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1. Introduction

The uniformization problem, introduced by Luzin [17,18], is well known in modern set theory. (See

Moschovakis [19], Kechris [16], Hauser and Schindler [6] for both older and more recent studies.) In particular,

it is known that every X} set can be uniformized by a set of the same class X3, but on the other hand, there

is a I} set (in fact, a lightface I13 set), not uniformizable by any set in II}. The negative part of this result

cannot be strengthened much further in the direction of the absence of more complicated uniformizing sets

since any II} set admits a Al-uniformization assuming V = L and admits a ITi-uniformization assuming
the existence of sharps (the Martin-Solovay—Mansfield theorem, [19, 8H.10]).
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However, the mentioned ITi-non-uniformization theorem can be strengthened in the context of consis-
tency. For instance, the I3 set

P={(z,y) : 2,y €2 ANy ¢ Lz]}

is not uniformizable by any ROD (real-ordinal definable) set in the Solovay model and many other models of
ZFC in which it is not true that V = L[z] for a real z, and then the cross-sections of P can be considered
as “large”, in particular, they are definitely uncountable. Therefore one may ask:

Question 1. Is it consistent that there is a ROD-non-uniformizable I3 set P such that all cross-sections
P, ={y : (z,y) € P} are at most countable?

This question is obviously connected with another question, initiated and briefly discussed at the Math-
overflow exchange desk® and at FOM*:

Question 2. Is it consistent with ZFC that there is a countable definable set of reals X # @ which has no
OD (ordinal definable) elements.

Ali Enayat (footnote 4) conjectured that Question 2 can be solved in the positive by the finite-support
product P<“ of countably many copies of the Jensen “minimal 13 real singleton forcing” P defined in
[9]. Enayat demonstrated in [2] that a symmetric part of the P <“-generic extension of L, the constructible
universe, definitely yields a model of ZF (not a model of ZFC!) in which there is a Dedekind-finite infinite
OD set of reals with no OD elements.

Following the mentioned conjecture, we proved in [14] that indeed it is true in a [P <“-generic extension
of L that the set of P-generic reals is a countable non-empty I3 set with no OD elements.’ Using a
finite-support product ]_[5 <o, P ¢<“, where the forcing notions P¢ are pairwise different clones of Jensen’s
forcing P, we answer Question 1 in the positive.

Theorem 1.1. In a suitable generic extension of L, it is true that there is a lightface 113 set P C 2% x 2%
whose all cross-sections Py, = {y : (z,y) € P} are at most countable, but P is not uniformizable by a ROD
set.

Using an appropriate generic extension of a submodel of the same model, similar, to some extent, to
models considered in Harrington’s unpublished notes [5], we also prove

Theorem 1.2. In a suitable generic extension of L, it is true that there is a pair of disjoint lightface II}
sets X,Y C 2, not separable by disjoint X3 sets, and hence II3 Separation and II} Separation fail.

This result was first proved by Harrington in [5] on the basis of almost disjoint forcing of Jensen—Solovay
[10], and in this form has never been published, but was mentioned in [19, 5B.3] and [7, page 230]. A com-
plicated alternative proof of Theorem 1.2 can be obtained with the help of countable-support products and
iterations of Jensen’s forcing studied earlier in [1,11,12]. The finite-support approach which we pursue here

A question about ordinal definable real numbers. Mathoverflow, March 09, 2010. http://mathoverflow.net/questions/17608.
Ali Enayat. Ordinal definable numbers. FOM Jul 23, 2010. http://cs.nyu.edu/pipermail /fom/2010-July /014944 html.
Jensen’s forcing below, for the sake of brevity—on this forcing, see also 28A in [8].

We also proved in [15] that the existence of a IT; Eg-class with no OD elements is consistent with ZFC, using a Eg-invariant
version of the Jensen forcing. A related consistency result on countable Groszek—Laver pairs, established by similar methods, will
appear in [3].
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yields a significantly more compact proof, which still uses some basic constructions from [5]. As far as The-
orem 1.1 is concerned, countable-support products and iterations hardly can lead to the countable-section
non-uniformization results.

We recall that IT} Separation holds in L. Thus Theorem 1.2 in fact shows that the IT} Separation
principle is destroyed in an appropriate generic extension of L. It would be interesting to find a generic
extension in which, the other way around, the X} Separation (false in L) holds. This can be a difficult
problem. At least, the model used to prove Theorem 1.2 does not help: we prove (Theorem 14.1 below)
that any pair of disjoint X1 sets, non-separable by disjoint IT3 sets in L, remains 3! and non-separable
by disjoint IT} sets in the extension.

2. Trees and splitting

Let 2<% be the set of all strings (finite sequences) of numbers 0,1. If t € 2<% and ¢ = 0,1 then "¢
is the extension of ¢ by . If s, € 2<% then s C ¢t means that ¢ extends s, while s C ¢ means proper
extension. If s € 2<¢ then 1h(s) is the length of s, and 2" = {s € 2<% : 1h(s) = n} (strings of length n).

A set T C 2<% is a tree iff for any strings s C ¢t in 2<%, if ¢ € T then s € T'. Thus every non-empty tree
T C 2<% contains the empty string A.

IfTC2%isatreeand s€T thenput T, ={t€T : sCtVtCs}.

Let PT be the set of all perfect trees @ # T C 2<%. Thus a non-empty tree T C 2<% belongs to PT iff
it has no endpoints and no isolated branches. Then there is a largest string s € T such that T'=T'[; it is
denoted by s = stem(T') (the stem of T'); we have s"1 € T and s"0 € T in this case.

Definition 2.1 (Perfect sets). If T € PT then [T] = {a€2¥ : Vn(aln € T)} is the set of all paths
through T, a perfect set in 2. O

The simple splitting of a tree T € P'T consists of smaller trees
T(_> O) = Trstem(T) A0 and T(_> 1) = Trstem(T) AN

so that [T(— )] ={x € [T] : «(h) =i}, where h = 1h(stem(T)). Clearly T(— i) € PT. The splitting can
be iterated, so that if s € 2" then

T(—=s)=T(= s(0))(—= s(1))(—=s(2)...(= s(n—1)).
We separately define T'(— A) = T, for the empty string A.
Lemma 2.2. Suppose that T € PT. If uw € T then there is a unique string s € 2<% such that T(— s)

T1, . Conversely, if s € 2<“ then the string u[s] = stem(T(— s)) belongs to T and we have T(— s) =
T 0

uls] -

IfT,5S€PT and n € w then let S C, T (S n-refines T) mean that S(— s) C T(— s) for all strings
s € 25" In particular, S Co T iff simply S C T. By definition if S C,,,; T then we have S C,, T (and
S CT), too.

Lemma 2.3. Suppose that T € PT and n <w. Then T = J 0. T(— 5) and [T(— s)|N[T(—t)] =@ for
all s#t in 2™.

In addition if Ys € PT and Y; CT(— s) for every s € 2™, then T' =
Y, for all s € 2™, and hence T' C,, T. O

scon Ys € PT and T'(— s) =
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Lemma 2.4 (Fusion). Let ... C5 Ty Cy T35 C3 To Cy Th S To be an infinite decreasing sequence of trees
in PT. Then T = (), T, € PT, and if n < w and 1h(s) < n+1, then T(—s) = TNT,(—s) =

ﬂmZn Tn(—s). O
3. Perfect-tree forcing notions

Let a perfect-tree forcing notion (sometimes called arboreal forcing) be any set P C PT such that if
u€eT € P then T, € P. Let PTF be the set of all such sets P. A perfect-tree forcing notion P € PTF
is reqular if 2<% € P.

Any set P € PTF can be considered as a forcing notion (if 77 C T” then T is a stronger condition);
such a forcing P obviously adds a real in 2¢.

Example 3.1. If s € 2<% then the tree T[s] = {t €2<¥ : s C tVt C s} belongs to PT and T[s] =
(2<9) (= s) = (2<9)],, Vs. The set Peop =
forcing notion. O

{T'[s] : s € 2<¥} (the Cohen forcing) is a regular perfect-tree

If PCPT, TePT, n<w,and all split trees T(— s), s € 2", belong to P, then we say that T is a
n-collage tree over P. Let CT,(P) be the set of all trees T' € PT which are n-collage trees over P, and
let CT(P)=J, CT,(P).

Lemma 3.2.

