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We find a bound for the length of a conjunction of some propositional formulas, for
which every unsatisfiable formula contains an unsatisfiable subformula. In particular,
this technique applies to formulas in conjunctive normal form with restrictions on the
number of true literals within every elementary disjunction, as well as for 2-CNFs, for
symmetric 3-CNFs, and for conjunctions of voting functions in three literals. A lower
bound on the rank of some matrices is used in proofs.

INTRODUCTION

A propositional conjunctive normal form (CNF) is a conjunction of elementary disjunctions each
of which contains just literals. A literal is a propositional variable or the negation of a variable. If
each elementary disjunction has k literals, then such a CNF is called a k-CNF. By ⊥ and � we
denote Boolean constants: the truth and the falsity respectively.

For two numbers α < β, the set α-or-β-in-SAT consists of CNFs for which there exists a (⊥,�)-
valuation of variables such that in every elementary disjunction exactly α or exactly β literals turn
out to be true. For k < α < β, the set α-or-β-in-SAT does not contain a k-CNF. For k < β,
some k-CNF ϕ belongs to the set 1-or-β-in-SAT iff ϕ belongs to a set 1-in-k-SAT consisting of k-
CNFs for which there exists a (⊥,�)-valuation of variables such that every elementary disjunction
has exactly one literal true. Some 2-CNF ϕ belongs to the set 1-or-2-in-SAT iff ϕ is satisfiable.
Some 3-CNF ϕ belongs to the set 1-or-2-in-SAT iff ϕ belongs to a set NAE-3-SAT. The latter set
consists of those 3-CNFs for which there exists a (⊥,�)-valuation of variables such that in every
disjunction some literal is false and some literal is true. The belonging of a 3-CNF ϕ(p1, . . . , pn) to
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NAE-3-SAT is equivalent to the satisfiability of a formula ϕ(p1, . . . , pn)∧ϕ(¬p1, . . . ,¬pn). Both the
problems recognizing the belonging of a 3-CNF to NAE-3-SAT and to 1-in-3-SAT are, as is known,
NP-complete. Length of a formula serves as a natural parameter for estimating the computational
complexity (see [1, 2]). In [3], an algorithm is offered for verifying the satisfiability of CNF, whose
running time on CNF in n variables with m > n elementary disjunctions is upper bounded by the
function O(2m−nn3). In particular, the running time is polynomially bounded for a fixed difference
m − n but grows exponentially for m > 2n. It is of interest, therefore, whether it is possible to
replace an initial 3-CNF by a subformula. Certain results are known that limit the possibility of
such a replacement not only in the worst case but also in the general case.

We fix an arbitrarily small ε > 0. Almost all 2-CHFs in n variables, the number of elementary
disjunctions in which is less than a threshold (1−ε)n, are satisfiable. On the contrary, unsatisfiable
are almost all 2-CNFs in n variables the number of elementary disjunctions in which is greater than
a threshold (1 + ε)n (see [4, 5]). Existence of such a threshold is usually called a phase transition
and is exemplified in [6] on random samples of formulas of several types.

If every elementary disjunction contains precisely k literals and every variable occurs in exactly
d elementary disjunctions, then a k-CNF is said to be d-regular. For any sufficiently large number
k, the belonging of a random d-regular k-CNF to the set NAE-k-SAT undergoes with growing d a
phase transition for some critical value dk, which depends on k. As the number of variables grows,
a share of d-regular k-CNFs belonging to NAE-k-SAT tends to one for d < dk and tends to zero
for d > dk (see [7]). A similar result for d-regular k-CNFs in which, under some valuation, exactly
two literals in each elementary disjunction are true was obtained in [8].

In proofs, we replace a CNF by a system of algebraic equations depending on auxiliary variables,
one for each elementary disjunction. The initial satisfiability problem for CNF reduces to the
incidence problem for a subspace defined by a system of linear equations, and point sets with
coordinates from the set {0, 1}. Related incidence problems for lines and points were considered in
[9, 10]. From a geometrical viewpoint, eliminating from CNF an elementary disjunction corresponds
to a projection onto some coordinate subspace. This projection corresponds to the elimination of
an auxiliary variable. Such an approach applies not only to CNFs but to other formulas as well.
Usually, with Boolean formulas we associate equations over a field of two elements (see [11]).
However, likewise we can consider systems of equations over other fields. A solution to a system
of equations in which each variable assumes values from the set {0, 1} is called a (0, 1)-solution.
Searching a (0, 1)-solution for a system of linear equations over the field of rationals is a well-known
computationally hard problem (see [12]).

