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Abstract A generic extension L[x] by a real x is defined, in which the E0 -class
of x is a lightface Π1

2 (hence, ordinal-definable) set containing no ordinal-definable
reals.
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1 Introduction

It is known that the existence of a non-empty OD (ordinal-definable) set of reals X
with no OD element is consistent with ZFC ; the set of all non-constructible reals
gives an example in many generic models including e.g. the Solovay model or the
extension of L , the constructible universe, by a Cohen real.
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712 V. Kanovei, V. Lyubetsky

Can such a set X be countable? That is, is it consistent with ZFC that there is
a countable OD (or outright definable by a precise set-theoretic formula) set of
reals X containing no OD element?

This question was initiated and discussed at the Mathoverflow website 1 and at
FOM.2 In particular Ali Enayat (Footnote 2) conjectured that the problem can be
solved by the finite-support countable product P<ω of Jensen’s “minimal Π1

2 real
singleton forcing” P defined in [6] (see also Section 28A of [5]). Enayat proved that
a symmetric part of the P<ω-generic extension of L yields a model of ZF (not of
ZFC!) in which the set of all reals P-generic over L is a Dedekind-finite infinite OD
set with no OD elements. In fact P<ω-generic extensions of L and their symmetric
submodels were considered in [1] (Theorem 3.3) with respect to some other questions.

Following thementioned conjecture, we proved in [7] that indeed, in a P<ω-generic
extension of L , the set of all reals P-generic over L is a countable Π1

2 set with no
OD elements. The Π1

2 definability is the best one can get in this context since it easily
follows from the Π1

1 uniformisation theorem that any non-empty Σ1
2 set of reals

definitely contains a Δ1
2 element.

Jindra Zapletal 3 informed us that there is a totally different model of ZFC with an
OD E0-class 4 X containing no OD elements. The construction of such a model, not
yet published, but described to us in a brief communication, involves a combination of
several forcing notions and some modern ideas in descriptive set theory, like models
of the form V[x]E for E = E0 , recently presented in [9]; it also does not look to yield
X being analytically definable, let alone Π1

2 .

Theorem 1.1 It is true in a suitable generic extension L[x] of L , the constructible
universe, by a real x ∈ 2ω that the E0-equivalence class [x]E0 (hence a countable
set) is Π1

2 , but it has no OD elements.

The forcing P we use to prove the theorem is a clone of the abovementioned Jensen
forcing, but defined on the base of the Silver forcing instead of the Sacks forcing. The
crucial advantage of Silver’s forcing here is that it leads to a Jensen-type forcing
naturally closed under the 0-1 flip at any digit, so that the corresponding extension
contains a Π1

2 E0-class of generic reals instead of a Π1
2 generic singleton as in [6].

In fact a bigger family of E0-large trees (perfect trees T ⊆ 2<ω such that E0� [T ] is
not smooth [8, Section 10.9]) would also work similarly to Silver trees.

It remains to note that a finite OD set of reals contains only OD reals by obvious
reasons. On the other hand, by a result in [3] there can be two sets of reals X,Y such
that the pair {X,Y } is OD but neither X nor Y is OD.

1 A question about ordinal definable real numbers. Mathoverflow, March 09, 2010. http://mathoverflow.
net/questions/17608.
2 Ali Enayat. Ordinal definable numbers. FOM Jul 23, 2010. http://cs.nyu.edu/pipermail/fom/2010-July/
014944.html.
3 Personal communication, Jul 31/Aug 01, 2014.
4 Recall that if x, y ∈ ωω then x E0 y iff x(n) = y(n) for all but finite n .
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Theorem1.1 can be comparedwith some results obtained in the sharp hypothesis. In
particular, Kechris andWoodin [10] proved that, in contrast to Theorem 1.1, assuming
sharps, every countable non-empty Π1

2 set X necessarily contains an OD element,
basically, a real x ∈ X characterised by L[x] |� φ(ℵ1, . . . ,ℵn) for some n and some
formula φ . Sy Friedman [2, Theorem 4] demonstrated that, in this result, n cannot be
taken one and the same for all countable Π1

2 sets X , in particular, assuming sharps,
there is a countable non-empty Π1

2 set containing no Π1
2 singletons.

2 Trees and Silver-type forcing

Let 2<ω be the set of all strings (finite sequences) of numbers 0, 1. If t ∈ 2<ω and
i = 0, 1 then t ∧k is the extension of t by k . If s, t ∈ 2<ω then s ⊆ t means that t
extends s , while s ⊂ t means proper extension. If s ∈ 2<ω then lh(s) is the length
of s , and 2n = {s ∈ 2<ω : lh(s) = n} (strings of length n ). Λ is the empty string.

If u ∈ 2ω then let [u] = {a ∈ 2ω : u ⊂ a} , the Baire interval in 2ω ; [Λ] = 2ω .
Let any string s ∈ 2<ω act on 2ω so that (s · x)(k) = x(k) + s(k) (mod 2)

whenever k < lh(s) , and simply (s · x)(k) = x(k) otherwise.
If X ⊆ 2ω and s ∈ 2<ω then, as usual, let s · X = {s · x : x ∈ X } .
Similarly if s ∈ 2m, t ∈ 2n, m ≤ n , then define s · t ∈ 2n so that (s · t)(k) =

t (k) + s(k) (mod 2) whenever k < m and (s · t)(k) = t (k) whenever m ≤ k < n .
If m > n then let s · t = (s�n) · t . In both cases lh(s · t) = lh(t) .