(i) If Te P e PTF and s € 2<¥ then T(—s) € P.
(ii) If P e PTF and n <w then P =CTy(P)C CT,(P)C CT,4+1(P).
(iii) If P € PTF, n < w, and, in Lemma 2.3, every tree Y belongs to P, then the resulting tree T’
belongs to CT,,(P).

Proof. To prove (i) use Lemma 2.2. To prove (ii) use (i). O
Lemma 3.3 (Disjoint splitting). Let P, P’ be perfect-tree forcings. Then

(i) if T € P and T' € P’, then there are trees S € P, S’ € P’ such that S C T, S" C T', and
[S|N[S]=2.

(ii) if n<w and T € CT,(P), T' € CT,(P’), then there exist trees S € CT,(P), S’ € CT,(P’) such
that SC,, T, 8" C, T, and [S|N[Y] =2.

Proof. (i) If T'=1T" thenlet s = stem(T) and S =T [ ng, S =T ;. Ifsay T € T" thenlet u € T\T",
S =T, and simply S =T". To prove (ii) iterate (i) and make use of Lemma 3.2(iif). O

4. Multitrees and splitting systems

Suppose in this Section that ¥ € Ord and p = (P¢)e<y is a sequence of sets P, € PTF; we’ll call such
a p a PTF-sequence (of length ). Sequences of this type will be systematically considered below, and if
g = (Q¢)e<v is another such a sequence of the same length then we let pvVg = (P¢ U Qg)ecy-

£<9

Definition 4.1. A multitree is a “matrix” of the form p = <T§pk->k<w

support |p| = {(&, k) : Tg’k # 2<%} is finite. Let

where each TgC belongs to PT and the
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[p] = {z €27 : V(& k) € |p| (x(&, k) € [T])} =
= {z €29 . V(& k) € |p|Vm (x(& k) [m € TH)}

in this case; this is a cofinite-dimensional perfect cube in 29%%.
If p=(P¢)ecy is a PTF-sequence then a p-multitree is any multitree p with Tg’k € PcU{2<¥} for all
&, k. Let MT(p) be the set of all p-multitrees. O

The set MT(p) is equal to the finite support product [[;_,(P¢U{2“})* of (¢ x w)-many factors, with
each factor P¢ in w-many copies. We order MT(p) componentwise: g < p (g is stronger) iff quk - Tg;
for all £, k. The forcing MT(p) adds a “matrix” <xgk>§2i, where each x¢;, € 2¢ is a P¢-generic real. The
multitree A defined by Tg}C = 2<% for all ¢, k, belongs to MT(p), satisfies |[A| = @ and [A] = 29*¢ and
is the weakest condition.

The intention of the next definition is to formalize the construction of “generic” multitrees by means of
Lemma 2.4 in the next section.

Definition 4.2. A p-system is a “matrix” ¢ = <<h2’m, Tgpm>>§n<<ﬁw,

where

(1) if £ <¥ and m < w then A7, € wU{-1}, and |p| = {({,m) : A, # —1} (the support of ¢) is a
finite set;

(2) if (§,m) € |p] then 78 =(T7,(0),1F,(1),..., T, (hE,)), where each T, (h) is a tree in CTy(P¢)
and Tf, (h) Cp, 7, (h—1) whenever 1 <h < hf , whileif h7, = —1 then simply 77 = A (the empty

sequence).

In this case, if h < A7 and s € 2" then let T4, (s) = T, (h)(— s); then the tree T (s) belongs to P¢
since T, (h) € CTx(Pe¢).”
Let MS(p) be the set of all p-systems. O

Say that a system ¢ € MS(p) is pairwise disjoint if T7, (hf,)NT, (hf,) = @ for all pairs (§,m) # (n,n)
in [¢].

Let ¢,1 € MS(p). Say that ¢ extends ¢ € MS(p), symbolically ¢ < ¢, if || C |¢|, and, for every
(&;m) € |[¢], we have hf, > hg’m and 77 extends Tg’m, so that simply T (h) = Tg’m(h) for all h < h?m.

Say that a multitree p occurs in a system ¢ € MS(p) if for each pair (£, k) € |p| there is a number
m = mye <w and a string s = spe € 2<% with 1h(s) < hf, such that T§, =T (s)—then p € MT(p),
of course.

Lemma 4.3. Let p = (P¢)ecy be a PTF-sequence and ¢ € MS(p).

(i) If (&m) € |p| and h = h{,, then the extension ¢’ of ¢ by h?r/n =h+1 and Tgi;(h—i— 1) =18, (h)
belongs to MS(p) and ¢ < ¢'.
(ii) If (€,m) ¢ |p| then the extension ¢' of ¢ by |¢'| = || U{(&,m)}, hgn =0 and Tg’y;(O) =T, where
T € P¢, belongs to MS(p) and ¢ < ¢'.
(iii) There is a pairwise disjoint system ¢ € MS(p) such that |¢'| = |¢| and ¢ < ¢'.

Proof. (i) Use Lemma 3.2(ii) and the fact that T'C,, T for all n, T'.
To prove (iii) use Lemma 3.3(ii). O

7 Note that the split trees TE () = T4, (h)(—s) (h<hE,, s€ 2") belong to P¢, while the trees T, (h), which actually

m £Em >

participate in ¢, are assumed to only belong to CT},(P¢).
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5. Jensen’s extension of a perfect tree forcing

Let ZFC’ be the subtheory of ZFC including all axioms except for the power set axiom, plus the axiom
saying that & (w) exists. (Then w; and some typical sets related to the continuum, like PT, exist, t0o.)
Let 9 be a countable transitive model of ZFC'.

Suppose in this Section that p = (P¢)ecp € M is a PTF-sequence of (countable) sets P, € PTF, of a
fixed length 6 < wi™. Then the sets P¢ for all £ < 8, as well as the sets MT(p) and MS(p), belong to
M, too.

Definition 5.1. (i) Let us fix any =<-increasing sequence ¢ = (p(j)) <. of systems ¢(j) € MS(p), generic
over MM in the sense that it intersects every set D € M, D C MS(p), dense in MS(p).*

(ii) Suppose that £ < 6 and m < w. In particular, the sequence ¢ intersects every (dense by Lemma 4.3(i),
(ii)) set of the form

Demn = {p € MS(p) : hf,, >h}, whereh <w.
Therefore if £ <6 and m < w then by definition there is an infinite sequence

of trees T?m(h) € CTy(P), such that, for any j, if (£, m) € |p(j)| and h < h?g) then Tgnsj)(h) = Tg)m(h).

If h <w and s € 2" then we let ngm(s) = Tgbm(h)(—> s); then ngm(s) € P¢ since szm(h) € CTy(Py).
(iii) Then it follows from Lemma 2.4 that each set

Ugm =M Tgmm) = MNh Usean T?m(‘g)

is a tree in PT (not necessarily in P¢ ), as well as the trees Uqgm(s) = U?m(—> s), and still by Lemma 2.4,

Udgbm(s) = Udgm N ngm(s) = ﬂhzlh(s) T’dgm(h)(_> S) ’

and obviously U?m =U dgm(A).
(iv) If £ < 0 then let Ug = {U?m(s) tm<wASsE2WE,
Let u= (Ug)ecp and pVu = (P¢ UU¢)ecp. O

Lemma 5.2.

(i) If € <0 then the sets Ug and P¢UUg belong to PTF ;

(if) of € <6, m < w, and strings s C t belong to 2<% then [T?m(s)] C [ngm(t)} and [U?m(s)}
[Uen (]

(iii) if £ < 6, m < w, and strings t' # t in 2<¥ are C-incomparable then [U?m(t’)] N [Ud;m(t)] =
[T ()N [Te,(t)] = 2.

N

Proof. To prove (iii) note that [T¢,,(s"0)] N [T¢,, (s"1)]=2. O

The following two lemmas present rather simple consequences of genericity of the background sequence
of systems ¢ = (¢(j));j<w in Definition 5.1.

8 Meaning that for any 1 € MS(p) there is ¢ € D with ¢ < ¢.
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Lemma 5.3. If ({,m) # (n,n) then [U?m] N [Uj];n] =g
Therefore if U € UE<® Ue then there is a unique triple of € < 6, m < w, and s € 2<¥ such that
U= Uzbm(s).

Proof. By Lemma 4.3(iii), the set D of all pairwise disjoint systems is dense. O
Lemma 5.4. Let £ < 0. The set Ug is dense in Ug U Pg.

