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In the early years of set theory, Du Bois Reymond introduced a vague notion of infinitary
pantachie meant to symbolize an infinity bigger than the infinity of real numbers.
Hausdorff reformulated this concept rigorously as a maximal chain (a linearly ordered
subset) in a partially ordered set of certain type, for instance, the set NN under eventual
domination. Hausdorff proved the existence of a pantachy in any partially ordered set,
using the axiom of choice AC. We show in this note that the pantachy existence theorem
fails in the absense of AC, and moreover, even if AC is assumed, hence pantachies do exist,
one may not be able to come up with an individual, effectively defined example of a
pantachy.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Linear order relations, which typically appear in conventional mathematics, are countably cofinal, that is, they admit
countable strictly increasing cofinal subsequences. In fact every Borel (as a set of pairs) linear order on a subset of a Polish
space is countably cofinal: see, e.g. [11]. Uncountably cofinal orders were introduced in mathematics, in the form of partial
rather than linear orders, by Du Bois Reymond.

The rate of growth partial order 6RG is defined on positive real functions so that f 6RG g iff the limit lim x!þ1
gðxÞ
fðxÞ exists and

is >0. This ordering of functions was known long before Du Bois Reymond, but he was the first who considered 6RG in [1] as a
relation on the whole totality of positive real functions. He also proved in [1] that the ordering 6RG is great deal non-
separable: in particular, for any countable collection ffngn2N of positive real functions there is a function f satisfying fn <RG f
strictly, that is, fn 6RG f but f iRG fn for all n. (Indeed, let f(x) = x supn6xfn(x) for all x > 0. This was the first application of the
diagonal method in mathematics.)

Somewhat later, Du Bois Reymond published a monograph [2], with a mixed mathematical and philosophical content,
where he stipulated that the totality of all real functions ordered by 6RG, which he called the infinitary pantachy, might serve
as an extension of the continuum of real numbers, where infinitesimal and infinitely large quantities coexist with usual reals
(corresponding to constant functions), thus manifesting a sort of infinity which exceeds the infinity of the real continuum.
This concept was met with mixed reception among contemporary mathematicians. In particular, Hausdorff [7,8] noted that
obvious existence of 6RG-incomparable functions makes the infinitary pantachy rather useless in the role of an extended ana-
lytic domain (see more on controversies around Du Bois Reymond’s approach in [5]). Instead, Hausdorff suggested to con-
sider maximal linearly ordered sets of functions (or infinite real sequences, that can be ordered the same way), in the sense of
6RG or any other similar order based on the comparison of behaviour of functions or sequences at infinity. He called such
maximal linearly ordered sets pantachies.
. All rights reserved.

ei), lyubetsk@iitp.ru (V. Lyubetsky).
ity of Bonn acknowledged.

http://dx.doi.org/10.1016/j.amc.2011.05.003
mailto:kanovei@rambler.ru
mailto:lyubetsk@iitp.ru
http://dx.doi.org/10.1016/j.amc.2011.05.003
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


V. Kanovei, V. Lyubetsky / Applied Mathematics and Computation 218 (2012) 8196–8202 8197
Hausdorff [7,8] proved the existence of a pantachy in any partially ordered set. This result was one of the earliest explicit
applications of the axiom of choice AC. The method of one of two Hausdorff’s pantachy existence proofs is known nowadays
as the maximality principle.

Typically for the AC-based existence proofs, Hausdorff’s pantachy existence proof did not produce anything near a con-
crete, individual, effectively defined example of a pantachy in the 6RG ordered set of real functions or in any partial order of
the same kind. Haudorff writes in [7,p. 110]:

Since the attempt to actually legitimately construct a pantachy seems completely hopeless, it would now be a matter of
gathering information . . . about the order type of any pantachy . . .3

Working in this direction, Hausdorff proved, in particular, that any pantachy is uncountably cofinal, uncountably coinitial,
and has no (x,x⁄)-gaps – hence, is extremely nonseparable, a type of infinity rather uncommon for mathematics of the early
1900s. Yet those studies left open the major problem of effective existence of pantachies. One may ask:

(1) whether the pantachy existence can be established not assuming the axiom of choice AC,
(2) whether, even assuming AC, one can actually define an individual example of a pantachy.