Let s · T = {s · t : t ∈ T } for T ⊆ 2<ω .
If T ⊆ 2<ω is a tree and s ∈ T then put T � s = {t ∈ T : s ⊆ t ∨ t ⊆ s} .
Let PT be the set of all perfect trees ∅ 
= T ⊆ 2<ω (no endpoints, no isolated

branches). If T ∈ PT then there is a largest string s = stem(T ) ∈ T such that
T = T � s (the stem of T ); we have s∧1 ∈ T and s∧0 ∈ T in this case. If T ∈ PT
then

[T ] = {a ∈ 2ω : ∀ n (a�n ∈ T )} ⊆ 2ω

is the perfect set of all paths through T .
Let ST be the set of all Silver trees. Thus T ∈ ST iff there is an infinite sequence

of strings uk = uk(T ) ∈ 2<ω such that T consists of all strings of the form s =
u1∧i1∧u2∧i2∧u3∧i3∧ . . . ∧un ∧in and their substrings, where n < ω and ik = 0, 1
whenever 1 ≤ k ≤ n . (If n = 0 then s = Λ .) Then stem(T ) = u1 , and [T ] consists
of all infinite sequences a = u1∧i1∧u2∧i2∧u3∧i3∧ · · · ∈ 2ω, where ik = 0, 1, ∀ k .

Let a Silver-type forcing (STF) be any set P ⊆ ST such that

(I) if u ∈ T ∈ P then T � u ∈ P ;
(II) if T ∈ P and s ∈ 2<ω then s · T ∈ P .

Such a set P can be considered as a forcing notion (if T ⊆ T ′ then T is a stronger
condition), and then it adds a real in 2ω .

Say that a STF P is regular iff it contains the full tree 2<ω .
The set ST of all Silver trees is a regular STF by obvious reasons.
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3 Splitting construction over a Silver-type forcing

Assume that P ⊆ ST is a STF and n < ω . The set SSn(P) of Silver splitting systems
of height n = hgt(ϕ) over P consists of all finite systems of trees, of the form
ϕ = {Ts }s∈2�n , satisfying the following requirements:

(1) each tree Ts = ϕ(s) belongs to P ,—we let rs = stem(Ts) ;
(2) if s∧i ∈ 2�n ( i = 0, 1) then Ts ∧i ⊆ Ts � rs ∧i—it follows that [Ts ∧0] ∩ [Ts ∧1] =

∅ ;
(3) there is an increasing sequence of numbers h(0) < h(1) < · · · < h(n) such that

lh(rs) = h(k) whenever s ∈ 2k and k ≤ n ;
(4) if m ≤ n , u, v ∈ 2m , and t ∈ 2<ω then ru ∧t ∈ Tu ⇐⇒ rv ∧t ∈ Tv—or

equivalently Tv = σ · Tu , where σ = rv · ru .
Additionally, let SS−1(P) consist of the empty system ˜ ; hgt(˜) = −1.

Put SS(P) = ⋃
n≥−1 SSn(P) .

Say that a tree T occurs in ϕ ∈ SS(P) if T = ϕ(s) for some s ∈ 2�hgt(ϕ) .

Lemma 3.1 If P ⊆ ST is a STF, ϕ = {Ts }s∈2�n ∈ SSn(P) and n = hgt(ϕ) ≥ 0
then the tree T = ⋃

s∈2n Ts belongs to ST (not necessarily to P ).

Let ϕ,ψ be systems in SS(P) . Say that

– ϕ extends ψ , symbolically ψ � ϕ , if n = hgt(ψ) ≤ hgt(ϕ) and ψ(s) = ϕ(s)
for all s ∈ 2�n , and separately ˜ � ϕ for any ϕ ∈ SS(P) ;

– properly extends ψ , symbolically ψ ≺ ϕ , if in addition hgt(ψ) < hgt(ϕ) ;
– refines ψ , if n = hgt(ψ) = hgt(ϕ) , ϕ(s) ⊆ ψ(s) for all s ∈ 2n, and ϕ(s) =

ψ(s) for all s ∈ 2<n .

In other words, the refinement allows to shrink trees in the top layer of the system, but
does not change those in the lower layers.

Note that ϕ = ˜ (the empty system) is the only one with hgt(ϕ) = −1. To get a
system ϕ with hgt(ϕ) = 0 (and then domϕ = {Λ}) put ϕ(Λ) = T , where T ∈ ST .
The following lemma leads to systems of bigger height.

Lemma 3.2 Assume that P ⊆ ST is a STF and ϕ = {Ts }s∈2�n ∈ SS(P) .

(i) If s0 ∈ 2n, and T ∈ ST , T ⊆ Ts0 , then there is a system ϕ′ = {T ′
s }s∈2�n ∈

SS(P) which refines ϕ and satisfies T ′
s0 = T .

(ii) There is a system ϕ′ = {T ′
s }s∈2�n+1 ∈ SS(P) which properly extends ϕ .

(iii) If a system ψ properly extends ϕ and a system ψ ′ refines ψ then ψ ′ properly
extends ϕ as well.