The paper consists of three sections. Preliminary information is given in Sec. 1 where lemmas
from linear algebra are collected and will then be used in Sec. 2 in proving two theorems. Examples
and remarks are discussed in Sec. 3.
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1. PRELIMINARY INFORMATION

We denote by K a field consisting of at least three elements. Let a system of linear equations in
variables x1, . . . , xn contain more than one equation and suppose that some equation nontrivially
depends on a variable xk. A new system of linear equations is obtained from the initial system
by deleting the variable xk if the new system does not depend on xk, and the initial system is
equivalent to a combination of the new system and precisely one equation (depending on xk),
equal to a linear combination of the equations in the initial system.

We consider an affine space over a field K with a fixed system of Cartesian coordinates. The
rank of a square matrix M is associated with the dimension of an affine envelope L of points
corresponding to columns of the matrix. If L contains the origin of coordinates, then rank(M) =

dim(L), and otherwise rank(M) = dim(L) + 1.
Point in an affine space each coordinate of which is equal to zero or one is called a (0, 1)-

point. Replacement of the coordinate xk by the difference 1 − xk maps a (0, 1)-point to another
(0, 1)-point. Whereas the dimension of any subspace remains unchanged.

LEMMA 1. An n×n matrix M over a field K is such that each of its elements on the principal
diagonal is distinct from zero and one, while each element outside the principal diagonal is equal
either to zero or to one. Then the rank of the matrix M is at least n/2.

Proof. If n = 2, then the rank of a 2 × 2 matrix M is not less than a number n/2 since
rank(M) � 1. Suppose that, for some n � 3, the lemma has already been proven for all square
matrices of lesser order to be treated, and consider the n× n matrix M .

Transformation xk → 1 − xk means that all elements in the kth row of the matrix will be
replaced. Applying these transformations, we may pass from matrix M to matrix M̂ of the same
type, but in the last column of M̂ all elements except one on the principal diagonal are equal to
zero. We have a matrix

M̂ =

⎛
⎜⎜⎜⎜⎝

0

N
...
0

∗ · · · ∗ c

⎞
⎟⎟⎟⎟⎠

for some c �∈ {0, 1}. The affine envelopes of columns in both matrices M and M̂ have equal
dimensions. Therefore, rank(M) � rank(M̂) − 1. But if the affine envelope of columns in M

contains the origin of coordinates, then the rank of M may be less than that of M̂ .
Performing elementary transformations with columns of matrix M̂ yields a matrix

M̃ =

⎛
⎜⎜⎜⎜⎝

0

N
...
0

0 · · · 0 c

⎞
⎟⎟⎟⎟⎠
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of the same rank. Only bottom rows of M̂ and M̃ may be different. In the bottom row of M̃ , all
elements except one on the principal diagonal are zeros. Removing the last column and the last
row from the matrix M̃ yields an (n − 1) × (n − 1) matrix N of lesser rank. By the induction
hypothesis, rank(N) � (n− 1)/2. Therefore, the inequality rank(M̃) � (n+ 1)/2 holds.

We denote by L the affine envelope of columns in matrix M̃ . If L passes through the origin of
coordinates then rank(M̃ ) = dim(L). In this case rank(M) � dim(L) = rank(M̃) � (n+ 1)/2.

If, however, the subspace L does not pass through the origin, then rank(M) � rank(M̃ )− 1 =

rank(N). In this case the affine envelope of columns in matrix N does not pass through the origin.
If again we apply transformations like xk → 1− xk to the matrix N we obtain a matrix

Ñ =

⎛
⎜⎜⎜⎜⎝

0

W
...
0

∗ · · · ∗ ∗

⎞
⎟⎟⎟⎟⎠

of the same form, but in the last column of Ñ all elements except one on the principal diagonal are
equal to zero. Moreover, since the affine envelope of columns of matrix N does not pass through
the origin of coordinates, the inequality rank(N) � rank(Ñ) holds. Removing from Ñ the last
column and the last row, we obtain an (n− 2)× (n− 2) matrix W of lesser rank. By the induction
hypothesis, the rank of the matrix W is lower bounded: rank(W ) � (n − 2)/2. Then rank(Ñ) =

rank(W ) + 1 � n/2. Finally, rank(M) � rank(N) � rank(Ñ) � n/2. Lemma 1 is proved.

