and e 0 ~ (i - e) ~ 0. By hypothesis, let us take p~ ~ e 0 ~ (i - e), for which 

Pl ~ K ~ p, where p = Pl ~ K. Then (i - e0)'k = k and k = e~k, where e~ ~ p. Therefore 

15 



(i - e I) ~ Pl and (i - el)'k = 0, (I -- e I) e B(K); that is, (i - e I ) ~e, e e Pl, and (I - 

e) e Pl. A contradiction. 

Now let us consider the conditions ensuring the imbeddability of class ~ in class ,~ 

THEOREM 3. a) If T* is normally closed, then ~is imbedded in {KI{Kp} ~ T*, K ~ ~ 

A ~2}" 

b) If the theory T* is completely closed, then,~ is imbedded in ~C" 

Proof. Let K e ~and, consequently, K is a subdirect product in J Kp, where all the 

Kp are models of T. By hypothesis, each Kp is imbedded in some FP, where FP ~ T*. As FP 

let us choose exactly those models for T*, regarding which it is spoken in the definition 

of a closed theory. 

Let us denote by X 0 the Cantor discontinuum (a completely disconnected, separable, 

metrizable compactum without isolated points). In each FP let us fix the discrete topology. 

We verify that all the rings ~-P= C(XQ, FP) belong to that class in which it is necessary 

to imbed K. These rings consist of all piecewise constant FP-valued functions on X 0. 

In correspondence with the corollary to Proposition 2, all the classes mentioned in 

the verified theorem are Horn, and that is why they are closed with respect to products. 

Therefore, ~,~--P belongs to the needed class and ~/7~-~/7~P>-~/'/T --~, that is required to 
P P p 

prove. 

Thus, let us consider the ring F = C(X0, F), where F ~ T* and F possesses the property 

from the definition of a closed theory. It is true that B(F) = C(X 0, B(F)), and <x 0, p0 > = 

{f e B(~)If(x0) e P0} is a prime ideal in B(~) for any x 0 e X 0 and P0 e X(F). Any point 

from X(F) has the same form, that is symbolically X(F) = X 0 × X(F), since for p e X(F) there 

exists x 0 e X0, for which P0 = {f(x0)If e p} does not contain a unit from B(F) (otherwise 

{{x 0 e X01f(x0) = l}If • p} is an open covering of X 0, and the subcovering leads to fl ..... 

fn • P, such that fl V...V fr e p and fl V...V fn ~ 1 - a contradiction). Such a p ! <x 0, 

p0> is a prime ideal in B(F). Therefore, p ~ <x0, p0>, due to the maximality of p this is 

possible only if p = <x0, p0>. 

Further, <~,/~0 > = {f • Flf(x0) • P0}, where P0 = P0 "F and <~,/~#> = <x 0, p0>'F. 

Therefore (F)<x0,p0 > = FII~0,~> = FIp o = Fp0, where P0 runs over X(F). By hypothesis, 

for all Fp0 we have Fp0 ~ T*; hence {(F)<x0,p0>} ~ T*. Let us verify the normality of 

F. If f ~ F, then let e0(x) = i, if f(x) = 0 and e0(x) = e i, where e i is the element from 

F, corresponding, due to the normalityof F, to an element f(x) # 0 from F; such e o satis- 

fies the definition of normality for f in F. Let us assume that f is an atom in F. At 

least one "step" for f; for example, f(x 0) is different from 0. This is a step over a 

clopen set containing at least two different points. Removing one of them along with its 

neighborhood, we obtain that f is not atomic. (The commutativity of F directly follows from 

the commutativity of F.) 
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Remark. Only two properties are actually used in Theorem 3 from the model-complete- 

ness of T*: closure with respect to products and the model-imbeddability of T in T*. 

Joining Theorems 2 and 3, we obtain the following theorem. Let the axioms of T be 

written in prenex disjunctive form. Let us recall that T' = ~'I~£Pj(~' is explicitly con- 

structed according to ~ in accord with Proposition 2). This T' is a Horn theory. By Corol- 

lary 2 to Proposition i, [~=/~[~p]~ ~ ; that is, any model of T' is contained in ~ . 

Taking into account Proposition I, we obtain 

T' ') 

THEOREM 4. If ~is a Boolean absolute class and the theory T* is completely closed, 

then Th ~is a Horn model-companion for T and (in the case of an axiomatizable class ~ ) 

for the theory Th ~ . 

