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1. Introduction

The uniformization problem, introduced by Luzin [17,18], is well known in modern set theory. (See 
Moschovakis [19], Kechris [16], Hauser and Schindler [6] for both older and more recent studies.) In particular, 
it is known that every Σ1

2 set can be uniformized by a set of the same class Σ1
2 , but on the other hand, there 

is a Π1
2 set (in fact, a lightface Π1

2 set), not uniformizable by any set in Π1
2 . The negative part of this result 

cannot be strengthened much further in the direction of the absence of more complicated uniformizing sets 
since any Π1

2 set admits a Δ1
3-uniformization assuming V = L and admits a Π1

3-uniformization assuming 
the existence of sharps (the Martin–Solovay–Mansfield theorem, [19, 8H.10]).
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However, the mentioned Π1
2-non-uniformization theorem can be strengthened in the context of consis-

tency. For instance, the Π1
2 set

P = {〈x, y〉 : x, y ∈ 2ω ∧ y /∈ L[x]}

is not uniformizable by any ROD (real-ordinal definable) set in the Solovay model and many other models of 
ZFC in which it is not true that V = L[x] for a real x , and then the cross-sections of P can be considered 
as “large”, in particular, they are definitely uncountable. Therefore one may ask:

Question 1. Is it consistent that there is a ROD-non-uniformizable Π1
2 set P such that all cross-sections 

Px = { y : 〈x, y〉 ∈ P} are at most countable?

This question is obviously connected with another question, initiated and briefly discussed at the Math-
overflow exchange desk3 and at FOM4:

Question 2. Is it consistent with ZFC that there is a countable definable set of reals X �= ∅ which has no 
OD (ordinal definable) elements.

Ali Enayat (footnote 4) conjectured that Question 2 can be solved in the positive by the finite-support 
product P<ω of countably many copies of the Jensen “minimal Π1

2 real singleton forcing” P defined in 
[9].5 Enayat demonstrated in [2] that a symmetric part of the P<ω-generic extension of L , the constructible 
universe, definitely yields a model of ZF (not a model of ZFC !) in which there is a Dedekind-finite infinite 
OD set of reals with no OD elements.

Following the mentioned conjecture, we proved in [14] that indeed it is true in a P<ω-generic extension 
of L that the set of P -generic reals is a countable non-empty Π1

2 set with no OD elements.6 Using a 
finite-support product 

∏
ξ<ω1

Pξ
<ω , where the forcing notions Pξ are pairwise different clones of Jensen’s 

forcing P , we answer Question 1 in the positive.

Theorem 1.1. In a suitable generic extension of L, it is true that there is a lightface Π1
2 set P ⊆ 2ω × 2ω

whose all cross-sections Px = { y : 〈x, y〉 ∈ P} are at most countable, but P is not uniformizable by a ROD 
set.

Using an appropriate generic extension of a submodel of the same model, similar, to some extent, to 
models considered in Harrington’s unpublished notes [5], we also prove

Theorem 1.2. In a suitable generic extension of L, it is true that there is a pair of disjoint lightface Π1
3

sets X, Y ⊆ 2ω , not separable by disjoint Σ1
3 sets, and hence Π1

3 Separation and Π1
3 Separation fail.

This result was first proved by Harrington in [5] on the basis of almost disjoint forcing of Jensen–Solovay 
[10], and in this form has never been published, but was mentioned in [19, 5B.3] and [7, page 230]. A com-
plicated alternative proof of Theorem 1.2 can be obtained with the help of countable-support products and 
iterations of Jensen’s forcing studied earlier in [1,11,12]. The finite-support approach which we pursue here 

3 A question about ordinal definable real numbers. Mathoverflow, March 09, 2010. http :/ /mathoverflow .net /questions /17608.
4 Ali Enayat. Ordinal definable numbers. FOM Jul 23, 2010. http :/ /cs .nyu .edu /pipermail /fom /2010-July /014944 .html.
5 Jensen’s forcing below, for the sake of brevity—on this forcing, see also 28A in [8].
6 We also proved in [15] that the existence of a Π1

2 E0-class with no OD elements is consistent with ZFC , using a E0-invariant 
version of the Jensen forcing. A related consistency result on countable Groszek–Laver pairs, established by similar methods, will 
appear in [3].

http://mathoverflow.net/questions/17608
http://cs.nyu.edu/pipermail/fom/2010-July/014944.html
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yields a significantly more compact proof, which still uses some basic constructions from [5]. As far as The-
orem 1.1 is concerned, countable-support products and iterations hardly can lead to the countable-section 
non-uniformization results.

We recall that Π1
3 Separation holds in L . Thus Theorem 1.2 in fact shows that the Π1

3 Separation 
principle is destroyed in an appropriate generic extension of L . It would be interesting to find a generic 
extension in which, the other way around, the Σ1

3 Separation (false in L) holds. This can be a difficult 
problem. At least, the model used to prove Theorem 1.2 does not help: we prove (Theorem 14.1 below) 
that any pair of disjoint Σ1

3 sets, non-separable by disjoint Π1
3 sets in L , remains Σ1

3 and non-separable 
by disjoint Π1

3 sets in the extension.

2. Trees and splitting

Let 2<ω be the set of all strings (finite sequences) of numbers 0, 1. If t ∈ 2<ω and i = 0, 1 then t ∧i
is the extension of t by i . If s, t ∈ 2<ω then s ⊆ t means that t extends s , while s ⊂ t means proper 
extension. If s ∈ 2<ω then lh(s) is the length of s , and 2n = { s ∈ 2<ω : lh(s) = n } (strings of length n).

A set T ⊆ 2<ω is a tree iff for any strings s ⊂ t in 2<ω , if t ∈ T then s ∈ T . Thus every non-empty tree 
T ⊆ 2<ω contains the empty string Λ.

If T ⊆ 2<ω is a tree and s ∈ T then put T �s = { t ∈ T : s ⊆ t ∨ t ⊆ s } .
Let PT be the set of all perfect trees ∅ �= T ⊆ 2<ω . Thus a non-empty tree T ⊆ 2<ω belongs to PT iff 

it has no endpoints and no isolated branches. Then there is a largest string s ∈ T such that T = T �s ; it is 
denoted by s = stem(T ) (the stem of T ); we have s ∧1 ∈ T and s ∧0 ∈ T in this case.

Definition 2.1 (Perfect sets). If T ∈ PT then [T ] = { a ∈ 2ω : ∀n (a�n ∈ T ) } is the set of all paths 
through T , a perfect set in 2ω . �

The simple splitting of a tree T ∈ PT consists of smaller trees

T (→ 0) = T �stem(T ) ∧0 and T (→ 1) = T �stem(T ) ∧1 ,

so that [T (→ i)] = { x ∈ [T ] : x(h) = i } , where h = lh(stem(T )). Clearly T (→ i) ∈ PT . The splitting can 
be iterated, so that if s ∈ 2n then

T (→ s) = T (→ s(0))(→ s(1))(→ s(2)) . . . (→ s(n− 1)) .

We separately define T (→ Λ) = T , for the empty string Λ.

Lemma 2.2. Suppose that T ∈ PT. If u ∈ T then there is a unique string s ∈ 2<ω such that T (→ s) =
T �u . Conversely, if s ∈ 2<ω then the string u[s] = stem(T (→ s)) belongs to T and we have T (→ s) =
T �u[s] . �

If T, S ∈ PT and n ∈ ω then let S ⊆n T (S n-refines T ) mean that S(→ s) ⊆ T (→ s) for all strings
s ∈ 2�n . In particular, S ⊆0 T iff simply S ⊆ T . By definition if S ⊆n+1 T then we have S ⊆n T (and 
S ⊆ T ), too.

Lemma 2.3. Suppose that T ∈ PT and n < ω . Then T =
⋃

s∈2n T (→ s) and [T (→ s)] ∩ [T (→ t)] = ∅ for 
all s �= t in 2n .

In addition if Ys ∈ PT and Ys ⊆ T (→ s) for every s ∈ 2n , then T ′ =
⋃

s∈2n Ys ∈ PT and T ′(→ s) =
Ys for all s ∈ 2n , and hence T ′ ⊆n T . �
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Lemma 2.4 (Fusion). Let . . . ⊆5 T4 ⊆4 T3 ⊆3 T2 ⊆2 T1 ⊆1 T0 be an infinite decreasing sequence of trees 
in PT. Then T =

⋂
n Tn ∈ PT, and if n < ω and lh(s) ≤ n + 1, then T (→ s) = T ∩ Tn(→ s) =⋂

m≥n Tm(→ s). �
3. Perfect-tree forcing notions

Let a perfect-tree forcing notion (sometimes called arboreal forcing) be any set P ⊆ PT such that if 
u ∈ T ∈ P then T �u ∈ P . Let PTF be the set of all such sets P . A perfect-tree forcing notion P ∈ PTF
is regular if 2<ω ∈ P .

Any set P ∈ PTF can be considered as a forcing notion (if T ⊆ T ′ then T is a stronger condition); 
such a forcing P obviously adds a real in 2ω .

Example 3.1. If s ∈ 2<ω then the tree T [s] = { t ∈ 2<ω : s ⊆ t ∨ t ⊆ s } belongs to PT and T [s] =
(2<ω)(→ s) = (2<ω)�s , ∀ s . The set Pcoh = { T [s] : s ∈ 2<ω} (the Cohen forcing) is a regular perfect-tree 
forcing notion. �

If P ⊆ PT , T ∈ PT , n < ω , and all split trees T (→ s), s ∈ 2n , belong to P , then we say that T is a 
n-collage tree over P . Let CTn(P) be the set of all trees T ∈ PT which are n-collage trees over P , and 
let CT(P) =

⋃
n CTn(P).

Lemma 3.2.

(i) If T ∈ P ∈ PTF and s ∈ 2<ω then T (→ s) ∈ P .
(ii) If P ∈ PTF and n < ω then P = CT0(P) ⊆ CTn(P) ⊆ CTn+1(P).
(iii) If P ∈ PTF, n < ω , and, in Lemma 2.3, every tree Ys belongs to P , then the resulting tree T ′

belongs to CTn(P).

Proof. To prove (i) use Lemma 2.2. To prove (ii) use (i). �
Lemma 3.3 (Disjoint splitting). Let P , P ′ be perfect-tree forcings. Then

(i) if T ∈ P and T ′ ∈ P ′ , then there are trees S ∈ P , S′ ∈ P ′ such that S ⊆ T , S′ ⊆ T ′ , and
[S] ∩ [S′] = ∅.

(ii) if n < ω and T ∈ CTn(P), T ′ ∈ CTn(P ′), then there exist trees S ∈ CTn(P), S′ ∈ CTn(P ′) such 
that S ⊆n T , S′ ⊆n T ′ , and [S] ∩ [S′] = ∅.