Proof By definition all strings rs = stem(Ts) with s ∈ 2n satisfy lh(rs) = h for
one and the same h = h(n) . To prove (i) put T ′

s = {rs ∧t : rs0 ∧t ∈ T } = (rs · rs0) · T
for all s ∈ 2n , and still T ′

s = Ts for s ∈ 2�n−1 . The sets T ′
s belong to P by (II) of

Sect. 2.
(ii) Put T ′

s ∧i = Ts � rs ∧i for all s ∈ 2n and i = 0, 1, and still T ′
s = Ts for s ∈ 2�n .

The sets T ′
s ∧i belong to P by (I) of Sect. 2. ��
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A definable E0 class containing no definable elements 715

By the lemma, if P ⊆ ST is a STF then there are strictly ≺-increasing sequences
{ϕn }n<ω of systems ϕn ∈ SSn(P) . The limit system ϕ = ⋃

n ϕn = {Ts }s∈2<ω of such
a sequence satisfies conditions (1)–(4) on the whole domain 2<ω .

Lemma 3.3 (Fusion) In this case, the tree T = ⋂
n
⋃

s∈2n Ts is still a Silver tree in
ST (not necessarily in P ), and [T ] = ⋂

n
⋃

s∈2n [Ts] .
We define SS(P)<ω , the finite-support product of countably many copies of

SS(P) , to be the set of all infinite sequences Φ = {Φ(k)}k∈ω , where each Φ(k)
belongs to SS(P) and the set |Φ| = {k : Φ(k) 
= ˜} (the support of Φ ) is finite.
Sequences Φ ∈ SS(P)<ω will be called multisystems.

Say that a tree T occurs in Φ if it occurs in some Φ(k), k ∈ |Φ| .
Let Φ,Ψ be multisystems in SS(P)<ω . We define that

– Φ extends Ψ , symbolically Ψ � Φ , if Ψ (k) � Φ(k) (in SS(P)) for all k—then
obviously |Ψ | ⊆ |Φ| ;

– Ψ ≺≺ Φ , iff |Ψ | ⊆ |Φ| and Ψ (k) ≺ Φ(k) properly for all k ∈ |Ψ | ;
– Φ refines Ψ iff Φ(k) refines Ψ (k) for all k ∈ |Ψ | .

Corollary 3.4 (of Lemma 3.2(ii)) If P ⊆ ST is a STF and Ψ ∈ SS(P)<ω then there
is a multisystem Φ ∈ SS(P)<ω such that Ψ ≺≺ Φ .

4 Jensen’s extension of a Silver-type forcing

Let ZFC′ be the subtheory of ZFC including all axioms except for the power set
axiom, plus the axiom saying that P(X) exists for all countable sets X. (Then ω1
and continual sets like PT and ST exist as well.)

Definition 4.1 LetM be a countable transitivemodel of ZFC′ . Suppose that P ∈ M,

P ⊆ ST is a regular STF. Then the sets SS(P) and SS(P)<ω belong to M .
Let us consider any �-increasing sequence ˘ = {Φ j } j<ω of multisystems Φ j =

{Φ j (k)}k∈ω ∈ SS(P)<ω , generic over M in the sense that it intersects every set
D ∈ M, D ⊆ SS(P)<ω , dense 5 in SS(P)<ω . Then ˘ intersects every set

Dk = {Φ ∈ SS(P)<ω : ∀ k′ ≤ k (k ≤ hgt(Φ(k′))}.

Hence if k < ω then the sequence {Φ j (k)} j<ω of systems Φ j (k) ∈ SS(P) eventually
increases: Φ j (k) ≺ Φ j+1(k) holds for infinitely many indices j (and Φ j (k) =
Φ j+1(k) for all other j ). Thus there is a system of trees {T˘

k (s)}k<ω∧s∈2<ω in P
such that Φ j (k) = {T˘

k (s)}s∈2�h( j,k) for all j, k , where h( j, k) = hgt(Φ j (k)) .
Then

U˘
k = ⋂

n
⋃

s∈2n T˘
k (s) and U˘

k (s) = ⋂
n≥lh(s)

⋃
t∈2n , s⊆t T

˘
k (t)

are trees in ST (not necessarily in P ) by Lemma 3.3 for each k and s ∈ 2<ω; and
obviously U˘

k = U˘
k (Λ) . In fact U˘

k (s) = U˘
k ∩ T˘

k (s) by (2).

5 Meaning that for any Ψ ∈ SS(P)<ω there is a multisystem Φ ∈ D such that Ψ � Φ .
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716 V. Kanovei, V. Lyubetsky

Define a set of trees U = {σ · U˘
k (s) : k < ω ∧ s ∈ 2<ω ∧ σ ∈ 2<ω} ⊆ ST .

Lemma 4.2 The set U is a STF. The union P ∪ U is a regular STF.

Lemma 4.3 The set U is dense in U ∪ P .

Proof Suppose that T ∈ P . The set D(T ) of all multisystems Φ in SS(P)<ω ,
such that Φ(k)(Λ) = T for some k ∈ |Φ| , belongs to M and obviously is dense
in SS(P)<ω . It follows that Φ j ∈ D(T ) for some j , by the choice of ˘ . Then
T˘
k (Λ) = T for some k . However U˘

k (Λ) ⊆ T˘
k (Λ) .