Proof. If T € P, then the set D(T) of all systems ¢ € MS(p), such that Tg’m(O) =T for some m, belongs
to M and obviously is dense in MS(p). It follows that ¢(J) € D(T) for some J < w, by the choice of ¢.
Then szm(A) =T for some m < w. However U?m(A> C T?m(A). O

6. Preservation of density

This Section contains several key results related to pre-dense sets in the frameworks of Jensen’s extension
construction. We still suppose that 90 is a countable transitive model of ZFC', p = (Pe)eco € Misa PTF-
sequence of (countable) sets P¢ € PTF, of a fixed length 6 < w{™, and we argue in terms of Definition 5.1.

Lemma 6.1. If £ <0 and a set D € M, D C P is pre-dense in P¢, and U € Ug, then U C* |J D, that
is, there is a finite set D' C D with U C |JD’.

Proof. Suppose that U = U?M, M < w. The set A € M of all systems p € MS(p) such that (£, M) € |¢],
and for each ¢ € 2", where h = hy» there is a tree S; € D with T§,(t) € Sy, is dense in MS(p) by the
pre-density of D. Therefore there is an index j such that ¢(j) € A. Let this be witnessed by trees S; € D,
t € 2" where h = hﬁj), so that Tgpj\(j)(t) C S, Vt. Then

U= Ung(S) g UgbZ\J(A) g UtEQh Tg]\(/;)(t) g UtEQh St - UDI
by construction, where D' = {S; : t € 2"} C D is finite. O

Corollary 6.2. If £ < 0 and trees T,T" € P¢ are incompatible in P¢ then T,T" remain incompatible in
[Ug @] [Pg.

Proof. By the incompatibility assumption, if S € P¢ then either S € T or S Z T”. In both cases, there is
a smaller tree S’ € P¢, S’ C S, such that [S'|N[T]N[T'] = @. It follows that the set D of all trees S € P
satisfying [S]N[T]N[T'] = @ is dense in P¢. It remains to apply Lemma 6.1. 0O

Theorem 6.3. In the assumptions above, if a set D € M, D C MT(p) is pre-dense in MT(p) then it
remains pre-dense in MT(pVu).

Proof. Given a multitree p € MT(pVu), let us prove that p is compatible in MT(pVu) with a multitree
q € D. By Lemma 5.4, assume that p € MT(u). Then each term T of p ((§, k) € [p|) is equal to some
Uf’mgk(sék), where mgj, < w and si;, € 2<“. Choose a number h > max{1lh(s;;) : (£,k) € |p|} big enough
for there to exist strings s¢; € 2" such that sgr C se and sg # sy whenever pairs (€, k) # (1, £) belong to
|p|. Define a multitree w € MT(u) so that |u| = |p| and T} = Ugmgk(s&) for all (£, k) € |u|. Obviously
u < p.

Consider the set A € M of all systems ¢ € MS(p) such that there is a number H > h and multitrees
g€ D and r € MT(p), satisfying r < g and
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(1) |u|] C|r| and r occurs in ¢;
(2) if (£, k) € |u| then (&, mer) € ||, h?mgk = H, and T}, = Tf

Emep

(tfk), where ter € 2 and Sek C teg-

Lemma 6.4. The set A is dense in MS(p).

Proof. [Lemma] Suppose that 1 € MS(p); we have to find a system ¢ € MS(p) with ¢ < ¢. First of all,
by Lemma 4.3(i) we can assume that there is a number g > h such that h'é’m = g for all ({,m) € [¢]|. We
can also assume that if (£, k) € |u| then (£, mex) € |¢], for if not then just add (£, me) to || and define
h?msk =g and Tg’mik (n) =8 for all n < g, where S € P,, is any tree, one and the same for all n.

Let H = g+ 1. Define a system x € MS(p) extending % so that |x| = [¢[, and hy, = H, T} ,(H) =
Tg’m(g) for all (€, m) € |¢|; then 1 < x. Pick strings t¢, € 28 with sg, C tep for all (€,k) € |u|. Then we
have tgp # tne whenever pairs (£, k) # (n,£) belong to |u|, by the choice of s¢j.

Define a multitree w € MT(p) by |m| = |u| and T}, = fo,mgk(tfk) for all (¢, k) € |u|. By the pre-density
of D there exist multitrees ¢ € D and r € MT(p), such that » < g and r < 7; then |u| = |=x| C |r|.

Now define a system ¢ € MS(p) so that x| C |¢| and h{,, = A}, = H, T/, (n) = T} (n) for all
(&,m) € |x| and n < H. As for the values Tgam(H) and possible additional pairs in || \ |x|, proceed as
follows.

(I) If some pair ({,m) € |x| is not of the form (&, mex), where (£, k) € |u| = |m|, then simply keep
TS, (H) = T2, ().

(II) Now suppose that (£,k) € |mw| = |ul, so that (§,mgx) € [x|. Then Tf; = RC T =17 = Témgk(tﬁk)
since r < 7. We let Tgmgk (tex) = R.

Note that all trees R involved in (I) belong to P¢ since » € MT(p). Therefore, by Lemma 3.2(iii), the
definition of the values of T¢, (t) for different m = m¢y and t = tgy, € 2" by (I) still results in trees T¢,, (H)
in CTH( P 5) .

(IIT) Finally suppose that (¢, k) € ||\ |u|. Then pick a number my,; < w such that (£, mz;) ¢ |¢| (and take
care that all my, are pairwise different), add (£, mg,,) to [¢[, and put h?,mgk =0 and szék (0) =Tg,.

The system ¢ still belongs to MS(p) (since » € MT(p)) and satisfies ) < ¢ (as we only change the Hth
level of x absent in 1), and r occurs in ¢ and satisfies » < g and (1), (2) by construction. [ (Lemma)

By the lemma, there is an index j such that the system ¢(j) belongs to A. Let this be witnessed by a
number H > h, multitrees g € D and » € MT(p), and strings t¢, € 22, satisfying r < q and (1), (2) for
¢(j) instead of ¢. Define a multitree v € MT(u) by |v| = |r[, T = Ung,mﬁk(tgk) for all (¢,k) € |ul, and

o if (£, k) € |r| \ |u| then, as r occurs in ¢(j) by (1), there is a number m < w and a string ¢t € 2<%
such that (&,m) € |¢(j)|, 1h(t) < h?frf), and T7, = Tgifl])(t)—in this case put T, = Ug.(t).

Then v < w (since sgr C ter), therefore v < u < p. Moreover v < r. Indeed if (¢, k) € |u| then
Ty = UL, (tex) CTE ., (ter) = ngik(t%) = T}, . Similarly if (€, k) € |r| . u| then still T, C T7, by
the same argument. Thus v witnesses that p is compatible with g € D. O

7. Real names and direct forcing

Let 90 be still a countable transitive model of ZFC’ and p = (P¢)e<p € M be a regular PTF-sequence
of length ® < w; those are fixed in this section. Our goal will be to introduce a suitable notation related
to names of reals in 2 in the context of forcing notions of the form MT(p).
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Definition 7.1. A MT(p)-real name is a system ¢ = (Ch;i)n<w, i<z of sets Cp; € MT(p) such that each
set C,, = Cpo U Cypy is dense or at least pre-dense in MT(p) and if p € C,0 and g € Cy,1 then p,q are
incompatible in MT(p).

Ifaset G C MT(p) is MT(p)-generic at least over the collection of all sets C,, then we define ¢[G] € 2¢
so that ¢[G](n) =i it GNCy; #2. O

Thus any MT(p)-real name ¢ = (C,;) is a MT(p)-name for a real in 2%.
Recall that MT(p) adds a generic sequence (Z¢r)e<p,r<w Of reals xep € 2¢.

Example 7.2. If £ < 6 and k < w then define a MT(p)-real name ¢ = (Cﬁf)n<w,i<2 such that each set
C’fj contains all (finitely many) multitrees » € MT(p), such that |r| = {(¢,k)} and T} = [s] = {t € 2<“ :
s CtVtC s}, where s € 28! (a string of length k + 1) and s(k) = i.