COROLLARY i. If ~ is an axiomatizable subclass of the class of all biregular rings 

and T* is abelian closed, then Th~ ~is a Horn model-companion for Th ~, 

COROLLARY 2. If ~is an axiomatizable subclass of the class of abelian regular rings, 

then Th ~eis a Horn model-companion for Th~ 

In [i] the case is considered exactly when ~ is the class of all commutative regular 

rings (these are also the axioms for The); such rings, of course, are abelian regular 

rings. Then it is clear that T is a field theory and T* is the theory of algebraically 

closed fields. In order to write out the axioms for Th~according to the methodology 

indicated above, it is necessary to observe that commutativity and normality are ensured 

already by the "special axioms" {Kp} ~ T*. Therefore, ~2 (lack of atomicity) remain and 

are still translated for the two axioms "field" and "algebraically closed." In correspond- 

ence with Proposition 2, let us form ~P and obtain, respectively, exactly "regular" and 

"algebraically closed." These are , in fact, the axioms for the theory Th~indicated in 

[i] and a number of other papers. In this manner, we indicate the general method of comput- 

ing the corresponding axioms. Let us note that one can explicitly indicate in which class 

of formulas we fall in the transition T~-+T ' for many T. 

COROLLARY 3. If ~is an axiomatizable subclass of the class of all strictly Rickart 

rings and ~ is a Boolean absolute class, then Th~"is a Horn model companion for Th 

Proof. In this case, all the stalks are without divisors of zero and, consequently, 

without idempotents. 

Remark. The class ~-~XpIK~, K ~ ~i A ~2 A ~3, P e X(K)}, where T ~ ~ is axiomatiz- 

ed by the theory T. 

Proof. By the definition of the class ~we have Kp ~ T. If F ~ T, then the ring F = 

C(X0, F) has all stalks isomorphic to F; that is F ~ X. Furthermore, F is normal atom-free 

and abelian. Therefore, F e $ . (It is similarly true for the case T ~ ~5.) 
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COROLLARY. 

in prenex form. 

Let us present the imbeddability criterion of the class ~ = {K I{Kp} ~ T} in some 

class j~= {K l{Kp} ~ TI} not assuming the model-completeness of T I. Let us recall that 

the object K' is determined before Proposition i. The crucial remark is that for a normal 

ring K the object K' • ~'z and, consequently, K' e (V J N VJ), where 2=~V/A ") is the Dedekind 

completion of B = B(K). One can identify such a f~Owith the algebra of regular open sets 

in X(K). These are sets ~ • J(K) for which [-~CG], where ~ is the operation consisting 

in computing the interior of the closure; that is ~ = ]], where ] = °C is the pseudocomple- 

tion. Therefore, one can judge the properties of K both from the point of view ['JIB and 

from the point of view ['Iz . In principle, the pair < ~> corresponds to a Godel negative 
v 

translation of formulas. Let us present this in more detail. 

Let two complete Heyting algebras ~I and ~= be comparable in the sense that B c_ .q~ i 

~= or B _c ~= _c ~i. We will write ~l ~ ~2, if u A~l v = uv~2v, u A~I v = u A~2 v, and ]~lu = 

]~2u, ~ ~Zl~,~'~ II~~.~. • And also write ~l ~ ~2, if ~l -< ~2 and for ] the stronger 

3~iu = ]~2u is satisfied. 

For example, ~(~)@I(,< ~) [although ~(K) c~(/[) ] and, furthermore, in this case ~!~=~. 

Another meaningful example is such: it is well known that for any complete Heyting algebra 

there is defined a complete Boolean algebra I(~), for which ~ c~(~) and ~ <_~(~); fur- 

thermore, in this case f~ ~- ~79 ~/ (In the Stone realization the algebras ~ are declared by 

open complements of compact-open sets.) 

If B c_ ~ and n is a complete Heyting algebra, then let [~-~]~ = V~ {e • Ble'k = e't}. 

This valuation is extended to the class of all formulas # (k~ ..... kn), where k~ ..... k n e 

K, precisely the same as in the case ~ = ~(K). 

