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Abstract

We prove that if 4 is an analytic partial order then either 4 can be extended to a �12 linear
order similar to an antichain in 2¡!1 , ordered lexicographically, or a certain Borel partial order
60 embeds in 4. Similar linearization results are presented, for �-bi-Souslin partial orders and
real-ordinal de�nable orders in the Solovay model. A corollary for analytic equivalence relations
says that any (lightface) �11 equivalence relation E; such that E0 does not embed in E; is fully
determined by intersections with E-invariant Borel sets coded in L. c© 2000 Elsevier Science
B.V. All rights reserved.
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Notation. A binary relation 4 on a set X is a partial quasi-order, or PQO, on X;
i� x4y∧y4 z⇒ x4 z; and x4 x for any x∈X: In this case, ≈ is the associated
equivalence, i.e., x≈y i� x4y∧y4 x.
If x≈y ⇒ x=y for any x; y then 4 is a partial order, or PO. If in addition x4y∨y4x

for all x; y∈X then 4 is a linear order (LO).
Let 4 and 4′ be PQOs on resp. X and X ′: A map h :X →X ′ will be called half-order

preserving, or h.o.p., i� x4y⇒ h(x)4′h(y): Finally, a linearization is any h.o.p. map
h : 〈X ;4〉→ 〈X ′;4′〉; where 4′ is a LO, satisfying x≈y⇔ h(x)= h(y).
By 6lex we denote the lexicographical order (where applicable).
N=!! is the Baire space.

( The main results of this paper were presented at Caltech–UCLA Logic Seminar in April 1997, and
Barcelona Logic Conference in February 1998.
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0. Introduction

It is a simple application of Zorn’s lemma that any partial order can be extended
to a linear order on the same domain. More generally, any partial quasi-order admits
a linearization.
A much more di�cult problem is to provide a descriptive characterization of the

linear order in the assumption that one has such for the given PQO. For instance, not
every Borel PQO is Borel linearizable. Indeed, recall that E0 is an equivalence relation
on 2! de�ned as follows: a E0 b i� a(k)= b(k) for all but �nite k: Then E0; considered
as a PQO, is not Borel linearizable, as it is known that there is no Borel map h de�ned
on 2! and satisfying a E0 b⇔ h(a)= h(b) (see [2]).
This example can be converted to a partial order. De�ne the anti-lexicographical

PO60 on 2! as follows: a 60 b i� either a= b or there is m∈! such that a(m)¡b(m)
and a(k)= b(k) for all k¿m: 2 Clearly a60 b implies a E0 b; and 60 linearly orders
each E0-equivalence class similarly to the integers Z; except for the class of !× {0}
(ordered as !) and the class of !×{1} (ordered as the inverted !). Finally, a simple
argument (see [11]) shows that 60 is not Borel linearizable.
There are Borel-non-linearizable Borel orders of various nature, e.g., the PQO: a4 b

i� a(k)6b(k) for all but �nite k on 2!; or the dominance relation on !!: However,
by the next theorem, proved in [11], the relation 60 is actually a minimal Borel-non-
linearizable Borel order. 3

Theorem 1 (Kanovei [11]). Suppose that 4 is a Borel PQO on N=!!: Then exactly
one of the following two conditions is satis�ed:
(IB) 4 is Borel linearizable – moreover; in this case there are an ordinal �¡!1

and a Borel linearization h : 〈N;4〉→ 〈2�; 6lex 〉;
(IIB) there exists a continuous h.o.p. 1–1 map F : 〈2!; 60 〉→ 〈N;4〉 such that

aE= 0 b⇒F(a)4= F(b).

Condition (IIB) could be, informally, commented upon as follows: 4 admits at least
N=E0-many mutually incomparable chains of length Z or less, assuming that quantities
are measured in a Borel way.
To see that Theorem 1 fails already for analytic orders, let WO=

{x∈N: x codes an ordinal}; for x∈ WO let |x| be the ordinal coded by x: De�ne a
�11 PQO: x4y i� either y =∈ WO; or x; y∈ WO and |x|6|y|: Then 4 does not satisfy (IB)
even with a non-Borel map h since orders 〈2�; 6lex 〉; �¡!1; do not admit strictly
increasing !1-chains. Requirement (IIB) also cannot be ful�lled via analytic maps F
by a restriction theorem.

2 If one enlarges 60 so that, in addition, a60 b whenever a; b∈ 2! are such that a(k)= 1 and b(k)= 0
for all but �nite k; then the enlarged relation can be induced by a Borel action of Z on 2!; such that a 60 b
i� a= zb for some z∈Z; z¿0.
3 Compare with the “Glimm–E�ros” theorem of Harrington et al. [2].
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1. Main results

The aim of this paper is to prove similar dichotomical linearization theorems for
some non-Borel partial orders. This will include analytic and bi-�-Souslin (for cardinals
�¿!1) orders, and de�nable orders in the Solovay model.

1.1. Analytic partial orders

Following ideas of Hjorth and Kechris [7], we involve longer linear orders, 2¡!1

and 2!1 ; to match the nature of analytic PQOS. A set A⊆ 2¡!1 ; consisting of pairwise
⊆ -incomparable elements, will be called an antichain.

Theorem 2. Suppose that 4 is a �11 PQO on N: Then at least one of the following
two conditions; (IA) or (IIA); is satis�ed:

(IA) There is a linearization h : 〈N;4〉→ 〈2!1 ; 6lex 〉 such that for any ¡!1 the
map h(x)= h(x)() is Borel. In addition in each of the two following cases 4

there is an antichain A⊆ 2¡!1 and a �12 in the codes linearization h : 〈N;4〉→
〈A; 6lex 〉 :
(a) for any x; the ≈ -class [x]≈ = {y: y≈ x} of x is Borel; 5
(b) the universe is a set-generic extension of a class L[z0]; z0 ∈N.

(IIA) As (IIB) of Theorem 1.

Note that (IA) and (IIA) here are compatible for instance in the assumption V=L:
There may exist reasonable su�cient conditions (like: all �12 sets are Lebesgue mea-
surable) for (IA) and (IIA) to be incompatible.
In the “additional” part of (IA), the linearization h : 〈N;4〉→ 〈A; 6lex 〉 will be in

fact slightly better than just �12: indeed, for any ordinal �¡!1; the set of all values
h(x) which belong to 2� is a Borel set in 2� and the partial map {〈x; h(x)〉: h(x)∈ 2�}
is an analytic subset of N× 2�.

1.2. Applications for analytic equivalence relations

Theorem 2 applies for analytic equivalence relations viewed as a particular case of
PQOs.

Corollary 3. Let E be a �11 equivalence relation on N: Then at least one of the
following two conditions; (IE) or (IIE); is satis�ed:

4 An obvious parallel with the “Ulm classi�cation” theorem in [7] allows us to conjecture that the additional
assertion is also true in the assumption of the existence of “sharps”, or an even weaker assumption in [1].
However the most interesting problem is to prove the additional assertion in ZFC.
5 This applies, e.g., when 4 is a PO. Recall that x≈ y i� x4 y∧ y4 x.
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(IE) There is a map h: N→ 2!1 such that x Ey⇒ h(x)= h(y) and for any ¡!1
the map h(x)= h(x)() is Borel. In addition in each of the two following
cases there is an antichain A⊆ 2¡!1 and a �12 in the codes map h :N→A
such that x Ey⇔ h(x)= h(y):
(a) for any x; the E class [x]E= {y: y E x} of x is Borel;
(b) the universe is a set generic extension of a class L[z0]; z0 ∈N.

(IIE) There exists a continuous 1–1 function F : 2! →N such that we have
a E0 b⇔F(a)EF(b). 6

Note that the maps h in (IA) and (IE) will be Borel in certain e�ective sense, i.e.,
they will have Borel codes 7 in L[z] provided 4 is �11[z]: This implies the following
corollary: 8

Corollary 4. Assume that E is a �11[z] equivalence relation, z ∈N; and (IIE) of
Corollary 3 fails. Then x Ey i� we have x∈X ⇔y∈X for every E-invariant Borel
set X ⊆N with a Borel code in L[z].

Corollary 3, with (IE) in the additional form, has been obtained by Hjorth and
Kechris [7] in the subcase (a) (as well as in the assumption of existence of sharps),
by Friedman and Velickovic [1] in a hypothesis dealing with weakly compact cardinals,
and by Kanovei [10] in the subcase (b). It is not clear whether the reduction, given
in [7], satis�es the requirement that all maps h are Borel, as in (IE), and whether it
leads to Corollary 4.

1.3. Bi-Souslin partial orders

Theorem 1 admits a generalization on bi-�-Souslin order relations, which follows
a few known patterns (see [14, 5]) in its appeal to a kind of Cohen-generic stability
requirement.
Recall that if T is a tree on !× !× �; � being an ordinal, then

[T ] = {〈x; y; f〉 ∈N2 × �! : ∀m T (x �m; y �m;f �m)}
and p[T ] = {〈x; y〉 : ∃f[T ](x; y; f)}; which is a �-Souslin set. Recall that a set is
(�+ 1)-Borel if it belongs to the smallest algebra of sets containing all open sets
and closed under –; the complement, and unions of 6� sets. Coding of (�+1)-Borel
sets will be introduced in Section 2.2.

Theorem 5. Suppose that !6�; and T and S are trees on !×!×� such that the sets
4T = p[T ] and 4S = –p[S] are PQOS on N and 4T ⊆4S : Assume that –p[S] remains

6 A map F as in (IIE) is called a (continuous) embedding of E0 in E: A map h as in (IE) is called a
reduction of E to the equality.
7 That is, �-Borel codes for an ordinal �¡!1; not necessarily countable in L[z].
8 Hjorth and Kechris told the author in April 1997 that they had known the result.
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a PQO in Cohen generic extensions of the universe. Then at least one of the following
two conditions is satis�ed:
(I∗) There is �¡(�+)L[S; T ] and a (�+ 1)-Borel; coded in L[S; T ]; h.o.p. map

h : 〈N;4T 〉→ 〈2�; 6lex 〉 such that h(x)= h(y)⇒ x≈Sy.
(II∗) There exists a continuous 1–1 h.o.p. map F : 〈2!; 60 〉→ 〈N;4T 〉 such that

a E= 0 b⇒F(a) 4= S F(b).

Note that if 4T =4S then 4=4T =4S is a bi-�-Souslin PQO, and conditions (I∗)
and (II∗) take the form:

(I�) There are an ordinal �¡(�+)L[S; T ] and a (� + 1)-Borel, coded in L[S; T ];
linearization h : 〈N;4〉→ 〈2�; 6lex 〉.

(II) As (IIB) of Theorem 1.

The case �=! in Theorem 5 obviously implies Theorem 1. (The Cohen-stability
condition follows in this case from the Shoen�eld absoluteness.)
The case �=!1 includes, in particular, �

1
2 relations, the �

1
2 side of which is Cohen-

stable. It is not known whether the stability condition can be dropped in the �12 case.
It can be expected, however, that the Cohen-stability cannot be dropped in the bi-
!1-Souslin case, as an example, given by Shelah [14], shows for a related theorem.

1.4. De�nable partial orders in the Solovay model

The next theorem describes the state of a�airs in the Solovay model. 9 Let OD mean
ordinal de�nable and ROD mean real-ordinal de�nable.

Theorem 6 (In the Solovay model). Suppose that 4 is a ROD PQO on N: Then
exactly one of the following two conditions is satis�ed:

(Is) 4 is ROD linearizable. Moreover in this case there are an antichain A⊆ 2¡!1

and a ROD linearization h: 〈N;4〉→ 〈A; 6lex 〉.
(II) As (IIB) of Theorem 1.

One of the crucial steps in the proof of this theorem will be to show that, in the
Solovay model for ZFC; obtained by the collapse of a constructible model up to an
inaccessible cardinal 
; any set X ⊆ 2#; #¡
+; which is a ROD image of the reals,
is lexicographically ROD order isomorphic to an antichain A(X )⊆ 2¡
.