Lemma 4.4 If a set D ∈ M , D ⊆ P is pre-dense in P , and U ∈ U , then U ⊆fin
⋃

D, that is, there is a finite D′ ⊆ D with U ⊆ ⋃
D′ .

Moreover D remains pre-dense in U ∪ P .

Proof Suppose that U = U˘
K (s) ∈ U , K < ω and s ∈ 2<ω. (The general case,

when U = σ · U˘
K (s) for some σ ∈ 2<ω, is easily reducible to the particular case

U = U˘
K (s) by substituting the set {σ · T : T ∈ D} for D .) Consider the set Δ ∈ M

of all multisystems Φ ∈ SS(P)<ω such that K ∈ |Φ| , lh(s) ≤ h = hgt(Φ(K )) ,
and for each t ∈ 2h there is a tree St ∈ D with Φ(K )(t) ⊆ St . The set Δ is dense
in SS(P)<ω by Lemma 3.2 and the pre-density of D . Therefore there is an index j
such that Φ j belongs to Δ . Let this be witnessed by trees St ∈ D , t ∈ 2h, where
lh(s) ≤ h = hgt(Φ j (K )) , so that Φ j (K )(t) ⊆ St . Then

U = U˘
K (s) ⊆ U˘

K (Λ) ⊆ ⋃
t∈2h Φ j (K )(t) ⊆ ⋃

t∈2h St ⊆ ⋃
D′

by construction, where D′ = {St : t ∈ 2h } ⊆ D is finite.
To prove the pre-density of D , consider any string t ∈ 2h with s ⊂ t . Then

V = U˘
K (t) ∈ U and V ⊆ U . On the other hand, V ⊆ St ∈ D . Thus the tree V

witnesses that U is compatible with St ∈ D in U ∪ P , as required. ��
Let Fin = {x ∈ 2ω : the set {k : x(k) = 1} is finite} ; a countable set.

Lemma 4.5 If U = U˘
K (s) ∈ U then [U ] ∩ Fin = ∅ .

Proof If n < ω then the set Δn ∈ M of all multisystems Φ ∈ SS(P)<ω such that
K ∈ |Φ| , and for any s ∈ 2h , where h = hgt(Φ(K )) , and each x ∈ Φ(K )(s) , there
is n′ ≥ n with x(n′) = 1, is dense in SS(P)<ω . ��

5 Forcing a real to avoid a pre-dense set

We assume that P is a STF in this section.
Arguing in the conditions of Definition 4.1, the goal of Theorem 5.2 below will be

to prove that, for any P-name c of a real in 2ω, it is explicitly forced by the extended
forcing P ∪ U that c does not belong to sets [U ] where U is a tree in U—unless c
is a name of one of reals in the E0-class of the generic real x itself.
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A definable E0 class containing no definable elements 717

Lemma 5.1 If R ∈ P , ϕ = {Ts }s∈2�n ∈ SSn(P) , and f : 2ω → 2ω is continuous,
then there exists a tree T ∈ P , T ⊆ R , and a system ϕ′ = {T ′

s }s∈2�n ∈ SSn(P)

which refines ϕ , such that [U ] ∩ ( f ”[T ]) = ∅ , where U = ⋃
s∈2n T ′

s .

Proof Let s ∈ 2n . There is a tree T ∈ P , T ⊆ R , and a string u ∈ 2<ω such that
lh(u) > lh((stem(Ts))) and f ”[T ] ⊆ [u]. 6 There is a string v ∈ Ts incomparable
with u . Put S = Ts � v ; then [S] ∩ f ”[T ] = ∅ . By Lemma 3.2(i), there is a system
ϕ′ = {T ′

s }s∈2�n ∈ SS(P) which refines ϕ and satisfies T ′
s = S , hence [T ′

s ]∩ f ”[T ] =
∅ . Iterating this construction for all s ∈ 2n , we get a tree T ⊆ R and a system
ϕ′ = {T ′

s }s∈2�n ∈ SS(P) which refines ϕ , such that [T ′
s ] ∩ f ”[T ] = ∅ for each

s ∈ 2n .

Theorem 5.2 In the assumptions of Definition 4.1, suppose that f : 2ω → 2ω is a
continuous map coded 7 in M , and for every σ ∈ 2<ω the set

D f (σ ) = {T ∈ P : (σ · [T ]) ∩ ( f ”[T ]) = ∅}

is dense in P . Assume that W ∈ P ∪U , and U ∈ U . Then there exists a tree V ∈ U,

V ⊆ W satisfying [U ] ∩ ( f ”[V ]) = ∅ .