Note that every multitree r = 7¢p¢ of this form belongs to MT(p). Indeed since the PTF-sequence p
considered is assumed to be regular, we have 2<“ € P¢. It follows that [s] € P¢ as well for any £ and any
string s € 2<¢, and hence r¢s € MT(p). Therefore the name @¢;, defined this way is a MT(p)-real name
of the real x¢y, the (&, k)th term of a MT(p)-generic sequence (Tex)e<o, k<w- O

Let ¢ = (Cp;) and d = (D,;) be MT(p)-real names. Let us say that a multitree p (not necessarily
p € MT(p)):

o directly forces c(n) =i, where n < w and i =0, 1, iff there is a multitree g € C,,; such that p < g;

o directly forces s C ¢, where s € 2<% iff for all n < 1h(s), p directly forces c(n) =i, where i = s(n);

o directly forces d # c, iff there are strings s,t € 2<%, incomparable in 2<% and such that p directly
forces s C c and t C d;

o directly forces ¢ ¢ [T], where T € PT, iff there is a string s € 2<“ \ T such that p directly forces
sCec.

The definition of direct forcing is not explicitly associated with any concrete forcing notion, but in fact the
direct forcing relation (in all four instances) is compatible with any perfect tree forcing notion P € PTF.

8. Forcing a real away of a pre-dense set

The goal of the following Theorem 8.1 is to prove that, under the conditions and notation of Definition 5.1,
if £ <0 and c is a MT(p)-name of a real in 2 then the extended forcing MT(pVu) forces that ¢ does not
belong to sets [U] where U is a tree in Ug—unless c is the name @¢j, of one of generic reals x¢j, themselves.

Theorem 8.1. In the assumptions of Definition 5.1, let ¢ = (C)ycw ica € M be a MT(p)-real name,
¢ < 0 is fized, and for all k the set

D(k) ={p € MT(p) : p directly forces ¢ # &¢y}

is dense in MT(p). Let w € MT(pVu), and U € Ue. Then there is a stronger multitree v € MT(u),
v < u, which directly forces ¢ ¢ [U].

Proof. By construction U C U ?M for some M < w; thus we can assume that simply U = U ZPM. The
indices ¢ and M are fixed in the proof. As in the proof of Theorem 6.3, we can assume that v € MT(u),
and there is a number h and, for each (¢,k) € |u|, a number mgr < w and a string s¢x € 2", such that
Tgr = Ud;m&(s&k), and s¢p # Sye whenever (£, k) # (0, 0).
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Consider the set A € 9 of all systems ¢ € MS(p) such that there is a number H > h and a multitree
r € MT(p), satisfying

(1) |u| C|r| and = occurs in ¢,
(2) if (€,k) € u] then (€, me) € o], AE,.,
(3) 7 directly forces ¢ ¢ [T], where T' = T£,,(H).

= H, and Tgk =T7 (tgk), where t{k € 2" and Sex C tgk,

§mek

Lemma 8.2. 7 is dense in MS(p).

Proof. Suppose that ¢ € MS(p); we have to find a system ¢ € 2 such that ¥ < . As in the proof
of Theorem 6.3, we can assume that there is a number g > h such that hg’m = g for all (¢, m) € |[¢],
(¢, M) € [, and if (&, k) € [u] then (£, mex) € [¥].

Let H = g+ 1. Define a system x € MS(p) extending % so that |x| = [¢[, and hy,, = H, T} (H) =
Tg’m(g) for all (£,m) € |1]; then 1 < x. Pick strings t¢ € 25 with sgx C te, for all (€, k) € |u|. Then we
have t¢r, # ty whenever (€, k) # (£,£) belong to |u|, by the choice of s¢y.

Define a multitree 7 € MT(p) by |7| = |u| and T7, = T,  (tex) for all (§,k) € |ul; then 7 occurs

Emep
in x. We can also assume that

a) if t € 2 then there exists a pair (¢, k(t)) € |7| such that m¢ ey = M and te 4 =t.
k() k()

Indeed if this fails then for any such string ¢ pick a number k(t) < w satisfying ({, k(t)) ¢ || (taking care

that k(t) # k(t') whenever ¢ # t'), add the pair ({,k(t)) to |=|, and let T hw = TCXM(t). Then define

m =M and t = t. The extended multitree 7 satisfies |u| C |mw| (and C can be € here) and (a),
¢ k(1) ¢k(t) Z

and by construction satisfies

(b) (¢, M) € |x|, and if (&, k) € || then (£, mex) € |x|, and
(c) tex # tye whenever pairs (&, k) # (n,£) belong to |m|.

By the density of sets D(k), there exists a multitree » € MT(p), r < 7, which directly forces ¢ # &¢y,
whenever k € K = {k : (,k) € |w|}. Then there are strings v and {v; : k € K} in 2<¥ such that u is
incompatible in 2<“ with each v, and r directly forces each of the formulas v C ¢ and v, C @&¢p—for
all k € K. Yet r directly forces vy C @¢x iff vp C stem(T¢). Thus r directly forces ¢ ¢ [T”], where
" = UkeK Tcrk'

Define a system ¢ € MS(p) so that [x| C |¢| and hf,, = b, = H, T{, (n) = T}, (n) for all ({,m) € [x/,
n < H. As for the values T, (H) and possible pairs in (§,m) € |p|  [x|, proceed as follows.

(I) If (§,m) € [x| is not of the form (&, mey), where (§,k) € ||, then put T (H) = T (H).
(II) Suppose that (£, k) € |m|, so that (§,mex) € [x|. Then Tg, = R C T = T7 = Tgmik
r < mw. We let Tgmgk(tﬁk) =R.
(III) Finally suppose that (§,k) € |r[ \ |m|. Then pick a number my, < w such that ({,mg;) ¢ ||
(and we assume that all my, are pairwise different), add (£, m;) to [¢|, and put hw»mék =0 and
T, (0) =TF,.

E7m/§k

(ter) since

As in the proof of Lemma 6.4, the extended system ¢ still belongs to MS(p) and satisfies ¢ < ¢, the
multitree 7 occurs in ¢, and we have Ty; = Tgmgk (ter) whenever (€, k) € |r|.

To complete the proof of the lemma, suppose that ¢ € 22 . Then by (a) there is a number k < w such
that (¢, k) € |w|—hence, k € K,—and m¢y = M, t¢, = t. Then by construction T§,(t) = T(), therefore
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ToH() ST . As t € 2H is arbitrary in this argument, we conclude that TG (H) = Upeon Th, (1) ST Tt
follows that = directly forces ¢ ¢ [T, (H)], as required. O (Lemma)

We now return to the proof of the theorem. It follows from the lemma that there is an index j such that
the system ¢(j) belongs to 2. Let this be witnessed by a number H > h, a multitree » € MT(p), and a
collection of strings t¢, € 25 ((£, k) € |u|), such that conditions (1), (2), (3) are satisfied for ¢ = ©(5)-

Define a multitree v € MT(u) so that |v| = |r[, if ({, k) € |u| then T¢ = U?,mgk(tfk) = ng}igk (tew),

and if (£,k) € |r[ \ [u| then Tg, = Udgm(t) = Tg(j)(t), for any m < w and ¢t € 2 such that T, =

m

Tg(j)(t) = Uqgm(t). Then v < u and v < 7 (see the end of the proof of Theorem 6.3). Finally, by (3), r

m

directly forces c ¢ [T], where T = Tgl\(/lj)(H). However U = UdgM C ng\(j)(H). O
9. The basic product forcing
In this section, we argue in L, the constructible universe. Let <, be the canonical wellordering of L.

Definition 9.1. (In L.) We define, by induction on « < wy, a PTF-sequence u® = (U?>5<a, and a regular
PTF-sequence p® = (P¢)¢<q, of countable sets of trees Ug, ¢ in PTF, as follows.

First of all, we let P$ = @ and U2 = P.on (see Example 3.1) for all a; note that the terms P§, U2 do
not participate in the sequences p® and u®.

The case a = 0. Let p” = u” = A (the empty sequence).

The step. Suppose that 0 < A < wy, and u®, p® as above are already defined for every o < A. Let 91
be the least model MM of ZFC’ of the form L,, u < wy, containing (u*)a<y and (p*)a<x, and such that
A < wP and U, P¢ are countable in M for all § < a < A.

We define a sequence p* = <[Pé\)§<>\ so that [Pé\ = U£§a<>\ Ug for all £ < A. Thus if A = a+ 1 then
[F’(gJrl =Pg U Ug for all £ <« (since Pg = Uggaf<a [U?, at the previous step). In particular, for £ = a,
Pt = PYUUY = Peon (see above). Thus p®*? is the extension of p®Vu® (see Section 4) by the default
assignment ng‘H = Pon. For instance, p' = <IP(1)>, where [P(l) = Peon.