Advances in modern set theory allow us to answer both questions in the negative, both for the 6RG-ordering of positive
functions and for a variety of similar partial orderings. This is the main result of this paper, and it supports Haudorff’s obser-
vation cited above. The result is not unexpected. The unexpected feature is that we will have to apply two difficult special
results in set theory related to Solovay’s models (Propositions 12 and 13), since the basic technique of Solovay’s models does
not seem to be sufficient in this case.

The negative answer we obtain is a motivation for the title of the paper: pantachies in the 6RG-ordering of positive real
functions is the type of infinity which depends on the axiom of choice!
2. Preliminaries

We precede the formulation of our main results with several definitions and notational comments. First of all, we adjust
to modern terminology related to partial and linear orderings.

Definition 1. A partial quasi-order, PQO for brevity, is a binary relation 6 satisfying x 6 y ^ y 6 z) x 6 z (transitivity) and
x 6 x (reflexivity) on its domain. In this case, an associated equivalence relation � and an associated strict partial order < are
defined, on the same domain, so that
3 Eng
x � y iff x 6 y ^ y 6 x and x < y iff x 6 y ^ y i x:
If a PQO 6 also satisfies the antisymmetry condition x 6 y ^ y 6 x) x = y (which is not assumed, generally speaking) then it
is called a partial order, PO for brevity. Thus, a PQO is a PO iff the associated equivalence relation is the equality.

A PQO is linear, LQO for brevity, if we have x 6 y _ y 6 x for all x, y in its domain. A linear order, or LO, is any LQO which
satisfies the same antisymmetry condition x 6 y ^ y 6 x) x = y.

An LQO hX;6i (meaning: X is the domain of 6) is of countable cofinality iff there is a set Y # X, at most countable and
cofinal in X, that is, if x belong to X then there exists an element y 2 Y such that x 6 y. In this case, we also say that X is
countably 6-cofinal. h

For instance, if X has a 6-largest element x then X is countably cofinal: indeed, take Y = {x}.
The set 2<x1 ¼

S
n<x1

2n consists of all transfinite binary sequences of length <x1, and if n < x1 then 2n is the set of all bin-
ary sequences of length exactly n. By <lex we denote the strict lexicographical order on 2<x1 , that is, if s; t 2 2<x1 then s <lex t
iff s å t, t å s, and the least ordinal n < doms, dom t such that s(n) – t(n) satisfies s(n) < t(n). Here s å t means that t is a prop-
er extension of s. We define s 6lex t iff either s = t or s <lex t. Note that 6lex is a partial order on 2<x1 , but if n < x1 then 6lex
linearly orders 2n.

The next lemma will be used below.

Lemma 2. If n < x1 then any set C # 2n is countably 6lex-cofinal.
Proof. We argue by transfinite induction on n.
If n = 0 then there is nothing to prove.
To carry out the step n ? n + 1, suppose that C # 2n+1. If s 2 2n+1 then x(n 2 2n is the restriction of s to n. Consider the set

C0 = {s(n : s 2 C}. By the inductive hypothesis, there is a set Y0 # C0, cofinal in C0 and at most countable. Then the set Y = {s 2 C :
s(n 2 C0} is cofinal in C0 and still at most countable, as required.
lish translation taken from [9].
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To carry out the limit step, let k < x1 be a limit ordinal, and C # 2k. By the inductive hypothesis, for any n < k there is a set
Y 0n # Cn ¼ fs�n : s 2 Cg, cofinal in Cn and at most countable, and then there is a set Yn # C, at most countable and such that
Y 0n ¼ fs�n : s 2 Yng. We claim that the set Y =

S
n<kYn (still at most countable) is cofinal in C, or else C has a 6lex-largest

element. Indeed suppose that t 2 C. Then by construction for each n there exist elements s0n 2 Y 0n and sn 2 Yn such that
s0n ¼ sn�n; t�n6lexs0n, and moreover, either t�n<lexs0n or t(n is a 6lex-largest element of Y 0n.