9 The Solovay model is a generic extension of a constructible model (as de�ned by Solovay [15]) where
all projective sets of reals are Lebesgue measurable.
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1.5. Organization of the proofs

The main part of the paper consists of the proof of Theorem 5. After preliminaries
in Section 2, 10 mainly devoted to a coding system for Borel sets, we introduce the
dichotomy in Section 2.4. Then the proof of Theorem 5 naturally develops itself in
Sections 3 and 4. The principal technical scheme goes back to the papers of Harrington
and Shelah [4], Shelah [14], and especially Hjorth [5], containing theorems on bi-�-
Souslin equivalence and order relations. However our version of the technique is free
of any use of model theory, including admissible sets. On the other hand, we apply an
e�ective version of a classical separation theorem, proved in [9].
Two issues can be underlined. First, the most important properties of Borel codes

will be associated with the behaviour of the coded sets in a collapse generic extension
of the universe. Second, the splitting construction, that leads to (II∗) of Theorem 5,
applies another forcing argument (in fact a countable subforcing, to make use of the
Cohen-stability requirement).
We also exploit several technical achievements made in the study of the Borel orders

[3, 11, 13] by means of the Gandy–Harrington topology (the topology generated by �11
sets). The two technical schemes, the one we use and the one based on the Gandy–
Harrington topology, involve di�erent kinds of “e�ective” sets in the forcing, but have
many common points in the construction of the proofs (like a similar de�nition of
the “regular” and “singular” cases, a similar construction of splitting systems, etc.),
although di�er in many details. As a matter of fact the Gandy–Harrington topology
technique provides a short direct proof of Theorem 1 (see [11]), but it has problems
with the analytic case as it does not capture the proper type of e�ectiveness.
Theorem 2 (Section 5) will require a reection argument saying that any analytic

PQO has uncountably many indices for “upper” Borel approximations which are PQOS,
together with a delicate reasoning in the additional case, in Section 5.4. We will also
show that (IIA) of Theorem 2 is essentially a �12, therefore Shoen�eld-absolute, state-
ment (Section 5.1, via an argument due to Hjorth and Kechris [7]). Our approach
will be to cut the “long” (of length !1) invariants, given by the general part of
Theorem 2, and then transform “shorter” (of countable length) invariants so that they
form an antichain.
Finally, Theorem 6 is proved in Section 6. We observe that, in the Solovay model,

all ROD sets are !1-Souslin; hence Theorem 5 can be applied (the Cohen-stability
condition is easily veri�able). Thus it su�ces to convert a linearization given by
Theorem 5 (in the case 4T =4S) to the form required by Theorem 6.

10 The material of Section 2 and, to some extent, 3, has predecessors in [4, 5], Friedman and Velickovic
[1], but the remarkable brevity of those notes forced the author to present self-contained proofs of some key
results, for instance Theorem 9, instead of references of the form: “using the idea outlined in : : : one proves
: : :”.
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2. Preliminaries

This section begins the part of the paper devoted to the proof of Theorem 5. Starting
the proof, we �x an ordinal �¿! and trees T; S ⊆ (! × ! × �)¡!. Suppose that
4T = p[T ] and 4S = –p[S] are PQOs on N, which satisfy 4T ⊆4S . De�ne the relation
x≈Sy i� x4S y∧y4S x, and x ≈T y similarly.

2.1. Extending the universe and improving the orders

By the possible uncountability of � in V, the basic set universe where Theorem 5 is
being proved, the properties of the orders 4T and 4S in V are somewhat occasional.
Extending V properly, we can reveal more fundamental properties of the relations. Let
�?=(�++)L[S; T ] Let V? be a �?-collapse extension of V: In particular, �? is a countable
ordinal in V?:
We now encounter a problem. Unless the ordinal � is countable (so that the

Shoen�eld absoluteness theorem can be applied), the relations 4T and 4S may not
remain partial orders in V?. However this can be �xed, to some extent. First of all,
4T ⊆4S in V? by some other sort of absoluteness. We also know that 4S is a PQO in
Cohen-generic extensions of V. In addition, we can assume that

– In V?; 4T is a PQO on N while 4S is a binary relation satisfying x4S x and the
implication x′ 4T x4S y4T y′⇒x′ 4S y′.

To justify the 4T -part of the assumption, we simply replace T by another tree
T ′ ∈L[S; T ]; T ′ ⊆ (!× !× �)¡!; such that

〈x; y〉 ∈ p[T ′] ⇔ ∃ n∃ x0 · · · ∃ xn (x= x0 4T x14T · · · 4T xn=y):

(Note that p[T ′] = p[T ] in V.) Then, to justify the 4S -part of the assumption, change
S to a tree S ′ ∈L[S; T ]; S ′ ⊆ (!× !× �)¡!, such that

〈x; y〉 =∈ p[S ′] ⇔ ∀x′∀y′(x′4T ′x∧y4T ′y′⇒x′ 4S y
′):

2.2. Coding Borel sets

The coding system we use is based on an in�nitary language. This is equivalent to
the ordinary coding using �-branching wellfounded trees. However in�nitary formulas
bring some technical advantage.
We let L�+1;0 ∈L[S; T ] be the in�nitary language de�ned as follows:
(i) Atomic formulas are of the form ẋ(k)= l and ḟ(k)= �, where ẋ is a constant

symbol for an inde�nite element of N=!!; ḟ is a constant symbol for an
inde�nite element of the set �!; while k; l ∈ ! and �¡�.

(ii) Non-atomic formulas are composed, in L[S; T ], by conjunctions and disjunctions
of L[S; T ]-size 6�, together with the ordinary connectives ∧; ∨; ¬; but any
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formula contains only �nitely many constant symbols of types ẋ and ḟ mentioned
in (i) (that is, for inde�nite elements of N and �!).

(Quanti�ers are not allowed.) By de�nition, the set of all L�+1;0-formulas belongs to
L[S; T ] and has cardinality (�+)L[S; T ]¡�? in L[S; T ].
For instance [T ](ẋ; ẏ; ḟ) is a L�+1;0-formula

∧

m∈!

∨

(s; t;  )∈Tm

∧

k¡m

(ẋ(k)= s(k) ∧ ẏ(k)= t(k) ∧ ḟ(k)=  (k));

where Tm= {〈s; t;  〉 ∈T : dom s= dom t= dom  =m}; we shall denote it by ẋ4T; ḟ ẏ.

Similarly, the formula ¬[S](ẋ; ẏ; ḟ) will be denoted by ẋ4S; ḟ ẏ: The formulas like
ẋ4= S; ḟ ẏ ; ẋ≈S; ḟ ẏ ; etc., are derivatives. Then

x4T y ⇔ ∃f ∈ �! x4T;fy and x4S y ⇔ ∀f∈ �! x4S;fy:

Formulas in L�+1;0 code (�+1)-Borel subsets of spaces Nm×(�!)n: for a formula,
say, ’(ẋ; ḟ) we put <’== {〈x; f〉 ∈N× �! :’(x; f)} and de�ne <’=? similarly, but in
V?, so that, in particular, <’== <’=? ∩V.
We may view ’ as a code, in L[S; T ]; for the sets <’= and <’=?.

2.3. Consistency and separation

A L�+1;0-theory (or simply: theory) will be any set � of L�+1;0-formulas, such that
the list of all constants of type (i) occurring in at least one formula in �; is �nite. We
shall write: a theory �(ẋ1; : : : ; ḟn), to mean that all constants of type (i) which occur
in � are included in the list ẋ1; : : : ; ḟn.
The following is the principal concept.

De�nition 7. A formula or a theory of L�+1;0 is ?-consistent if it has a model in
V?; i.e., becomes true after one suitably substitutes, in V?; its constants of type (i) by
elements of N and �!. Notions like: to be ?-consistent with and to ?-imply will have
the same meaning.

Remark 8. Let �∈L[S; T ] be a L�+1;0-formula or L�+1;0-theory. Then, for � “to be
?-consistent” is describable in L[S; T ]. Indeed, it easily follows from the Shoen�eld
absoluteness theorem by ordinary forcing arguments that � is ?-consistent i� it is true
in L[S; T ] that “� has a model in a �?-collapse generic extension of the universe”.

Theorem 9. A L�+1;0-theory � ∈ L[S; T ] is ?-consistent i� every its subtheory 	 ∈
L[S; T ] of cardinality 6� in L[S; T ] is ?-consistent. Therefore; a theory � ?-implies
a formula ’ i� ’ is ?-implied by a subtheory 	∈L[S; T ] of � of cardinality 6� in
L[S; T ].
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Proof. Prove the essential direction from right to left. This is an application of the
downward Lowenheim–Skolem argument. Suppose, for brevity, that ẋ is the only con-
stant which occurs in �.
The set P of all theories �(ẋ)∈L[S; T ] of cardinality 6� in L[S; T ], which are

?-consistent with every subtheory 	⊆�; 	∈L[S; T ], of cardinality 6� in L[S; T ];
belongs to L[S; T ] and has cardinality ¡�? in L[S; T ] by the above. Let us view P as a
forcing notion (bigger theories are stronger). By the choice of V?, there is a P-generic
over L[S; T ] set G⊆P in V?. Prove that the theory �(ẋ)=

⋃
G has a model in V?.

(Then � is ?-consistent, being a subtheory of �(ẋ).)
Let Dn be the set of all theories �(ẋ)∈P which contain ẋ(n)= k for some k. Then

Dn belongs to L[S; T ]. Note that Dn is dense in P.
(Let �(ẋ) ∈ P. Assume on the contrary that �k =�∪{ẋ(n)= k} =∈P for all k. Then

there is, in L[S; T ], a sequence of subtheories 	k of � of L[S; T ]-cardinality 6�, such
that �k is ?-inconsistent with 	k for any k. The theory 	=

⋃
k 	k has also L[S; T ]-

cardinality 6�; and is ?-inconsistent with �∪{ẋ(n)= k: k ∈!}; hence ?-inconsistent
with �, a contradiction with the choice of �).
It follows that G ∩Dn 6= ∅ for any n, so that there is (unique) x∈N in V? such

that x(n)= k i� ẋ(n)= k belongs to �. It remains to prove that, for any L�+1;0-formula
’(ẋ), ’(x) is true (for this x) i� ’(ẋ)∈�.
This holds for elementary formulas ẋ(n)= k by the above. The induction step ¬ is

easy, so we concentrate on the induction step
∨
. Assume that ’ is a formula of the

form
∨

�¡� ’�(ẋ). Consider the set D∈L[S; T ] of all theories �(ẋ)∈P such that either
both ’ and some of ’� belong to �, or ¬’ and all of ¬’� belong to �. Then D is
dense in P.
(Indeed suppose that �(ẋ)∈P. If ��=�∪{’�(ẋ)} belongs to P for some � then

easily �′=�∪{’(ẋ)}∪ {’�(ẋ)} belongs to P, hence to D. Otherwise for any �¡� the
theory �� is ?-inconsistent with a subtheory 	� of � of L[S; T ]-cardinality 6�. Then
each theory �� is ?-inconsistent with the union 	=

⋃
�¡� 	�. It easily

follows that then 	∪� ?-implies each of ¬’�, so that the theory �′=�∪{¬’(ẋ)}
∪ {¬’�(ẋ): �¡�} belongs to D.)
It follows that there is a theory �(ẋ) ∈ D∩G. In the either case, ’ and one of ’�

belong to � and, by the induction hypothesis, ’�(x) is true for this �, hence ’(x) is
true. The or case is analogous.

The next theorem belongs to the type of separation theorems.

Theorem 10. Assume that �(ẋ; ẏ; ḟ; : : :); 	(ẋ; ẏ′; ḟ′; : : :) are L�+1;0-theories in
L[S; T ]; having ẋ as the only common constant in the (�nite) lists of constants.
Assume that the theory �(ẋ; ẏ; ḟ; : : :)∪	(ẋ; ẏ′; ḟ′; : : :) is ?-inconsistent. Then there
is a L�+1;0-formula �(ẋ) which ?-separates � from 	 in the sense that �(ẋ; : : :)
?-implies �(ẋ) while 	(ẋ; : : :) ?-implies ¬�(ẋ).

Proof. We can assume, by Theorem 9, that � and 	 consist of single L�+1;0-formulas,
resp. ’(ẋ; ẏ; ḟ; : : :) and  (ẋ; ẏ′; ḟ

′
; : : :). Let, for the sake of simplicity, ’ be ’(ẋ; ẏ) and
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 be  (ẋ; ḟ). Consider, in V?, the sets

<’=?= {〈x; y〉 ∈N2 :’(x; y)} and < =?= {〈x; f〉 ∈N× �! :  (x; f)}:

The projections X = {x : ∃y<’=?(x; y)} and Y = {x : ∃f< =?(x; f)} are disjoint (by the
inconsistency assumption) �11 sets, hence by a classical separation theorem they are
separable by a Borel set. Moreover, as we proved in [9] (Theorem 7), in this case a
separating set is coded in L[S; T ] so that it has the form B= <�=? for some L�+1;0-
formula �(ẋ).