To define v and accomplish the step, let ¢ = (cpj>j<w be the <j-least sequence of systems ¢’/ €
MS(p), <-increasing and generic over 90y, and let v = ([Ug‘>§<)\ be defined, on the base of this sequence,
as in Definition 5.1.

Final. After the sequences u® = <(U?>§<a, P* = (P¢)e<a and models M, have been defined for all
a <wp, welet Pe = Uecqey, UE forall § <wi, and p = p** = (P¢)ecw, , which is a regular PTF-
sequence of length w¥ in L. Let P = MT(p). If a < w¥ then let P* = MT(p®). O

The next result (a routine proof is omitted) accounts for the definability class of the constructions
introduced by Definition 9.1. Recall that HC is the set of all hereditarily countable sets.

Proposition 9.2. In L, all three sequences (U*)o<w,, (P*)a<wis (Ma)a<w, belong to the definability class
A€ g

The set P = MT(p) = [[c.r P¢<* of all p-multitrees (see Definition 4.1) will be our principal forcing
notion; P belongs to L as so does p. The forcing P can be identified with the finite-support product
L P ¢k, where each factor Pg. is equal to the set P = L Ug of Definition 9.1.
e<wl Hlg<w T 8 13 13 t<a<wl V¢

Remark 9.3. If o < v < w! then the sets P* = MT(p®) and P? = MT(p”) of multitrees are formally

disjoint. However we can naturally embed the former in the latter. Indeed each multitree p = <T§C>i§3 e P«

can be identified as an element of P? by the default extension TE’[;C = 2<% whenever a < £ < 7, k < w.
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With such an identification, we can assume that P C PY C P, and similarly P = Ua</\ P« for all limit A,
and the like. 0O

10. Preservation of density revisited

Here we establish some corollaries of results in Section 6, as well as some close results, including the CCC
property. We argue in terms of Definition 9.1.

Lemma 10.1.

i) If a <wl and a set D € M,, D CP* is pre-dense in P then it remains pre-dense in P.
1
(ii) In particular the set MT(u®) itself is pre-dense in P.

Proof. (i) By induction on v, ¢ < v < w¥, if D is pre-dense in P? = MT(p?) then it remains pre-dense
in MT(p” V u”) by Theorem 6.3, hence in P71 = MT(p?*!) too by construction. Limit steps including
the step wl are obvious.

(i) Note that MT(u®) is dense in MT(p* V u®) by Lemma 5.4, therefore, pre-dense in P*T1 =
MT(p**!), and MT(u*) € My11. Apply (1). O

Corollary 10.2. If ¢ < a < w¥ then the set Ug is pre-dense in Pe.

Proof. Let 7' € P¢. Consider a multitree p € P = MT(p) defined so that T = T and T}, = 2
whenever (n, k) # (£,0). By Lemma 10.1 p is compatible in P with a multitree © € MT(u®). We conclude
that T" is compatible in P¢ with the tree U =T € Ug. O

Corollary 10.3. If ¢ < o < wt and trees T,T' € P¢ are incompatible in P¢ then T, T remain incompatible
in Pg. Therefore if multitrees p,p’ € P* = MT(p®) are incompatible in MT(p®) then p,p’ remain
incompatible in P.

Proof. Let T,7" € [Pg‘ be incompatible in [Pg‘. Use Corollary 6.2 at successor steps to prove by induction
on v that if a < v < w¥ that the trees T,7” remain incompatible in [Pz. |

Corollary 10.4. If o < w¥ and a set (filter) G C P is P-generic over L then the set G' = G NP* is P“-
generic over M, .

Proof. Elements of G’ are still pairwise compatible in P* = MT(p®) by Corollary 10.3. Furthermore if a
set D € M,, D C P, is dense in P* then it is pre-dense in P by Lemma 10.1, so that GN D # @ and
G'NnD+#w. 0O

To prove the CCC property, we’ll need the following reflection-type result.

Lemma 10.5. If X C HC = L,v then the set Ox of all ordinals a < Wl such that (L, ; X NLy) is an
elementary submodel of <Lw1L : X) and X NL, € M., is unbounded in wr. More generally, if X,, C HC
for all n then the set O of all ordinals o < WY, such that (Ly ; (Xn N La)n<w) is an elementary submodel
of (Lyr 5 (Xn)n<w) and (Xn NLa)n<w € My, is unbounded in wl.

Proof. Let ag < w{ﬂ Let M be a countable elementary submodel of L, containing o, w{‘, X, and such
that M N Ly, is transitive. Let ¢ : M 2% Ly be the Mostowski collapse, and let o = ¢(w™). Then
ap < a <\ <whkand ¢(X) = X NL, by the choice of M. It follows that (L, ; X NL,) is an elementary
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submodel of <LW1L ; X). Moreover, « is uncountable in Ly, hence Ly C 9, . We conclude that XNL,, € M,
since X NL, € Ly by construction.
The second, more general claim does not differ much. O

Corollary 10.6. The forcing P satisfies CCC, therefore P-generic extensions of L preserve cardinals.

Proof. Suppose that A CP = MT(p) is a maximal antichain. By Lemma 10.5, there is an ordinal « such
that A’ = ANP® is a maximal antichain in P* = MT(p®) and A’ € M, . But then A’ remains pre-dense,
therefore, maximal, in the whole set P by Lemma 10.1. It follows that A = A’ is countable. O

11. The basic extension: product structure and generic reals

Working in terms of Definition 9.1, we let PJA = {p € P : |p| C A} for any set A C wl xw. The forcing
P has an obvious product structure:

Lemma 11.1. Suppose that A € L, A C wl¥ x w. Then P is equal to the product (P[A) x (P]A’), where
A = (W xw) N AL If G CP is generic over L, then the set GIA = {p € G : |p| C A} is accordingly
(PTA)-generic over L. O

Assume that A € L, A C w¥ x w. Similarly to Definition 7.1, let a (P[A)-real name be a system
¢ = (Cni)n<w, i<z Of sets Cp; € PJA such that each set C,, = Cpo U Cpy is pre-dense in PJA and if
p € Cho, q € Cy1 then p,q are incompatible in P[A. A name is countable if such are all sets Cp; .

If a set G C PIA is at least pairwise compatible then we define c[G] € 2¢ so that c[G](n) = i iff
GNCp #£ 9.

Lemma 11.2. Suppose that A € L, A Cwl x w. If a set G' CP[A is generic over L and x € 2* N L[G]
then there is a (P[A)-real name c € L, countable in L and such that x = c[G'].

Proof. To reduce an arbitrary name to a countable one, note that P[A is CCC in L as a factor of the CCC
(by Corollary 10.6) forcing P = MT(p). O

Definition 11.3 (Generic reals). Let G C P be a set (filter) P-generic over L. Note that w{'[G]

Corollary 10.6.

If ¢ <wl and k < w then let Ger, = {TgC : p € G}, so that each set Ggy is Pe-generic over L, and
Xep = ﬂTeng[T] is a singleton X¢i, = {z¢r}, whose only element ¢y, = z¢;[G] € 2¢ is a real P¢-generic
over L. O

= wp' by

The product structure of P further reflects in the following lemma.

Lemma 11.4. (In the notation of Definition 11.5.) If € <w¥ and k < w then

(i) exlG] ¢ LIGIAG], where Mg = (WF x w) ~ {{&.K)},
(ii) z¢r[G] ds not OD(G|A¢) in L[G], where A¢ = (WF ~{&}) xw. O

Proof. To prove (ii) make use of the fact that by construction the &-part of the forcing is itself a finite-
support product of countably many copies of P,. O

12. Definability of generic reals and non-uniformization model

We continue to argue in terms of Definitions 9.1 and 11.3. The next lemma is similar to Lemma 7 in [9].
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Lemma 12.1. Let £ <w¥. A real x € 2% is P¢-generic over L iff x € Z¢ = Necacwt UUGU? [U].