Proof. (i) If T = T ′ then let s = stem(T ) and S = T �s ∧0 , S′ = T ′�s ∧1 . If say T �⊆ T ′ then let u ∈ T �T ′ , 
S = T �u , and simply S′ = T ′ . To prove (ii) iterate (i) and make use of Lemma 3.2(iii). �
4. Multitrees and splitting systems

Suppose in this Section that ϑ ∈ Ord and p = 〈Pξ〉ξ<ϑ is a sequence of sets Pξ ∈ PTF ; we’ll call such 
a p a PTF-sequence (of length ϑ). Sequences of this type will be systematically considered below, and if 
q = 〈Qξ〉ξ<ϑ is another such a sequence of the same length then we let p∨q = 〈Pξ ∪ Qξ〉ξ<ϑ .

Definition 4.1. A multitree is a “matrix” of the form p =
〈
Tp
ξk

〉ξ<ϑ
k<ω , where each Tp

ξk belongs to PT and the 
support |p| = { 〈ξ, k〉 : Tp �= 2<ω} is finite. Let
ξk
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[p] = {x ∈ 2ϑ×ω : ∀ 〈ξ, k〉 ∈ |p| (x(ξ, k) ∈ [Tp
ξk])} =

= {x ∈ 2ϑ×ω : ∀ 〈ξ, k〉 ∈ |p| ∀m (x(ξ, k)�m ∈ Tp
ξk)}

in this case; this is a cofinite-dimensional perfect cube in 2ϑ×ω .
If p = 〈Pξ〉ξ<ϑ is a PTF-sequence then a p-multitree is any multitree p with Tp

ξk ∈ Pξ ∪ { 2<ω} for all 
ξ , k . Let MT(p) be the set of all p-multitrees. �

The set MT(p) is equal to the finite support product 
∏

ξ<ϑ(Pξ∪{ 2<ω})ω of (ϑ× ω)-many factors, with 
each factor Pξ in ω-many copies. We order MT(p) componentwise: q ≤ p (q is stronger) iff T q

ξk ⊆ Tp
ξk

for all ξ, k . The forcing MT(p) adds a “matrix” 
〈
xξk

〉ξ<ϑ
k<ω , where each xξk ∈ 2ω is a Pξ-generic real. The 

multitree Λ defined by TΛ
ξk = 2<ω for all ξ , k , belongs to MT(p), satisfies |Λ| = ∅ and [Λ] = 2ϑ×ω , and 

is the weakest condition.
The intention of the next definition is to formalize the construction of “generic” multitrees by means of 

Lemma 2.4 in the next section.

Definition 4.2. A p-system is a “matrix” ϕ =
〈
〈hϕ

ξm, τϕξm〉
〉ξ<ϑ
m<ω , where

(1) if ξ < ϑ and m < ω then hϕ
ξm ∈ ω ∪ { −1 } , and |ϕ| = { 〈ξ,m〉 : hϕ

ξm �= −1 } (the support of ϕ) is a 
finite set;

(2) if 〈ξ, m〉 ∈ |ϕ| then τϕξm = 〈Tϕ
ξm(0), Tϕ

ξm(1), . . . , Tϕ
ξm(hϕ

ξm)〉 , where each Tϕ
ξm(h) is a tree in CTh(Pξ)

and Tϕ
ξm(h) ⊆h Tϕ

ξm(h −1) whenever 1 ≤ h ≤ hϕ
ξm , while if hϕ

ξm = −1 then simply τϕξm = Λ (the empty 
sequence).

In this case, if h ≤ hϕ
ξm and s ∈ 2h then let Tϕ

ξm(s) = Tϕ
ξm(h)(→ s); then the tree Tϕ

ξm(s) belongs to Pξ

since Tϕ
ξm(h) ∈ CTh(Pξ).7

Let MS(p) be the set of all p-systems. �
Say that a system ϕ ∈ MS(p) is pairwise disjoint if Tϕ

ξm(hϕ
ξm) ∩Tϕ

ηn(hϕ
ηn) = ∅ for all pairs 〈ξ, m〉 �= 〈η, n〉

in |ϕ| .
Let ϕ, ψ ∈ MS(p). Say that ϕ extends ψ ∈ MS(p), symbolically ψ � ϕ , if |ψ| ⊆ |ϕ| , and, for every 

〈ξ, m〉 ∈ |ψ| , we have hϕ
ξm ≥ hψ

ξm and τϕξm extends τψξm , so that simply Tϕ
ξm(h) = Tψ

ξm(h) for all h ≤ hψ
ξm .

Say that a multitree p occurs in a system ϕ ∈ MS(p) if for each pair 〈ξ, k〉 ∈ |p| there is a number 
m = mkξ < ω and a string s = skξ ∈ 2<ω with lh(s) ≤ hϕ

ξm such that Tp
ξk = Tϕ

ξm(s)—then p ∈ MT(p), 
of course.

Lemma 4.3. Let p = 〈Pξ〉ξ<ϑ be a PTF-sequence and ϕ ∈ MS(p).

(i) If 〈ξ, m〉 ∈ |ϕ| and h = hϕ
ξm then the extension ϕ′ of ϕ by hϕ′

ξm = h + 1 and Tϕ′

ξm(h + 1) = Tϕ
ξm(h)

belongs to MS(p) and ϕ � ϕ′ .
(ii) If 〈ξ, m〉 /∈ |ϕ| then the extension ϕ′ of ϕ by |ϕ′| = |ϕ| ∪{ 〈ξ, m〉 }, hϕ′

ξm = 0 and Tϕ′

ξm(0) = T , where
T ∈ Pξ , belongs to MS(p) and ϕ � ϕ′ .

(iii) There is a pairwise disjoint system ϕ′ ∈ MS(p) such that |ϕ′| = |ϕ| and ϕ � ϕ′ .

Proof. (i) Use Lemma 3.2(ii) and the fact that T ⊆n T for all n , T .
To prove (iii) use Lemma 3.3(ii). �

7 Note that the split trees Tϕ
ξm(s) = Tϕ

ξm(h)(→ s) (h ≤ hϕ
ξm , s ∈ 2h ) belong to Pξ , while the trees Tϕ

ξm(h) , which actually 
participate in ϕ , are assumed to only belong to CTh(Pξ) .
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5. Jensen’s extension of a perfect tree forcing

Let ZFC′ be the subtheory of ZFC including all axioms except for the power set axiom, plus the axiom 
saying that P (ω) exists. (Then ω1 and some typical sets related to the continuum, like PT , exist, too.) 
Let M be a countable transitive model of ZFC′ .

Suppose in this Section that p = 〈Pξ〉ξ<θ ∈ M is a PTF-sequence of (countable) sets Pξ ∈ PTF , of a 
fixed length θ < ωM

1 . Then the sets Pξ for all ξ < θ , as well as the sets MT(p) and MS(p), belong to 
M , too.

Definition 5.1. (i) Let us fix any �-increasing sequence Φ = 〈ϕ(j)〉j<ω of systems ϕ(j) ∈ MS(p), generic 
over M in the sense that it intersects every set D ∈ M , D ⊆ MS(p), dense in MS(p).8

(ii) Suppose that ξ < θ and m < ω . In particular, the sequence Φ intersects every (dense by Lemma 4.3(i), 
(ii)) set of the form

Dξmh = {ϕ ∈ MS(p) : hϕ
ξm ≥ h} , where h < ω .

Therefore if ξ < θ and m < ω then by definition there is an infinite sequence

. . . ⊆5 T Φ
ξm(4) ⊆4 T Φ

ξm(3) ⊆3 T Φ
ξm(2) ⊆2 T Φ

ξm(1) ⊆1 T Φ
ξm(0)

of trees TΦ
ξm(h) ∈ CTh(P), such that, for any j , if 〈ξ, m〉 ∈ |ϕ(j)| and h ≤ h

ϕ(j)
ξm then Tϕ(j)

ξm (h) = T Φ
ξm(h). 

If h < ω and s ∈ 2h then we let T Φ
ξm(s) = T Φ

ξm(h)(→ s); then T Φ
ξm(s) ∈ Pξ since T Φ

ξm(h) ∈ CTh(Pξ).
(iii) Then it follows from Lemma 2.4 that each set

UΦ
ξm =

⋂
h T

Φ
ξm(h) =

⋂
h

⋃
s∈2h T

Φ
ξm(s)

is a tree in PT (not necessarily in Pξ ), as well as the trees UΦ
ξm(s) := UΦ

ξm(→ s), and still by Lemma 2.4,

UΦ
ξm(s) = UΦ

ξm ∩ T Φ
ξm(s) =

⋂
h≥lh(s) T

Φ
ξm(h)(→ s) ,

and obviously UΦ
ξm = UΦ

ξm(Λ).
(iv) If ξ < θ then let Uξ = { UΦ

ξm(s) : m < ω ∧ s ∈ 2<ω} .
Let u = 〈Uξ〉ξ<θ and p∨u = 〈Pξ ∪ Uξ〉ξ<θ . �

Lemma 5.2.

(i) If ξ < θ then the sets Uξ and Pξ ∪ Uξ belong to PTF;
(ii) if ξ < θ, m < ω , and strings s ⊆ t belong to 2<ω then [T Φ

ξm(s)] ⊆ [T Φ
ξm(t)] and [UΦ

ξm(s)] ⊆
[UΦ

ξm(t)];
(iii) if ξ < θ, m < ω , and strings t′ �= t in 2<ω are ⊆-incomparable then [UΦ

ξm(t′)] ∩ [UΦ
ξm(t)] =

[T Φ
ξm(t′)] ∩ [T Φ

ξm(t)] = ∅.

Proof. To prove (iii) note that [T Φ
ξm(s ∧0)] ∩ [T Φ

ξm(s ∧1)] = ∅ . �
The following two lemmas present rather simple consequences of genericity of the background sequence 

of systems Φ = 〈ϕ(j)〉j<ω in Definition 5.1.

8 Meaning that for any ψ ∈ MS(p) there is ϕ ∈ D with ψ � ϕ .
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Lemma 5.3. If 〈ξ, m〉 �= 〈η, n〉 then [UΦ
ξm] ∩ [UΦ

ηn] = ∅.
Therefore if U ∈

⋃
ξ<θ Uξ then there is a unique triple of ξ < θ, m < ω , and s ∈ 2<ω such that

U = UΦ
ξm(s).

Proof. By Lemma 4.3(iii), the set D of all pairwise disjoint systems is dense. �
Lemma 5.4. Let ξ < θ. The set Uξ is dense in Uξ ∪ Pξ .