2.4. Borel h.o.p. maps and the dichotomy

To introduce the dichotomy, we have to extend the language L�+1;0 by Borel func-
tions mapping N in a set of the form 2�; �¡(�+)L[S; T ]. Let a function code be a
sequence of the form ’̃= {’(ẋ)}¡�, where �∈ Ord and each ’ is a L�+1;0-formula.
Such a sequence de�nes a function h’̃: N→ 2� so that h’̃(x)()= 1 i� ’(x).
Let H� be the set of all maps h’̃: 〈N;4T 〉→ 〈2�; 6lex 〉, where ’̃∈L[S; T ] is a

function code, which are h.o.p. in V?. De�ne H=
⋃

�¡(�+)L[S; T ] H�. Thus every function
in H is a � + 1-Borel, coded in L[S; T ], map N→ some 2�; �¡(�+)L[S; T ], satisfying
x4T y⇒ h(x)6lex h(y) in V? (then also in V). As a matter of fact, functions in H
will be used only via equalities of the form h(x)= h(y) where h= h’̃ ∈H� for some
�¡(�+)L[S; T ], viewed as shorthand for the formula

∧
¡�(’(x)⇔’(y)).

Let ẋ≡H ẏ be the theory which contains all formulas h(ẋ)= h(ẏ), where h∈H. Thus
≡H de�nes an equivalence relation extending ≈T .
We have two cases. 11

Case 1: The theory ẋ≡H ẏ ?-implies ẋ≈S; ḟ ẏ. Then, by Theorem 9, there is a set
H′= {h� : �¡�}⊆H, such that the subtheory ẋ≡H′ ẏ already ?-implies ẋ≈S; ḟ ẏ and
L[S; T ] contains a sequence of function codes for functions h�. Let h(x) be the con-
catenation of all h�(x); �¡�. Then h∈H and h(ẋ)= h(ẏ) already ?-implies ẋ≈S; ḟ ẏ,
so that h satis�es (I∗) of Theorem 5.
Case 2: The theory (ẋ≡H ẏ)∪{ẋ≈= S; ḟ ẏ} is ?-consistent. Assuming this, we work

towards (II∗) of Theorem 5. To de�ne a required map F , we shall apply a sophisticated
splitting construction based on some forcing ideas. The next section introduces the
forcing notions involved. (The assumption of Case 2 will be applied only to show
that the forcing notions are non-empty.) Section 4 de�nes the embedding and ends the
proof of Theorem 5.

11 There is a point of dissatisfaction in the distribution on the two cases we use. It would be more natural
to de�ne Case 1 as that ẋ6Hẏ ?-implies ẋ4S ẏ, where ẋ6Hẏ is the theory {h(ẋ)6lex h(ẏ): h∈H}, which
would improve (I∗) of Theorem 5 to the existence of a h.o.p. map satisfying h(x)6h(y)⇒ x4S y. However
then the arguments for Case 2, especially the key lemmas in the next section, do not go through.
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2.5. Hulls

By F(ẋ) we shall denote the collection of all L�+1;0-formulas ’(ẋ) with the only
constant ẋ; clearly F(ẋ)∈L[S; T ]. For a theory �(ẋ; ẏ; : : :), let Fẋ[�(ẋ; ẏ; : : :)] be the
set of all formulas ’(ẋ)∈F(ẋ) which are ?-implied by �(ẋ; ẏ; : : :).

Lemma 11. Let R(ẋ)⊆F(ẋ) and �(ẋ; : : :) be L�+1;0-theories in L[S; T ]. Assume
that Fẋ[�(ẋ; : : :)]⊆R(ẋ). Then the theory �′(ẋ; : : :)=�(ẋ; : : :)∪R(ẋ) satis�es
Fẋ[�′(ẋ; : : :)]=Fẋ[R(ẋ)].

Proof. Show that Fẋ[�′(ẋ; : : :)]⊆Fẋ[R(ẋ)] (the non-trivial direction). Consider a for-
mula  (ẋ)∈Fẋ[�′(ẋ; : : :)]. By Theorem 9 there is a subtheory R′(ẋ)∈L[S; T ] of R(ẋ),
of cardinality 6� in L[S; T ], such that �(ẋ; : : :)∪R′(ẋ) ?-implies  (ẋ). We conclude
that the formula (

∧
R′(ẋ))⇒  (ẋ) belongs to Fẋ[�(ẋ; : : :)], thus to R(ẋ), which guar-

antees  (ẋ)∈Fẋ[R(ẋ)].

LetH(ẋ) be the set of all formulas �(ẋ)∈F(ẋ) such that the theory ẋ≡H ẋ′?-implies
(�(ẋ)∧ ẋ′ 4T; ḟ ẋ)⇒ �(ẋ′).
Note that H(ẋ)∈L[S; T ], see Remark 8.

Lemma 12. Suppose that �(ẋ)∈H(ẋ). Then there exists a function h∈H�+1; for
some �¡(�+)L[S; T ]; such that, in V?; �(x)⇔ h(x)(�)= 0. Therefore, the theory ẋ≡H ẏ
?-implies �(ẋ)⇔ �(ẏ).

Proof. By de�nition there exists a function g∈H� for some �¡(�+)L[S; T ] satisfying
(g(x)= g(y)∧ �(x)∧ x′ 4T x)⇒ �(x′) in V?. De�ne h(x)= g(x)∧0 whenever �(x), and
h(x)= g(x)∧1 otherwise.

For a theory �(ẋ; ẏ; : : :), let Hẋ[�(ẋ; ẏ; : : :)]=Fẋ[�(ẋ; ẏ; : : :)]∩H(ẋ).

3. The forcing

Let �(ẋ) be the set of all formulas �(ẋ)∈F(ẋ) which are ?-implied by the theory
ẋ≡H ẏ∪{ẋ≈= S; ḟ ẏ}. Note that �(ẋ)∈L[S; T ] and �(ẋ) is ?-consistent (because the
theory ẋ≡H ẏ∪{ẋ≈= S; ḟ ẏ} is such).
Let P be the set of all ?-consistent theories �(ẋ)∈L[S; T ] such that �(ẋ)⊆�(ẋ).

The set P belongs to L[S; T ], see Remark 8 above, so we can view it as a forcing
notion over L[S; T ] (assuming that � is stronger than �′ when �′ ⊆�). Note that
P 6= ∅: for instance �∈P.
As for the action of this forcing, one easily proves (using the proof of Theorem 9

above) that any P-generic set G⊆P produces a real x= xG such that �(xG) holds for
any formula �(ẋ)∈⋃

G.
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3.1. Key lemmas

The lemmas proved below assert that di�erent theories are ?-consistent and satisfy
some other requirements. Note that the ?-consistency part of the lemmas is based on
the assumption of Case 2.
We argue in the extended universe V? in this subsection. Note that 4T is a PQO,

but 4S is not necessarily a PQO in V?, see Section 2.1.

Lemma 13. Let �(ẋ) be a theory in P. Then the theory

��(ẋ; ẏ; ḟ) =df �(ẋ)∪�(ẏ)∪ ẋ≡H ẏ∪{ẋ4= S; ḟ ẏ}
is ?-consistent. Moreover; it satis�es the equalities Ḟx [��(ẋ; ẏ; ḟ)]= Ḟx [�(ẋ)] and
Fẏ [��(ẋ; ẏ; ḟ)]=Fẏ [�(ẏ)].

Proof. Let us �rst prove the ?-consistency. Otherwise by Theorem 9 there exists a
formula �(ẋ)∈ Ḟx [�(ẋ)] and a function h∈H such that the formula �(ẋ)∧ �(ẏ)∧ h(ẋ)
= h(ẏ)∧ ẋ4= S; ḟ ẏ is ?-inconsistent. The plan will be to �nd functions h′; h′′ ∈H such
that the formulas

�(ẋ)∧ h′(ẋ)= h′(ẏ)∧ ẏ4= S; ḟ ẋ and �(ẋ)∧ h′′(ẋ)= h′′(ẏ)∧ ẋ4= S; ḟ ẏ

are ?-inconsistent: then the formula ¬�(ẋ) belongs to �(ẋ), which is a contradiction
because �(ẋ)⊆�(ẋ).
To de�ne h′ (the case of h′′ is similar), it su�ces to get a formula  (ẋ)∈H(ẋ)

such that X = <�=? ⊆U = < =? and, for all x∈X and u∈U; h(x)= h(u) implies u4S x.
(Indeed, let, by Lemma 12, f∈H�+1 satisfy  (x) ⇔ f(x)(�)= 0. Let h′ ∈H be a
concatenation of h and f, so that h′(x)= h′(y) implies h(x)= h(y) and f(x)=f(y).
Now, the formula �(x)∧ h′(x)= h′(u) implies both  (x) and  (x) ⇔  (u), thus implies
 (u), and �nally implies u4S x by the choice of  .)
Let Z = {z: ∀ x∈X (h(z)= h(x)⇒ z4S x)}. Then X ⊆Z by the ?-inconsistency

assumption above.
De�ne a sequence of sets X =X0⊆U0⊆X1⊆U1⊆ · · · ⊆Z and formulas �n(ẋ)∈F

so that Un= {u: ∃ x∈Xn(h(x)= h(u)∧ u4T x)}; Xn= <�n(ẋ)=?, and the sequence of
formulas ’n belongs to L[S; T ].
Now, the L�+1;0 formula  (ẋ)=

∨
n ’n(ẋ) clearly de�nes the set < =?=

⋃
n Xn

=
⋃

n Un. Furthermore  belongs to H(ẋ), as any of the sets Un satis�es (u∈Un ∧ h(u)
= h(u′)∧ u′ 4T u)⇒ u′ ∈Un by the construction. Finally, take x∈X and u∈U; sup-
pose that h(x)= h(u), and prove u4S x. Note that u∈Un for some n; therefore we
have y∈Xn such that h(y)= h(u) and u4T y. Then y∈Z and h(y)= h(x); there-
fore y4S x. It follows that u4S x. (We used the properties of 4T and 4S in V?, see
Section 2.1.) Thus  is a required formula.
It remains to carry out the construction of Xn; Un; �n.
Suppose that a set Xn= <�n(ẋ)=? ⊆Z has been de�ned. De�ne Un by the equality

above. Then Xn ⊆Un, and Un ⊆Z . (Assume that u∈Un, so u4T x for some x∈Xn
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satisfying h(x)= h(u). Take any x′ ∈X such that h(x′)= h(u) and prove u4S x′. First
of all h(x)= h(x′) hence x4S x′ because x∈Xn ⊆Z . Now u4S x′ as u4T x.)
Theorem 10 yields a formula �(ẋ)∈F(ẋ) such that the set B= <�=? satis�es

Un ⊆B⊆Z . Take Xn+1 =B and �n+1 = �.
As the choice of the formulas �n can be forced in L[S; T ], the sequence of formulas

can be chosen in L[S; T ]. This ends the proof of the consistency.
The equality Ḟx [��(ẋ; ẏ; ḟ)]= Ḟx [�(ẋ)] does not cause much trouble. Indeed sup-

pose that �(ẋ)∈F(ẋ) \ Ḟx [�(ẋ)] (the non-trivial direction). Then the theory �′(ẋ)=
�(ẋ)∪{¬�(ẋ)} is ?-consistent, hence belongs to P. It follows from the already proved
part of the lemma that ��(ẋ; ẏ; ḟ)∪{¬�(ẋ)} is ?-consistent as well, hence �(ẋ) =∈
Ḟx [��(ẋ; ẏ; ḟ)].

Lemma 14. Assume that �(ẋ); R(ẋ) belong to P; and Ḣx [�(ẋ)]= Ḣx [R(ẋ)]. Then
	�R(ẋ; ẏ; ḟ) =df �(ẋ)∪R(ẏ)∪ ẋ≡H ẏ∪{ẋ4T; ḟ ẏ} is a ?-consistent theory satisfying
Ḟx [	�R(ẋ; ẏ; ḟ)]= Ḟx [�(ẋ)] and Fẏ [	�R(ẋ; ẏ; ḟ)]=Fẏ [R(ẏ)].

Proof. As in the previous lemma, it su�ces to prove the ?-consistency. Suppose other-
wise. Then there exist formulas �(ẋ)∈ Ḟx [�(ẋ)] and �(ẏ)∈Fẏ [R(ẏ)], and
a function h∈H such that the formula �(ẋ)∧ �(ẏ)∧ h(ẋ)= h(ẏ)∧ ẋ4T; ḟ ẏ is
?-inconsistent. In other words we have, in V?, x4= T y whenever x∈X = <�=? and
y∈Y = <�=? satisfy h(x)= h(y).
De�ne Z = {z: ∀y∈Y (h(y)= h(z)⇒ z4= T y)}, so that X ⊆Z but Y ∩Z = ∅. The

same iterated procedure as in the proof of Lemma 13, but with Un=
{u: ∃ x∈Xn (h(x)= h(u)∧ x4T u)}, results in a formula  (ẋ)∈H(ẋ) such that the set
U = –< =? satis�es X ⊆U ⊆Z . But this contradicts the assumption Ḣx [�(ẋ)]
= Ḣx [R(ẋ)].