Proposition 3. If ~ < ~ and K is a normal ring, and ~ is in prenex normal form, then 

[~ ~ [~]~ • In particular, I[~]~={)=~ ~v,.~ ,~ ; . ~ -~" • 

Proof by induction. 

If ~l ~ ~ and K is normal, then for ~ that same assertion is satisfied 

In particular [~$~) ~[~]~/<) and for a quantifier-free ~ we have [~ - ' ' r-j~) 

Proposition 4. If T is an AE-theory and for a normal ring K, we have {Kp} ~ T, then 

[T]B(K) = 1 

Proof. In accord with [3, p. 388] we obtain [~]j = 1 (This transition for specific 

conditions on the sheaf is valid also for the more general theories in the role of T, that 

is discussed in the paper of the author mentioned in Sec. 2.) and we apply the corollary 

to Proposition 3. 

Let us call the class ~normal if for any K ~ ~ there exists L ~ ~, for which K c L, 

L ~ ~i. Thus, we obtain the desired: 
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Proposition 5. Let the theory T be model-imbeddable in the theory T I (and this is 

derivable in ZFC). If T is an AE-theory and T I is a totally closed theory, and ~ is a 

normal class, then ~ is imbeddable in J~ 

Proof. Let K e~fand by the normality of .~one can consider that K ~ ~l. Let ~ be 

the Dedekind completion of B(K). By Proposition 4, ~ ~I = I; that is, ~'m.,a~ = i. 

By hypothesis, ~/{~T~ x ~ f A f ~ T I) is derivable in ZFC. Hence, by accessibility 

in ~V~we obtain [K' ! fl A f ~ T I~ = i, where f • VZ Let us denote ~ f = L. Then 

K ! L and we show that L • ~I as is required to prove. 

Actually ~ is imbedded in B(L) according to the rule b~--b-i + ]b'0. Therefore, one 

can consider that ~ ! B(L). Let us denote L(p0) = L/p0, where P0 is a point of the Stone 

space S(~) of the Boolean algebra ~. It is easy to verify that L(p0) coincides with the 

factorization of L by the equivalence relation (k ~ t) ~[~z~ ~ P0), and also that (If 

~9(~¢~ . .... ~)~=/~'~'~f~l~(~} ,-~ ,,,[~ , where Po runs over S(~) and k I, . . . , kn e L (by the induction 

on the length of ~ ). Thus, {L(po) } ~ T I. 

For any p • X(L) let us form Po = P n ~ ~. Moreover, Po • S(~). It is clear that 

Po is an ideal in L and Po ~ ~, and Lp = L/p = (L/po)(~/po) = L(po)/~/~ Let us remark 

that q = PlP0 has the properties: q ! B(L/~o) and q is closed with respect to A and does 

]~ : if [I]~ = [e]~ where e e p, then 1 - e = eo'r, e o • Po, and 1 = e + not contain [I 0 0 0' 

e0"r = (e V e0)'l, e V e 0 • p. A contradiction. Let us add to q all [£]P0 e B(L/~0) which 

[e]~ ° e q; obtained in this manner is that ql is a proper ideal in B(L/p0) and ql = F,-~P0 • 

Thus, Lp = L(p0)/ql, where ql • X(L(p0)), and by hypothesis, we obtain Lp ~ T I. 

Let us call the class ~atom-free if ~[~,~(K S L ^ L ~ ~2)" Let us call the 

class ~completely normal if for any K ~, K ~ ~2 there exists L •2, K ~ L, for which 

L ~ #i A ~2. Let us call the class S f abelian if for any K •~, K I ~ ~i A ~2 there exists 

h e~, K S L, for which L ~ ~i ^ ~2 A ~. 

COROLLARY. Let T be model-imbeddable in the theory T~ (and this is deducible in ZFC). 

If T is an AE-theory and T~ ~ #s, and • is an atom-free, completely normal class and the 

class ~ is abelian, then Sf is imbedded in {K ~,IK > ~ ^ #~ ^ ~F}. 

Remark° Considering the explicit form of the axioms ~for ~ we obtain that it is 

necessary to transfer to the factor only implications of the form e0"k = 0"~e 0 ~ e, that 

is done with the help of the technique of lifting idempotents. The commutativity of K with 

the help of the lifting of idempotents allows one to obtain the commutativity of L. Then, 

the condition of commutativity of the class~can be omitted and replaced in the definition 

of a totally closed theory q • X~(L(p0)) in q • X(L(p0)). 