If t�n<lexs0n for at least one n then clearly t <lex sn, as required.
It remains to consider the case when t(n is a 6lex-largest element of Y 0n, hence, of Cn as well, for each ordinal n < k. But

then t itself is obviously a 6lex-largest element of C, as required. h
Definition 3. A PQO hX;6i is Borel iff the set X is a Borel set in a suitable Polish space X, and the relation 6 (as a set of pairs)
is a Borel subset of X�X. h
Corollary 4. Every Borel LQO 6 is countably cofinal, and moreover, there is no strictly increasing x1 sequences.
Proof. It was established in [6] (see also [11]) that if hX;6i is a Borel LQO then there is an ordinal n < x1 and a Borel map # :
X ? 2n such that we have x 6 y iff #(x) 6lex #(y) for all x, y 2 X. In other words, any Borel linear quasi-order is Borel-isomor-
phic to a suborder 4 of h2n;6lexi for a suitable countable ordinal n. It remains to apply Lemma 2. h

Informally, a pantachy is a maximal linearly ordered subset of a PQO set [7,8]. This can be rigorously defined in two
versions.

Definition 5. A pantachy in a PQO hX;6i is any set P # X such that 6(P is an LO and (the maximality!) if x 2 XnP then
6((P [ {x}) is not an LO.

A quasi-pantachy in a PQO hX;6i is any set P # X such that 6(P is an LQO and if x 2 XnP then 6((P [ {x}) is not an LQO.
To get a pantachy from a quasi-pantachy Q # X in a PQO hX;6i, it suffices to pick an element in each � class which inter-

sects Q – so generally speaking this needs the axiom of choice AC. On the other hand, if P # X is a pantachy then
Q = [P]� = {x 2 X : $p 2 P (p � x)} is a quasi-pantachy, and here there is no need in AC.

3. The main technical theorem

As usual, ZFC and ZF are Zermelo – Fraenkel set theories resp. with and without the axiom of choice AC. The principle of
dependent choices DC is the strongest possible form of the countable AC; it allows countable sequences of choices even in the
case when the set Xn – £, in which the next choice xn is to be made, itself depends not only on the index n 2 N, but also on
the results xk, k < n, of all previous choices.

The next theorem (Theorem 7), our main technical result, deals with ROD linearly ordered subsets in Borel partial
orderings. h

Definition 6. ROD is the class of real-ordinal definable sets, that is, those definable by a set theoretic formula with reals and
ordinals as parameters. h

ROD is the widest class known in modern mathematics, which consists of sets that can be considered as ‘‘effectively
defined’’. (It contains all Borel, Souslin, and projective sets of Polish spaces, by the way.) Therefore any nonexistence result
for the ROD domain (as, for instance, the first claim of Theorem 7) is usually treated in the sense that there is no individual,
effectively defined examples of sets of the type considered.

Let WIC be the sentence ‘‘there is a weakly inaccessible cardinal’’.
Recall that weakly inaccessible cardinals are uncountable regular limit cardinal numbers, see, e.g. [10] for background on

inaccessible cardinals.

Theorem 7. Suppose that WIC is consistent with the axioms of ZFC.
Then, first, the following sentence is consistent with ZFC as well:

(i) if 6 is a Borel PQO on a (Borel) set D # NN;X # D is a ROD set, and 6(X is a LQO, then 6(X is of countable cofinality.

And second, the following sentence is consistent with ZF + DC:

(ii) if 6 is a Borel PQO on a (Borel) set D # NN;X # D is any set, and 6(X is a LQO, then 6( X is of countable cofinality.
4 By suborder we mean the restriction of a given partial order to a subset of its domain.
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Thus (assuming the consistency of ZFC + WIC) it is consistent with ZFC that all ROD linear suborders of Borel PQOs are
countably cofinal, and it is consistent with ZF + DC that all in general linear suborders of Borel PQOs are countably cofinal.
We proceed with a few remarks.

A. It is known that WIC cannot be proved in ZFC (unless ZFC is inconsistent), neither the consistency of the extended the-
ory ZFC + WIC can be proved assuming the consistency of ZFC alone. Nevertheless ZFC + WIC is considered as a legitimate
extension of ZFC itself, and accordingly consistency proofs carried out in the assumption of the consistency of ZFC + WIC are
considered as legitimate consistency proofs.

B. On the other hand, it turns out that, conversely, if statement (i) of Theorem 7 is consistent with ZFC, or statement (ii) of
Theorem 7 is consistent with ZF + DC, then WIC is consistent with ZFC. In other words, the three theories ZFC + WIC,
ZFC + (i), ZF + DC + (ii) are equiconsistent.