Corollary 15. Suppose that �(ẋ); R(ẋ) belong to P and Ḣx [�(ẋ)]= Ḣx [R(ẋ)]. Then
U(ẋ; ẏ; ḟ) =df �(ẋ)∪R(ẏ)∪ ẋ≡H ẏ∪{ẋ4= S; ḟ ẏ} is a ?-consistent theory satisfying
Ḟx [U(ẋ; ẏ; ḟ)]= Ḟx [�(ẋ)] and Fẏ [U(ẋ; ẏ; ḟ)]=Fẏ [R(ẏ)].

(This is a generalization of Lemma 13.)

Proof. It su�ces, as above, to prove the ?-consistency. Suppose otherwise. Then the
theory ��(ẋ; ż; ḟ)∪	R�(ẏ; ż; ġ) is ?-inconsistent as well. (Otherwise we have, in V?,
reals x; y; z satisfying �(x); �(z); x≡H z; R(y), and y≡H z, hence x≡H z, and, in
addition, x4= S z and y4T z, hence x4= S y.) Theorem 10 yields a formula �(ż)∈F(ż)
?-implied by ��(ẋ; ż; ḟ) but ?-inconsistent with 	R�(ẏ; ż; ġ); which is a contradiction
as Ḟz [��(ẋ; ż; ḟ)]= Ḟz [�(ż)]= Ḟz [	R�(ẏ; ż; ġ)] by Lemmas 13 and 14.

Corollary 16. Suppose that �(ẋ); R(ẋ) belong to P and Ḣx [�(ẋ)]= Ḣx [R(ẋ)]. Then
there are theories �′(ẋ); R′(ẋ)∈P such that �⊆�′; R⊆R′; still Ḣx [�′(ẋ)]=
Ḣx [R′(ẋ)]; and �′(ẋ)∪R′(ẋ) is ?-inconsistent.
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Proof. The theory �(ẋ; ẏ) =df �(ẋ)∪R(ẋ)∪ (ẋ≡H ẏ)∪{ẋ 6= ẏ} is ?-consistent by the
previous corollary. It easily follows that there exist natural numbers m and k 6= k ′ such
that the theory �′(ẋ; ẏ) =df �(ẋ; ẏ)∪{ẋ(m)= k}∪ {ẏ(m)= k ′} is still ?-consistent.
Set �′(ẋ)= Ḣx [�′(ẋ; ẏ)] and R′(ẏ)=Hẏ [�′(ẋ; ẏ)]. We have Ḣx [�′(ẋ)]=
Ḣx [R′(ẋ)], because the theory �′ still includes ẋ≡H ẏ.

3.2. Countable subforcing

It will be a key moment below that we consider, for a moment, a generic extension
of the universe V, in which 4S has to remain a PQO. The forcing notion involved
should be a derivate of P, most likely uncountable in V: therefore, the Cohen stability
condition cannot be applied directly. Fortunately, there is a trick which allows to settle
the problem. We shall replace P by a good enough L[S; T ]-countable subset P◦ ⊆P,
so that some basic properties of P will be preserved.
To de�ne P◦, note that by de�nition P∈M=L�? [S; T ]. Let us consider an L[S; T ]-

countable elementary submodel M◦ ∈L[S; T ] of M, containing �; T; S – then containing
P; F(ẋ); H(ẋ); �; H as well. De�ne P◦=P∩M◦.
Thus P◦ belongs to L�? [S; T ], is countable in L[S; T ], and is “enough” elementarily

equivalent subset of P. We can consider P◦ as a forcing over L[S; T ]. However we
shall also use a weaker form of genericity. Let D be the set (it belongs to and is
countable in L[S; T ]) of all sets D⊆M which are de�nable in M by an ∈-formula
containing �; S; T; H; M◦, and all elements of M◦, as parameters. (Then M◦ and P◦

belong to D.)

Lemma 17. Let G⊆P◦ be P◦-generic over D (i.e., G intersects every dense subset
D∈D of P◦). Then there is a real x= xG ∈L[S; T; G] such that; for any L�+1;0-
formula ’(ẋ)∈M◦; ’(x) is true i� ’(ẋ)∈ ⋃

G.

Proof. Let us follow the proof of Theorem 9. First, we observe that for any n the set
Dn of all theories �(ẋ)∈P, containing ẋ(n)= k for some (clearly unique) k, is dense
in P. Moreover, Dn ∈L[S; T ] (see Remark 8) and a careful execution of the argument
used in Remark 8 shows that in fact Dn ∈M and Dn is ∈-de�nable in M using S and
T as parameters, so Dn ∈M◦ and the set D◦

n =Dn ∩P◦ ∈D is dense in P◦.
It follows that D◦

n intersects G for all n; hence, there is a real x∈L[S; T; G] such
that x(n)= k whenever ẋ(n)= k belongs to �=

⋃
G.

We continue to argue by induction on the complexity of �. The negation step is
obvious, so let us concentrate on the step

∨
¡�. Consider a formula ’∈M◦ of the

form
∨

¡� ’(ẋ). The dense in P set D⊆P, de�ned as in the proof of Theorem 9,
then belongs to M◦, too, and the intersection D◦=D∩M◦ is dense in P◦. Moreover,
D◦ ∈D. It follows that there is a theory �(ẋ)∈D◦ ∩G. If � is of the or type (see
the proof of Theorem 9), then clearly ’(ẋ) cannot belong to � and, by the induction
hypothesis (for formulas ’), ’(x) is false. Suppose that � is of the either type, so
that it contains ’(ẋ) and a formula ’(ẋ); ¡�. Since both � and ’ belong to M◦,
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� even contains a formula ’(ẋ) which belongs to M◦. Now apply the induction
hypothesis for this ’.

3.3. Two-dimensional modi�cations

We de�ne here several forcing notions, based on P◦, which force pairs of P◦-generic
reals x; y; in particular, such pairs which satisfy x4T y or x4= S y. First of all, introduce
“full”, P-oriented versions.

– Let P(2) be the set of all ?-consistent theories �(ẋ; ẏ)∈L[S; T ] such that
�(ẋ)∪�(ẏ)⊆�(ẋ; ẏ).

– Let TP(2)(ẋ; ẏ; ḟ) be the set of all ?-consistent theories T(ẋ; ẏ; ḟ) of the form
�(ẋ; ẏ)∪F∪ ẋ≡H ẏ∪{ẋ4T; ḟ ẏ}, where �∈P(2) and F is a �nite collection of
formulas ḟ(k)= � (where k ∈! and �¡�).

– Let SP(2)(ẋ; ẏ; ḟ) be the collection of all ?-consistent theories �(ẋ; ẏ; ḟ) of the
form �(ẋ; ẏ)∪F∪ ẋ≡H ẏ∪{ẋ4= S; ḟ ẏ}, where F and � are as in the de�nition of
TP(2).

For instance, the theory �(ẋ)∪�(ẏ)∪ ẋ≡H ẏ∪{ẋ4T; ḟ ẏ} (which is ?-consistent by
Lemma 14) belongs to TP(2) while �(ẋ)∪�(ẏ)∪ ẋ≡H ẏ∪{ẋ4= S; ḟ ẏ} (?-consistent by
Lemma 13) belongs to SP(2), so that the collections are non-empty. Note also that
P(2); TP(2) and SP(2) belong to L[S; T ], as above, and even to M◦. Now, de�ne the
P◦-versions.

– TP◦
(2) =

TP(2) ∩M◦ and SP◦
(2) =

SP(2) ∩M◦.

It follows from the above that TP◦
(2) and

SP◦
(2) are non-empty and belong to D. More-

over they are countable in L[S; T ].

Lemma 18. Let G⊆ TP◦
(2) be TP◦

(2)-generic over D. There is a unique triple
〈x; y; f〉 ∈L[S; T; G]∩ (N2 × �!) such that �(x; y; f) holds for any formula �(ẋ; ẏ; ḟ)
in (

⋃
G)∩M◦. In particular we have x4T y.

Lemma 19. Let G⊆ SP◦
(2) be

SP◦
(2) generic over D. There is a unique triple

〈x; y; f〉 ∈L[S; T; G]∩ (N2× �!) such that �(x; y; f) holds for any formula �(ẋ; ẏ; ḟ)
in (

⋃
G)∩M◦: In particular we have x4= S y.

Proof. Proofs are analogous to the proof of Lemma 17. The additional parts are
motivated by the fact that formula ẋ4T; ḟ ẏ belongs to any T∈ TP◦

(2) while formula
ẋ4= S; ḟ ẏ belongs to any theory �∈ SP◦

(2).

3.4. The product forcing

The forcing notion SP◦
(2) executes too a tight control over generic reals. Fortunately,

generic 4S -incomparable pairs can be obtained by another forcing, which connects the
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components in a much looser way, so that it is rather a kind of product forcing, with
the factors equal to P◦.
Let P×H P be the set of all theories �(ẋ; ż) of the form �(ẋ)∪R(ż), where �

and R belong to P and satisfy Ḣx [�(ẋ)]= Ḣx [R(ẋ)]. The set P×H P is non-empty
and belongs to M◦. As above, the set P◦ ×H P◦=(P×H P)∩M◦ belongs to D and
is non-empty.

Theorem 20. Let G⊆P◦ ×H P◦ be P◦ ×H P◦-generic over D. There is a unique pair
〈x; z〉 ∈L[S; T; G]∩N2 such that �(x; z) holds for any formula �(ẋ; ż)∈ (⋃G)∩M◦.
Those reals x and z are 4S -incomparable.

Pairs 〈x; z〉 as in the theorem will be denoted by 〈xG; zG〉.

Proof. Let us concentrate on the proof that xG and zG are 4S -incomparable; the rest
is analogous to the above.
Paradoxically, the proof appeals to generic extensions of V, the true universe. (Gener-

icity over D does not seem to work.) We �rst prove the theorem in the case when
G⊆P◦ ×H P◦ is P◦ ×H P◦-generic over V. Assume on the contrary that xG 4S zG is
P◦ ×H P◦-forced over V by a “condition” �0(ẋ; ż)=�0(ẋ)∪R0(ż)∈P◦ ×H P◦, where
�0 and R0 belong to P◦ and satisfy Ḣx [�0(ẋ)]= Ḣx [R0(ẋ)].
We are going to de�ne a generic “rectangle” of reals x; z; x′; z′, such that the follow-

ing is forced: x4S z and x′ 4S z′ – by the contrary assumption, z4T x′− by Lemma 18,
and x4= S z′− by Lemma 19, leading to a contradiction. To reach this goal, apply the
forcing P◦

(4) which consists of forcing conditions of the following general form:

Q= 〈�(ẋ; ż);T(ż; ẋ′; ḟ); � ′(ẋ′; ż′); �(ẋ; ż′; ḟ)〉 ;

where the theories �(ẋ; ż)=�(ẋ)∪R(ż) and � ′(ẋ′; ż′)=�′(ẋ′)∪R′(ż′) belong to
P◦ ×H P◦, T belongs to TP◦

(2), � belongs to SP◦
(2), and we have

�(ẋ)= Ḟx [�(ẋ; ż′; ḟ]; R(ż)= Ḟz [T(ż; ẋ′; ḟ)];

�′(ẋ′)= Ḟx′ [T(ż; ẋ
′; ḟ)]; R′(ż′)=Fż′ [�(ẋ; ż

′; ḟ)]:

Let us order P◦
(4) componentwise: Q1 is stronger than Q2 i� �2(ẋ; ż)⊆�1(ẋ; ż);

T2(ż; ẋ′; ḟ)⊆T1(ż; ẋ′; ḟ); � ′
2⊆� ′

1, and �2⊆�1.
To get a condition in P◦

(4), we start with the given theory �0(ẋ; ż)=�0(ẋ)∪R0(ż)∈
P◦ ×H P◦. By de�nition Ḣx [�0(ẋ)]= Ḣx [R0(ẋ)]. It can be supposed that Ḟx [�0(ẋ)]
=�0(ẋ) (otherwise we can replace �0(ẋ) by Ḟx [�0(ẋ)]) and Ḟz [R0(ż)]=R0(ż).
The theory �0(ẋ; ż′; ḟ)=df �0(ẋ)∪R0(ż′)∪ ẋ≡H ż′∪{ẋ4= S; ḟ ż′} belongs to SP◦

(2)(ẋ; ż
′)

and satis�es Ḟx [�0(ẋ; ż′; ḟ)]=�0(ẋ) and Fż′ [�0(ẋ; ż
′; ḟ)]=R0(ż′) by Corollary 15.

