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1. Introduction

The problem of well-orderability of the continuum R has been known in set theory since the time of 
Cantor and Hilbert. Zermelo’s axiom of choice AC directly postulates the existence of a well-ordering of R 
(and of any other set of course), but this is far from an effective construction of a concrete, “nameable” 
well-ordering of R . We refer to the famous Sinq Lettres [18] in matters of the discussion on these issues in 
early set theory.

Somewhat later, using the methods of descriptive set theory, which had just emerged, it became possible 
to prove that no well-ordering � of R could belong to the first-level projective classes Σ1

1 , Π1
1 — and then 

to Δ1
1 since x � y iff x = y or y �� x. This is an easy consequence of Luzin’s theorem [34] that sets in 

Σ1
1 ∪Π1

1 are Lebesgue measurable, see e.g. Sierpinski [37].
To shorten terminology, if Γ is a class of subsets of Polish spaces (as, e.g., any projective class Δ1

n =
Σ1

n∩Π1
n , or effective projective class Δ1

n = Σ1
n∩Π1

n) then, following [3], let Γ(WO) be the statement: there 
is a well-ordering, of the set R of all reals, which as a set of pairs belongs to Γ. Then the result above is 
summarized as ¬ Δ1

1(WO).
The next key result was obtained by Gödel [16]: it is true in Gödel’s constructible universe L that there 

exists a Δ1
2 well-ordering �L of the reals. In other words, the statement Δ1

2(WO) follows from the axiom 
of constructibility V = L, and hence Δ1

2(WO) is consistent with the axioms of the Zermelo–Fraenkel set 
theory ZFC (containing the axiom of choice AC) because the axiom of constructibility V = L itself is 
consistent by [16].

Addison [2] singled out an important additional property of the Gödel well-ordering �L . Namely, a Δ1
n -

good well-ordering is any Δ1
n well-ordering � such that for any binary Δ1

n relation P (y, x) on the reals, 
the relations

Q(z, x) := ∃ y � xP (z, y) and R(z, x) := ∀ y � xP (z, y)

belong to Δ1
n as well, so that the class Δ1

n is closed under �-bounded quantification. (See Moschovakis [36, 
Section 5A].) In these terms, the Gödel – Addison result then says that �L is a Δ1

2 -good well-ordering of 
the reals in L, and hence the existence of such a well-ordering follows from V = L and is consistent with 
ZFC. The property of Δ1

2 -goodness of �L is behind many key results on projective sets in Gödel’s universe 
L, see [36, Section 5A].
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In the opposite direction, it was established in the early years of modern set theory (see, e.g., Levy [33] and 
Solovay [38]) that the non-existence statement ¬ Σ1

∞(WO) is also consistent with ZFC, where Σ1
∞ =

⋃
n Σ1

n

is the class of all projective sets, and moreover a much stronger statement ¬ ROD(WO), saying that there 
is no ROD well-ordering of the reals, is consistent as well. Here ROD is the class of all real-ordinal definable
sets, i.e., those defined by any set-theoretic formula with arbitrary reals and ordinals as parameters; Σ1

∞ is 
a rather small part of ROD.

Recent studies on projective well-orderings explore such topics as

− connections with forcing axioms [5,6];
− connections with large cardinals [4,13];
− connections with cardinal characteristics of the continuum [8,9];
− relations to the structure and properties of projective sets [3,10,30,32];

and others. The following theorem contributes to these studies. We investigate the interrelations between 
the hypotheses Δ1

n(WO), Δ1
n(WO) for different values of n. Note that Δ1

n−1(WO) implies Δ1
n(WO), and 

Δ1
n−1(WO) implies Δ1

n(WO). The theorem shows that these implications are irreversible.

Theorem 1.1. Let n ≥ 3. There is a generic extension of L, the constructible universe, in which it is true 
that

(i) there exists a lightface Δ1
n-good well-ordering of the reals, of length ω1 ;

(ii) Δ1
n−1(WO) fails: there are no boldface Δ1

n−1 well-ordering of the reals.

Thus the lightface Δ1
n(WO) does not imply even the boldface Δ1

n−1(WO).

This theorem is the main result of this paper. It improves our earlier result in [32], where it is established 
that there is a generic extension of L with a lightface Δ1

n -good well-ordering of the reals, but no lightface 
Δ1

n−1 -good well-orderings of the reals. Thus Theorem 1.1 strengthens this earlier result by removing the 
goodness in part (ii) and extending the lightface class Δ1

n−1 to the boldface class Δ1
n−1 also in part (ii).

2. Outline of the proof

Given n ≥ 3, our plan is to make use of a generic extension of L, originally defined in [31] in order to get 
a model where the Separation principle fails for both classes Σ1

n and Π1
n , and then applied in [32] to prove 

the aforementioned weaker version of Theorem 1.1. This extension utilizes a sequence of forcing notions 
P ξ , ξ < ω1 (or Π(ξ), as in Section 14 below), defined in L so that the finite-support product P =

∏
ξ P ξ

satisfies CCC and adjoins a sequence of generic reals xξ ∈ 2ω , such that the binary relation “x ∈ 2ω is a 
real P ξ -generic over L” (with arguments x, ξ) is Π1

n−1 in L[G] = L[〈xξ〉ξ<ω1 ]. This will suffice to define a 
well-ordering satisfying Theorem 1.1(i).