Indeed, suppose that, say, (i) holds. We claim that then xL½x�
1 , the first uncountable cardinal in the class L[x] of sets con-

structible from x, satisfies xL½x�
1 < x1 strictly for every x 2 NN. It is known that the ‘‘true’’ x1 is a weakly (even strongly) inac-

cessible cardinal in L[x] for any x 2 NN in the assumption 8x 2 NN ðxL½x�
1 < x1Þ (see, e.g. [10,15]), and hence we get an

inaccessible cardinal. Thus it remains to prove the claim.
Suppose, towards the contrary, that x 2 NN and xL½x�

1 ¼ x1. Consider the eventual domination PQO 6⁄ on NN, defined so
that x 6⁄ y iff there is n0 such that x(n) 6 y(n) for all n P n0. Clearly 6⁄ is a Borel relation. Let <⁄ be the corresponding
strict PQO, so that x <⁄ y iff x 6⁄ y but y i⁄ x. A simple diagonal argument by Du Bois Reymond [1] shows that for any
countable set X # NN there is an element y 2 NN such that x <⁄ y for all x 2 X. Therefore, arguing in L[x] and using the
canonical Gödel ROD wellordering of NN \ L½x� (this wellordering is ROD with parameter x), we can define a ROD strictly
<⁄ increasing sequence fxngn<xL½x�

1
of length xL½x�

1 ¼ x1. The sequence is not countably 6⁄ cofinal, of course, which contra-
dicts to (ii) of Theorem 7.

C. Typically, properties of ROD sets consistent with ZFC tend to hold provably in ZFC for sets of low projective classes, say,
for R1

1 sets. This turns out to be the case for Theorem 7 as well. We claim that.

if 6 is a Borel PQO on a (Borel) set D # NN; X # D is a R1
1 set, and

6(X is a linear quasi-order, then 6(X is countably cofinal.

Indeed the set Y of all elements y 2 D 6-comparable with every element x 2 X is a P1
1 set, and X # Y (as 6 is linear on X).

By Luzin’s separability theorem, there is a Borel set Z such that X # Z # Y. The set U of all elements z 2 Z 6-comparable with
every element y 2 Y still is a P1

1 set, and X # U by the definition of Y. Once again, there is a Borel set W such that X # W # U.
And by definition still 6 is linear on W. It follows that W does not have increasing x1 sequences by Corollary 4, and hence
neither does X.

We do not know whether the displayed claim holds for all P1
1 sets X. We cannot go much higher though. Indeed, the axiom

of constructibility (consistent with ZFC) implies the existence of a <⁄monotone x1 sequence of class D2
1, where <⁄ is the even-

tual domination order, see item B above.
D. We may note that Borel linear quasi-orderings themselves are countably cofinal in any case by Corollary 4. As for ROD

LQOs in general (not necessarily linear ROD suborders of Borel PQOs, as in the theorem), one can define an uncountably-
cofinal order of this class on a subset of NN, and hence the theorem cannot be extended to ROD LQOs of subsets of Polish
spaces. The following are two examples in the lowest possible definability classes R1

1 and P1
1.

D1. Fix any recursive enumeration Q ¼ fqk : k 2 Ng of the rationals. For any ordinal n < x1, let WOn be the set of all points
x 2 NN such that the set Qx = {qk : x(k) = 0} is well-ordered, in the sense of the usual order of the rationals, and has the order
type n. Let WO ¼

S
n<x1

WOn, all codes of ordinals. For x, y 2WO define x ^ y iff x 2WOn, y 2WOg, and n 6 g. Clearly ^ is a
LQO of cofinality x1 on WO, and one can show that ^ is a lightface P1

1 relation, hence OD.
Strengthening this example, we let, for x, y 2WO, x ^0 y iff either x 2WOn, y 2WOg, and n < g, or x, y 2WOn for one and

the same n and x 6lex y in the sense of the lexicographic linear order 6lex on NN. Then ^0 is a true LO of cofinality x1 on WO,
and still ^0 is P1

1 and OD.
D2. Modifying D1, we let, for any n < x1, Xn be the set of all points x 2 NN such that the maximal well-ordered initial seg-

ment of the set Qx has the order type n. Thus NN ¼
S

n<x1
Xn. For x; y 2 NN define x ^ y iff x 2 Xn, y 2 Xg, and n 6 g. Thus ^ is a

LQO of cofinality x1, and now ^ belongs to R1
1.