Proof By construction, U = ρ · U˘
K (s0) , where K < ω and ρ, s0 ∈ 2<ω; we can

assume that simply s0 = Λ , so that U = ρ · U˘
K . Further, we can assume that

ρ = Λ , so that U = U˘
K . (Otherwise consider the map f ′(x) = ρ · f (x) .) By

Lemma 4.3, we can assume that W ∈ U , that is, W = η · U˘
L (t0) , where η ∈ 2<ω,

L < ω , and t0 ∈ 2<ω. And we can assume that η = Λ (the empty string), that
is, W = U˘

L (t0) ∈ U . (Otherwise consider the map f ′(x) = f (η · x) and the tree
W ′ = η ·W = U˘

L (t0) .)
The indices K , L involved can be either equal or different.
There is a number J such that themultisystem Φ J = {Φ J (k)}k∈ω satisfies K , L ∈

|Φ J | and hgt(Φ J (L)) > lh(t0) , so that the trees

S0 = Φ J (K )(Λ) = T˘
K (Λ) and T0 = Φ J (L)(t0) = T˘

L (t0)

in P are defined. Note that U ⊆ S0 and W ⊆ T0 .
Consider the set D of all multisystems Φ = {Φ(k)}k∈ω ∈ SS(P)<ω such that

hgt(Φ J (L)) < g = hgt(Φ(L)) , hgt(Φ J (K )) < h = hgt(Φ(K )) , (*)

and there is a tree T ∈ P satisfying the following:

(1) [S] ∩ ( f ”[T ]) = ∅ , where S = ⋃
s∈2h Φ(K )(s) ; and

(2) T = Φ(L)(t) , where t ∈ 2g and t0 ⊂ t .

6 Recall that [u] = {a ∈ 2ω : u ⊂ a} is the Baire interval in 2ω .
7 The code of a continuous f : 2ω → 2ω is the family of sets Ct = {u ∈ 2<ω : f ”[u] ⊆ [t]} , t ∈ 2<ω .

123



718 V. Kanovei, V. Lyubetsky

Lemma 5.3 D is dense in SS(P)<ω .

Proof Consider a multisystem Φ∗ ∈ SS(P)<ω ; the goal is to get a multisystem
Φ ′ ∈ D with Φ∗ � Φ ′ . By Corollary 3.4 there is an intermediate multisystem
Φ = {Φ(k)}k∈ω ∈ SS(P)<ω satisfying Φ∗ ≺≺ Φ and condition (∗) as above. Now
if a multisystem Φ ′ ∈ SS(P)<ω refines Φ then it satisfies Φ∗ ≺≺ Φ ′ and Φ∗ � Φ ′ .
Thus it suffices to find a multisystem Φ ′ ∈ D which refines Φ .

Pick a string t ∈ 2g with t0 ⊂ t and let R = ϕL(t) ; R ⊆ T0 is a tree in P .

Case 1 K 
= L . By Lemma 5.1, there exist: a tree T ∈ P , T ⊆ R , and a splitting
system ϕ′ = {T ′

s }s∈2�h ∈ SS(P) which refines Φ(K ) , such that [U ]∩( f ”[T ]) = ∅ ,
where U = ⋃

s∈2h T ′
s . Further, by Lemma 3.2(i), there is a system ϕ′′ = {T ′′

s }s∈2�g ∈
SS(P) which refines ϕL and satisfies T ′′

t = T . Define a multisystem Φ ′ ∈ SS(P)<ω

so that Φ ′(K ) = ϕ′ , Φ ′(L) = ϕ′′ , and Φ ′(k) = Φ(k) for all other values of k . Then
Φ ′ belongs to D (witnessed by T and t ) and is a refinement of Φ , as required.

Case 2 L = K , and hence g = h . The Case 1 argument does not work since we
cannot independently shrink two different trees in the top level of Φ(K ) because of
(4) of Sect. 3. We’ll make use of the density assumption of the theorem instead. By
(3) of Sect. 3, let H = lh(stem(Φ(K )(s))) for any/all s ∈ 2h .

By the density of sets D f (σ ) , there is a tree T ∈ P , T ⊆ R = Φ(K )(t) , which
satisfies (σ · [T ]) ∩ ( f ”[T ]) = ∅ for all σ ∈ 2H (a finite set of σ s). As above, there
is a system ϕ′ = {T ′

s }s∈2�h ∈ SS(P) which refines Φ(K ) and satisfies T ′
t = T .

Still by (4) of Sect. 3, if s ∈ 2h then there is a string σ ∈ 2H such that T ′
s = σ ·T ′

t =
σ · T . Then by construction [T ′

s ] ∩ ( f ”[T ]) = (σ · [T ]) ∩ ( f ”[T ]) = ∅ , so that we
have [T ′

s ] ∩ ( f ”[T ]) = ∅ for all s ∈ 2h . Therefore the multisystem Φ ′ ∈ SS(P)<ω

defined by Φ ′(K ) = ϕ′ and Φ ′(k) = Φ(k) for all k 
= K , belongs to D (which is
witnessed by T and t ) and refines Φ , as required. �� (Lemma)

Come back to the proof of the theorem. The set D belongs to M since f is coded
in M . Therefore, by the lemma, there is an index j ≥ J such that the multisystem Φ j

belongs to D . Let this be witnessed by a tree T = Φ j (L)(t) ⊆ T0 = Φ J (L)(t0) =
T˘

L (t0) , satisfying (1) above, where t ∈ 2g , g = hgt(Φ j (L)) , and t0 ⊂ t .
Consider the tree V = U˘

L (t) ∈ U . Then both V ⊆ W and V ⊆ T ⊆ T0 by
construction. Therefore [S] ∩ ( f ”[V ]) = ∅ by (1), where S = ⋃

s∈2h Φ j (K )(s) =
⋃

s∈2h T˘
K (s) , h = hgt(Φ j (K )) . Finally, U = U˘

K ⊆ S , so that [U ] ∩ ( f ”[V ]) =
∅ . ��

6 Jensen’s forcing

In this section, we argue in L, the constructible universe.
Let ≤L be the canonical wellordering of L .