Proof. All sets Ug are pre-dense in P, by Corollary 10.2, therefore any P.-generic real belongs to Z¢. On
the other hand, if A € L, A C P, is a maximal antichain in P¢, then A is countable by Corollary 10.6,
and hence easily A C [P? and A € M, for some a, ¢ < a < wl. But then every tree U € Ug satisfies
U C*i* | JA by Lemma 6.1, and we conclude that UUetUg U] CUrealT]. ©

Corollary 12.2. In any generic extension of L with the same wy, the set

W= {({) : E<wF Az €2¥is Pe-generic over L} C wl x 2¢
is IIHC, and I3 in terms of a usual coding system of ordinals < wy by reals.
Proof. Use Lemma 12.1 and Proposition 9.2. O

Now prove that L[G] contains no [P ¢-generic reals except for the reals x¢,[G]. This is the key property
of the forcing extensions considered.

Lemma 12.3. Let a set G C P be P-generic over L. If ¢ <w¥ and z € L|G]N2% then x is a P ¢-generic
real over L iff € {zg[G] @ k <w}.

Proof. Otherwise there is a P-real name ¢ = (Cp;)n<w,i=01 € L and a multitree p € P = MT(p) which
P-forces that c¢ is P¢-generic over L while P itself forces ¢ # @¢1, VE. (Recall that ¢ is a name for
zex[G].) We can assume that c¢ is a name countable in L, by Lemma 11.2. Then there is an ordinal A,
&€ < )\ < wi, such that ¢ € My and each set C,; satisfies C,,; C P = MT(p*) for all n,i.

Further, if k¥ < w then, as P forces that ¢ # &¢, the set Dy of all multitrees p € P which directly
force ¢ # ¢y, is dense in P. Therefore, by Lemma 10.5, we may assume that the same ordinal A as above
satisfies the following: each set D} = D;, NP?* is dense in P*.

Applying Theorem 8.1 with p = p*, u=u*, 0 = X\, ¢ = ¢, we conclude that for each U € [Ug‘ the set
Qu of all multitrees v € P*» = MT(u*) which directly force ¢ ¢ [U], is dense in MT(u* V p*), therefore,
pre-dense in P! = MT(p**!). As obviously Qu € 9y, 1, we further conclude that Q is pre-dense in P
by Lemma 10.1. Therefore P forces ¢ ¢ UUE% [U], hence, forces that c¢ is not P¢-generic, by Lemma 12.1.
But this contradicts to the choice of p. O

The results obtained allow us to easily prove Theorem 1.1.

Example 12.4 (Non-uniformizable ITHC set). Let a set G C P be P-generic over L. Consider the set W of
Corollary 12.2 in the model L[G]. First of all W is ITHC in L[G] by Corollary 12.2. Further we have

W= {{&ze[G]) : € <o Ak <w)
by Lemma 12.3, and hence all vertical cross-sections of W are countable. And the set W is not ROD
uniformizable by Lemma 11.4, since by Corollary 10.6 any real in L[G] belongs to a submodel of the form

L[G](¢ x w)], where ( <w¥. O

Example 12.5 (Non-uniformizable 115 set). Let WO C 2% be the II{ set of codes of countable ordinals,
and for w € WO let |w| < wy be the ordinal coded by w. In continuation of Example 12.4, we consider

W = {(w,z) € WO x 2¥ : {|lw|,z) € W},
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a I13 set in L[G]. Suppose towards the contrary that, in L[G], W’ is uniformizable by a ROD set Q' C W'.
As wl = w;y by Corollary 10.6, for any & < w; there is a code w € WO NL with |w| = £. Let we be the
<i,-least of those. Then

Q={(§2) eW : (wg,z) € Q'}
is a ROD subset of W which uniformizes W, contrary to Example 12.4. O O (Theorem 1.1)

13. Non-separation model

Here we prove Theorem 1.2. The model we use will be defined on the base of a P-generic extension L[G]
of L. More exactly, it will have the form L[G[A], where A C w¥ x {0} will itself be a generic set over L.’

Let Q = {1, 2, 12}w{‘ N L with countable support, so that a typical element of Q is a partial map ¢ € L
from wl to the 3-element set {1,2,12}, with a domain domq C w¥ countable in L, that is, just bounded
in wl. (The choice of the 3-element set {1,2,12} is explained by later considerations, see Definition 13.3.)
We order Q opposite to extension, that is, let ¢ < ¢’ (meaning: ¢ is stronger) iff ¢’ C ¢. Thus Q € L, and,
inside L, Q is equal to the product {1,2,12}** with countable support. Accordingly a Q-generic object is
a full Q-generic map H :w¥ — {1,2,12}.

Recall that P is a CCC forcing in L by Corollary 10.6.

Lemma 13.1. P remains CCC in any Q-generic extension L[H| of L, therefore P x Q preserves cardinals
over L.

Proof. Suppose towards the contrary that some ¢’ € Q forces the opposite, that is, forces that C is an
uncountable antichain in P, where C is a Q-name. Note that, in L, Q is countably complete: if qo > q1 >
g2 > ... is a sequence of conditions in Q then there is a condition ¢ = |J, ¢x € Q satisfying ¢ < qi, Vk.
Therefore, arguing in L, we can define by induction a decreasing sequence (ge¢)e<w, in Q and a sequence
of pairwise incompatible conditions pe € P, such that ¢ < ¢’ and each g¢¢ forces that p € C'. But then
A= {p¢ : £ <wi} €L is an uncountable antichain in P, a contradiction. O

Lemma 13.2. Assume that a set G x H is P x Q-generic over L. Then

(i) all reals in L[G, H] belong to L[G];
(i) if AeL, A Cwlxw then all reals in L[G[A, H] belong to L[GA];
(iii) if A € L[H], A Cwl xw, and (£, k) € wF x w then x¢:[G] € LIGTA] iff (£,k) € A.

Proof. (i) Note that @ may not be countably complete in L[G] any more, so that the most elementary
way to prove (i) does not work. However consider L[G, H| as a [P-generic extension L[H][G] of L[H]. Let
x = &[G] be areal in L[H][G], where & € L[H] is a P-real name as in Definition 7.1. But [P is CCC in L[H]
by Lemma 13.1. Therefore we may assume that & is hereditarily countable in L[H], that is, essentially a
real. Yet L[H| has just the same reals as L, so we conclude that & € L and =z = &[G] € L[G].

The proof of (ii) is similar.

9 The countable number of instances of each factor P¢ in the product P = H€<WL P¢<¢, crucial in the definition of the
1

non-uniformization model above, is irrelevant to the non-separation model. In fact we’ll need just one copy of each P¢, and
the background model L[G|(w} x {0})], a submodel L[GIA] (A C wF x {0}) of which we’ll use to prove Theorem 1.2, is a
(H§<WL P ¢)-generic extension (one copy of each P¢) of L by Lemma 11.1.

1
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(iii) In the nontrivial direction, suppose that (£, k) ¢ A. Consider the set A’ = (wF x w) ~ {(£,k)} € L.
As obviously GTA € L|G[A’, H], any real in L[G[A] belongs to L[GIA'] by (ii). But z¢x[G] ¢ LIGIA’] by
Lemma 11.4. O

Recall that if v € Ord then the ordinal product 2v is considered as the ordered sum of v copies of
2 = {0,1}. Thus if v = A+ m, where X is a limit ordinal or 0 and m < w, then 2v = A + 2m and
2v+1=X+2m+1.

Definition 13.3. If H : wl — {1,2,12} then let

1y = {v<wlt: Hy) =1}, 2y ={v<wk: Hv) =2},
12y = {v<wlt : Hy) =12},
Eg={2v:velygul2g}tu{2v+1:ve2gUlly},

Ay == x {0} ={(£,0) : £€Ex}.

Ifaset G C P is P-generic over L then consider the model L[G]Ay] and let HC(G, H) = (HC)LG1Ax] - o

Note that L|G|Ag] is not necessarily a submodel of L[G] since the set Ap does not necessarily belong
to L[G] (unless H € L[G]); but we have L[G[Ay] C L[G][H], of course.

Theorem 13.4. Let a set G C P be P-generic over L and H : w¥ — {1,2,12} be a map Q-generic over
L[G]. Then it is true in L|G[Ag] that 1y and 25 are disjoint II3C sets not separable by disjoint BHC
sets.

By boldface ZHC we always mean X, definability in HC with any reals as parameters.
Proof. To see that, say, 15 is I13¢ in L[G[Ag], prove that the equality
lg={rv<w : -3z (2v+1,2) eW)}

holds in L[G[Af], where W is the ITHC set of Corollary 12.2. (For 2 it would be (2v,z) € W in the
displayed formula.)