The same strengthening as in D1, that is, x ^0 y iff either x 2 Xn, y 2 Xg, and n < g, or x, y 2 Xn for one and the
same n and x 6lex y lexicographically, yields a true LO of cofinality x1 on NN, but it cannot be even boldface R1

1.
(Indeed, any R1

1 LO < on NN is P1
1 because x < y is equivalent to x – y ^ y ¥ x, hence, it is Borel and countably cofinal

by Corollary 4.)
4. Applications to the pantachy existence problem

Here we explain how Theorem 7 leads to the negative answers to questions 1 and 2 in the end of Section 1.

Definition 8. Let a DBR-order (from Du Bois Reymond) be any PQO h X;6i such that, first, hX;6i is a Borel in the sense of
Definition 3, and second, for any countable set Y # X there is an element x 2 X such that y < x (that is, y 6 x but x i y) for all
y 2 Y. h
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Corollary 9 (Of Theorem 7). First, it is consistent with ZFC that no DBR-order contains a ROD pantachy. Second, it is consistent
with ZF + DC that no DBR-order contains a pantachy of any kind.
Proof. It suffices to note that a pantachy in a DBR-order cannot be countably cofinal because of the second requirement in
Definition 8. h

There exist many notable orders of this type with the domains X being Borel sets in the Polish space RN of all infinite real
sequences, see, e.g. [13]. For instance let X ¼ NN (sequences of natural numbers). For x; y 2 NN we define x 6RG y (essentially
the same rate of growth order as in Section 1) iff the limit lim n!1

yðnÞ
xðnÞ exists and is >0 (including the limit value +1).

Lemma 10. hNN;6RGi is a DBR-order. Therefore, by Corollary 9, it is consistent with ZF + DC that there is no pantachy in the
structure hNN;6RGi, and it is consistent with ZFC that there is no ROD pantachy in hNN;6RGi.

Thus questions 1 and 2 in the end of Section 1 answer in the negative for the ordering hNN;6RGi, and hence for the ordering
hðRþÞN;6RGi, in which NN is a cofinal subset. (See a note after Definition 6.)

Proof. The borelness of both the domain X ¼ NN and the order6RG in the Polish space RN is rather clear. To check the second
requirement in Definition 8, suppose that x0; x1; x2; . . . 2 NN. Put x(k) = kmaxn6kxn(k) for every k. Then xn <RG x for all n. h

The actual Du Bois Reymond’s domain Fþ of all real positive functions is not a set in any Polish space since its cardinality
22N0

> 2N0 is too big. Thus formally hFþ;6RGi is not a DBR-order. Nevertheless the result of Lemma 10 easily extends to
hFþ;6RGi.

Indeed if P #Fþ is a pantachy in hFþ;6RGi then P�N ¼ ff �N : f 2 Pg is a pantachy in the structure hðRþÞN;6RGi, and if P is
ROD then so is P�N. (If f is a real function then f �N is the infinite sequence of values f ðnÞ; n 2 N.) Therefore any pantachy-
nonexistence result for hðRþÞN;6RGi implies a corresponding pantachy-nonexistence result for hFþ;6 RGi. We conclude that
questions 1 and 2 in the end of Section 1 answer in the negative for Du Bois Reymond’s ordered domain hFþ;6RGi as well.

5. The Solovay model

The proof of Theorem 7 involves the Solovay model, a model of set theory introduced in [15] and applied for various pur-
poses in many other papers. Basically, there are two Solovay models, that is,

(I) a model of ZFC in which all ROD sets of reals have some basic regularity properties, for instance, are Lebesgue mea-
surable, have the Baire property, and the perfect subset property;5

(II) a model of ZF + DC in which all sets of reals are Lebesgue measurable, have the Baire property, and the perfect subset
property.

The models are defined in the assumption that the sentence WIC (‘‘there exists a weakly inaccessible cardinal’’) is con-
sistent with ZFC. They are connected as follows:

Proposition 11 (Solovay [15]). The Solovay model (II) is equal to the class HROD of all hereditarily ROD sets in the Solovay model
(I). Both models have the same reals and ordinals. h

By definition a set x is hereditarily ROD if x itself is ROD, all elements of x are ROD, all elements of x are ROD, et cetera.
HROD is a transitive class containing all reals and all points of NN.