Similarly, by Lemma 14, the theory

T0(ż; ẋ′; ḟ) =df R0(ż)∪�0(ẋ′)∪ ż≡H ẋ′ ∪{ż4T; ḟ ẋ′}
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belongs to TP◦
(2) and satis�es Ḟz [T0(ż; ẋ′; ḟ)]=R0(ż) and Ḟx′ [T0(ż; ẋ

′; ḟ)]=�0(ẋ′).
Now Q0 = 〈�0(ẋ; ż);T0(ż; ẋ′; ḟ); �0(ẋ′; ż′); �0(ẋ; ż′; ḟ)〉 belongs to P◦

(4).

Assertion. Suppose that Q= 〈�;T; � ′; �〉 ∈P◦
(4); �1(ẋ; ż)∈P◦ ×H P◦, and �(ẋ; ż)⊆

�1(ẋ; ż). Then there is a condition Q1 = 〈�1;T1; � ′
1; �1〉 ∈P◦

(4) stronger than Q (i.e.,
T⊆T1; � ′ ⊆� ′

1, and �⊆�1).
The same is true when we strengthen any of the other three components.

Proof. By de�nition �1(ẋ; ż)=�1(ẋ)∪R1(ż) where �1 and R1 belong to P◦ and
Ḣx [�1(ẋ)]= Ḣx [R1(ẋ)].
Let T1(ż; ẋ′; ḟ)=T(ż; ẋ′; ḟ)∪R1(ż). By Lemma 11, we have Ḣz [T1(ż; ẋ′; ḟ)]=

Ḣz [R1(ż)]. Let �′
1(ẋ

′)= Ḟx′ [T1(ż; ẋ
′; ḟ)]. Now Ḣz [�′

1(ż)]= Ḣz [R1(ż)] by Lemma 12
because even T(ż; ẋ′; ḟ) includes ż≡H ẋ′ by the de�nition of TP◦

(2). Hence, Ḣx [�′
1(ẋ)]

= Ḣx [�1(ẋ)] by the above.
We shall de�ne R′

1(ż
′) using the other side of the rectangle. Let �1(ẋ; ż′; ḟ)=

�(ẋ; ż′; ḟ)∪�1(ẋ) and R′
1(ż

′)=Fż′ [�1(ẋ; ż
′; ḟ)]. Then Ḣx [R′

1(ẋ)]= Ḣx [�1(ẋ)] by
Lemmas 11 and 12 as above. Thus in particular Ḣx′ [R′

1(ẋ
′)]= Ḣx′ [�′

1(ẋ
′)], so that the

theory � ′
1(ẋ

′; ż′)=�′
1(ẋ

′)∪R′
1(ż

′) belongs to P◦ ×H P◦, closing the diagram. Clearly
� ⊆�1. It easily follows from the construction that Q1 = 〈�1;T1; � ′

1; �1〉 ∈P◦
(4) is as

required.

We continue the proof of Theorem 20. Consider a P◦
(4)-generic extension V[G]

by a generic set G⊆P◦
(4) containing the condition Q0 de�ned above. It easily follows

from the assertion just proved that G results in a “rectangle” of reals x; z; x′; z′ ∈V[G]
such that

(1) The pair 〈z; x′〉 is TP◦
(2)-generic over V, hence we have z4T x′ in V[G] by

Lemma 18.
(2) The pair 〈x; z′〉 is SP◦

(2)-generic over V, hence we have x4= S y in V[G] by
Lemma 19.

(3) The pairs 〈x; z〉 and 〈x′; z′〉 are P◦ ×H P◦-generic over V, and moreover, the
corresponding generic subsets of P◦ ×H P◦ contain the “condition” �0(ẋ; ż) �xed
above; hence we have x4S z and x′ 4S z′ in V[G] by the choice of �0.

This is a contradiction because, �rst, 4T ⊆4S in V[G] (see Section 2.1), and second,
since the forcing notion P◦

(4) is countable, V[G] is a Cohen-generic extension, therefore
4S remains a PQO in V[G]. This ends the proof of the theorem in the case when G is
P◦ ×H P◦-generic over V.
It follows, by ordinary forcing arguments, that the theorem is also true in the case

when G⊆P◦ ×H P◦ is P◦ ×H P◦-generic over L[S; T ].
Thus P◦ ×H P◦ forces, over L[S; T ], the existence of a function f∈ �! such that

〈xG; zG; f〉 ∈ [S]. Let f ∈L[S; T ] be a term for such a function, so that P◦ ×H P◦ forces
[S](xG; zG; f). Basically f ⊆ (P◦ ×H P◦)×�¡!, hence f ∈M=L�? [S; T ]. Now f can be
assumed to be de�nable in M; hence a member of D. (Take the ¡L[S;T ]-least such
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a term.) Then, for any n, the set Dn of all theories � ∈P◦ ×H P◦, which force
u⊂ xG; v⊂ zG; w⊂ f for some u; v∈!n and w∈ �n (note that then 〈u; v; w〉 ∈ S),
belongs to D, and, by the choice of f , is dense in P◦ ×H P◦.
Let us now carry out the general case in the theorem, i.e., G is assumed to

be P◦ ×H P◦-generic over D. Then G intersects each of the sets Dn by the above.
Therefore, G gives rise to a triple 〈xG; zG; fG〉 ∈ [S] by the de�nition of Dn. It follows
that 〈xG; zG〉 ∈ p[S], as required.

4. The embedding

We are going to de�ne (in the assumption of Case 2 of Section 2.4) a continuous
1–1 map F : 2! →N satisfying (II∗) of Theorem 5. Our strategy will be to carry out a
splitting construction, based on Theorem 20 and Lemmas 17 and 18. The construction
is carried out in V, the basic universe: note that the forcing notions P◦; TP◦

(2), and
P◦ ×H P◦, which Theorem 20 and Lemmas 17, 18 deal with, belong to V and are
countable in V (even in L[S; T ]), and so is the set D, containing all relevant dense
sets.
The construction of the embedding will accomplish the proof of Theorem 5.

4.1. Generic splitting family of theories

Let a crucial pair be any (ordered) pair 〈u; v〉 such that u; v∈ 2m for some m and
u=1k∧0∧w; v=0k∧1∧w for some k¡m and w∈ 2m−k−1.
Let {D(n): n∈!}; {D2(n): n∈!}; {D2(n): n∈!} be enumerations (in V) of the

collections of all dense (we mean: open dense) subsets of resp. P◦; P◦ ×H P◦; TP◦
(2),

which belong to D. It can be assumed that each dense set has in�nitely many indices
in the relevant enumeration.
Our plan will be to de�ne a family of theories �u(ẋ)∈P◦ (where u∈ 2¡!) and

Tuv(ẋ; ẏ; ḟ)∈ TP◦
(2) (where 〈u; v〉 is a crucial pair in some 2n) satisfying the following

conditions, for all u∈ 2¡! and i=0; 1:

(i) �u ∈D(n) whenever u∈ 2n; �u(ẋ)⊆�u∧i(ẋ);
(ii) if 〈u; v〉 is a crucial pair in 2n then Tuv(ẋ; ẏ; ḟ)∈D2(n); in addition, for any

i=0; 1, we have Tuv(ẋ; ẏ; ḟ)⊆Tu∧i; v∧i(ẋ; ẏ; ḟ);
(iii) if u; v∈ 2n and u(n− 1) 6= v(n− 1) then �u(ẋ)∪�v(ż)∈P◦ ×H P◦; moreover,

∈D2(n); and the theory �u(ẋ)∪�v(ẋ) is ?-inconsistent;
(iv) Fẋ[Tuv(ẋ; ẏ; ḟ)]=�u(ẋ) and Ḟy[Tuv(ẋ; ẏ; ḟ)]=�v(ẏ) – then in particular

Fẋ[�u(ẋ)]=�u(ẋ) for all u.

Remark 21. Since theories in TP◦
(2) contain ẋ ≡H ẏ; it follows from (iv) by Lemma 12

that Hẋ[�u(ẋ)]=Hẋ[�v(ẋ)] for all crucial pairs 〈u; v〉: Therefore, Hẋ[�u(ẋ)]=
Hẋ[�v(ẋ)] for all u; v∈ 2n and n∈! as any two tuples u; v∈ 2n are connected by
a (unique) chain of crucial pairs.
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4.2. Construction of theories

To de�ne �� (where � is the empty sequence, the only member of 20) we begin
with the theory �(ẋ); see Section 3. As clearly �(ẋ)∈P◦; there is a theory �(ẋ)∈D(0)
including �(ẋ): Let ��(ẋ)=�(ẋ).
Suppose that the construction has been completed up to a level n; and extend it to

the next level.
To begin with, set �s∧i(ẋ)=�s(ẋ) for all s∈ 2n and i=0; 1; and de�ne Ts∧i; t∧i

(ẋ; ẏ; ḟ)=Tst(ẋ; ẏ; ḟ) whenever i=0; 1 and 〈s; t〉 is crucial in 2n: For the “initial” pair
〈1n∧0; 0n∧1〉; let T1n∧0;0n∧1 be the theory

�1n(ẋ)∪�0n(ẏ)∪ (ẋ≡H ẏ)∪{ẋ4T; ḟ ẏ}:

Then, by Lemma 14, T1n∧0; 0n∧1 ∈ TP◦
(2) and Fẋ[T1n∧0; 0n∧1(ẋ; ẏ; ḟ)]=�1n∧0(ẋ),

Fẏ[T1n∧0; 0n∧1(ẋ; ẏ; ḟ)]=�0n∧1(ẏ).
This ends the de�nition of “initial values” at the (n + 1)th level. The plan is to

gradually strengthen the theories in order to ful�ll the requirements.
Step 1: We take care of item (i). Consider an arbitrary u0 = s0∧i∈ 2n+1: As the set

D(n) is dense, there is a theory �′(ẋ)∈D(n) including �u0 (ẋ): We can assume that
�′(ẋ)=Fẋ[�′(ẋ)]: for otherwise change �′(ẋ) to Fẋ[�′(ẋ)].
The intention is to take �′(ẋ) as the “new” �u0 : But this change has to be expanded

through the net of crucial pairs, in order to preserve (iv). (Fortunately, the tree of all
crucial pairs in 2n+1 is a chain.)
Thus put �′

u0 (ẋ)=�′(ẋ): Suppose that �′
u(ẋ) has been de�ned, includes �u; the

older version, and satis�es Fẋ[�′
u(ẋ)]=�′

u(ẋ) – for some u∈ 2n+1 which is connected
by a crucial pair with a not yet encountered v∈ 2n+1: De�ne T′

uv(ẋ; ẏ; ḟ) to be �′
u(ẋ)∪

Tuv(ẋ; ẏ; ḟ) and �′
v(ẏ) to be Fẏ[T′

uv(ẋ; ẏ; ḟ)]: Note that the theory �′
v(ẏ) includes

�v(ẏ) because (iv) is assumed for the old theories �u; �v; Tuv: Note also that (iv)
holds for the new theories �′

u; �′
v; T

′
uv: indeed, the equality Fẋ[T′

uv(ẋ; ẏ; ḟ)]=�′
u(ẋ)

follows from Lemma 11.
The construction describes how the change from �u0 to �′

u0 spreads through the
chain of crucial pairs in 2n+1; resulting in a system of new theories, �′

u and T′
uv;

which satisfy (i) for the particular u0 ∈ 2n+1:
Let us iterate this construction consecutively for all u0 ∈ 2n+1; getting �nally a system

of theories satisfying (i) (fully) (and (iv)), which we shall denote by �u and Tuv from
now on.
Step 2: We take care of item (iii). Let us �x a pair of u0 and v0 in 2n+1; such

that u0(n)= 0 and v0(n)= 1: It follows from the density of D2(n) that there is a
theory �′

u0 (ẋ)∪�′
v0 (ẏ)∈D2(n) which includes �u0 (ẋ)∪�v0 (ẏ): We may assume that

�′
u0 (ẋ)=Fẋ[�′

u0 (ẋ)] and �′
v0 (ẏ)=Fẏ[�′

v0 (ẏ)]: We can also assume, by Corollary 16,
that �′

u0 (ẋ)∪�′
v0 (ẋ) is ?-inconsistent.