LEMMA 2. Let an n × n matrix M over a field K be given so that each of its elements on
the principal diagonal is distinct from zero and from one, and each element not on the principal
diagonal is equal either to zero or to one. If no (0, 1)-point lies in the affine envelope of columns of
the matrix M , then the rank of M is not less than a number (n+ 1)/2.

Proof. Applying transformations xk → 1 − xk to the rows of the matrix, as in the proof of
Theorem 1, we can pass from matrix M to matrix M̂ of the same type, but in the last column of
M̂ all elements except one on the principal diagonal are zeros. We have a matrix

M̂ =

⎛
⎜⎜⎜⎜⎝

0

N
...
0

∗ · · · ∗ c

⎞
⎟⎟⎟⎟⎠

for some c �∈ {0, 1}. Since the affine envelope of columns in M does not contain any (0, 1)-point,
the same will be true for M̂ . In particular, the affine envelope of columns of the matrix does not
contain the origin of coordinates. Therefore, rank(M) = rank(M̂) = rank(N) + 1. By Lemma 1,
rank(N) � (n− 1)/2. Consequently, rank(M) � (n+ 1)/2. Lemma 2 is proved.

LEMMA 3. Let a system of m linearly independent linear equations in n variables over a field
K be given. If this system does not have a (0, 1)-solution and the inequality n < 2m − 1 holds,
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then there exists a variable such that the system obtained by eliminating that variable does not
have a (0, 1)-solution either.

Proof. Suppose that the system of linear equations does not have a (0, 1)-solution, but
elimination of any variable leads to a system that has a (0, 1)-solution. Then, for any index j,
the initial system has a solution in which only the value of the jth variable does not belong to
{0, 1}, whereas the values of other variables belong to {0, 1}. We identify such a solution with
the jth column in some n × n matrix. The rank of this matrix is not higher than an expression
n −m + 1, no element on the principal diagonal belongs to {0, 1}, while all elements not on the
principal diagonal belong to {0, 1}. According to Lemma 2, this is impossible if n < 2m − 1.
Contradiction. Lemma 3 is proved.

2. RESULTS

THEOREM 1. Let a system of m linear equations of special form yj = �j(x1, . . . , xn) in
m+ n variables y1, . . . , ym, x1, . . . , xn be given, with �j denoting linear functions over some field.
If this system does not have a (0, 1)-solution and the inequality m > 2n+ 2 holds, then the system
contains an equation such that the subsystem obtained by deleting that equation does not have a
(0, 1)-solution either.

Proof. Deleting the jth equation is equivalent to eliminating the variable yj. On the other hand,
the system in question consists of linearly independent equations and defines an affine subspace
of dimension n. Elimination of any variable leads to a new system containing m− 1 or m linearly
independent equations. But if we eliminate the variable xi we may need to replace the initial
equations by their linear combinations. In view of Lemma 3, subject to the condition n+m− r <
2(m − r) − 1, we can delete at least r such variables while preserving the absence of a (0, 1)-
solution. This condition is equivalent to the inequality r < m − n − 1. However, if n < r, then
we may eliminate some variable yj. For m > 2n + 2, therefore, from the initial system we may
eliminate a variable yj and, consequently, delete the jth equation. The theorem is proved.

THEOREM 2. Let a propositional CNF ϕ(p1, . . . , pn) with m elementary disjunctions in n

variables be given. If ϕ does not belong to α-or-β-in-SAT and the condition m > 2n+2 is met, then
there exists a CNF which does not belong to α-or-β-in-SAT and is obtained from ϕ by eliminating
some elementary disjunction.