Proof. If T ∈ Pξ then the set D(T ) of all systems ϕ ∈ MS(p), such that Tϕ
ξm(0) = T for some m , belongs 

to M and obviously is dense in MS(p). It follows that ϕ(J) ∈ D(T ) for some J < ω , by the choice of Φ . 
Then T Φ

ξm(Λ) = T for some m < ω . However UΦ
ξm(Λ) ⊆ T Φ

ξm(Λ). �
6. Preservation of density

This Section contains several key results related to pre-dense sets in the frameworks of Jensen’s extension 
construction. We still suppose that M is a countable transitive model of ZFC′ , p = 〈Pξ〉ξ<θ ∈ M is a PTF-
sequence of (countable) sets Pξ ∈ PTF , of a fixed length θ < ωM

1 , and we argue in terms of Definition 5.1.

Lemma 6.1. If ξ < θ and a set D ∈ M, D ⊆ Pξ is pre-dense in Pξ , and U ∈ Uξ , then U ⊆fin ⋃D , that 
is, there is a finite set D′ ⊆ D with U ⊆

⋃
D′ .

Proof. Suppose that U = UΦ
ξM , M < ω . The set Δ ∈ M of all systems ϕ ∈ MS(p) such that 〈ξ, M〉 ∈ |ϕ| , 

and for each t ∈ 2h , where h = hϕ
ξM , there is a tree St ∈ D with Tϕ

ξM (t) ⊆ St , is dense in MS(p) by the 
pre-density of D . Therefore there is an index j such that ϕ(j) ∈ Δ. Let this be witnessed by trees St ∈ D ,
t ∈ 2h , where h = h

ϕ(j)
ξM , so that Tϕ(j)

ξM (t) ⊆ St , ∀ t . Then

U = UΦ
ξM (s) ⊆ UΦ

ξM (Λ) ⊆
⋃

t∈2h T
ϕ(j)
ξM (t) ⊆

⋃
t∈2h St =

⋃
D′

by construction, where D′ = { St : t ∈ 2h} ⊆ D is finite. �
Corollary 6.2. If ξ < θ and trees T, T ′ ∈ Pξ are incompatible in Pξ then T, T ′ remain incompatible in
Uξ ∪ Pξ .

Proof. By the incompatibility assumption, if S ∈ Pξ then either S �⊆ T or S �⊆ T ′ . In both cases, there is 
a smaller tree S′ ∈ Pξ , S′ ⊆ S , such that [S′] ∩ [T ] ∩ [T ′] = ∅ . It follows that the set D of all trees S ∈ Pξ

satisfying [S] ∩ [T ] ∩ [T ′] = ∅ is dense in Pξ . It remains to apply Lemma 6.1. �
Theorem 6.3. In the assumptions above, if a set D ∈ M, D ⊆ MT(p) is pre-dense in MT(p) then it 
remains pre-dense in MT(p∨u).

Proof. Given a multitree p ∈ MT(p∨u), let us prove that p is compatible in MT(p∨u) with a multitree 
q ∈ D . By Lemma 5.4, assume that p ∈ MT(u). Then each term Tp

ξk of p (〈ξ, k〉 ∈ |p|) is equal to some 

UΦ
ξ,mξk

(s′ξk), where mξk < ω and s′ξk ∈ 2<ω . Choose a number h > max{ lh(s′ξk) : 〈ξ, k〉 ∈ |p| } big enough 
for there to exist strings sξk ∈ 2h such that s′ξk ⊂ sξk and sξk �= sη	 whenever pairs 〈ξ, k〉 �= 〈η, 
〉 belong to 
|p| . Define a multitree u ∈ MT(u) so that |u| = |p| and Tu

ξk = UΦ
ξ,mξk

(sξk) for all 〈ξ, k〉 ∈ |u| . Obviously 
u ≤ p .

Consider the set Δ ∈ M of all systems ϕ ∈ MS(p) such that there is a number H > h and multitrees 
q ∈ D and r ∈ MT(p), satisfying r ≤ q and
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(1) |u| ⊆ |r| and r occurs in ϕ ;
(2) if 〈ξ, k〉 ∈ |u| then 〈ξ, mξk〉 ∈ |ϕ| , hϕ

ξ,mξk
= H , and T r

ξk = Tϕ
ξ,mξk

(tξk), where tξk ∈ 2H and sξk ⊂ tξk .

Lemma 6.4. The set Δ is dense in MS(p).

Proof. [Lemma] Suppose that ψ ∈ MS(p); we have to find a system ϕ ∈ MS(p) with ψ � ϕ . First of all, 
by Lemma 4.3(i) we can assume that there is a number g ≥ h such that hψ

ξm = g for all 〈ξ, m〉 ∈ |ψ| . We 
can also assume that if 〈ξ, k〉 ∈ |u| then 〈ξ, mξk〉 ∈ |ψ| , for if not then just add 〈ξ, mξk〉 to |ψ| and define 
hψ
ξmξk

= g and Tψ
ξmξk

(n) = S for all n ≤ g , where S ∈ Pη is any tree, one and the same for all n .
Let H = g + 1. Define a system χ ∈ MS(p) extending ψ so that |χ| = |ψ| , and hχ

ξm = H , Tχ
ξm(H) =

Tψ
ξm(g) for all 〈ξ, m〉 ∈ |ψ| ; then ψ � χ . Pick strings tξk ∈ 2H with sξk ⊂ tξk for all 〈ξ, k〉 ∈ |u| . Then we 

have tξk �= tη	 whenever pairs 〈ξ, k〉 �= 〈η, 
〉 belong to |u| , by the choice of sξk .
Define a multitree π ∈ MT(p) by |π| = |u| and Tπ

ξk = Tχ
ξ,mξk

(tξk) for all 〈ξ, k〉 ∈ |u| . By the pre-density 
of D there exist multitrees q ∈ D and r ∈ MT(p), such that r ≤ q and r ≤ π ; then |u| = |π| ⊆ |r| .

Now define a system ϕ ∈ MS(p) so that |χ| ⊆ |ϕ| and hϕ
ξm = hχ

ξm = H , Tϕ
ξm(n) = Tχ

ξm(n) for all 
〈ξ, m〉 ∈ |χ| and n < H . As for the values Tϕ

ξm(H) and possible additional pairs in |ϕ| � |χ| , proceed as 
follows.

(I) If some pair 〈ξ, m〉 ∈ |χ| is not of the form 〈ξ, mξk〉 , where 〈ξ, k〉 ∈ |u| = |π| , then simply keep 
Tϕ
ξm(H) = Tχ

ξm(H).
(II) Now suppose that 〈ξ, k〉 ∈ |π| = |u| , so that 〈ξ, mξk〉 ∈ |χ| . Then T r

ξk = R ⊆ T = Tπ
ξk = Tχ

ξ,mξk
(tξk)

since r ≤ π . We let Tϕ
ξ,mξk

(tξk) = R .

Note that all trees R involved in (I) belong to Pξ since r ∈ MT(p). Therefore, by Lemma 3.2(iii), the 
definition of the values of Tϕ

ξm(t) for different m = mξk and t = tξk ∈ 2H by (I) still results in trees Tϕ
ξm(H)

in CTH(Pξ).

(III) Finally suppose that 〈ξ, k〉 ∈ |r| �|u| . Then pick a number m′
ξk < ω such that 〈ξ, m′

ξk〉 /∈ |ϕ| (and take 
care that all m′

ξk are pairwise different), add 〈ξ, m′
ξk〉 to |ϕ| , and put hϕ

ξ,m′
ξk

= 0 and Tϕ
ξ,m′

ξk
(0) = T r

ξk .

The system ϕ still belongs to MS(p) (since r ∈ MT(p)) and satisfies ψ � ϕ (as we only change the H th
level of χ absent in ψ ), and r occurs in ϕ and satisfies r ≤ q and (1), (2) by construction. � (Lemma)

By the lemma, there is an index j such that the system ϕ(j) belongs to Δ. Let this be witnessed by a 
number H > h , multitrees q ∈ D and r ∈ MT(p), and strings tξk ∈ 2H , satisfying r ≤ q and (1), (2) for 
ϕ(j) instead of ϕ . Define a multitree v ∈ MT(u) by |v| = |r| , T v

ξk = UΦ
ξ,mξk

(tξk) for all 〈ξ, k〉 ∈ |u| , and

• if 〈ξ, k〉 ∈ |r| � |u| then, as r occurs in ϕ(j) by (1), there is a number m < ω and a string t ∈ 2<ω

such that 〈ξ, m〉 ∈ |ϕ(j)| , lh(t) ≤ h
ϕ(j)
ξm , and T r

ξk = T
ϕ(j)
ξm (t)—in this case put T v

ξk = UΦ
ξm(t).

Then v ≤ u (since sξk ⊂ tξk ), therefore v ≤ u ≤ p . Moreover v ≤ r . Indeed if 〈ξ, k〉 ∈ |u| then 
T v
ξk = UΦ

ξ,mξk
(tξk) ⊆ T Φ

ξ,mξk
(tξk) = T

ϕ(j)
ξ,mξk

(tξk) = T r
ξk . Similarly if 〈ξ, k〉 ∈ |r| � |u| then still T v

ξk ⊆ T r
ξk by 

the same argument. Thus v witnesses that p is compatible with q ∈ D . �

7. Real names and direct forcing

Let M be still a countable transitive model of ZFC′ and p = 〈Pξ〉ξ<θ ∈ M be a regular PTF-sequence 
of length θ < ωM

1 ; those are fixed in this section. Our goal will be to introduce a suitable notation related 
to names of reals in 2ω in the context of forcing notions of the form MT(p).
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Definition 7.1. A MT(p)-real name is a system c = 〈Cni〉n<ω, i<2 of sets Cni ⊆ MT(p) such that each 
set Cn = Cn0 ∪ Cn1 is dense or at least pre-dense in MT(p) and if p ∈ Cn0 and q ∈ Cn1 then p, q are 
incompatible in MT(p).

If a set G ⊆ MT(p) is MT(p)-generic at least over the collection of all sets Cn then we define c[G] ∈ 2ω
so that c[G](n) = i iff G ∩ Cni �= ∅ . �

Thus any MT(p)-real name c = 〈Cni〉 is a MT(p)-name for a real in 2ω .
Recall that MT(p) adds a generic sequence 〈xξk〉ξ<θ,k<ω of reals xξk ∈ 2ω .

Example 7.2. If ξ < θ and k < ω then define a MT(p)-real name .
xξk = 〈Cξk

ni 〉n<ω, i<2 such that each set 
Cξk

ni contains all (finitely many) multitrees r ∈ MT(p), such that |r| = { 〈ξ, k〉 } and T r
ξk = [s] = { t ∈ 2<ω :

s ⊆ t ∨ t ⊆ s } , where s ∈ 2k+1 (a string of length k + 1) and s(k) = i .
Note that every multitree r = rξks of this form belongs to MT(p). Indeed since the PTF-sequence p

considered is assumed to be regular, we have 2<ω ∈ Pξ . It follows that [s] ∈ Pξ as well for any ξ and any 
string s ∈ 2<ω , and hence rξks ∈ MT(p). Therefore the name .xξk defined this way is a MT(p)-real name 
of the real xξk , the (ξ, k)th term of a MT(p)-generic sequence 〈xξk〉ξ<θ, k<ω . �

Let c = 〈Cni〉 and d = 〈Dni〉 be MT(p)-real names. Let us say that a multitree p (not necessarily 
p ∈ MT(p)):

• directly forces c(n) = i , where n < ω and i = 0, 1, iff there is a multitree q ∈ Cni such that p ≤ q ;
• directly forces s ⊂ c , where s ∈ 2<ω , iff for all n < lh(s), p directly forces c(n) = i , where i = s(n);
• directly forces d �= c , iff there are strings s, t ∈ 2<ω , incomparable in 2<ω and such that p directly 

forces s ⊂ c and t ⊂ d ;
• directly forces c /∈ [T ] , where T ∈ PT , iff there is a string s ∈ 2<ω � T such that p directly forces 

s ⊂ c .