In essence, the version of Proposition 5 is the following: 

Proposition 6. a) If T ~ ~, then (T' + ~_ ~ (~])0, where ~] is obtained from ]~ 

by a transition to disjunctive normal form, and the translation ~-* ~o is defined below. 
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b) If T ~ ~, then (T' + ~) ~ ~+, where ~-~ m + is defined below. 

To prove Proposition 6, we require the following lemmas: 

LEMM~ I. If K is normal and ~;,<)~- , then [~7(D~)=O. 

Proof. If [~]~ # 0, then by the corollary to Proposition 3 [~]g # 0. Hence ~]g # 

0, ~J2 < i. A contradiction. 

LEMMA 2. Let K be normal and ~ c K. 

a) The predicate [~(~)~ J(k) = 0 is expressible in K; that is, equivalent to K ~ ~o(~), 

where ~ is in disjunctive normal form. 

b) The predicate [~77(~)~ J(k) = 1 is expressible in K; that is, equivalent to K 

~±(~), where ~77 is obtained from ~ in prenex form by the addition of 77 before each 

Proof. a) Let us denote the quantifier-free part of ~ by ~ ~s" It is clear that 

for  a q u a n t i f i e r - f r e e  ~ the  t r a n s l a t i o n  (o  i s  de f ined .  For 3 l e t  ~ ) o =  ~}~o.  For 

let Here the predicate e ~ [~]y , in its turn, 

is revealed by induction (and, consequently, also expressible in K): ~[~I~JF~->~(ee 

[~(2~f) and e ~ [V£~]~<=>e(e&[~(~)]f ), where e ~ ~s ~]~ is determined similarly to Pro- 

position 2 [instead of /7 (i - e s) = 0 let us write ~ (i - e s) ~ 1 - el. It is clear that 
8 $ 

b) For a quantifier-free ~ this predicate is expressed the same as e ~ [~] fin the 

previous point. Let us translate the quantifier prefix Q in the following manner. For the 

pair of connectives ~ in ~ we have: [q7~g]~o]T e e°' e° e B(K) is equivalent ( [~0 j 

is an open set dense in e0) ; further, let us transform ~ g  ~4~(g~£~g~=~Ag~O~g~g~-- ~ ~ - 

~ = ~ A ~ A ~  [@0(~,~ ~ ,where e~ ~ ~[~(~,~I~ I is revealed by induction. For ~ at 
7~ 

the start of ~ we have: [~]I~E~([~].X~E). For ~ at the end of ~ we have a part- 

icular case of the pair of connectives ~ 

Proof of Proposition 6. a) In an arbitrary ring K let K ~ (T' + ¢i). Then [TJj(K)=I. 

By the corollary to Proposition 3 [T]~(K) = i. By hypothesis [~]~(K) = 1 and Lemma i and 2 

[~]J(K) = 0, K ~ (~7)°. 

b) Let K > (T' + ~i). Then [TIj(K) = I. Let us denote by T77 the Godel negative trans- 

lation of all the formulas from T (formulas from T in prenex form). Due to the normality 

of K, we obtain [~ j = i. Since T77 ~77, then [~i ]J = i, where ~77 is exactly as said 

in Lemma 2 "b". By this lemma K ~ ~+. 

Remark. A similar proposition is also satisfied for other pairs in the role of <J,~>. 

The expressibility of the mentioned predicates occurs also for other languages. One can 

weaken the condition of normality of K; for example, replacing it by the condition {[~ = 

0]j(K)[k e K} ~ B(K). 
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Let us consider the question of the transfer of model-completeness to the "reverse 

side. " 

Proposition 7. If {KI{Kp} ~ TI, K ~ (T l ' + ~I + ~2} E ~! {KI{Kp} ~ Tl}, where 

T ~ ~5 and T ~ T I, and ~ is a model-companion for ~with the condition VK~7~6X~pIeX(L) 

(K ~ L ~nK=~n~ ), then T I is a model-companlon for T. 