Claim (ii) of Theorem 1.1 involves another crucial property: the P-forcing relation of Σ1
n−1 formulas can 

be suitably approximated by an auxiliary forcing relation forc invariant w.r.t. the permutations of indices 
ξ < ω1 . The P-forcing relation itself is not permutation-invariant since all forcing notions P ξ are pairwise 
different.

Each factor forcing P ξ consists of perfect trees in 2<ω and is a clone of Jensen’s minimal forcing defined 
in [22], see also [20, Section 28A] on this forcing. The idea of finite-support products of Jensen’s forcing, 
which we owe to Enayat [7], has been exploited recently to obtain generic models with counterexamples to 
the separation theorem for both Σ1

3 and Π1
3 [25], counterexamples to the axiom of choice [14], and a model 
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in which every non-empty Σ1
∞ set of reals contains a Σ1

∞ real but there are no Σ1
∞ well-orderings of the 

reals [30], to name a few examples.
Sections 3 and 4: perfect trees in 2<ω , arboreal forcing notions, multitrees (finite tuples of trees), and 

multiforcings (countable products of arboreal forcing notions) are considered.
Section 5: we explore the refinement relation and properties of refinements of arboreal forcing notions 

and multiforcings. Then in Section 6 we introduce an important property of sealing of dense sets by Jensen’s 
refinements, i.e., a dense set in the original multiforcing remains pre-dense in the extended one. Then we 
consider some other types of refinements, related to properties of real names, in Section 7. Some applications 
of refinements with various properties to the reals in according generic extensions are established in Section 8.

Jensen’s construction of generic refinements is introduced in Section 9. We prove in Section 10 that it 
indeed gives a refinement of a given multiforcing, which satisfies those extra properties considered above.

Transfinite sequences of small multiforcings, increasing in the sense of the refinement relation, are consid-
ered in Section 12. We follow our earlier paper [31] in Sections 14, 15, 16 to introduce the key product forcing 
notion PPP for Theorem 1.1 by means of a specially constructed in L refinement-increasing ω1 -sequence of 
small multiforcings. Theorem 16.1 shows that PPP provides (i) of Theorem 1.1. See Remarks 9.2 and 9.3 on 
some deviations from the technical construction given in [31].

After a short introduction into claim (ii) of Theorem 1.1 in Section 17, we define and explore an auxiliary 
forcing relation forc in Sections 18–22. It is proved that forc is tail-invariant (Theorem 20.1), permutation-
invariant (Theorem 21.1), and approximates the truth in PPP-generic extensions for Σ1

n−1 -formulas and below 
(Theorem 22.3). We also prove that the relation forc restricted to any class Σ1

m or Π1
m , m ≥ 2, is Σ1

m , 
resp., Π1

m itself (Lemma 19.1).
The final part of the paper (Sections 23–27) contains a lengthy proof of Theorem 17.1 that leads to claim

(ii) of Theorem 1.1 in PPP-generic models. The conclusive argument in Section 27 will show that the contrary 
assumption, of the existence of a Σ1

n−1 well-ordering, say <, of the reals in the extension, leads to the 
existence of a non-empty set of reals which does not have a <-least element, a contradiction. This is similar 
to some other theorems of this kind. (See, e.g., Theorem 25.39 in [20].) Yet here the flow of arguments 
involves a lot of different details and is way more complex.

This paper is a sequel of [31] in many details, in particular the model we consider is more or less the same 
model as defined in [31] for different purposes. However some important adjustments will be made in basic 
constructions, see e.g. Remark 9.2. This forces us to present the whole construction anew in all necessary 
detail.

3. Arboreal forcing notions

Let 2<ω be the set of all tuples (finite sequences) of numbers 0, 1. If t ∈ 2<ω and i = 0, 1 then t�i
denotes the extension of t by i as the rightmost term. If s, t ∈ 2<ω then s ⊆ t means that t extends s, while 
s ⊂ t means proper extension.1 By lh(t) we denote the length of a tuple t, and we put 2n = { t ∈ 2<ω :
lh(t) = n } (tuples of length n).

PT is the set of all perfect trees ∅ �= T ⊆ 2<ω . Thus a tree ∅ �= T ⊆ 2<ω belongs to PT iff it has no 
endpoints and no isolated branches. In this case

[T ] = {a ∈ 2ω : ∀n (a�n ∈ T )} ⊆ 2ω

is a perfect set. If s ∈ T ∈ PT then put

T � s = { t ∈ T : s ⊆ t ∨ t ⊆ s }; then T � s ∈ PT.

1 In this paper, ⊂ means a proper or strict inclusion to the expense of equality “=” in all cases, i.e., the same as �. The improper 
inclusion is ⊆.
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Definition 3.1. Trees S, T are called incompatible, in symbol S⊥T , if [S] ∩ [T ] = ∅, and compatible (S �⊥T ) 
otherwise. Note that S⊥T is equivalent to S ∩ T being finite.