The definition of direct forcing is not explicitly associated with any concrete forcing notion, but in fact the 
direct forcing relation (in all four instances) is compatible with any perfect tree forcing notion P ∈ PTF .

8. Forcing a real away of a pre-dense set

The goal of the following Theorem 8.1 is to prove that, under the conditions and notation of Definition 5.1, 
if ξ < θ and c is a MT(p)-name of a real in 2ω then the extended forcing MT(p∨u) forces that c does not 
belong to sets [U ] where U is a tree in Uξ—unless c is the name .xξk of one of generic reals xξk themselves.

Theorem 8.1. In the assumptions of Definition 5.1, let c = 〈Ci
n〉n<ω, i<2 ∈ M be a MT(p)-real name, 

ζ < θ is fixed, and for all k the set

D(k) = {p ∈ MT(p) : p directly forces c �= .
xζk}

is dense in MT(p). Let u ∈ MT(p∨u), and U ∈ Uζ . Then there is a stronger multitree v ∈ MT(u) ,
v ≤ u, which directly forces c /∈ [U ].

Proof. By construction U ⊆ UΦ
ζM for some M < ω ; thus we can assume that simply U = UΦ

ζM . The 
indices ζ and M are fixed in the proof. As in the proof of Theorem 6.3, we can assume that u ∈ MT(u), 
and there is a number h and, for each 〈ξ, k〉 ∈ |u| , a number mξk < ω and a string sξk ∈ 2h , such that 
Tu
ξk = UΦ

ξ,m (sξk), and sξk �= sη	 whenever 〈ξ, k〉 �= 〈η, 
〉 .

ξk
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Consider the set Δ ∈ M of all systems ϕ ∈ MS(p) such that there is a number H > h and a multitree 
r ∈ MT(p), satisfying

(1) |u| ⊆ |r| and r occurs in ϕ ,
(2) if 〈ξ, k〉 ∈ |u| then 〈ξ, mξk〉 ∈ |ϕ| , hϕ

ξ,mξk
= H , and T r

ξk = Tϕ
ξ,mξk

(tξk), where tξk ∈ 2H and sξk ⊂ tξk ,
(3) r directly forces c /∈ [T ] , where T = Tϕ

ζM (H).

Lemma 8.2. D is dense in MS(p).

Proof. Suppose that ψ ∈ MS(p); we have to find a system ϕ ∈ D such that ψ � ϕ . As in the proof 
of Theorem 6.3, we can assume that there is a number g > h such that hψ

ξm = g for all 〈ξ, m〉 ∈ |ψ| , 
〈ζ, M〉 ∈ |ψ| , and if 〈ξ, k〉 ∈ |u| then 〈ξ, mξk〉 ∈ |ψ| .

Let H = g + 1. Define a system χ ∈ MS(p) extending ψ so that |χ| = |ψ| , and hχ
ξm = H , Tχ

ξm(H) =
Tψ
ξm(g) for all 〈ξ, m〉 ∈ |ψ| ; then ψ � χ . Pick strings tξk ∈ 2H with sξk ⊂ tξk for all 〈ξ, k〉 ∈ |u| . Then we 

have tξk �= tη	 whenever 〈ξ, k〉 �= 〈ξ, 
〉 belong to |u| , by the choice of sξk .
Define a multitree π ∈ MT(p) by |π| = |u| and Tπ

ξk = Tχ
ξ,mξk

(tξk) for all 〈ξ, k〉 ∈ |u| ; then π occurs 
in χ . We can also assume that

(a) if t ∈ 2H then there exists a pair 〈ζ, k(t)〉 ∈ |π| such that mζ,k(t) = M and tζ,k(t) = t .

Indeed if this fails then for any such string t pick a number k(t) < ω satisfying 〈ζ, k(t)〉 /∈ |π| (taking care 
that k(t) �= k(t′) whenever t �= t′ ), add the pair 〈ζ, k(t)〉 to |π| , and let Tπ

ζ,k(t) = Tχ
ζM (t). Then define 

mζ,k(t) = M and tζ,k(t) = t . The extended multitree π satisfies |u| ⊆ |π| (and ⊆ can be � here) and (a), 
and by construction satisfies

(b) 〈ζ, M〉 ∈ |χ| , and if 〈ξ, k〉 ∈ |π| then 〈ξ, mξk〉 ∈ |χ| , and
(c) tξk �= tη	 whenever pairs 〈ξ, k〉 �= 〈η, 
〉 belong to |π| .

By the density of sets D(k), there exists a multitree r ∈ MT(p), r ≤ π , which directly forces c �= .
xζk

whenever k ∈ K = { k : 〈ζ, k〉 ∈ |π| } . Then there are strings u and { vk : k ∈ K} in 2<ω such that u is 
incompatible in 2<ω with each vk and r directly forces each of the formulas u ⊂ c and vk ⊂ .

xζk—for 
all k ∈ K . Yet r directly forces vk ⊂ .

xζk iff vk ⊆ stem(T r
ζk). Thus r directly forces c /∈ [T ∗] , where 

T ∗ =
⋃

k∈K T r
ζk .

Define a system ϕ ∈ MS(p) so that |χ| ⊆ |ϕ| and hϕ
ξm = hχ

ξm = H , Tϕ
ξm(n) = Tχ

ξm(n) for all 〈ξ, m〉 ∈ |χ| , 
n < H . As for the values Tϕ

ξm(H) and possible pairs in 〈ξ, m〉 ∈ |ϕ| � |χ| , proceed as follows.

(I) If 〈ξ, m〉 ∈ |χ| is not of the form 〈ξ, mξk〉 , where 〈ξ, k〉 ∈ |π| , then put Tϕ
ξm(H) = Tχ

ξm(H).
(II) Suppose that 〈ξ, k〉 ∈ |π| , so that 〈ξ, mξk〉 ∈ |χ| . Then T r

ξk = R ⊆ T = Tπ
ξk = Tχ

ξ,mξk
(tξk) since 

r ≤ π . We let Tϕ
ξ,mξk

(tξk) = R .
(III) Finally suppose that 〈ξ, k〉 ∈ |r| � |π| . Then pick a number m′

ξk < ω such that 〈ξ, m′
ξk〉 /∈ |ϕ|

(and we assume that all m′
ξk are pairwise different), add 〈ξ, m′

ξk〉 to |ϕ| , and put hϕ
ξ,m′

ξk
= 0 and 

Tϕ
ξ,m′

ξk
(0) = T r

ξk .

As in the proof of Lemma 6.4, the extended system ϕ still belongs to MS(p) and satisfies ψ � ϕ , the 
multitree r occurs in ϕ , and we have T r

ξk = Tϕ
ξ,mξk

(tξk) whenever 〈ξ, k〉 ∈ |r| .
To complete the proof of the lemma, suppose that t ∈ 2H . Then by (a) there is a number k < ω such 

that 〈ζ, k〉 ∈ |π|—hence, k ∈ K ,—and mζk = M , tζk = t . Then by construction Tϕ (t) = T r
ζk , therefore 
ζM
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Tϕ
ζM (t) ⊆ T ∗ . As t ∈ 2H is arbitrary in this argument, we conclude that Tϕ

ζM (H) =
⋃

t∈2H Tϕ
ζM (t) ⊆ T ∗ . It 

follows that r directly forces c /∈ [Tϕ
ζM (H)], as required. � (Lemma)

We now return to the proof of the theorem. It follows from the lemma that there is an index j such that 
the system ϕ(j) belongs to D . Let this be witnessed by a number H > h , a multitree r ∈ MT(p), and a 
collection of strings tξk ∈ 2H (〈ξ, k〉 ∈ |u|), such that conditions (1), (2), (3) are satisfied for ϕ = ϕ(j).

Define a multitree v ∈ MT(u) so that |v| = |r| , if 〈ξ, k〉 ∈ |u| then T v
ξk = UΦ

ξ,mξk
(tξk) = T

ϕ(j)
ξ,mξk

(tξk), 
and if 〈ξ, k〉 ∈ |r| � |u| then T v

ξk = UΦ
ξm(t) = T

ϕ(j)
ξm (t), for any m < ω and t ∈ 2<ω such that T r

ξk =
T

ϕ(j)
ξm (t) = UΦ

ξm(t). Then v ≤ u and v ≤ r (see the end of the proof of Theorem 6.3). Finally, by (3), r
directly forces c /∈ [T ] , where T = T

ϕ(j)
ζM (H). However U = UΦ

ζM ⊆ T
ϕ(j)
ζM (H). �

9. The basic product forcing

In this section, we argue in L , the constructible universe. Let ≤L be the canonical wellordering of L .

Definition 9.1. (In L .) We define, by induction on α < ω1 , a PTF-sequence uα = 〈Uα
ξ 〉ξ<α , and a regular 

PTF-sequence pα = 〈Pα
ξ 〉ξ<α , of countable sets of trees Uα

ξ , Pα
ξ in PTF , as follows.

First of all, we let Pα
α = ∅ and Uα

α = Pcoh (see Example 3.1) for all α ; note that the terms Pα
α , U

α
α do 

not participate in the sequences pα and uα .
The case α = 0 . Let p0 = u0 = Λ (the empty sequence).
The step. Suppose that 0 < λ < ω1 , and uα , pα as above are already defined for every α < λ . Let Mλ

be the least model M of ZFC′ of the form Lμ , μ < ω1 , containing 〈uα〉α<λ and 〈pα〉α<λ , and such that 
λ < ωM

1 and Uα
ξ , Pα

ξ are countable in M for all ξ < α < λ .
We define a sequence pλ = 〈Pλ

ξ 〉ξ<λ so that Pλ
ξ =

⋃
ξ≤α<λ Uα

ξ for all ξ < λ . Thus if λ = α + 1 then 

Pα+1
ξ = Pα

ξ ∪ Uα
ξ for all ξ ≤ α (since Pα

ξ =
⋃

ξ≤α′<α Uα′

ξ at the previous step). In particular, for ξ = α , 
Pα+1

α = Pα
α ∪Uα

α = Pcoh (see above). Thus pα+1 is the extension of pα ∨ uα (see Section 4) by the default 
assignment Pα+1

α = Pcoh . For instance, p1 = 〈P1
0〉 , where P1

0 = Pcoh .
To define uλ and accomplish the step, let Φ = 〈ϕj〉j<ω be the ≤L-least sequence of systems ϕj ∈

MS(pλ), �-increasing and generic over Mλ , and let uλ = 〈Uλ
ξ 〉ξ<λ be defined, on the base of this sequence, 

as in Definition 5.1.
Final. After the sequences uα = 〈Uα

ξ 〉ξ<α , pα = 〈Pα
ξ 〉ξ<α and models Mα have been defined for all 

α < ω1 , we let Pξ =
⋃

ξ≤α<ω1
Uα

ξ for all ξ < ω1 , and p = pω1 = 〈Pξ〉ξ<ω1 , which is a regular PTF-
sequence of length ωL

1 in L . Let PPP = MT(p). If α < ωL
1 then let PPPα = MT(pα). �

The next result (a routine proof is omitted) accounts for the definability class of the constructions 
introduced by Definition 9.1. Recall that HC is the set of all hereditarily countable sets.