Definition 6.1 (in L) Following Jensen [6, Section3], define, by inductionon ξ < ω1 ,
a countable STF Uξ (Sect. 2), as follows.

Let U0 consist of all trees Tu = {v : u ⊆ v ∨ v ⊂ u} ⊆ 2<ω , where u ∈ 2<ω,

including 2<ω = TΛ itself. (Note that [Tu] = [u] = {x ∈ 2ω : u ⊂ x } .)
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Suppose that 0 < λ < ω1 , and countable sets Uξ ⊆ ST are defined for ξ < λ .
Let Mξ be the least model M of ZFC′ of the form Lκ , κ < ω1 , containing the
sequence {Uξ }ξ<λ and such that λ < ωM

1 and all sets Uξ , ξ < λ , are countable in
M . Then Pλ = ⋃

ξ<λ Uξ is a regular STF countable in M . Let ˘ = {Φ j } j<ω be

the ≤L -least sequence of multisystems Φ j ∈ SS(Pλ)
<ω , �-increasing and generic

over Mλ . Define Uλ = U as in Definition 4.1. This completes the inductive step.
After the inductive construction is accomplished, let P = ⋃

ξ<ω1
Uξ ; then P is a

regular STF since U0 ⊆ P .

Proposition 6.2 (in L) The sequence {Uξ }ξ<ω1 belongs to ΔHC
1 .

Lemma 6.3 (in L) If a set D ∈ Mξ , D ⊆ Pξ is pre-dense in Pξ then it remains
pre-dense in P . Therefore if ξ < ω1 then Uξ is pre-dense in P .

Proof By induction on λ ≥ ξ , if D is pre-dense in Pλ then it remains pre-dense in
Pλ+1 = Pλ ∪ Uλ by Lemma 4.4. Limit steps are obvious. To prove the second part,
note that Uξ is dense in Pξ+1 by Lemma 4.3, and Uξ ∈ Mξ+1 . ��
Lemma 6.4 (in L) If X ⊆ HC = Lω1 then the set WX of all ordinals ξ < ω1
such that 〈Lξ ; X ∩ Lξ 〉 is an elementary submodel of 〈Lω1 ; X〉 and X ∩ Lξ ∈ Mξ

is unbounded in ω1 . More generally, if Xn ⊆ HC for all n then the set W of
all ordinals ξ < ω1 , such that 〈Lξ ; {Xn ∩ Lξ }n<ω〉 is an elementary submodel of
〈Lω1 ; {Xn }n<ω〉 and {Xn ∩ Lξ }n<ω ∈ Mξ , is unbounded in ω1 .

Proof Let ξ0 < ω1 . Let M be a countable elementary submodel of Lω2 containing

ξ0 , ω1 , X , and such that M ∩Lω1 is transitive. Let φ : M onto−→ Lλ be the Mostowski
collapse, and let ξ = φ(ω1) . Then ξ0 < ξ < λ < ω1 and φ(X) = X ∩ Lξ by the
choice of M . It follows that 〈Lξ ; X ∩ Lξ 〉 is an elementary submodel of 〈Lω1 ; X〉 .
Moreover, ξ is uncountable in Lλ , hence Lλ ⊆ Mξ . We conclude that X ∩Lξ ∈ Mξ

as X ∩ Lξ ∈ Lλ by construction.
The second claim does not differ much. ��

Corollary 6.5 (compare to [6], Lemma 6) The forcing P satisfies CCC in L .

Proof Suppose that A ⊆ P is a maximal antichain. By Lemma 6.4, there is an ordinal
ξ such that A′ = A ∩ Pξ is a maximal antichain in Pξ and A′ ∈ Mξ . But then
A′ remains pre-dense, therefore, still a maximal antichain, in the whole set P by
Lemma 6.3. It follows that A = A′ is countable. ��

7 The model

We consider the set of trees P ∈ L (Definition 6.1) as a forcing notion over L .

Lemma 7.1 (compare to Lemma 7 in [6]) A real x ∈ 2ω is P -generic over L iff
x ∈ Z = ⋂

ξ<ωL
1

⋃
U∈Uξ

[U ] .
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720 V. Kanovei, V. Lyubetsky

Proof If ξ < ωL
1 then Uξ is pre-dense in P by Lemma 6.3, therefore any real x ∈ 2ω

P -generic over L belongs to
⋃

U∈Uξ
[U ] .

To prove the converse, let x ∈ Z . Prove that x is P -generic over L . Consider a
maximal antichain A ⊆ P in L and show that x ∈ ⋃

T∈A[T ] . Note that A ⊆ Pξ for
some ξ < ωL

1 by Corollary 6.5. But then every tree U ∈ Uξ satisfies U ⊆fin ⋃
A by

Lemma 4.4, so that
⋃

U∈Uξ
[U ] ⊆ ⋃

T∈A[T ] , and hence x ∈ ⋃
T∈A[T ] , as required.