Let us spread the change from �u0 to �′
u0 and from �v0 to �′

v0 through the chain
of crucial pairs in 2n+1 until the two waves of spreading meet each other at the pair
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〈1n∧0; 0n∧1〉: This leads to a system of theories �′
u and T′

uv which satisfy (iii) for the
particular pair 〈u0; v0〉 and still satisfy (iv) with the exception of the “meeting” crucial
pair 〈1n∧0; 0n∧1〉 (for which basically T′

1n∧0;0n∧1 is not yet de�ned for this step).
Take notice that the construction of Step 1 leaves T1n∧0;0n∧1 in the form �1n∧0(ẋ)∪

�0n∧1(ẏ)∪ (ẋ≡H ẏ)∪{ẋ4T; ḟ ẏ} (where �1n∧0 and �0n∧1 are the “versions” at the
end of Step 1. We now have new ?-consistent theories, �′

1n∧0 and �′
0n∧1; includ-

ing resp. �1n∧0 and �0n∧1 and satisfying the equality Hẋ[�′
1n∧0(ẋ)]=Hẋ[�′

0n∧1(ẋ)]:
(See Remark 21; recall that Hẋ[�′

u0 ] =Hẋ[�′
v0 ] for the initial pair simply because

�′
u0 (ẋ)∪�′

v0 (ẏ)∈P◦ ×H P◦:) We observe that the theory �′
1n∧0(ẋ)∪�′

0n∧1(ẏ)∪
(ẋ≡H ẏ)∪{ẋ4T; ḟ ẏ} taken as T′

1n∧0;0n∧1 belongs to
TP◦

(2) and satis�es (iv) for the
pair 〈1n∧0; 0n∧1〉 by Lemma 14. This ends the consideration of the pair 〈u0; v0〉.
Applying this construction consecutively for all pairs of u0 ∈P0 and v0 ∈P1 (includ-

ing the pair 〈1n∧0; 0n∧1〉) we �nally get a system of theories satisfying (i), (iii), and
(iv), which will be denoted still by �u and Tuv.
Step 3: We �nally take care of requirement (ii). Consider a particular crucial pair

〈u0; v0〉 in 2n+1: By the density of D2(n); there is a theory T′
u0 ;v0 (ẋ; ẏ; ḟ) in D2(n)

including Tu0 ;v0 (ẋ; ẏ; ḟ):
Let us de�ne �′

u0 (ẋ)=Fẋ[T′
u0 ;v0 (ẋ; ẏ; ḟ)] and �′

v0 (ẏ)=Fẏ[T′
u0 ;v0 (ẋ; ẏ; ḟ)] and

spread this change through the chain of crucial pairs in 2n+1: (Note that Hẋ[�′
u0 (ẋ)]=

Hẋ[�′
v0 (ẋ)]; because theories in

TP◦
(2) include ẋ≡H ẏ: This implies Hẋ[�′

u(ẋ)]=
Hẋ[�′

v(ẋ)] for all u; v∈ 2n+1; after the spreading.)
Executing this construction for all crucial pairs in 2n+1; we �nally end the construc-

tion of a system of theories satisfying (i)–(iv).

4.3. Ending the proof of Theorem 5

Thus, we have seen that the assumption of Case 2 of Section 2.4 implies the existence
of a family of theories �u and Tuv satisfying (i)–(iv). To prove Theorem 5, it remains
to show that the existence of such a system provides a continuous map F which
witnesses (II∗) of Theorem 5.
To prove this note that Lemma 17 and (i) imply that for any a∈ 2! there is a unique

real, denoted by F(a); satisfying every formula in
⋃

n∈! �a � n(ẋ); and the map F is
continuous. Moreover F is 1–1 by the ?-inconsistency in (iii).
Suppose that a; b∈ 2! and a E= 0 b; so that a(n) 6= b(n) for in�nitely many n: It follows

then from (iii) and Theorem 20 that F(a)4= S F(b).
Let us check that F satis�es (II∗) of Theorem 5. Suppose that a; b∈ 2! are 60 -

neighbours, i.e., a=1k∧0∧c and b=0k∧1∧c for some k ∈! and c∈ 2!: Then 〈a�n; b�n〉
is a crucial pair for all n¿k. Therefore, by (ii) and Lemma 18, there is a unique
triple 〈x; y; f〉 ∈N2×�! which satis�es every formula in

⋃
n∈! Ta � ; n; b � n(ẋ; ẏ; ḟ); and

also satis�es x4T y. On the other hand, we have x=F(a); y=F(b) by (iv), so that
F(a)4T F(b). (Theorem 5)
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5. Analytic order relations

This section proves Theorem 2.
We start with a technical absoluteness lemma, necessary because some parts of the

proof will appeal to generic extensions of the universe. (In fact, there is another way
to the same goal, but at the cost of complications of another kind.)

5.1. Why embedding 60 is absolute

The proof of the following lemma involves an idea communicated to the author by
Hjorth, with a reference to Hjorth and Kechris [7], Section 3, where the idea is realized
in terms of category.

Lemma 22. If p∈N and 4 is a �11(p) PQO then (IIA) of Theorem 2 is equivalent
to a �12(p) statement; uniformly in p.

Proof. The goal does not seem easy: at the �rst look the statement is �13: To improve
this to �12; we use Borel approximations of 4.
Recall that WO= {z ∈N : z codes an ordinal}; for z ∈ WO let |z| be the ordinal coded

by z; and WO�= {z ∈ WO : |z|= �}.
Being a �11 subset of N

2; the relation 4 classically has the form 4=
⋃

�¡!1 4�

where 〈4� : �¡!1〉 is an increasing sequence of Borel subsets of 4. Moreover, there
is a �1

1 formula �(z; x; y) (containing p as a parameter) such that we have x4� y⇔
�(z; x; y) whenever z ∈ WO�: (There also exists a �11 formula with the same property,
which we do not nead here.)
The following statement is clearly �12(p) (use formula �):

(II′) There is a continuous 1–1 map F ′ : 2! → N and a countable ordinal � such
that:
(a) a60 b implies F ′(a)4� F ′(b);
(b) a E= 0 b implies F ′(a)4= F ′(b).

Thus it remains to prove that (IIA) of Theorem 2 is equivalent to (II′). The hard part in
the equivalence is to prove that (IIA) implies (II′). To prove this direction we consider
a �-collapse generic extension V+ of V; the universe of all sets, where � is 2ℵ0 in V:
As (IIA) is �13(p) while (II

′) is �12(p); it su�ces to prove that (II
A) of Theorem 2

implies (II′) in V+:
We can enumerate in V+ by natural numbers all dense subsets of 2¡! and 2¡!×2¡!

(the Cohen forcing and its square) which belong to V. This allows to de�ne in V+

in�nite sequences 〈un: n∈!〉 and 〈vn: n∈!〉 such that un; vn ∈ 2l(n) for some l(n) for
all n; and for any n:
(1◦) if u; v∈ 2l where l= n+

∑n−1
m=0 l(n) then the pairs 〈u∧un; v∧vn〉 and 〈u∧vn; v∧un〉

belong to the n-th dense subset of 2¡! × 2¡!.
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De�ne in V+; for each a∈ 2!; G(a)=w0∧w1∧w2∧ : : : ; where wn= un
∧0 whenever

a(n)= 0 and wn= vn∧1 whenever a(n)= 1: Then G is continuous and 1–1, therefore
the map F ′(a)=F(G(a)) is continuous and 1–1 as well. (Here F is a map which
witnesses (IIA) of Theorem 2 in V+:) Prove that F ′ witnesses (II′).
Suppose that a; b∈ 2! and a60 b: Then by (1◦) both a′=G(a) and b′=G(b) are

Cohen-generic over V and a′60 b′; hence F(a′)4F(b′) (by the choice of F), even
in V[a′; b′]; which implies F(a′)4� F(b′) for an ordinal �¡!V1 : (Note that V[a

′] =V
[a′; b′] is a Cohen-generic extension of V; hence !V1 =!V[a

′ ;b′]
1 :) Since the di�erence

between a′ and b′ is �nite (because a′60 b′), the latter statement is a property of a′;
hence it is Cohen-forced over V: It follows, by the ccc property of the Cohen forcing,
that there exists an ordinal �¡!V1 such that F

′(a)4� F ′(b) whenever a; b∈ 2! in V+
satisfy a60 b.
Suppose that a; b∈ 2! and a E= 0 b: Then by de�nition 〈G(a); G(b)〉 is Cohen2-generic

over V; in particular a′=G(a) and b′=G(b) satisfy a′E= 0 b′; therefore F(a′)4= F(b′)
by the choice of F .

5.2. Setup for the analytic case

Consider an analytic PQO 4 on N: We shall w.l.o.g. assume that 4 is �11; so that
4=4T = p[T ]; where T is a recursive tree in (!×!×!)¡!: We shall also suppose
that
(2◦) 4T does not satisfy (II

A) of Theorem 2.
The aim is to prove that then 4T satis�es (IA) of Theorem 2.
Since 4T is �11; there is a continuous, coded in L; map C : N2 → N such that

x4T y⇔C(x; y) =∈ WO: It follows that 4T =
⋂

�¡!1 4
�
T ; where

4�
T = –{〈x; y〉: C(x; y)∈ WO�}

(see the notation above). It is known that each 4�
T is an !1-Borel set, coded in L;

and 4
�
T ⊆ 4�

T provided �¡�: In addition we have the following:

Boundedness principle: If 4T ⊆X; where X ⊆N2 is a �11 set, then there is an ordinal
�¡!1 such that 4�

T ⊆X .
We have to make some changes in the de�nition of sets H� in Section 2.4. Now, a

function code of type �; � will be a sequence of the form ’̃= {’�(ẋ)}�¡�; where each
’ is a constructible L�+1;0-formula. Such a sequence de�nes a function h’̃: N → 2�

just as in Section 2.4. Let ’̃ be the th, in the sense of G�odel’s well ordering of
L; function code ’̃∈L (of any type). Note that {’̃ : ¡!1} is exactly the set of all
function codes of types �; � for �; �¡!1: We shall assume that each ’̃ is of type �; �
for some �; �6.
Now, for any ∈ Ord; de�ne h= h’̃ ; whenever h’̃ is a h.o.p. map 〈N;4T 〉 →

〈2�; 6lex 〉 in the -collapse extension of L; and h(x)=� (the empty sequence) oth-
erwise. By the Shoen�eld absoluteness theorem, if ¡!1 then h= h’̃ i� h’̃ is h.o.p.



V. Kanovei / Annals of Pure and Applied Logic 102 (2000) 69–100 91

in the universe V; therefore H∗= {h: ¡!1} is the set of all !1-Borel, coded in L;
maps from N to some 2�; �¡!1; satisfying x4T y⇒ h(x)6lex h(y).
Suppose that M is a transitive model of ZFC− (minus Power Sets), and ¡!1

belongs to M: Then ’̃ ∈ (L)M : One can determine, within M; whether h= h’̃ ; for
instance, checking whether the -collapse forcing forces, in (L)M ; that h’̃ is h.o.p. (in
the collapse extension of (L)M ). It follows that there is a �1 formula �(·; ·; ·) such
that
(3◦) If M is a transitive model of ZFC− (minus Power Sets), x∈N∩M; and �∈M;

�¡!1; then u= {h�(x)}�¡� ∈M and u is the only member of M such that
�(x; �; u) holds in M .