First suppose that v < w¥, ¢ =20+ 1, € L[G]Ax] N 2%, and W(£, z) holds in L{G[Ag]; prove that
v ¢ 1g. Note that z € L[G] by Lemma 13.2(i). Further, by definition = is P¢-generic over L, therefore
x = x¢[G] for some k by Lemma 12.3, and we have (£,k) € Ay by Lemma 13.2(iii). Therefore £ € Zg
and k = 0. But then v € 25 U12p, so v ¢ 1y, as required.

To prove the converse, suppose that v ¢ 1y, so that v € 25 U125 . Then £ =2v + 1 € Zg, and hence
x = x¢0 € L[GIAg]. It follows that (§,z) = (2v + 1,2) € W by Lemma 12.3, as required.

To prove the non-separability claim, suppose towards the contrary that, in L{G[Ag], the sets 1p,24
are separated by disjoint 35 sets A, B C w; = wl. The sets A, B are defined, in the set HC(G, H) =
(HC)LGIAu] by X, formulas, resp., ¢(a,&),¥(a,€), with a real parameter a € L[G]Ay] N 2¥; hence,
a € L[G] by Lemma 13.2. Let A < w¥ be a limit ordinal such that a € L[G[Ag,], where Ay =
Agn(Ax{0}) eL.

If K:wl— {1,2,12} (for instance, K = H), then let

Ay ={e <wl @ p(a, OHCEIN 1 pr = (e <l : y(a,&)HCEKY (%)

Then by definition 15 C A= A}, 25 C B = B}, and A}, N B}, = @. Fix a condition ¢o € Q compatible
with H (here meaning that simply go C H ), which forces the choice of A, B, so that,
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(1) if K : wl — {1,2,12} isa map Q-generic over L[G] and compatible with qo, then 1x C A%, 2 C B,
and Ay N B}, = 9.

We may assume that domgy C A, otherwise just increase \.

Let 1 be any ordinal, A < vy < w;. Consider the maps H, Hy, Hys : wl — {1,2,12}, generic over
L[G], compatible with go, and satisfying H;(vg) = ¢, ¢ = 1,2,12, and H;(v) = Ha(v) = Hia(v) for all
v # 1vy. Then Zg,, = 2, U {219 + 1} by Definition 13.3, hence, L|G|Ag,] C L[G[Ap,,]. Tt follows by
Shoenfield that Aj; C A} (since ¢ is an essentially X3 formula), therefore 1y, C A3, C A}, by (1)
We conclude that vy € A%, just because vg € 1y, by the choice of Hj. And we have v € Bj,, by a

similar argument (with Hy). Thus A} N B}, # 9, contrary to (). The contradiction ends the proof. O
Example 13.5 (Non-separable I3 sets). In the notation of Example 12.5, let
X:{’IU§Z£€]].H} and Y:{’LUEZ&-GQH}.

The sets X, Y € WO NUL are H;{C(G’H) together with 1y and 2p, and hence 1}, and X NY = @.
(Recall that HC(G, H) = (HC)LCGT2u] | Definition 13.3.) Suppose towards the contrary that X'/, Y’ C 2¢

are disjoint sets in X3, hence in EI;C(G’H)7 such that X C X’ and Y CY’. Then

A={¢<wl iwee X'} and B={¢<wl :weeY'}

HC(G,H)

are disjoint sets in X, , and we have 1y C A and 25 C B by construction, contrary to Theo-

rem 13.4. O O (Theorem 1.2)
14. The failure of E:l,’ separation persists

As the IT} Separation, known to be true in L, fails in a certain generic extension of L by Theorem 1.2,
one may ask what happens with the X1 Separation, known to fail already in L, in that same or similar
extension.

Here, first of all, we can easily manufacture a version of the model of Section 13, where the X} Separation
fails for very similar reasons. Namely, coming back to Definition 13.3, we make use of the sets

Ey={2v:velgtu{2v+1:ve2y}

instead of Eg, and Al = E% x {0}. Then, similarly to Theorem 13.4, it is true in the model L[G[A]
that 1 and 2y are disjoint Y3€ sets not separable by disjoint TIYC sets.

Moreover, it is possible to maintain both constructions in the same model, so that Separation fails in the
model for both ¥} and IT3, see [5](A).

Yet it is perhaps not less interesting to prove that a counterexample to the X1 Separation in L survives
in the extension say of the type considered in Section 13.

Theorem 14.1. Let a set G C P be P-generic over L and H : w¥ — {1,2,12} be a map Q-generic over
L[G]. Suppose that, in L, X,Y C 2% are disjoint X3 sets not separable by disjoint T} sets. Then it holds
in LIGIAp] that X,Y are still X} sets not separable by disjoint II} sets, and hence X3 Separation fails.

Proof. That X, Y are still X1 sets in L[G[Ag] holds by standard arguments, therefore we can focus on
the non-separability claim.
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14.1. Contrary assumption and notation

Suppose to the contrary that, in L[G[Ag], the sets X, Y are separable by disjoint IT} sets A, B C 2*NL,
sothat X C A, Y C B, AN B = @. These sets A, B are defined, in L|G[Ag], by II3 formulas, resp.,
¢(a,-),p(a,-), with a real parameter a € L[G[Ag] N2¥. We let, for any map K : wl — {1,2,12},

A}} ={re2¢nL: @(avx)L[GMK]}v } (**)

By ={re2*nL : Y(a, z)LCETAK]Y

so that A% and B} are IT} sets in L[G]Ak], and, with K = H, we have X C A = A}, Y C B = B},
Ay NBL =0.

Let A < w¥ be a limit ordinal such that a € L[G[Ag,], where Agy = Ay N (A x {0}) € L (since
L[H] does not add new reals to L), and let ¢ € L be a (P[Ag,)-real name, countable in L and such that
a = a[GTApy] (Lemma 11.2).

14.2. Reduction to a constructible map

We are going to define a map J : wF — {1,2,12}, which, unlike H above, belongs to L, but still the
sets X,Y are separable by disjoint IT} sets in L[G]A,]. To get such a map, let us fix a condition ¢g € Q
compatible with H which Q-forces, over L[G], the choice of A, B, so that

(1) if K : ol — {1,2,12} is a map Q-generic over L[G] and gy C K then X C A%, Y C Bj,
AL NBL =02

We may assume that domgqy C A, otherwise just increase A\. Then ¢; = H[\ is a condition in Q stronger
than ¢o and compatible with H. Recall that Q € L.

If A <9 <wt then let a map Hy be defined so that still ¢ C Hy—hence Hy[\ = H[\ = q1, and also
Hyl(wF~9) = HI(wF ), but Hy(v) =2 whenever A < v < 9. For instance Hy = H, and if A < ¥ < w}
strictly then Hy is still Q-generic over L[G]. Let J = H,v; J is a map wk — {1,2,12}, JIA = q1, and
J(v) =2 for all v > A. (J is not a Q-generic map, of course.)

Lemma 14.2. J e L, X C A%, Y C B}, and ASNBY =@.

Proof. If ¥ < v < w%‘ then obviously =g, C En, and Ay, C AHW, therefore, X C A}IW - A}Iﬂ and
Y C B}‘{7 C Bj;, by Shoenfield and (1). Sending ¥ to wl, we easily obtain the results required. O

Let’s look closer at the map J = H,.. The set Ay = Ay U ((wF ~ A) x {0}) belongs to L, where, we
recall, Ay = Ay N (A x {0}) € L. Tt follows that L[G]A ;] C L[G]. The parameter a in (**) belongs to
L(GIA,] and the sets A% and B% of (**) are disjoint IT} sets in L[G]A ;] which separate X and Y by
Lemma 14.2.

14.8. Evaluation of forcing

By Lemma 11.1, the model L[GTA,] is a (P[Aj)-generic extension of L, where P[A; = {p€P :
|p| € As} € L is a subforcing of P. To estimate the complexity of the (PA ;)-forcing relation in L, we
introduce an auxiliary forcing relation pforc ¢, where p € P[A; while ¢ is a formula of certain type.

Let’s define some classes of formulas.
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Let 5’11 consist of all X1 formulas of the language of the 2nd order PA, with variables of the real type
over 2¢, and with (P[A;)-real names c; € L, countable in L, as parameters. The collection II} 1 is defined
similarly. Let (S‘ + 1~7) be the closure of 21 U Hl under —, A, V and both quantifiers over w.