Proposition 9.2. In L, all three sequences 〈uα〉α<ω1 , 〈pα〉α<ω1 , 〈Mα〉α<ω1 belong to the definability class
ΔHC

1 . �
The set PPP = MT(p) =

∏
ξ<ωL

1
Pξ

<ω of all p-multitrees (see Definition 4.1) will be our principal forcing 
notion; PPP belongs to L as so does p . The forcing PPP can be identified with the finite-support product ∏

ξ<ωL
1

∏
k<ω Pξk , where each factor Pξk is equal to the set Pξ =

⋃
ξ≤α<ωL

1
Uα

ξ of Definition 9.1.

Remark 9.3. If α < γ ≤ ωL
1 then the sets PPPα = MT(pα) and PPPγ = MT(pγ) of multitrees are formally 

disjoint. However we can naturally embed the former in the latter. Indeed each multitree p =
〈
Tp
ξk

〉ξ<α
k<ω ∈ PPPα

can be identified as an element of PPPγ by the default extension Tp = 2<ω whenever α ≤ ξ < γ , k < ω . 
ξk
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With such an identification, we can assume that PPPα ⊆ PPPγ ⊆ PPP , and similarly PPPλ =
⋃

α<λ PPPα for all limit λ , 
and the like. �
10. Preservation of density revisited

Here we establish some corollaries of results in Section 6, as well as some close results, including the CCC 
property. We argue in terms of Definition 9.1.

Lemma 10.1.

(i) If α < ωL
1 and a set D ∈ Mα , D ⊆ PPPα is pre-dense in PPPα then it remains pre-dense in PPP.

(ii) In particular the set MT(uα) itself is pre-dense in PPP.

Proof. (i) By induction on γ , ξ ≤ γ < ωL
1 , if D is pre-dense in PPPγ = MT(pγ) then it remains pre-dense 

in MT(pγ ∨ uγ) by Theorem 6.3, hence in PPPγ+1 = MT(pγ+1) too by construction. Limit steps including 
the step ωL

1 are obvious.
(ii) Note that MT(uα) is dense in MT(pα ∨ uα) by Lemma 5.4, therefore, pre-dense in PPPα+1 =

MT(pα+1), and MT(uα) ∈ Mα+1 . Apply (i). �
Corollary 10.2. If ξ < α < ωL

1 then the set Uα
ξ is pre-dense in Pξ .

Proof. Let T ∈ Pξ . Consider a multitree p ∈ PPP = MT(p) defined so that Tp
ξ0 = T and Tp

ηk = 2<ω

whenever 〈η, k〉 �= 〈ξ, 0〉 . By Lemma 10.1 p is compatible in PPP with a multitree u ∈ MT(uα). We conclude 
that T is compatible in Pξ with the tree U = Tu

ξ0 ∈ Uα
ξ . �

Corollary 10.3. If ξ < α < ωL
1 and trees T, T ′ ∈ Pα

ξ are incompatible in Pα
ξ then T, T ′ remain incompatible 

in Pξ . Therefore if multitrees p, p′ ∈ PPPα = MT(pα) are incompatible in MT(pα) then p, p′ remain 
incompatible in PPP.

Proof. Let T, T ′ ∈ Pα
ξ be incompatible in Pα

ξ . Use Corollary 6.2 at successor steps to prove by induction 
on γ that if α < γ ≤ ωL

1 that the trees T, T ′ remain incompatible in Pγ
ξ . �

Corollary 10.4. If α < ωL
1 and a set (filter) G ⊆ PPP is PPP-generic over L then the set G′ = G ∩PPPα is PPPα-

generic over Mα .

Proof. Elements of G′ are still pairwise compatible in PPPα = MT(pα) by Corollary 10.3. Furthermore if a 
set D ∈ Mα , D ⊆ PPPα , is dense in PPPα then it is pre-dense in PPP by Lemma 10.1, so that G ∩D �= ∅ and 
G′ ∩D �= ∅ . �

To prove the CCC property, we’ll need the following reflection-type result.

Lemma 10.5. If X ⊆ HC = LωL
1

then the set OX of all ordinals α < ωL
1 , such that 〈Lα ; X ∩ Lα〉 is an 

elementary submodel of 〈LωL
1

; X〉 and X ∩ Lα ∈ Mα , is unbounded in ωL
1 . More generally, if Xn ⊆ HC

for all n then the set O of all ordinals α < ωL
1 , such that 〈Lα ; 〈Xn ∩Lα〉n<ω〉 is an elementary submodel 

of 〈LωL
1

; 〈Xn〉n<ω〉 and 〈Xn ∩ Lα〉n<ω ∈ Mα , is unbounded in ωL
1 .

Proof. Let α0 < ωL
1 . Let M be a countable elementary submodel of Lω2 containing α0 , ω

L
1 , X , and such 

that M ∩ Lω1 is transitive. Let φ : M
onto−−−→ Lλ be the Mostowski collapse, and let α = φ(ωL

1 ). Then 
α0 < α < λ < ωL

1 and φ(X) = X ∩Lα by the choice of M . It follows that 〈Lα ; X ∩ Lα〉 is an elementary 



274 V. Kanovei, V. Lyubetsky / Annals of Pure and Applied Logic 167 (2016) 262–283
submodel of 〈LωL
1

; X〉 . Moreover, α is uncountable in Lλ , hence Lλ ⊆ Mα . We conclude that X∩Lα ∈ Mα

since X ∩ Lα ∈ Lλ by construction.
The second, more general claim does not differ much. �

Corollary 10.6. The forcing PPP satisfies CCC, therefore PPP-generic extensions of L preserve cardinals.

Proof. Suppose that A ⊆ PPP = MT(p) is a maximal antichain. By Lemma 10.5, there is an ordinal α such 
that A′ = A ∩PPPα is a maximal antichain in PPPα = MT(pα) and A′ ∈ Mα . But then A′ remains pre-dense, 
therefore, maximal, in the whole set PPP by Lemma 10.1. It follows that A = A′ is countable. �
11. The basic extension: product structure and generic reals

Working in terms of Definition 9.1, we let PPP�Δ = { p ∈ PPP : |p| ⊆ Δ } for any set Δ ⊆ ωL
1 ×ω . The forcing 

PPP has an obvious product structure:

Lemma 11.1. Suppose that Δ ∈ L, Δ ⊆ ωL
1 × ω . Then PPP is equal to the product (PPP�Δ) × (PPP�Δ′), where

Δ′ = (ωL
1 × ω) � Δ. If G ⊆ PPP is generic over L, then the set G�Δ = { p ∈ G : |p| ⊆ Δ } is accordingly 

(PPP�Δ)-generic over L. �
Assume that Δ ∈ L , Δ ⊆ ωL

1 × ω . Similarly to Definition 7.1, let a (PPP�Δ)-real name be a system 
c = 〈Cni〉n<ω, i<2 of sets Cni ⊆ PPP�Δ such that each set Cn = Cn0 ∪ Cn1 is pre-dense in PPP�Δ and if 
p ∈ Cn0 , q ∈ Cn1 then p, q are incompatible in PPP�Δ. A name is countable if such are all sets Cni .

If a set G ⊆ PPP�Δ is at least pairwise compatible then we define c[G] ∈ 2ω so that c[G](n) = i iff 
G ∩ Cni �= ∅ .

Lemma 11.2. Suppose that Δ ∈ L, Δ ⊆ ωL
1 × ω . If a set G′ ⊆ PPP�Δ is generic over L and x ∈ 2ω ∩ L[G′]

then there is a (PPP�Δ)-real name c ∈ L, countable in L and such that x = c[G′].

Proof. To reduce an arbitrary name to a countable one, note that PPP�Δ is CCC in L as a factor of the CCC 
(by Corollary 10.6) forcing PPP = MT(p). �
Definition 11.3 (Generic reals). Let G ⊆ PPP be a set (filter) PPP-generic over L . Note that ωL[G]

1 = ωL
1 by 

Corollary 10.6.
If ξ < ωL

1 and k < ω then let Gξk = { Tp
ξk : p ∈ G } , so that each set Gξk is Pξ-generic over L , and 

Xξk =
⋂

T∈Gξk
[T ] is a singleton Xξk = { xξk} , whose only element xξk = xξk[G] ∈ 2ω is a real Pξ-generic 

over L . �
The product structure of PPP further reflects in the following lemma.

Lemma 11.4. (In the notation of Definition 11.3.) If ξ < ωL
1 and k < ω then

(i) xξk[G] /∈ L[G�Δξk], where Δξk = (ωL
1 × ω) � { 〈ξ, k〉 },

(ii) xξk[G] is not OD(G�Δξ) in L[G], where Δξ = (ωL
1 � { ξ}) × ω . �

Proof. To prove (ii) make use of the fact that by construction the ξ-part of the forcing is itself a finite-
support product of countably many copies of Pξ . �
12. Definability of generic reals and non-uniformization model

We continue to argue in terms of Definitions 9.1 and 11.3. The next lemma is similar to Lemma 7 in [9].
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Lemma 12.1. Let ξ < ωL
1 . A real x ∈ 2ω is Pξ -generic over L iff x ∈ Zξ =

⋂
ξ<α<ωL

1

⋃
U∈Uα

ξ
[U ].

Proof. All sets Uα
ξ are pre-dense in Pξ by Corollary 10.2, therefore any Pξ -generic real belongs to Zξ . On 

the other hand, if A ∈ L , A ⊆ Pξ is a maximal antichain in Pξ , then A is countable by Corollary 10.6, 
and hence easily A ⊆ Pα

ξ and A ∈ Mα for some α , ξ < α < ωL
1 . But then every tree U ∈ Uα

ξ satisfies 
U ⊆fin ⋃A by Lemma 6.1, and we conclude that 

⋃
U∈Uα

ξ
[U ] ⊆

⋃
T∈A[T ] . �

Corollary 12.2. In any generic extension of L with the same ω1 , the set

W = {〈ξ, x〉 : ξ < ωL
1 ∧ x ∈ 2ω is Pξ-generic over L} ⊆ ωL

1 × 2ω

is ΠHC
1 , and Π1

2 in terms of a usual coding system of ordinals < ω1 by reals.