De�ne the concatenation (which is here a proper class, of course):

h(x)= h0(x)∧h1(x)∧ : : : ∧h�(x)∧ : : : (�∈ Ord):

5.3. The general case of analytic relations

We �rst prove that 4T satis�es the general part of (IA) (leaving aside the addi-
tional statement) of Theorem 2, via the map h!1 (x)= h(x) �!1; i.e., we show that
h!1 : 〈N;4T 〉 → 〈2!1 ; 6lex 〉 is a linearization. First of all h!1 is a h.o.p. map from
〈N;4T 〉 to 〈2!1 ; 6lex 〉 because each h� is h.o.p. by de�nition. Thus it remains to
prove that h!1 (x)= h!1 (y) ⇒ x≈T y.
This involves a reection lemma for analytic PQOs.
The sets 4�

T above are not necessarily PQOs. However:

Lemma 23. Assume that B⊆N2 is a Borel set and 4T ⊆B: Then there is �¡!1
such that 4�

T ⊆B and 4�
T is a PQO. 12

Proof. First prove a weaker statement: there is �¡!1 such that

x4�
T y⇒∀x′ ∀y′ (x′ 4T x∧y4T y′ ⇒ x′ 4�

T y′) :

Note that by the boundedness there exists an ordinal �0¡!1 such that 4
�0
T ⊆B: Sup-

pose that an ordinal �n¿�0 has been de�ned. Let us de�ne Z(x; y) i� ∀x′∀y′ (x′ 4T x
∧y4T y′⇒x′ 4�n

T y′); so that Z is a �11 relation and 4T ⊆Z ⊆ 4
�n
T : Using the bound-

edness principle again, we get an ordinal �n+1¿�n satisfying 4T ⊆ 4
�n+1
T ⊆Z; so that

by de�nition

x4�n+1
T y⇒∀x′ ∀y′ (x′ 4T x∧y4T y′ ⇒ x′ 4�n

T y′) :

It remains to de�ne �= supn �n.
Starting the proof of the lemma, we choose �0 so that 4

�0
T ⊆B and

(4◦) x4�0
T y⇒∀x′ ∀y′ (x′ 4T x∧y4T y′ ⇒ x′ 4�0

T y′) :

12 This lemma belongs to the category of reection principles very useful in the study of �11 and �
1
1

sets, see, e.g., [3, Section 1] for more general formulations. We present a rather short proof, to make the
exposition self-contained.
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Suppose that an ordinal �n¿�0 satisfying (4◦) has been de�ned. Put Z(x; y) i� x4�n
T y∧

∀ z(y 4�n
T z⇒ x4�n

T z); so that Z is a �11 relation and 4T ⊆Z ⊆ 4�n
T : As above there is

an ordinal �n+1¿�n satisfying 4T ⊆ 4
�n+1
T ⊆C; so that by de�nition

x4�n+1
T y⇒∀z(y4�n

T z⇒ x4�n
T z) :

Take �= supn �n.

Now assume x≈= T y and prove that h!1 (x) 6= h!1 (y): By the lemma there is an
ordinal �¡!1 such that x≈= �

T y and 4�
T is a PQO. As 4�

T is equal to
–{〈x; y〉 :C(x; y)∈WO∧ |C(x; y)|6�} by the above, it easily follows that there exists
a tree S = S� ∈L; S ⊆ (! × ! × �)¡!; such that 4�

T = –p[S]: Apply Theorem 5 for
the relations 4T = p[T ]⊆4T

�= –p[S]: (As � is countable, the Cohen-generic stability
requirement is satis�ed.)
We observe that (II∗) of Theorem 5 fails by assumption (2◦). Therefore (I∗) of

Theorem 5 holds, so that there exists an ordinal �¡!1 such that the map h� satis-
�es h�(x)= h�(y)⇒ x≈�

T y: It follows that h�(x) 6= h�(y) by the choice of �; hence
h!1 (x) 6= h!1 (y); as required.

5.4. Special cases: reduction to countable sequences

Consider the “additional” part in (IA) of Theorem 2. We still assume that the �11
PQO 4T = p[T ] does not satisfy (IIA) of Theorem 2, but either it satis�es (a) in the
“additional” part of Theorem 2 or we have (b) of Theorem 2. In the second case,
we shall assume the following: there exists a real z0 such that each real x in the
universe V belongs to a set 13 generic extension of L[z0]. 14 For the sake of brevity,
we shall actually drop z0; i.e., suppose that each real x in the universe V belongs to
a set generic extension of L: the general case does not di�er. The aim is to �nd an
antichain A⊆ 2¡!1 and a �HC1 linearization 〈N;4T 〉→ 〈A; 6lex〉.

Lemma 24. Let x∈N: There is an ordinal �¡!1 such that the following is true for
u= h(x) � � :
(a) L�[u] models ZFC

− (that is, ZFC minus Power Sets); 15

(b) there is a set generic extension of L�[u] which contains a real x′ satisfying
h(x′) � �= u; 16

(c) if y; z are reals in a set generic extension M of L�[u]; satisfying h(y)��=h(z)
� �; then y≈T z;

13 It is not clear to what extent class forcing universes can accomodate the reasoning below, in particular
the proofs of Lemmas 24 and 27.
14 The extensions can be di�erent for di�erent reals x: Moreover, the extensions can be Boolean valued
extensions of L[z0] rather than factual classes in the universe.
15 By L�[u] we understand the result of the G�odel construction of length � arranged so that only the
restriction u �  is available at each step ¡�: Note that u =∈L�[u]: In this case, u can be used as an extra
class parameter in the ZFC− schemata.
16 Why (b), a consequence of (d), is included will be explained below.
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(d) there is a set generic extension of L�[u] which contains a real x′ satisfying
x′ ≈T x.

Proof. Consider case (b) of Theorem 2. There is a cardinal � such that x belongs to a
set generic extension of L�+ , where �+ is taken in the sense of L: Note that L�+ models
ZFC−. There is an ordinal �¡!1 such that 〈L�; x; ∈ 〉 is ∈-isomorphic to a countable
elementary submodel of 〈L�+; x; ∈ 〉 – hence L� models ZFC

− – and x belongs to a
set generic extension of L�: Note that u= h(x) � � is a de�nable class in L�[x] by (3◦)
above. It is known (see Lemma 4.4 in Solovay [15] or Lemma 5 in [10], as particular
cases) that x belongs to a set generic extension of L�[u]: Take x′= x.
Consider case (a) of Theorem 2. As [x]≈T is Borel, there is, by Lemma 23, an or-

dinal �¡!1 such that x≈T y⇔ x≈�
T y and 4T

� is a PQO. Therefore (see the end of Sec-
tion 5.3) there is an ordinal �¡!1 satisfying h�(x)= h�(y)⇔ x≈T y (for any y). Let
�0 =

∑
6� �; where �¡!1 satis�es ran h ⊆ 2� : Then, for all y; x≈T y⇔ h(x) � �0 =

h(y) � �0: There is an ordinal �; �0¡�¡!1 such that 〈L�; x; ∈ 〉 is ∈-isomorphic to
a countable elementary submodel of 〈L�+; x; ∈ 〉; and �0 is countable in L�: Prove (b)
for this case. Let u= h(x) � �: We show that even L�[u] itself contains a real y sat-
isfying y≈T x: Indeed, the statement “there is a real y such that h(y) � �0 = u � �0” is
�11 provided �0 is countable. It follows that it is absolute for L�[u].
Prove (c). As (IIA) of Theorem 2 is essentially a �12 sentence (by Lemma 22), false

in V by the assumption (2◦), it is false in L�+[x]; as well as in any set generic extension
of L�+[x]: Therefore, by the already proved, in Section 5.3, part of Theorem 2, if reals
y; z belong to a set generic extension of L�+[h(x) � �+]; then h(y) � �+ = h(z) � �+

implies y≈T z: By the choice of �; this remains true for � instead of �+.

The following lemma explains why (b) is considered.

Lemma 25. In the presence of (a)–(c), condition (d) is equivalent to

(d′) for any real x′ in a set generic extension of L�[u]; if h(x′) � �= u then x′ ≈T x.

Proof. In the presence of (b), (d′)⇒ (d) is clear. Prove the opposite implication. Let x′

witness that (d) is true, so that x′ belongs to a P′-generic extension L�[u; G′] of L�[u];
and x′ ≈T x: Then h(x′) � �= u. Consider another real x′′ in a P′′-generic extension
L�[u; G′′] of L�[u]; satisfying h(x′′) � �= u. Here P′; P′′ ∈L�[u] are forcing notions.
We have to prove that x′ ≈T x′′: We can assume that the equalities h(x′) � �= u and
h(x′′) � �= u are forced by resp. P′ and P′′: Consider a set G⊆P′; which is generic
over both L�[u; G′] and L�[u; G′′]: Let y be obtained from G as x′ from G′: Then
h(y) � �= u and y; x′ belong to L�[u; G′; G]; a set generic extension of L�[u]; so that
y≈T x′ by (c). Similarly y≈T x′′:

Remark 26. The possibility of getting a real y; satisfying h(y) � �= u and “compat-
ible” with each of x′; x′′ over L�[u]; is the key point of the proof. To carry out the
reasoning, we shall de�ne �x below via a real x′ in a generic rather than arbitrary
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extension of L�[h(x) � �] (see (b) of Lemma 24) and, therefore, to suppose that ev-
ery real belongs to a generic extension of L: (Unless the ≈T -classes are Borel.) To
eliminate this assumption, it would be su�cient to prove that

∗ for any real x there is a real y in a set generic extension of L which preserves
“true” !1 and satis�es h(y) �!1 = h(x) �!1:

Possibly, 0# can lead to a counterexample. It would be interesting to prove that the
negation of (∗) implies the existence of 0#.

For any x∈N; let �x be the least ordinal �¡!1 satisfying the requirements of the
lemma. We put h(x)= h(x) � �x.

Corollary 27. We have: h(x)= h(y) i� x≈T y.

Proof. Suppose that h(x)= h(y)= u∈ 2� (so that �= �x = �y) and prove x≈T y (the
non-trivial direction). Let y′ witness that h(y)= u; in other words, y′ belongs to a set
generic extension of L�[u]; and y≈T y′. Then h(y′)= h(y)= u; so that, by Lemma 25,
y′ ≈T x; as required.

Proposition 28. The map h and the set R= ran h are �HC1 .

Proof. First consider the map x 7→ �x: Note that each of conditions (a)–(c) of
Lemma 24 can be forced within L�[u]; therefore (a)–(c) are �HC1 ; while (d) and (d′)
are resp. �HC1 and �HC

1 : It follows that x 7→ �x is a �HC1 map, because the function
x; � 7→ h(x) � � is �HC1 via the formula � of (3◦). Therefore h is �HC1 as well. Consider
the set R.
We assert that u∈ 2� belongs to R i�: L�[u] satis�es (a)–(c) of Lemma 24, and

there is a set generic extension of L�[u]; where

(5◦) there exists a real x′ such that u= h(x′) � � and, for any ordinal �′¡�; if
L�′ [u � �′] satis�es requirements (a)–(c) of Lemma 24 then there is a forcing
notion P ∈L�′ [u � �′] which forces (in L�[u]) a real y in L�′ [u � �′; G] satisfying
h(y) � �′= u � �′ but y≈= T x′.

This obviously implies that R is �HC1 ; so it remains to prove the assertion.
Let u= h(x)= h(x) � �x: By de�nition there is a real x′ ≈T x in a set generic extension

of L�[u] (where �= �x). Then h(x′) � �= u. Consider any �′¡� such that (a)–(c) hold
for u′= u � �′: By (b) assumed, there is a forcing notion P ∈L�′ [u′] which forces (in
L�′ [u′]) a real y such that h(y) � �′= u′: Since �′¡�= �x; any such y satis�es y≈= T x′:
It follows that P provides (5◦) for �′.
Conversely, suppose that (5◦) holds in a set generic extension of L�[u]: Then (d)

is also here (take x′ as x). It remains to prove the minimality. Consider any �′¡�
such that (a)–(c) hold for u′= u � �′: Then, by (5◦), there is a real z in a set generic
extension of L�′ [u′] such that h(z) � �′= u′ but z≈= T x′: It follows that (d′) does not
hold for x′ and �′; so that �= �x is really minimal.
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5.5. Reduction to an antichain

Thus we have de�ned a �HC1 map h :N→2¡!1 ; such that, for any real x; we have
x≈T y⇔ h(x)= h(y) and h(x)= h(x) � �x for some �x¡!1: However the range ran h

may not be an antichain in 2¡!1 : To �x this problem, we de�ne a new �HC1 map
h
′: N→3¡!1 ; as follows.
For any x; we put dom h

′(x)= �x + 1; h
′(x)( + 1)= h(x)() for all ¡�x; and

h
′(x)(�x + 1)=1: The values of h

′(x)() for limit ordinals  need more care. Let
¡�x be a limit ordinal. Then:
(i) if there is no real y such that h(x) � = h(y) then h

′(x)()= 1;
(ii) if h(x) � = h(y) for a real y; and x4Ty; then set h

′(x)()= 0;
(iii) if h(x) � = h(y) for a real y; and x4= T y; then set h

′(x)()= 2.
There is no controversy here because h(y′)= h(y′′) implies y′ ≈T y′′:

Lemma 29. A′= ran h
′ is a �HC1 antichain in 3¡!1 ; and h

′ is a �HC1 linearization
〈N;4T 〉→ 〈A′; 6lex 〉:

Proof. By de�nition, h(x) 6= h(y) implies h
′(x) 6= h

′(y) and, moreover, that h
′(x) and

h
′(y) are ⊆-incomparable in 2¡!1 ; so that A′= ran h

′ is an antichain in 2¡!1 ; and
x≈T y⇔ h

′(x)= h
′(y): It remains to show that h

′(x)¡lex h
′(y) implies y4= T x. Let 

be the least ordinal such that h
′(x)()¡h

′(y)(). If = �+1 then obviously h(x) � �=
h(y) � � but h(x)(�)¡h(y)(�); so that h(x)¡lex h(y) and y4= T x.
Thus let  be a limit ordinal. Then h(x) � = h(y) � : If actually = �y; so that

h(x) � = h(y); then h
′(y)()= 1 while h

′(x)() is computed by (ii) or (iii), therefore,
in fact, by (ii) because h

′(x)()¡h
′(y)(). In other words, x4Ty: However x≈T y is

impossible since h
′(x) 6= h

′(y): Thus y4= T x. The case = �x is considered similarly.
It remains to handle the case when ¡min{�x; �y}. There must be a real z such that

h(x) � = h(y) � = h(z); because otherwise we would have h
′(x)()= h

′(y)()= 1 by
(i). Now h

′(x)() has to be computed by (ii), so that x4T z; while h
′(y)() must be

computed by (iii), so that y4= T z; which is incompatible with y4T x; as required.
Note that the binary relation: “u= h(x) for a real x4Ty” is �HC1 by Proposition 28:

the formula “u∈R and ∀ x(u= h(x)⇒ x4Ty)” gives a (less trivial) �1 expression.
This observation shows that h

′ is �HC1 : To prove that R′= ran h
′ is �HC1 ; note that

each u′ ∈R′ is obtained from a unique u∈R by the procedure described above (to get
u throw away all limit terms of u′), and the connection between u and u′ is �HC1 .