By induction, we define En+17 resp., Hn+1 (n > 1) to consist of all formulas of the form Jz p(z), resp.,
Va ¢(z), where z is a variable over 2 and ¢ is II!, resp., X1 (or ¢ is (X 4 II)} whenever n = 1, in both
cases). If ¢ belongs to E}L, n > 2, then let ¢~ be the result of canonical transformation of = ¢ to H}L, nd
similarly for ¢ € ]~71 Separately, if ¢ € (i + ZNY)1 then ¢~ is just - .

The definition of the relation pforc ¢ in (A), (B), (C) goes on by induction on the complexity of formulas
pin (+INusivniuriumlu

(A) Let ¢ = g(cq,...,c,) belong to (X + II)}. We define pforcyp iff p (P*]A)-forces ¢ in the usual
sense over M, , where, we recall, P* = MT(p®), and « is any ordinal such that p € P*[A;, the
condition ¢; = H [\ belongs to M, , and each name ¢; in ¢ is a (P*[A)-real name.

Lemma 14.3. The definition in (A) does not depend on the choice of «.

Proof. [Lemma] It suffices to prove that if « is as indicated then p (P*[A;)-forces ¢ over M, iff p
(PTA j)-forces ¢ over L in the usual sense.

To prove = , suppose that p does not (P]A )-force ¢ over L, so that (in a bigger universe) there is
aset g CPIA;, (P]Aj)-generic over L, containing p, and ¢[g| is false in L[g]. Then g’ = g N (P*[A))
s (P*TA j)-generic over M, by Corollary 10.4, and the formula ¢[g] = ¢[g'] = ¢(c1[g'], ..., cn[g]) is false
in M, [g'] by Shoenfield. Thus p does not (P*A ;)-force ¢ over M.

Conversely if p does not (P“[A )-force ¢ over M, then there is a stronger condition g € P*[A; which
forces = ¢ over M,. Then q (PJA)-forces —p over L by the above, hence p does not (P[A ;)-force ¢
over L. O

(B) We define that pforc Iz p(z) (z being a variable over 2¢), where ¢ is a formula in (X + 1)} or I},
n > 2, iff there is a (P[A;)-real name ¢ € L, countable in L and such that pforcy(c).

(C) We define that pforc ¢, where ¢ belongs to HL n > 2, iff no condition q € P[A; stronger than p
satisfies pforcp™

The following lemma shows that forc is an adequate approximation of the true (P[A )-forcing over L
as the ground model.

Lemma 14.4. Suppose that p € PIA;, ¢ is a closed formula in (E + H) U ZQ U H2 U 23 U H3 cee
and g CPIA; is a set (P[Aj)-generic over L. Then olg]| is true in L[g| iff there is a multitree p € g
satisfying pforcp.

Proof. We argue by induction. If ¢ is a formula in (E’—i— ﬁ)% then pforcy iff p (P]A)-forces ¢ over L
in the usual sense (see the proof of Lemma 14.3), so the result immediately follows. The steps II} — X} 4
are justified by Lemma 11.2, on the base of (B). The steps X! — IT} (n > 2) are justified, on the base of
(C), the same way as in the case of usual forcing. O (Lemma)

The next lemma evaluates the complexity of the relation forc.

Lemma 14.5 (in L). Let o(vy,...,vy) be a formula in (£ + II)} or in S U IT:

s N> 2, with exactly m

free variables vy,. .., v, all of them over 2¥. Then
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(i) if ¢ belong to (X + II)} then the set
Wy ={(p,c1,...,¢cm) : pePIAjApforcy(ci,...,cn)}

belongs to AHC(q1);
(ii) if v isa %‘}1 formula, n > 2, then the set W, belongs to X (q1);
(iii) if ¢ is a I, formula, n > 2, then the set W, belongs to IIFC (q1).

Proof. (i) Any forcing relation over a countable transitive model 9 is known to be AHC uniformly on 9
and the forcing notion P € 9 involved, while ¢ = H [+ is a parameter to naturally define J and A;. On
the other hand, a + 91, and a + MT(p®) are AHC maps by Proposition 9.2. And finally the choice of «
itself, given a multitree and a finite set of names, can be made in both Y€ and IT]C way, see (A) above.

To prove (ii) and (iii) use induction based on (B), (C) above. O (Lemma)

14.4. Constant names

Now we introduce a subset of constant names among the (P[A)-real names (see Section 11). Suppose
that € 2 N L. Define a (P[A)-real name z = (Cy;(%))n<w, i<2 (a canonical name for z), where

&, whenever z(n) # 1,

{A}, whenever z(n) =1,

and A is the default multitree with |A| = &, see Section 4.

Then z € L and z[G] = x for any non-empty set G C P[A;.

Recall that @ € L is a (P[Agy)-real name, and by construction it is a (P[A)-real name as well (since
¢1 = H[A = JJ)\), and we have

a = (.I[GFAH,\] = (.Z[GFAJ] € L[GrAJ}7

see Step 1 above. The next corollary deals with IT3 formulas ¢, 1 of Step 1. Their adjusted negations ¢~
and ¢~ are X1, of course.

Corollary 14.6. (Of Lemma 14.5.) It is true in L that the sets

O ={(r,z) : reP]AjAz €2 Arforcy (d,z)},
U ={(ry :recPlAjAy €2 Arforcy(d,y)}

belong to XEC(q1,a), hence, to L. O
14.5. Final argument

Here we accomplish the proof of Theorem 14.1. Recall that J € L is a map w} — {1,2,12}, GCP isa
set P-generic over L, and we deal with the model L[G[A ] (see Definition 13.3 on A;), which isa GJA ;-
generic extension of L. Moreover by Lemma 14.2 the following is true in L[GA]:

Ve Xpla,a), VyeYeby), Vze2®-(plaz)Adbz2).

This is PJA j-forced by a multitree p € G[Aj, or, to be more pedantic, the multitree p (P[A ;)-forces
@(a@,z) Ap(a,y) over L, whenever z € X and y € Y, and also forces = (¢(a, 2) A1)(a, 2)), whenever z € 2¢.
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Corollary 14.7. (In L.) Assume that ¢ € P[A;, ¢ <p, and z € 2¥. Then

(i) there is a multitree v € PIAy, v < q, such that (r,z) e DUV,
(ii) if z € X then (q,z) ¢ ©, and similarly if z €Y then (q,z) ¢ V.

Proof. (i) As p forces —
- (&, z) or forces — 1)(a,
is, (r,z) e U .

(ii) Suppose that (g, z) € ®. Then by definition g forc ¢~ (d,z), hence q¢ (P]A)-forces — p(a,z) by
Lemma 14.4. Then z ¢ X by the choice of p. O

(p(&,2) A(a,z)), there is a condition r € P[A;, » < g, which (P[A ;)-forces
z). By Lemma 14.4 we can assume that r forc ¢~ (&,z) or rforcy™ (4, z), that

Corollary 14.7(i) allows to define, in L, a transfinite sequence of pairs (g, 2¢), § < wl, such that
q: €PIA;, qc <p, (qe,2¢) € PUV forall §, and {z : { < wl} = 2¢NL. In addition, by Corollary 14.6,
we can maintain the construction so that the sequence belongs to X3€(q1,d) together with the sets ®, ¥,
hence in fact to ANC(qy,d) as the domain w; is a AIC set. It follows that the sets

Al
Bl

{ze2v: 3§<w{‘(<q6,25)6\11/\z:z5)},
{z€2¥ : ¢ <wl ((ge, 2¢) € PNz =z)}

belong to X31C(q1,a), hence, to X1, and satisfy A’ U B’ = 2* L. Therefore, by the Reduction theorem of
Addison, it is true in L that there exist disjoint 33} sets A C A’ and B C B’ such that AUB = A/UB’ = 2%,
so that both A and B in fact belong to A}.

Now to prove Theorem 14.1 by getting a contradiction, it remains to check that X C A and Y C B—so
X,Y are separable by a Al set in L. By construction it suffices to verify that X N B’ = Y N A’ = @.
Suppose that say z € X N B’. By definition there is a multitree g such that ¢ < p and (g,z) € . But
then z ¢ X by Corollary 14.7(ii), as required. O (Theorem 14.1)
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