Proof. Use Lemma 12.1 and Proposition 9.2. �
Now prove that L[G] contains no Pξ-generic reals except for the reals xξk[G] . This is the key property 

of the forcing extensions considered.

Lemma 12.3. Let a set G ⊆ PPP be PPP-generic over L. If ξ < ωL
1 and x ∈ L[G] ∩ 2ω then x is a Pξ-generic 

real over L iff x ∈ { xξk[G] : k < ω}.

Proof. Otherwise there is a PPP-real name c = 〈Cni〉n<ω, i=0,1 ∈ L and a multitree p ∈ PPP = MT(p) which 
PPP-forces that c is Pξ-generic over L while PPP itself forces c �= .

xξk , ∀ k . (Recall that .
xξk is a name for 

xξk[G] .) We can assume that c is a name countable in L , by Lemma 11.2. Then there is an ordinal λ , 
ξ < λ < ω1 , such that c ∈ Mλ and each set Cni satisfies Cni ⊆ PPPλ = MT(pλ) for all n, i .

Further, if k < ω then, as PPP forces that c �= .
xξk , the set Dk of all multitrees p ∈ PPP which directly 

force c �= .
xξk , is dense in PPP . Therefore, by Lemma 10.5, we may assume that the same ordinal λ as above 

satisfies the following: each set D′
k = Dk ∩PPPλ is dense in PPPλ .

Applying Theorem 8.1 with p = pλ , u = uλ , θ = λ , ζ = ξ , we conclude that for each U ∈ Uλ
ξ the set 

QU of all multitrees v ∈ PPPλ = MT(uλ) which directly force c /∈ [U ] , is dense in MT(uλ ∨ pλ), therefore, 
pre-dense in PPPλ+1 = MT(pλ+1). As obviously QU ∈ Mλ+1 , we further conclude that QU is pre-dense in PPP
by Lemma 10.1. Therefore PPP forces c /∈

⋃
U∈Uλ

ξ
[U ] , hence, forces that c is not Pξ-generic, by Lemma 12.1. 

But this contradicts to the choice of p. �
The results obtained allow us to easily prove Theorem 1.1.

Example 12.4 (Non-uniformizable ΠHC
1 set). Let a set G ⊆ PPP be PPP-generic over L . Consider the set W of 

Corollary 12.2 in the model L[G] . First of all W is ΠHC
1 in L[G] by Corollary 12.2. Further we have

W = {〈ξ, xξk[G]〉 : ξ < ωL
1 ∧ k < ω}

by Lemma 12.3, and hence all vertical cross-sections of W are countable. And the set W is not ROD 
uniformizable by Lemma 11.4, since by Corollary 10.6 any real in L[G] belongs to a submodel of the form 
L[G�(ζ × ω)], where ζ < ωL

1 . �
Example 12.5 (Non-uniformizable Π1

2 set). Let WO ⊆ 2ω be the Π1
1 set of codes of countable ordinals, 

and for w ∈ WO let |w| < ω1 be the ordinal coded by w . In continuation of Example 12.4, we consider

W′ = {〈w, x〉 ∈ WO × 2ω : 〈|w|, x〉 ∈ W} ,
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a Π1
2 set in L[G] . Suppose towards the contrary that, in L[G] , W′ is uniformizable by a ROD set Q′ ⊆ W′ . 

As ωL
1 = ω1 by Corollary 10.6, for any ξ < ω1 there is a code w ∈ WO ∩ L with |w| = ξ . Let wξ be the 

≤L-least of those. Then

Q = {〈ξ, x〉 ∈ W : 〈wξ, x〉 ∈ Q′}

is a ROD subset of W which uniformizes W , contrary to Example 12.4. � � (Theorem 1.1)

13. Non-separation model

Here we prove Theorem 1.2. The model we use will be defined on the base of a PPP-generic extension L[G]
of L . More exactly, it will have the form L[G�Δ], where Δ ⊆ ωL

1 × { 0 } will itself be a generic set over L .9

Let QQQ = {1, 2, 12}ω
L

1 ∩ L with countable support, so that a typical element of QQQ is a partial map q ∈ L
from ωL

1 to the 3-element set { 1, 2, 12 } , with a domain dom q ⊆ ωL
1 countable in L , that is, just bounded 

in ωL
1 . (The choice of the 3-element set { 1, 2, 12 } is explained by later considerations, see Definition 13.3.) 

We order QQQ opposite to extension, that is, let q ≤ q′ (meaning: q is stronger) iff q′ ⊆ q . Thus QQQ ∈ L , and, 
inside L , QQQ is equal to the product { 1, 2, 12 }ω1 with countable support. Accordingly a QQQ-generic object is 
a full QQQ-generic map H : ωL

1 → { 1, 2, 12 } .
Recall that PPP is a CCC forcing in L by Corollary 10.6.

Lemma 13.1. PPP remains CCC in any QQQ-generic extension L[H] of L, therefore PPP×QQQ preserves cardinals 
over L.

Proof. Suppose towards the contrary that some q′ ∈ QQQ forces the opposite, that is, forces that C is an 
uncountable antichain in PPP, where C is a QQQ-name. Note that, in L , QQQ is countably complete: if q0 ≥ q1 ≥
q2 ≥ . . . is a sequence of conditions in QQQ then there is a condition q =

⋃
k qk ∈ QQQ satisfying q ≤ qk , ∀ k . 

Therefore, arguing in L , we can define by induction a decreasing sequence 〈qξ〉ξ<ω1 in QQQ and a sequence 
of pairwise incompatible conditions pξ ∈ PPP , such that q0 ≤ q′ and each qξ forces that pξ ∈ C . But then 
A = { pξ : ξ < ω1} ∈ L is an uncountable antichain in PPP, a contradiction. �
Lemma 13.2. Assume that a set G ×H is PPP ×QQQ-generic over L. Then

(i) all reals in L[G, H] belong to L[G];
(ii) if Δ ∈ L, Δ ⊆ ωL

1 × ω then all reals in L[G�Δ, H] belong to L[G�Δ];
(iii) if Δ ∈ L[H], Δ ⊆ ωL

1 × ω , and 〈ξ, k〉 ∈ ωL
1 × ω then xξk[G] ∈ L[G�Δ] iff 〈ξ, k〉 ∈ Δ.

Proof. (i) Note that QQQ may not be countably complete in L[G] any more, so that the most elementary 
way to prove (i) does not work. However consider L[G, H] as a PPP-generic extension L[H][G] of L[H] . Let 
x = .

x[G] be a real in L[H][G] , where .x ∈ L[H] is a PPP-real name as in Definition 7.1. But PPP is CCC in L[H]
by Lemma 13.1. Therefore we may assume that .

x is hereditarily countable in L[H] , that is, essentially a 
real. Yet L[H] has just the same reals as L , so we conclude that .

x ∈ L and x = .
x[G] ∈ L[G] .

The proof of (ii) is similar.

9 The countable number of instances of each factor Pξ in the product PPP =
∏

ξ<ωL

1
Pξ

<ω , crucial in the definition of the 
non-uniformization model above, is irrelevant to the non-separation model. In fact we’ll need just one copy of each Pξ , and 
the background model L[G�(ωL

1 × {0})] , a submodel L[G�Δ] (Δ ⊆ ωL

1 × { 0 }) of which we’ll use to prove Theorem 1.2, is a 
(
∏

ξ<ωL Pξ)-generic extension (one copy of each Pξ ) of L by Lemma 11.1.

1
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(iii) In the nontrivial direction, suppose that 〈ξ, k〉 /∈ Δ. Consider the set Δ′ = (ωL
1 × ω) � { 〈ξ, k〉 } ∈ L . 

As obviously G�Δ ∈ L[G�Δ′, H] , any real in L[G�Δ] belongs to L[G�Δ′] by (ii). But xξk[G] /∈ L[G�Δ′] by 
Lemma 11.4. �

Recall that if ν ∈ Ord then the ordinal product 2ν is considered as the ordered sum of ν copies of 
2 = { 0, 1 } . Thus if ν = λ + m , where λ is a limit ordinal or 0 and m < ω , then 2ν = λ + 2m and 
2ν + 1 = λ + 2m + 1.

Definition 13.3. If H : ωL
1 → { 1, 2, 12 } then let

1H = {ν < ωL
1 : H(ν) = 1} , 2H = {ν < ωL

1 : H(ν) = 2} ,
12H = {ν < ωL

1 : H(ν) = 12} ,
ΞH = {2ν : ν ∈ 1H ∪ 12H} ∪ {2ν + 1 : ν ∈ 2H ∪ 12H} ,
ΔH = ΞH × {0} = {〈ξ, 0〉 : ξ ∈ ΞH}.

If a set G ⊆ PPP is PPP-generic over L then consider the model L[G�ΔH ] and let HC(G, H) = (HC)L[G�ΔH ] . �
Note that L[G�ΔH ] is not necessarily a submodel of L[G] since the set ΔH does not necessarily belong 

to L[G] (unless H ∈ L[G]); but we have L[G�ΔH ] ⊆ L[G][H] , of course.

Theorem 13.4. Let a set G ⊆ PPP be PPP-generic over L and H : ωL
1 → { 1, 2, 12 } be a map QQQ-generic over

L[G]. Then it is true in L[G�ΔH ] that 1H and 2H are disjoint ΠHC
2 sets not separable by disjoint ΣHC

2
sets.

By boldface ΣHC
2 we always mean Σ2 definability in HC with any reals as parameters.

Proof. To see that, say, 1H is ΠHC
2 in L[G�ΔH ] , prove that the equality

1H = {ν < ω1 : ¬ ∃x (〈2ν + 1, x〉 ∈ W)}

holds in L[G�ΔH ] , where W is the ΠHC
1 set of Corollary 12.2. (For 2H it would be 〈2ν, x〉 ∈ W in the 

displayed formula.)
First suppose that ν < ωL

1 , ξ = 2ν + 1, x ∈ L[G�ΔH ] ∩ 2ω , and W(ξ, x) holds in L[G�ΔH ] ; prove that 
ν /∈ 1H . Note that x ∈ L[G] by Lemma 13.2(i). Further, by definition x is Pξ-generic over L , therefore 
x = xξk[G] for some k by Lemma 12.3, and we have 〈ξ, k〉 ∈ ΔH by Lemma 13.2(iii). Therefore ξ ∈ ΞH

and k = 0. But then ν ∈ 2H ∪ 12H , so ν /∈ 1H , as required.
To prove the converse, suppose that ν /∈ 1H , so that ν ∈ 2H ∪ 12H . Then ξ = 2ν + 1 ∈ ΞH , and hence 

x = xξ0 ∈ L[G�ΔH ] . It follows that 〈ξ, x〉 = 〈2ν + 1, x〉 ∈ W by Lemma 12.3, as required.
To prove the non-separability claim, suppose towards the contrary that, in L[G�ΔH ] , the sets 1H , 2H

are separated by disjoint ΣHC
2 sets A, B ⊆ ω1 = ωL

1 . The sets A, B are defined, in the set HC(G, H) =
(HC)L[G�ΔH ] , by Σ2 formulas, resp., ϕ(a, ξ) , ψ(a, ξ), with a real parameter a ∈ L[G�ΔH ] ∩ 2ω ; hence, 
a ∈ L[G] by Lemma 13.2. Let λ < ωL

1 be a limit ordinal such that a ∈ L[G�ΔHλ] , where ΔHλ =
ΔH ∩ (λ× {0}) ∈ L .