Proof. Let F l ~ F~ be two models for T I and ~ be a primitive (over F I) formula F I 

]~. The rings FI = C(X0, Fl), F2 = C(X0, F2) belong to ~f and F I ! F 2. For the A-formula 

]~ (as also for any AF-formula) in the normal ring~]Fl = I and, in correspondence with 

Proposition 2 for the translation ~', corresponding to ]~, we have F l ~ ~'. Then ~2 ~ ~t 

and by "uniformity" (not noted explicitly in Proposition 2) ~F2 = I; that is, F 2 = 

(F2)p ~ ]~- Thus, T I is a model-complete theory. 

Let F be a model of T. Then F is a stalk of the corresponding F ~ ~ and F ~ L e ~I" 

In the language of covering spaces, this signifies that ~PI: (FP) ~ LPI' where Pl is any 

point from X(L). By hypothesis, one of the ~Pl is a monomorphism. Therefore, F is imbedded 

in Lpl -- one of the models for T I. 

COROLLARY. The class of all abeiian regular rings does not have a model-companion ~i" I 

of the form expressed in Proposition 7, where T I includes the axioms of the division ring. 

Proof. In this case, T is a theory of all division rings, which does not have a model- 

companion. 

Remark. One can formulate conditions for which an arbitrary companion has the indicat- 

ed form (and weaken the condition T ~ ~s). Finally, the corollary pertains also to the sub- 

classes, the localizations of the elements of which embrace the class of all division rings. 

One can present many examples pertaining to Theorem 4 and its corollaries. For example, 

let T* be a model-complete theory of a central algebra over an algebraically closed field. 

Let us for concreteness say that T* is the theory of quaternions. Then, the corresponding 

class~is model-compiete. In other words, the class of rings for which all the localiza- 

tions are elementarily equivalent to the division ring of quaternions, is model-complete. 

Let us call l-primitive any such primitive formula in which there is,no more than a 

single negation. 

Proposition 8. If the theory T decides all the l-primitive formulas, then Th{KI{Kp} 

T, K ~ ~2} decides all the E-formulas. 

Proof. Let K be an arbitrary element of this class. Since K ~ ~i, then ~pI~=~7)---~ 

L ~ ~ and everywhere _~ ~of~ ~'~o ~ L ~ ]~. By hypothesis T ~ ~ for all ~ or ~f0 (T 

]@~0). Correspondingly ~ (Kp ~ ~) or ~ (Kp ~ ]~0). 

~. COROLLARY. If .,~ ~s a Boolean absolute class and T* decides all the 1-primitive formu- 

las, then Th.~is a complete (and model-complete) Horn theory. 
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The basic results of the author's note were reported in a seminar under the direction 

of Prof. V. A. Smirnov in the spring of 1984. 

Note Added in Proof. The condition of commutativity of ¢3 is, in essence, not used 

in the proofs, one can replace it by the condition of Boolean validity: (K, L e,~A K 

L)~ B(K) ! B(L); in particular, R 0 is any Boolean valid subclass. 
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A QUESTION OF HIGMAN 

A. S. Morozov UDC 512.54.05 

Our aim is to answer a question asked by Higman in a private conversation with Bele- 

gradek and Ershov. 

The question runs as follows: "Is it true that any finitely generated group in which 

the equality problem is co-enumerable can be embedded in the group of all recursive permuta- 

tions of the natural numbers?" A positive answer to this question seemed to be implied by 

the following results: first [I], any numerated set (6, v) such that the set {<x, y>l~x 

vy} is enumerable is equivalent in the category of numerated sets to an object (6', v'), 

where v' is a computable numeration of the family of general recursive functions 6'; second, 

it is obvious that any finitely generated group of recursive permutations of the natural 

numbers has a co-enumerable equality problem. Nevertheless, the general answer to the 

question turns out to be negative. That is the main result of this paper. 

We go on to notation. 

The permutation interchanging ~ and b and leaving all other elements fixed will be 

denoted by ( ~, b). 

If Pi = {xlmi ~ x ~ ri} , i = 0, I, are intervals in the set of natural numbers and 

k is a natural number, then the notation k < Pi, P0 < Pi will mean k < mi, r 0 < m I, respect- 

ively. By IP0 - Pll we will mean the distance between the intervals - the number of ele- 

ments k such that P0 < k < Pl if P0 < Pl, or the number of elements such that Pl < k < P0 

if P0 < Pl, or the number of elements such that Pl < k < P0 if Pl < P0- If T is a term, 

then we let (~)t s denote the result of substituting s for t in ~. 
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