��
Corollary 7.2 (compare to Corollary 9 in [6]) In any generic extension of L , the set
of all reals in 2ω P -generic over L is ΠHC

1 and Π1
2 .

Proof Use Lemma 7.1 and Proposition 6.2. ��
Definition 7.3 From now on, let G ⊆ P be a set P-generic over L , so that X =⋂

T∈G [T ] is a singleton XG = {xG } , where xG ∈ 2ω .

Compare the next lemma to Lemma 10 in [6]. While Jensen’s forcing notion in [6]
guarantees that there is a single generic real in the extension, the forcing notion P we
use adds a whole E0-class (a countable set) of generic reals!

Lemma 7.4 (in the assumptions of Definition 7.3) If y ∈ L[G] ∩ 2ω then y is a
P -generic real over L iff y ∈ [xG]E0 = {σ · xG : σ ∈ 2<ω} .
Proof The real xG itself is P-generic, of course. It follows that any real y = σ · xG ∈
[xG]E0 is P-generic as well since the forcing P is by definition invariant under the
action of any string σ ∈ 2<ω.

To prove the converse, suppose towards the contrary that there is a P-real name
c ∈ L such that a tree T ∈ P P-forces that c is P-generic and c 
= σ · .x for all
σ ∈ 2<ω, where

.
x is a canonical P-name for the real xG . To represent c as f (xG) ,

where f : 2ω → 2ω is a continuous function coded in L , we define Ci
n = {S ∈ P :

S forces that c(n) = i } (n < ω and i = 0, 1), so that each set Cn = C0
n ∪ C1

n is
dense in P . Arguing in L , let An ⊆ Cn be a maximal antichain; then each An is
countable (in L) by Corollary 6.5. Therefore there is a limit ordinal λ < ωL

1 such that⋃
n An ⊆ Pλ and each An belongs to Mλ . We may assume that T ∈ Pλ (otherwise

increase λ).
By construction and Lemma 4.3 there is a tree R ∈ Uλ , R ⊆ T (a stronger

condition). By construction and Lemma 4.4 we have R ⊆fin ⋃
An for each n ,

meaning that there exists a finite set A′
n ⊆ An with R ⊆ ⋃

A′
n . Let g : [R] → 2ω be

defined so that g(x)(n) = i iff x ∈ [U ] for some U ∈ A′
n ∩Ci

n . This is a continuous
function on [R] , a compact set, coded in L . One routinely checks that R P-forces
that c = g(

.
x) .

Now, still arguing in L ,we are going to define a continuous extension f : 2ω → 2ω

of g satisfying the following extra condition:
(*) if x ∈ 2ω

� [R] then f (x) ∈ Fin , that is, the set {k : f (x)(k) = 1} is finite.
If x ∈ [R] then put f (x) = g(x) . Now, suppose that x ∈ 2ω

� [R] . Let
mx be the largest m with x �m ∈ R . Let s[x] = (x �mx )

∧(1 − x(mx )) , so that
s[x] ∈ R but s[x] 
⊂ x . Let yx be the lexicographically leftmost element of the set
[R� s[x]] = {y ∈ [R] : s[x] ⊂ y} . Finally let f (x) = (g(yx )�mx )

∧0ω (the extension
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of g(yx )�mx ∈ 2<ω by infinitely many zeros). Then 1 f (x) is finite. One easily proves
that f : 2ω → 2ω a continuous extension of g satisfying (*) (and still coded in L),
and R forces c = g(

.
x) = f (

.
x) .

Once again we can assume that f is coded even in Mλ . (If not then replace λ by
an appropriate ordinal λ′ > λ and replace R by a tree R′ ∈ Uλ′ , R′ ⊆ R .)

Let σ ∈ 2<ω. We claim that the set D f (σ ) of all trees S ∈ P satisfying (σ · [S])∩
( f ”[S]) = ∅ , is dense in P . Indeed let U ∈ P . If U 
⊆ R , then let t ∈ U � R and
S = U � t ; thus S ∈ P , S ⊆ U , but [S] ∩ [R] = ∅ . We may assume that S ∈ Uξ for
some ξ ≥ 1. Then [S] ∩ Fin = ∅ by Lemma 4.5, hence (σ · [S]) ∩ Fin = ∅ , but
f ”[S] ⊆ Fin by construction, hence (σ · [S]) ∩ ( f ”[S]) = ∅ and S ∈ D f (σ ) . Now
assume that U ⊆ R . Then U forces c = g(

.
x) = f (

.
x) , hence, forces f (

.
x) 
= σ · .x .

Then there are two incompatible strings u, v ∈ 2<ω and a tree S ∈ P , S ⊆ U , which
forces u ⊂ σ · .x and v ⊂ f (

.
x) . Then easily S ⊆ [σ · u] = {σ · x : u ⊂ x } but

f ”[S] ⊆ [v] . It follows that (σ · [S]) ∩ ( f ”[S]) = ∅ (since u, v are incompatible),
therefore S ∈ D f (σ ) .