If K : ωL
1 → { 1, 2, 12 } (for instance, K = H ), then let

A∗
K = {ξ < ωL

1 : ϕ(a, ξ)HC(G,K)} , B∗
K = {ξ < ωL

1 : ψ(a, ξ)HC(G,K)} . (∗)

Then by definition 1H ⊆ A = A∗
H , 2H ⊆ B = B∗

H , and A∗
H ∩B∗

H = ∅ . Fix a condition q0 ∈ QQQ compatible 
with H (here meaning that simply q0 ⊂ H ), which forces the choice of A, B , so that,
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(†) if K : ωL
1 → { 1, 2, 12 } is a map QQQ-generic over L[G] and compatible with q0 , then 1K ⊆ A∗

K , 2K ⊆ B∗
K , 

and A∗
K ∩B∗

K = ∅ .

We may assume that dom q0 ⊆ λ , otherwise just increase λ .
Let ν0 be any ordinal, λ ≤ ν0 < ω1 . Consider the maps H1 , H2 , H12 : ωL

1 → { 1, 2, 12 } , generic over 
L[G] , compatible with q0 , and satisfying Hi(ν0) = i , i = 1, 2, 12, and H1(ν) = H2(ν) = H12(ν) for all 
ν �= ν0 . Then ΞH12 = ΞH1 ∪ { 2ν0 + 1 } by Definition 13.3, hence, L[G�ΔH1 ] ⊆ L[G�ΔH12 ] . It follows by 
Shoenfield that A∗

H1
⊆ A∗

H12
(since ϕ is an essentially Σ1

3 formula), therefore 1H1 ⊆ A∗
H1

⊆ A∗
H12

by (†). 
We conclude that ν0 ∈ A∗

H12
, just because ν0 ∈ 1H1 by the choice of H1 . And we have ν0 ∈ B∗

H12
by a 

similar argument (with H2 ). Thus A∗
H12

∩B∗
H12

�= ∅ , contrary to (†). The contradiction ends the proof. �
Example 13.5 (Non-separable Π1

3 sets). In the notation of Example 12.5, let

X = {wξ : ξ ∈ 1H} and Y = {wξ : ξ ∈ 2H} .

The sets X, Y ⊆ WO ∩ L are ΠHC(G,H)
2 together with 1H and 2H , and hence Π1

3 , and X ∩ Y = ∅ . 
(Recall that HC(G, H) = (HC)L[G�ΔH ] , Definition 13.3.) Suppose towards the contrary that X ′, Y ′ ⊆ 2ω
are disjoint sets in Σ1

3 , hence in ΣHC(G,H)
2 , such that X ⊆ X ′ and Y ⊆ Y ′ . Then

A = {ξ < ωL
1 : wξ ∈ X ′} and B = {ξ < ωL

1 : wξ ∈ Y ′}

are disjoint sets in ΣHC(G,H)
2 , and we have 1H ⊆ A and 2H ⊆ B by construction, contrary to Theo-

rem 13.4. � � (Theorem 1.2)

14. The failure of Σ1
3 separation persists

As the Π1
3 Separation, known to be true in L , fails in a certain generic extension of L by Theorem 1.2, 

one may ask what happens with the Σ1
3 Separation, known to fail already in L , in that same or similar 

extension.
Here, first of all, we can easily manufacture a version of the model of Section 13, where the Σ1

3 Separation 
fails for very similar reasons. Namely, coming back to Definition 13.3, we make use of the sets

Ξ′
H = {2ν : ν ∈ 1H} ∪ {2ν + 1 : ν ∈ 2H}

instead of ΞH , and Δ′
H = Ξ′

H × { 0 } . Then, similarly to Theorem 13.4, it is true in the model L[G�Δ′
H ]

that 1H and 2H are disjoint ΣHC
2 sets not separable by disjoint ΠHC

2 sets.
Moreover, it is possible to maintain both constructions in the same model, so that Separation fails in the 

model for both Σ1
3 and Π1

3 , see [5](A).
Yet it is perhaps not less interesting to prove that a counterexample to the Σ1

3 Separation in L survives 
in the extension say of the type considered in Section 13.

Theorem 14.1. Let a set G ⊆ PPP be PPP-generic over L and H : ωL
1 → { 1, 2, 12 } be a map QQQ-generic over

L[G]. Suppose that, in L, X, Y ⊆ 2ω are disjoint Σ1
3 sets not separable by disjoint Π1

3 sets. Then it holds 
in L[G�ΔH ] that X, Y are still Σ1

3 sets not separable by disjoint Π1
3 sets, and hence Σ1

3 Separation fails.

Proof. That X, Y are still Σ1
3 sets in L[G�ΔH ] holds by standard arguments, therefore we can focus on 

the non-separability claim.
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14.1. Contrary assumption and notation

Suppose to the contrary that, in L[G�ΔH ] , the sets X, Y are separable by disjoint Π1
3 sets A, B ⊆ 2ω∩L , 

so that X ⊆ A , Y ⊆ B , A ∩ B = ∅ . These sets A, B are defined, in L[G�ΔH ] , by Π1
3 formulas, resp., 

ϕ(a, ·) , ψ(a, ·), with a real parameter a ∈ L[G�ΔH ] ∩ 2ω . We let, for any map K : ωL
1 → { 1, 2, 12 } ,

A∗
K = {x ∈ 2ω ∩ L : ϕ(a, x)L[G�ΔK ]} ,

B∗
K = {x ∈ 2ω ∩ L : ψ(a, x)L[G�ΔK ]} ,

}
(**)

so that A∗
K and B∗

K are Π1
3 sets in L[G�ΔK ] , and, with K = H , we have X ⊆ A = A∗

H , Y ⊆ B = B∗
H , 

A∗
H ∩B∗

H = ∅ .
Let λ < ωL

1 be a limit ordinal such that a ∈ L[G�ΔHλ] , where ΔHλ = ΔH ∩ (λ× {0}) ∈ L (since 
L[H] does not add new reals to L), and let .a ∈ L be a (PPP�ΔHλ)-real name, countable in L and such that 
a = .

a[G�ΔHλ] (Lemma 11.2).

14.2. Reduction to a constructible map

We are going to define a map J : ωL
1 → { 1, 2, 12 } , which, unlike H above, belongs to L , but still the 

sets X, Y are separable by disjoint Π1
3 sets in L[G�ΔJ ] . To get such a map, let us fix a condition q0 ∈ QQQ

compatible with H which QQQ-forces, over L[G] , the choice of A, B , so that

(‡) if K : ωL
1 → { 1, 2, 12 } is a map QQQ-generic over L[G] and q0 ⊂ K then X ⊆ A∗

K , Y ⊆ B∗
K , 

A∗
K ∩B∗

K = ∅ .

We may assume that dom q0 ⊆ λ , otherwise just increase λ . Then q1 = H�λ is a condition in QQQ stronger 
than q0 and compatible with H . Recall that QQQ ∈ L .

If λ < ϑ ≤ ωL
1 then let a map Hϑ be defined so that still q1 ⊂ Hϑ—hence Hϑ�λ = H�λ = q1 , and also 

Hϑ�(ωL
1 �ϑ) = H�(ωL

1 �ϑ), but Hϑ(ν) = 2 whenever λ ≤ ν < ϑ . For instance Hλ = H , and if λ < ϑ < ωL
1

strictly then Hϑ is still QQQ-generic over L[G] . Let J = HωL
1
; J is a map ωL

1 → { 1, 2, 12 } , J �λ = q1 , and 
J (ν) = 2 for all ν ≥ λ . (J is not a QQQ-generic map, of course.)

Lemma 14.2. J ∈ L, X ⊆ A∗
J , Y ⊆ B∗

J , and A∗
J ∩B∗

J = ∅.

Proof. If ϑ ≤ γ < ωL
1 then obviously ΞHϑ

⊆ ΞHγ
and ΔHϑ

⊆ ΔHγ
, therefore, X ⊆ A∗

Hγ
⊆ A∗

Hϑ
and 

Y ⊆ B∗
Hγ

⊆ B∗
Hϑ

by Shoenfield and (‡). Sending ϑ to ωL
1 , we easily obtain the results required. �

Let’s look closer at the map J = HωL
1
. The set ΔJ = ΔHλ ∪

(
(ωL

1 � λ) × { 0 }
)

belongs to L , where, we 
recall, ΔHλ = ΔH ∩ (λ× {0}) ∈ L . It follows that L[G�ΔJ ] ⊆ L[G] . The parameter a in (**) belongs to 
L[G�ΔJ ] and the sets A∗

J and B∗
J of (**) are disjoint Π1

3 sets in L[G�ΔJ ] which separate X and Y by 
Lemma 14.2.

14.3. Evaluation of forcing

By Lemma 11.1, the model L[G�ΔJ ] is a (PPP�ΔJ)-generic extension of L , where PPP�ΔJ = { p ∈ PPP :
|p| ⊆ ΔJ} ∈ L is a subforcing of PPP . To estimate the complexity of the (PPP�ΔJ)-forcing relation in L , we 
introduce an auxiliary forcing relation p forcϕ , where p ∈ PPP�ΔJ while ϕ is a formula of certain type.

Let’s define some classes of formulas.
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Let Σ̃1
1 consist of all Σ1

1 formulas of the language of the 2nd order PA, with variables of the real type 
over 2ω , and with (PPP�ΔJ)-real names ci ∈ L , countable in L , as parameters. The collection Π̃1

1 is defined 
similarly. Let (Σ̃ + Π̃)11 be the closure of Σ̃1

1 ∪ Π̃1
1 under ¬ , ∧ , ∨ and both quantifiers over ω .