The lemma ends the proof of Theorem 2. (Improvement to 2¡!1 is easy.)
(Theorem 2)

5.6. More on the nature of invariants

Following Hjorth and Kechris [7], let us call invariants the values which functions
like h or h

′ take. We know that both R= ran h and R′= ran h
′ are �HC1 sets, assuming,
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as above, that 4T is a lightface �11 relation. (If actually 4T is �
1
1; with some p∈N as

the only real parameter, then R and R′ become �HC1 , with the same parameter.) How-
ever, there exist some extra properties, which make the system of invariants somewhat
better than “just” �HC1 or, generally, �HC1 .
Indeed, it follows from our proof of Proposition 28 that R is �HC1 just because there

is a formula ’ (which expresses certain forcing phenomena) such that u∈ 2� belongs
to R i� ’ is true in L�[u]: It follows that, for any particular �¡!1; the set R�=R∩ 2�
is a Borel subset of 2� while the partial map

F�= {〈x; u〉: u= h(x)∈R�}
is �11: (The existential quanti�er expresses the existence of a real x

′ in a set generic
extension of L�[u] such that x′ ≈T x and h(x′) � �= u.) Moreover, the Becker sets

B�(i)= {x: �¡dom h(x)∧ h(x)(�)= i}; where �¡!1 and i=0; 1

are �11. (Indeed, x∈B�(i) i� h(x) =∈ ⋃
�≤� R�; which amounts to �

1
1 by the above, and

h(x)(�)= i; which is Borel.) It would be nice to have the sets B�(i) Borel: we refer to
question 1 in [7, Section 7]. Finally, the map h=

⋃
�¡!1 F� becomes an intersection

of a �11 set and a �
1
1 set if we code ordinals by reals as usual.

As for the more interesting reduction h
′; a careful analysis of the construction in

Section 5.5 shows that the related sets R′
� and maps F

′
� remain resp. Borel and analytic,

h
′ itself remains an intersection of �11 and �

1
1; but the Becker sets B

′
� are not, in general,

co-analytic any more. 17 Note that if all B′
� are co-analytic then, as the range of h

′ is
an antichain, all ≈T -classes are co-analytic, too, hence Borel, which, generally, is not
the case.

6. Linearization in the Solovay model

The basic universe, in this section, will be a Solovay model: in other words, we
shall assume that 
=!1 is an inaccessible cardinal in L; the constructible universe,
while the whole universe V is a generic extension of L via the Levy–Solovay forcing
(which collapses to ! all L-cardinals less than 
). Relevant properties of the Solovay
model are summarized in [8].
Let 4 be the PQO which we deal with in Theorem 6. It is known that in the Solovay

model every ROD set of reals is !1-Souslin (hence !1-co-Souslin as well), moreover,
for any real parameter p; every OD(p) set of reals is !1-Souslin via a tree which
belongs to L[p]: It follows that there exist trees S; T ⊆ (! × ! × 
)¡! such that
4=4S =4T ; where 4T = p[T ] while 4S = –p[S]; and T; S belong to L[p] for one
and the same p∈N: Let us �x T and S.
We want to apply Theorem 5 (for �=
). But this requires:

17 We thank the referee for pointing out a miscalculation here in the original version.
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Lemma 30. –p[S] is a PQO in Cohen generic extensions of the universe.

Proof. It is known that the universe is a Solovay-like extension of L[p]. Therefore,
the property “–p[S] is a PQO” is Solovay-forced over L[p] by any forcing condition.
(Recall that the forcing which generates Solovay’s model is homogeneous.) However,
Cohen generic extensions of the Solovay model are Solovay’s models themselves. This
easily implies the result.

Thus Theorem 5 is applicable, so that at least one of conditions (I�); (II) in
Section 1.3 is satis�ed. Now, to complete the proof of Theorem 6, it is su�cient
to verify that, in the Solovay model, �rst, (Is) and (II) are incompatible, and second,
(I�) of Section 1.3 implies (Is) of Theorem 6.

6.1. Incompatibility

Suppose on the contrary that both (Is) and (II) hold in the Solovay model. Then
the composition of the maps involved is a ROD h.o.p map f : 〈2!;4〉→〈A; 6lex 〉
satisfying aE=0 b⇒f(a) 6=lex f(b): Assume that f is OD(p); where p∈N:
Then the f-image ’(a)= {f(b) : b E0 a} of every E0-class [a]E0 is a subset of the

antichain A; ordered similarly to a subset of Z (the integers) and ’(a)∩’(b)= ∅
whenever aE= 0 b: As there is an OD assignment of an element a(X )∈X to any set
X ⊆ 2¡!1 ; 6lex -ordered similarly to a subset of Z (see [11]), we have an OD(p) map
# : 2!→A such that #(a)∈’(a) for all a; and #(a)=#(b) whenever a E0 b. For any
x∈�= {#(a) : a∈ 2!}; the pre-image ’−1(x)⊆ 2! is a countable OD(p; x) set, essen-
tially a E0-class, hence, by the known properties of the Solovay model, ’−1(x)⊆L[p; x]:
Using the G�odel well ordering of L[p; x]; we obtain an OD(p) map  :�→2!; such
that  (x)∈’−1(x) for all x. The full image of  is clearly an OD(p) set C ⊆ 2!;
having exactly one point in common with every E0-class. Thus C is a non-measurable
ROD set, which is impossible in the Solovay model.

6.2. Reduction to short sequences

We continue to argue in the Solovay model.
Say that a set X is OD(p)-continual i� it is the full image of N via an OD(p)

function. The following theorem clearly su�ces to derive (Is) of Theorem 6 from (I�)
of Section 1.3 for �=
.

Theorem 31. Assume that p∈N and #¡
+. Then any OD(p)-continual set
X ⊆ 2# is ¡lex -order-isomorphic to an antichain A(X )⊆ 2¡
 via an OD(p) isomor-
phism i(X ); so that the map; sending X to A(X ) and i(X ); is OD(p).

Proof. We argue by induction on #. The only essential part is the induction step for
co�nality 
: Thus let #=

⋃
�¡
 #�; for an increasing OD(p) sequence of ordinals
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#�: Let I�= [#�; #�+1) Then, by the induction hypothesis, for any �¡
 the set X�=
{S � I� : S ∈X }⊆ 2I� is ¡lex-order-isomorphic to an antichain A� ⊆ 2¡
 via an OD(p)
isomorphism i�; and the map, which sends � to A� and i�; is OD(p). It follows that
the map which sends each S ∈X to the concatenation of all sequences i�(x � I�); is
an OD(p)¡lex-order-isomorphism X onto an antichain in 2
. Therefore, it su�ces
to prove the theorem for #=
: Thus consider an OD(p)-continual set X ⊆ 2
: The
construction we apply is just another version of the method used in Section 5.5 in
order to obtain h

′ from h.
First of all, note that each S ∈X is ROD: Lemma 7 in [8] shows that, in this case,

we have S ∈L[S � �] for an ordinal �¡
: Let �(S) be the least such an ordinal, and
f(S)= S � �(S); so that f(S) is a countable initial segment of S and S ∈L[f(S)]: Note
that f is still OD(p).
Consider the set R= ranf⊆ 2¡
: We can assume that every sequence r ∈R has a

limit ordinal as its length. Then R=
⋃

¡
 R; where R=R∩ 2!: (As usual, ! is
the th limit ordinal.) For r ∈R; let = r .

Lemma 32. For any r ∈R= ranf; the set Xr = {S ∈X : f(S)= r} belongs to L[r]
and is of cardinality 6
 in L[r].

Proof. Let X = {F(a) : a∈N}; where F is an OD(p) function. By de�nition,
Xr ⊆L[r]. It follows that, for each S ∈Xr; the set DS =F−1(S)⊆N is an OD(r)
set of reals. As r itself is ROD; it follows from the known properties of the Solovay
model (where we argue) that there exist only 
-many non-empty sets of the form
DS; S ∈Xr; hence only 
-many di�erent elements in Xr .

Fix an enumeration Xr = {Sr(�): r6�¡
} for all r ∈R: We can assume that the
map �; r 7→ Sr(�) is OD(p). For all r ∈R and r6�¡
; we de�ne a shorter sequence,
sr(�)∈ 3!�+1; as follows:

(i) sr(�)(�+ 1)= Sr(�)(�) for any �¡!�.
(ii) sr(�)(!�)= 1.
(iii) Let �¡�: If Sr(�) �!�= Sq(�) �!� for some q∈R (equal to or di�erent from

r) then sr(�)(!�)= 0 whenever Sr(�)¡lex Sq(�); and sr(�)(!�)= 2 whenever
Sq(�)¡lex Sr(�):

(iv) Otherwise (i.e., if there is no such q), sr(�)(!�)= 1.

To demonstrate that (iii) is consistent, we show that Sr′(�) �!�= Sr′′(�) �!� implies
r′= r′′: Indeed, as by de�nition r′ ⊂ Sr′(�) and r′′ ⊂ Sr′′(�); r′ and r′′ must be ⊆-
comparable: let, say, r′ ⊆ r′′: Now, by de�nition, Sr′′(�)∈L[r′′]; therefore ∈L[Sr′(�)]
because r′′ ⊆ Sr′′(�) �!�= Sr′(�) �!�; �nally ∈L[r′]; which shows that r′= r′′ as
Sr′′(�)∈Xr′′ .
We are going to prove that the map (∗) Sr(�) 7→ sr(�) is a ¡lex -order isomorphism,

so that Sq(�)¡lex Sr(�) implies sq(�)¡lex sr(�).
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We �rst observe that sq(�) and sr(�) are ⊆-incomparable. Indeed assume that �¡�:
If Sr(�) �!� 6= Sq(�) �!� then clearly sq(�)⊆= sr(�) by (i). If Sr(�) �!�= Sq(�) �!�
then sr(�)(!�)= 0 or 2 by (iii) while sq(�)(!�)= 1 by (ii). Thus all sr(�) are mu-
tually ⊆-incomparable, so that it su�ces to show that conversely sq(�)¡lex sr(�) im-
plies Sq(�)¡lex Sr(�). Let � be the least ordinal such that sq(�)(�)¡sr(�)(�); then
sr(�) � �= sq(�) � � and �6min{!�;!�}:
The case when �= � + 1 is clear: then by de�nition Sr(�) � �= Sq(�) � � while

Sq(�)(�)¡Sr(�)(�); so let us suppose that �=!�; where �6min{�; �}: Then
obviously Sr(�) �!�= Sq(�) �!�: Assume that one of the ordinals �; � is equal to
�; say, �= �: Then sq(�)(!�)= 1 while sr(�)(!�) is computed by (iii). Now, as
sq(�)(!�)¡sr(�)(!�); we conclude that sr(�)(!�)= 2; hence Sq(�)¡lex Sr(�); as
required. Assume now that �¡min{�; �}: Then easily � and � appear in one and
the same class (iii) or (iv) with respect to the �: However this cannot be (iv) because
sq(�)(!�) 6= sr(�)(!�): Hence we are in (iii), so that, for some (unique) w∈R; 0=
Sq(�)¡lex Sw(�)¡lex Sr(�)= 2; as required.
This ends the proof of the theorem, except for the fact that the sequences sr(�)

belong to 3¡
; but improvement to 2¡
 is easy. (Theorem 31)
(Theorem 6)
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