By Lemma 6.4, there is a limit ordinal ρ > λ such that each set D′
f (σ ) = D f (σ )∩

Pρ is dense in Pρ .ApplyingTheorem5.2with P = Pρ , U = Uρ , and P∪U = Pρ+1 ,
we conclude that for each U ∈ Uρ the set QU of all conditions V ∈ Pρ+1 satisfying
[U ] ∩ ( f ”[V ]) ⊆ Fin is dense in Pρ+1 . As obviously QU ∈ Mρ+1 , we further
conclude that each QU is pre-dense in the whole forcing P by Lemma 6.3. This
implies that R forces c = f (

.
x) /∈ ⋃

U∈Uρ
[U ] , hence, forces that c is not P-generic,

by Lemma 7.1. But this contradicts to the choice of T . ��
Lemma 7.5 (in the assumptions of Definition 7.3) The real xG is not OD in L[G] .
Proof Suppose towards the contrary that T ∈ G , ϑ(x) is a formula with ordinal
parameters, and T P-forces that xG is the only x ∈ 2ω satisfying ϑ(x) . Let s =
stem(T ) , so that both s∧0 and s∧1 belong to T . Then either s∧0 ⊂ xG or s∧1 ⊂
xG ; let, say, s∧0 ⊂ xG . Let n = lh(s) and σ = 0n ∧1, so that all three strings
s∧0, s∧1, σ belong to 2n+1, and s∧1 = σ · s∧0. As the forcing P is invariant under
the action of σ , the set G ′ = σ · G is P-generic over L , and T ′ = σ · T ∈ G ′ . We
conclude that it is true in L[G ′] = L[G] that the real x ′ = xG ′ = σ · xG is still the
only x satisfying ϑ(x) . However obviously x ′ 
= x ! ��

Now, the set X = [xG ]E0 is exactly the set of all P-generic reals in the P-generic
model L[G] = L[xG ] by Lemma 7.4, hence it belongs to Π1

2 by Corollary 7.2, and
it contains no OD elements by Lemma 7.5, as required. �� (Theorem 1.1)

8 Concluding remarks

Theorem 1.1 also solves another related question asked at theMathoverflowwebsite 8 :
namely, is there an example of a set S definable in ZFC and provable in ZFC to be
countably infinite, while at the same time, no set definable in ZFC can be proved in
ZFC to be an element of S? To define such an example, let (1) S = [x]E0 provided

8 A question about definable non-empty sets containing no definable elements. Mathoverflow, February
11, 2013, http://mathoverflow.net/questions/121484.
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the set universe is equal to the class L[x] as in Theorem 1.1, and (2) simply S = ω

otherwise. Suppose towards the contrary that ZFC proves that the real x , uniquely
defined by a certain fixed formula, outright belongs to S . Then in particular this must
be true in case (1), contrary to the definition of S via Theorem 1.1.

Speaking of Theorem 1.1, one may ask does it generalize to other typical equiva-
lence relations. Here we immediately face a negative result.

Lemma 8.1 Suppose that E is a Borel equivalence relation on ωω, smooth via a
Borel map f : ωω → 2ω, and f is Δ1

1(p) , where p ∈ ωω is OD. If x ∈ ωω and
the equivalence class [x]E is OD then [x]E contains an OD element.

Proof In our assumptions, a = f (x) is OD as well.We conclude that [x]E = f −1(a)

is a Δ1
1(a, p) set. By the Kondo–Addison uniformization, it contains a Δ1

2(a, p)
element y ∈ [x]E . But a, p ∈ OD, hence, y is OD as well. ��

It follows that Theorem 1.1 fails for a smooth equivalence relation E defined in L
instead of E0 . But it holds for Borel non-smooth countable relations (i.e., those with
countable equivalence classes).

Lemma 8.2 Suppose that, in the context of Theorem 1.1, E is a Borel non-smooth
countable equivalence relation on ωω in L . Then, in L[x] , there is a real y such that
the equivalence class [y]E is OD but contains no OD elements.

Proof By the Glimm – Effros dichotomy theorem [4], it is true in L that there is a
1− 1 Borel reduction f : 2ω → ωω of E0 to E , so that a E0 b iff f (a) E f (b) . Let
f be Δ1

1(p) in L ; p ∈ L ∩ ωω. By Shoenfield, it is true in L[x] that f : 2ω → ωω

is still a Δ1
1(p) reduction of E0 to E . 9 Let y = f (x) . Then the E-class

[y]E = [{ f (x ′) : x ′ ∈ [x]E0 }]E
of y is OD since such are [x]E0 and f . Prove that [y]E has no OD elements.

First of all, y itself cannot be OD as x = f −1(y) is not OD.
Further, it holds in L by the Feldman – Moore theorem (see, e.g. [8, 7.4.1]) that

E is induced by a Borel action · of a countable group G on ωω, that is, z E z′ iff
∃ g ∈ G (z′ = g · z) . Let · be Δ1

1(r) , where r ∈ ωω in L . Once again by Shoenfield,
it holds in L[x] that · is a Δ1

1(r) action of G that induces E . Now let y′ ∈ [y]E in
L[x] . Then there is an element g ∈ G such that y = g · y′ . Therefore y is Δ1

1(r, y
′) .

It follows that if y′ is OD then so is y . But the latter is false by the above. ��
Question 8.3 Is Lemma 8.2 still true for non-countable Borel equivalence relations
E , beginning say with E1 ?
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9 We use the same symbol f to denote both f ∈ L itself, which is a Borel map in L , and its natural
extension in V . The same for E0 and E .
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