Proof. Using induction, we define a function f associating an elementary disjunction with a
pseudo-Boolean linear function over the field of rationals. Constants are associated with numbers:
f(⊥) = 0 and f(�) = 1. A propositional variable pi is assigned a variable f(pi) = xi. Negation ¬pi
is assigned an expression f(¬pi) = 1−xi. Next, with the jth elementary disjunction ϕj = �1∨· · ·∨�k
we associate an expression f(�1) + · · ·+ f(�k)−α− (β−α)yj , where a new variable yj occurs only
once. Then, a conjunction of elementary disjunctions ϕj is assigned a system of linear equations
f(ϕj) = 0 for all indices 1 � j � m. This system depends on m+ n variables. All the m equations
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are linearly independent since each depends on its auxiliary variable. We use the fact that α �= β

holds, and hence the equation obtained nontrivially depends on the variable yj.
Every (0, 1)-solution for this system corresponds to a (⊥,�)-valuation of propositional variables

under which in every elementary disjunction either exactly α or exactly β literals are true. And
conversely, for such a (⊥,�)-valuation of propositional variables, there exists a (0, 1)-solution for
the given system of equations. If pi = ⊥ then xi = 0. If pi = � then xi = 1. If in the jth elementary
disjunction exactly α literals are satisfied, then yj = 0. And if exactly β literals are satisfied, then
yj = 1.

According to Theorem 1, if the system in question has no (0, 1)-solution, then this property is
preserved after deleting some equation, which matches the deletion of some elementary disjunction
from CNF ϕ. The theorem is proved.

3. DISCUSSION

The bound obtained on the number of elementary disjunctions of an unsatisfiable subformula
in 2-CNF is close to optimal. There exists an unsatisfiable 2-CNF with m = 2n elementary
disjunctions in n variables for which a subformula obtained by deleting any elementary disjunction
is satisfiable. An example is the 2-CNF

(¬p1 ∨ p2) ∧ (p1 ∨ ¬p2) ∧ · · · ∧ (¬pn−1 ∨ pn) ∧ (pn−1 ∨ ¬pn) ∧ (pn ∨ p1) ∧ (¬pn ∨ ¬p1),

where each variable has two positive occurrences and two negative ones. This 2-CNF is equivalent
to a conjunction of formulas expressing the equivalence of variables pj and pj+1 for j < n, and also
the equivalence of a variable pn and the negation of a variable p1. Therefore, it is unsatisfiable.
But deleting from the 2-CNF in question one elementary disjunction corresponds to replacing some
equivalence by an implication. The formula obtained is satisfiable for some (⊥,�)-valuation under
which the antecedent of the implication is false.

On the other hand, the bound for a decrease in the number of elementary disjunctions belongs
in a domain where almost any 2-CNF is unsatisfiable [4, 5]. This is natural: the possibility of
deleting some elementary disjunctions from an unsatisfiable 2-CHF does not impose unexpected
extra restrictions on an unsatisfiable subformula. Also the results obtained for other classes of
formulas give an upper bound on a phase transition threshold, if it exists.

The generalization to conjunctions of formulas of another form is also possible. Denote by
maj(p1, p2, p3) the majority function, whose value is equal to the most frequently encountered
among (⊥,�)-valuations of propositional variables p1, p2, and p3. For literals �ij, the conjunction∧
j

maj(�1j , �2j , �3j) is satisfiable iff the 3-CNF
∧
j

(�1j ∨ �2j ∨ �3j) belongs to the set 2-or-3-in-SAT.

Therefore, Theorem 2 applies to formulas of this form.
By analogy with the proof of Theorem 2, Theorem 1 allows us to impose different restrictions

on different elementary disjunctions within CNF. For example, we can consider conjunctions ϕ∧ψ
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of two CHFs such that, for some (⊥,�)-valuation, in each elementary disjunction one number of
literals is true in ϕ, and another number of literals is true in ψ.

A decrease of the length of a formula leads to a reduction of some estimates of computational
complexity, as shown in [2, 3]. However, this does not guarantee a reduction of the execution
time of some algorithms. Thus, applying the resolution method for verifying satisfiability of
CNFs, sometimes at intermediate steps it is possible to obtain those elementary disjunctions that
previously have been removed in passing from the initial CNF to a subformula of smaller length. On
the other hand, the main result is the pure existence theorem which does not give a fast algorithm
for searching an unsatisfiable subformula. This agrees with a guess about high computational
complexity of the satisfiability problem in the worst case, expressed by many authors.

Acknowledgments. I am grateful to participants of the Conference “Mal’tsev readings” (Novo-
sibirsk) for discussions of the paper.
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