We are not going to take much space for description of the construction of the Solovay model, since it can be found in
detail in [15,16] and elsewhere. Moreover, our applications of the model are based on the following two results. The proofs
of both of them are long and complicated, and involve a wide spectrum of methods of modern set theory.

Proposition 12 (Stern [16]). It is true in the Solovay model (I) that if q < x1 then there is no ROD x1 sequence of pairwise
different sets in the class Rq

0 . h

See [14] in matters of Borel classes Rq
0 and Borel hierarchy in general.

The next claim was established in [12]. It can be viewed as a Solovay’s model version of the first sentence of the Proof of
Corollary 4.

Proposition 13. It is true in the Solovay model (I) that if 6 is a ROD LQO on a ROD set D # NN then there exist an antichain
A # 2<x1 and a ROD map # : D !onto

A such that x 6 y, #(x) 6lex #(y) for all x, y 2 D. h
5 A set X has the perfect subset property iff either X is at most countable or X contains a perfect subset.
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See some basic definitions in Section 2. A set A # 2<x1 is an antichain if s å t holds for every pair of s – t in A. It is clear that
the lexicographic order 6lex linearly orders any antichain A # 2<x1 .

Using Propositions 12 and 13, we’ll prove the following result below:

Proposition 14. Sentence (i) of Theorem 7 is true in the Solovay model (I). Therefore sentence (ii) of Theorem 7 is true in the
Solovay model (II).

The ‘‘therefore’’ claim here is a consequence of the first claim by Proposition 11. On the other hand Proposition 14 implies
Theorem 7 since a sentence true in a model is consistent.

6. The proof

Here we prove Proposition 14. We argue in the Solovay model (I).
According to (i) of Theorem 7, suppose that:

� 6 is a Borel PQO on a Borel set D # NN, while� and < are resp. the associated equivalence relation and the associated strict
order, and in addition X # D is a ROD set, and 6(X is a LQO.

Our goal will be to show that X is countably 6 cofinal.
The restricted order 6(X is ROD, of course, and hence, by Proposition 13, there is a ROD map # : X !onto

A onto an antichain
A # 2<x1 (also obviously a ROD set) such that x 6 y, #(x) 6lex #(y) for all x, y 2 X.

If n < x1 then let An = A \ 2n and Xn = {x 2 X : #(x) 2 An}.

Case 1: There is an ordinal g < x1 such that the set Ag is 6lex-cofinal in A. However, by Lemma 2, there is a set A0 # Ag,
countable and 6lex-cofinal in Ag, and hence 6lex-cofinal in A by the choice of g. If s 2 A0 then pick an element
xs 2 X such that #(xs) = s. Then Y = {xs : s 2 A0} is a countable subset of X, 6 cofinal in X. This ends the proof of (i)
of Theorem 7.

Case 2: Not Case 1. That is, for any g < x1 there is an ordinal n < x1 and an element s 2 An such that g < n and t <lex s for all
t 2 Ag. Let

Dn ¼ fz 2 D : 9x 2 Xnðz 6 xÞg

for each n < x1, thus Xn # Dn. The sequence of sets Dn is ROD, of course.

We are going to get a contradiction. The first step is the following lemma.

Lemma 15. The sequence fDngn<x1
has uncountably many different terms.
Proof. As the sequence is # increasing by obvious reasons, it suffices to prove that for any g < x1 there exists an ordinal n,
g < n < x1, such that Dg $ Dn strictly. So let g < x1. Then (see above) there exist: an ordinal n, g < n < x1 and an element s 2 An

such that t <lex s for all t 2 Ag. Take an element z 2 Xn such that #(z) = s. It remains to prove that x R Dg.
Indeed otherwise we have z 6 x for some x 2 Xg. By definition t = #(x) 2 Ag, therefore t <lex s by the choice of s. But on the

other hand s = #(z) 6lex #(x) = t by the choice of #, and this is a contradiction. h

Recall that 6 is a Borel relation, hence there is an ordinal 1 6 q < x1 such that 6 (as a set of pairs) belongs to the Borel
class Rq

0 .