By induction, we define Σ̃1
n+1 , resp., Π̃1

n+1 (n ≥ 1) to consist of all formulas of the form ∃x ϕ(x), resp., 
∀x ϕ(x), where x is a variable over 2ω and ϕ is Π̃1

n , resp., Σ̃1
n (or ϕ is (Σ̃ + Π̃)11 whenever n = 1, in both 

cases). If ϕ belongs to Σ̃1
n , n ≥ 2, then let ϕ− be the result of canonical transformation of ¬ ϕ to Π̃1

n , and 
similarly for ϕ ∈ Π̃1

n . Separately, if ϕ ∈ (Σ̃ + Π̃)11 then ϕ− is just ¬ ϕ .
The definition of the relation pforcϕ in (A), (B), (C) goes on by induction on the complexity of formulas 

ϕ in (Σ̃ + Π̃)11 ∪ Σ̃1
2 ∪ Π̃1

2 ∪ Σ̃1
3 ∪ Π̃1

3 ∪ . . . .

(A) Let ϕ = ϕ(c1, . . . , cn) belong to (Σ̃ + Π̃)11 . We define p forcϕ iff p (PPPα�ΔJ)-forces ϕ in the usual 
sense over Mα , where, we recall, PPPα = MT(pα), and α is any ordinal such that p ∈ PPPα�ΔJ , the 
condition q1 = H�λ belongs to Mα , and each name ci in ϕ is a (PPPα�ΔJ )-real name.

Lemma 14.3. The definition in (A) does not depend on the choice of α.

Proof. [Lemma] It suffices to prove that if α is as indicated then p (PPPα�ΔJ )-forces ϕ over Mα iff p
(PPP�ΔJ )-forces ϕ over L in the usual sense.

To prove =⇒ , suppose that p does not (PPP�ΔJ )-force ϕ over L , so that (in a bigger universe) there is 
a set g ⊆ PPP�ΔJ , (PPP�ΔJ)-generic over L , containing p, and ϕ[g] is false in L[g] . Then g′ = g ∩ (PPPα�ΔJ)
is (PPPα�ΔJ )-generic over Mα by Corollary 10.4, and the formula ϕ[g] = ϕ[g′] = ϕ(c1[g′], . . . , cn[g′]) is false 
in Mα[g′] by Shoenfield. Thus p does not (PPPα�ΔJ)-force ϕ over Mα .

Conversely if p does not (PPPα�ΔJ )-force ϕ over Mα then there is a stronger condition q ∈ PPPα�ΔJ which 
forces ¬ ϕ over Mα . Then q (PPP�ΔJ)-forces ¬ ϕ over L by the above, hence p does not (PPP�ΔJ)-force ϕ
over L . �
(B) We define that p forc∃x ϕ(x) (x being a variable over 2ω ), where ϕ is a formula in (Σ̃ + Π̃)11 or Π̃1

n , 
n ≥ 2, iff there is a (PPP�ΔJ )-real name c ∈ L , countable in L and such that p forcϕ(c).

(C) We define that p forcϕ , where ϕ belongs to Π̃1
n , n ≥ 2, iff no condition q ∈ PPP�ΔJ stronger than p

satisfies p forcϕ− .

The following lemma shows that forc is an adequate approximation of the true (PPP�ΔJ)-forcing over L
as the ground model.

Lemma 14.4. Suppose that p ∈ PPP�ΔJ , ϕ is a closed formula in (Σ̃ + Π̃)11 ∪ Σ̃1
2 ∪ Π̃1

2 ∪ Σ̃1
3 ∪ Π̃1

3 ∪ . . . , 
and g ⊆ PPP�ΔJ is a set (PPP�ΔJ )-generic over L. Then ϕ[g] is true in L[g] iff there is a multitree p ∈ g
satisfying p forcϕ.

Proof. We argue by induction. If ϕ is a formula in (Σ̃ + Π̃)11 then p forcϕ iff p (PPP�ΔJ )-forces ϕ over L
in the usual sense (see the proof of Lemma 14.3), so the result immediately follows. The steps Π1

n → Σ1
n+1

are justified by Lemma 11.2, on the base of (B). The steps Σ1
n → Π1

n (n ≥ 2) are justified, on the base of 
(C), the same way as in the case of usual forcing. � (Lemma)

The next lemma evaluates the complexity of the relation forc.

Lemma 14.5 (in L). Let ϕ(v1, . . . , vm) be a formula in (Σ̃ + Π̃)11 or in Σ̃1
n ∪ Π̃1

n , n ≥ 2, with exactly m

free variables v1, . . . , vm , all of them over 2ω . Then
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(i) if ϕ belong to (Σ̃ + Π̃)11 then the set

Wϕ = {〈p, c1, . . . , cm〉 : p ∈ PPP�ΔJ ∧ p forcϕ(c1, . . . , cm)}

belongs to ΔHC
1 (q1);

(ii) if ϕ is a Σ̃1
n formula, n ≥ 2, then the set Wϕ belongs to ΣHC

n−1(q1);
(iii) if ϕ is a Π̃1

n formula, n ≥ 2, then the set Wϕ belongs to ΠHC
n−1(q1).

Proof. (i) Any forcing relation over a countable transitive model M is known to be ΔHC
1 uniformly on M

and the forcing notion P ∈ M involved, while q1 = H�γ is a parameter to naturally define J and ΔJ . On 
the other hand, α �→ Mα and α �→ MT(pα) are ΔHC

1 maps by Proposition 9.2. And finally the choice of α
itself, given a multitree and a finite set of names, can be made in both ΣHC

1 and ΠHC
1 way, see (A) above.

To prove (ii) and (iii) use induction based on (B), (C) above. � (Lemma)

14.4. Constant names

Now we introduce a subset of constant names among the (PPP�Δ)-real names (see Section 11). Suppose 
that x ∈ 2ω ∩ L . Define a (PPP�ΔJ )-real name x = 〈Cni(x)〉n<ω, i<2 (a canonical name for x), where

Cni(x) =
{

∅, whenever x(n) �= i ,

{Λ}, whenever x(n) = i ,

and Λ is the default multitree with |Λ| = ∅ , see Section 4.
Then x ∈ L and x[G] = x for any non-empty set G ⊆ PPP�ΔJ .
Recall that .a ∈ L is a (PPP�ΔHλ)-real name, and by construction it is a (PPP�ΔJ )-real name as well (since 

q1 = H�λ = J�λ), and we have

a = .
a[G�ΔHλ] = .

a[G�ΔJ ] ∈ L[G�ΔJ ] ,

see Step 1 above. The next corollary deals with Π1
3 formulas ϕ , ψ of Step 1. Their adjusted negations ϕ−

and ψ− are Σ1
3 , of course.

Corollary 14.6. (Of Lemma 14.5.) It is true in L that the sets

Φ = {〈r, x〉 : r ∈ PPP�ΔJ ∧ x ∈ 2ω ∧ r forcϕ−( .a, x)} ,
Ψ = {〈r, y〉 : r ∈ PPP�ΔJ ∧ y ∈ 2ω ∧ r forcψ−( .a, y)}

belong to ΣHC
2 (q1, 

.
a), hence, to Σ1

3 . �
14.5. Final argument

Here we accomplish the proof of Theorem 14.1. Recall that J ∈ L is a map ωL
1 → { 1, 2, 12 } , G ⊆ PPP is a 

set PPP-generic over L , and we deal with the model L[G�ΔJ ] (see Definition 13.3 on ΔJ ), which is a G�ΔJ -
generic extension of L . Moreover by Lemma 14.2 the following is true in L[G�ΔJ ] :

∀x ∈ X ϕ(a, x) , ∀ y ∈ Y ψ(b, y) , ∀ z ∈ 2ω ¬ (ϕ(a, z) ∧ ψ(b, z)) .

This is PPP�ΔJ -forced by a multitree p ∈ G�ΔJ , or, to be more pedantic, the multitree p (PPP�ΔJ)-forces 
ϕ( .a, x) ∧ψ( .a, y) over L , whenever x ∈ X and y ∈ Y , and also forces ¬ (ϕ( .a, z) ∧ψ( .a, z)), whenever z ∈ 2ω .
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Corollary 14.7. (In L.) Assume that q ∈ PPP�ΔJ , q ≤ p, and z ∈ 2ω . Then

(i) there is a multitree r ∈ PPP�ΔJ , r ≤ q , such that 〈r, z〉 ∈ Φ ∪ Ψ;
(ii) if z ∈ X then 〈q, z〉 /∈ Φ, and similarly if z ∈ Y then 〈q, z〉 /∈ Ψ.

Proof. (i) As p forces ¬ (ϕ( .a, z) ∧ ψ( .a, z)), there is a condition r ∈ PPP�ΔJ , r ≤ q , which (PPP�ΔJ )-forces 
¬ ϕ( .a, z) or forces ¬ ψ( .a, z). By Lemma 14.4 we can assume that r forcϕ−( .a, z) or r forcψ−( .a, z), that 
is, 〈r, z〉 ∈ Φ ∪ Ψ.

(ii) Suppose that 〈q, z〉 ∈ Φ. Then by definition q forcϕ−( .a, z), hence q (PPP�ΔJ )-forces ¬ ϕ( .a, z) by 
Lemma 14.4. Then z /∈ X by the choice of p. �

Corollary 14.7(i) allows to define, in L , a transfinite sequence of pairs 〈qξ, zξ〉 , ξ < ωL
1 , such that 

qξ ∈ PPP�ΔJ , qξ ≤ p , 〈qξ, zξ〉 ∈ Φ ∪Ψ for all ξ , and { zξ : ξ < ωL
1 } = 2ω ∩L . In addition, by Corollary 14.6, 

we can maintain the construction so that the sequence belongs to ΣHC
2 (q1, 

.
a) together with the sets Φ, Ψ, 

hence in fact to ΔHC
2 (q1, 

.
a) as the domain ω1 is a ΔHC

1 set. It follows that the sets

A′ = {z ∈ 2ω : ∃ ξ < ωL
1 (〈qξ, zξ〉 ∈ Ψ ∧ z = zξ)} ,

B′ = {z ∈ 2ω : ∃ ξ < ωL
1 (〈qξ, zξ〉 ∈ Φ ∧ z = zξ)}

belong to ΣHC
2 (q1, 

.
a), hence, to Σ1

3 , and satisfy A′ ∪ B′ = 2ω L . Therefore, by the Reduction theorem of 
Addison, it is true in L that there exist disjoint Σ1

3 sets A ⊆ A′ and B ⊆ B′ such that A ∪B = A′∪B′ = 2ω , 
so that both A and B in fact belong to Δ1

3 .
Now to prove Theorem 14.1 by getting a contradiction, it remains to check that X ⊆ A and Y ⊆ B—so 

X, Y are separable by a Δ1
3 set in L . By construction it suffices to verify that X ∩ B′ = Y ∩ A′ = ∅ . 

Suppose that say z ∈ X ∩ B′ . By definition there is a multitree q such that q ≤ p and 〈q, z〉 ∈ Φ. But 
then z /∈ X by Corollary 14.7(ii), as required. � (Theorem 14.1)
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