Lemma 16. If n < x1 then the set Dn belong to Rq
0 .
Proof. By Lemma 2 there exists a countable set A0 = {sn : n < x} # An, 6lex-cofinal in An. If n < x then pick an element xn 2 Xn

such that #(xn) = sn. Then by the choice of # any element x 2 X with #(x) = sn satisfies x � xn, where � is the equivalence rela-
tion on D associated with 6. It follows that
Dn ¼
[

n

Zn; where Zn ¼ fz 2 D : z 6 xng;
so each Zn is a Rq
0 set together with 6. We conclude that Dn is a Rq

0 set as a countable union of sets in Rq
0 . h

The two lemmas contradict to Proposition 12, and the contradiction accomplishes the Proof of Proposition 14.
h (Proposition 14 and Theorem 7)

7. Open problems

One may ask if linear ROD subsets X of Borel PQOs have some other special properties in the Solovay model besides the
countable cofinality. For instance is it true that such a set X has no monotone x1 sequences?.
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It will be interesting to figure out whether the results, of the type considered in this note but for quotient structures of the
form NN=I, where I is an ideal over N, depend on the choice of I. (See Farah [3] for a comprehensive survey of various aspects
of quotient structures, and [4,17] on interesting examples.)

Acknowledgements

The authors thank the anonymous referees for a number of remarks and suggestions, including a gap in the original ver-
sion of the proof of the main result.

References

[1] P. Du Bois Reymond, Sur la grandeur relative des infinis des fonctions, Ann. di Mat. 4 (2) (1870) 338–353.
[2] P. Du Bois Reymond, Die allgemeine Funktionentheorie. Tübingen, 1882. (French translation: Théorie générale des fonctions, 1887, reprinted in 1995

by Éditions Jacques Gabay, Sceaux).
[3] Ilijas Farah, Analytic quotients. Theory of liftings for quotients over analytic ideals on the integers, Mem. Am. Math. Soc. 702 (2000) 171.
[4] Ilijas Farah, Analytic Hausdorff gaps. II: The density zero ideal, Isr. J. Math. 154 (2006) 235–246.
[5] Gordon Fisher, The infinite and infinitesimal quantities of du Bois–Reymond and their reception, Arch. Hist. Exact Sci. 24 (1981) 101–163.
[6] L.A. Harrington, D. Marker, S. Shelah, Borel orderings, Trans. Amer. Math. Soc. 310 (1988) 293–302.
[7] F. Hausdorff, Untersuchungen über Ordnungstypen IV, V, Ber. über die Verhandlungen der Königlich Sächsische Gesellschaft der Wissenschaften zu

Leipzig, Math.-phys. Klasse 59 (1907) 84–159.
[8] F. Hausdorff, Die Graduirung nach dem Endverlauf, Abhandlungen der Königlich Sächsische Gesellschaft der Wissenschaften zu Leipzig. Math.-phys.

Klasse 31 (1909) 295–334.
[9] F. Hausdorff, Hausdorff on ordered sets, in: J.M. Plotkin (Ed.), History of Mathematics, vol. 25, AMS, Providence, RI and LMS, London, 2005. xviii + 322

pp. (Translated from the German).
[10] hj Karel Hrbacek, Thomas Jech, Introduction to Set Theory, third ed., Dekker, New York, 1999.
[11] Vladimir Kanovei, When a partial Borel order is Borel linearizable, Fundam. Math. 155 (3) (1998) 301–309.
[12] Vladimir Kanovei, Linearization of definable order relations, Ann. Pure Appl. Logic 102 (1–2) (2000) 69–100.
[13] Vladimir Kanovei, On Hausdorff’s ordered structures, Izvestiya: Math. 73 (5) (2009) 939–958.
[14] Alexander S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
[15] R.M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 (2) (1970) 1–56.
[16] J. Stern, On Lusin’s restricted continuum problem, Ann. Math. 120 (2) (1984) 7–37.
[17] Stevo Todorcevic, Gaps in analytic quotients, Fundam. Math. 156 (1) (1998) 85–97.


	An infinity which depends on the axiom of choice
	1 Introduction
	2 Preliminaries
	3 The main technical theorem
	4 Applications to the pantachy existence problem
	5 The Solovay model
	6 The proof
	7 Open problems
	Acknowledgements
	References