We call an antichain any set A ⊆ PT of pairwise incompatible trees. �
Let an arboreal forcing be any set P ⊆ PT such that if u ∈ T ∈ P then T � u ∈ P . Let AF be the set of 

all arboreal forcings P . Any P ∈ AF is:

− regular, if, for any S, T ∈ P , the intersection [S] ∩ [T ] is clopen in [S] or in [T ] (or in both [S] and [T ]
simultaneously);

− special, if there is a finite or countable antichain A ⊆ P such that P = { T � s : s ∈ T ∈ A } — A is 
unique and P is countable in this case.

Note that every special arboreal forcing is regular.

Lemma 3.2. Let P be a regular arboreal forcing. Then any S, T ∈ P are P -compatible (that is, there is a 
tree R ∈ P with R ⊆ S ∩ T ) iff just S �⊥T .

Proof. By the regularity, let X = [S] ∩ [T ] be clopen in say [T ]. Then there is a tuple s ∈ T such that 
[T �s] ⊆ X . But T �s ∈ P as P ∈ AF. �

Splitting. Consider pairs of the form 〈n, T 〉, where n < ω and T ∈ PT. Following [1], the set ω × PT
of such pairs is ordered by a relation � so that 〈n, T 〉 � 〈m, S〉 (reads: 〈n, T 〉 extends 〈m, S〉) iff m ≤ n, 
T ⊆ S , and T ∩ 2m = S ∩ 2m . The role of the number m in a pair 〈m, S〉 is to preserve the value S ∩ 2m
under �-extensions. We underline that this definition does not contain any explicit splitting condition. This 
is why one needs the genericity requirement in Lemma 3.3 to get actual splitting.

The implication m > n =⇒ 〈m, T 〉 � 〈n, T 〉 (the same T !) always holds, but S ⊆ T =⇒ 〈n, S〉 � 〈n, T 〉
is not necessarily true: we also need T ∩ 2n = S ∩ 2n .

Lemma 3.3 (Fusion lemma, see [1]). Let . . . � 〈n2, T2〉 � 〈n1, T1〉 � 〈n0, T0〉 be a decreasing sequence in 
ω × PT, with n0 ≤ n1 ≤ n2 ≤ . . . → ∞, minimally generic in the sense that it meets every set of the form

Dt = {〈n, T 〉 ∈ ω × PT : t /∈ T ∨ ∃ s ∈ T (t ⊆ s ∧ s�0, s�1 ∈ T )} , t ∈ 2<ω.

Then T =
⋂

n Tn ∈ PT, and if i < ω then we have 〈ni, T 〉 � 〈ni, Ti〉. �
Finite unions. To carry out splitting constructions, as in Lemma 3.3, over a forcing P ∈ AF, we make use 

of a bigger forcing notion 
⋃fin

P ∈ AF, that consists of all finite unions of trees in P . Then P is dense in ⋃fin
P , so the forcing properties of both sets coincide. Yet 

⋃fin
P is more flexible w.r.t. tree constructions.

Lemma 3.4. Let P ∈ AF, n < ω , T ∈
⋃fin

P , s0 ∈ 2n ∩ T , and U ⊆ T � s0 , U ∈ P . There is a tree 
R ∈

⋃fin
P such that 〈n, R〉 � 〈n, T 〉 and R� s0 = U .

Proof. We let R consist of all tuples r ∈ T such that either (1) lh(r) ≤ n, or (2) lh(r) > n and r�n �= s0 , 
or (3) lh(r) > n and r�n = s0 and r ∈ U . �
4. Multiforcings

Let a multiforcing be any map π : |π| → AF, where |π| = domπ ⊆ ω1 . Let MF be the collection of all 
multiforcings. Every π ∈ MF can be presented as an indexed set π = 〈Pξ〉ξ∈|π| , where Pξ ∈ AF for all 
ξ ∈ |π|, so that each set Pξ = Pπ

ξ = π(ξ), ξ ∈ |π|, is an arboreal forcing. Such a π is:
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− small, if both |π| and each forcing π(ξ) = Pπ
ξ , ξ ∈ |π|, are countable;

− special, if each π(ξ) = Pπ
ξ is special in the sense of Section 3;

− regular, if each π(ξ) = Pπ
ξ is regular in the sense of Section 3.

A multitree is a function p : |p| → PT with a finite support |p| = dom p ⊆ ω1 . Let MT be the set of all 
multitrees. We represent multitrees p ∈ MT as indexed sets p = 〈Tp

ξ 〉ξ∈|p| , where Tp
ξ = p(ξ) ∈ PT for all 

ξ ∈ |p|. Put

[p] =
∏
ξ∈|p|

[Tp
ξ ] = {x ∈ (2ω)|p| : ∀ i ∈ |p| (x(i) ∈ [Tp

ξ ])},

this is a perfect product in (2ω)|p| provided p ∈ MT.
We order MT componentwise: q � p (q is stronger than p) iff |p| ⊆ |q| and T q

ξ ⊆ Tp
ξ for all ξ ∈ |p|. In 

particular, if just p ⊆ q then q � p.
Assume that π = 〈Pξ〉ξ∈|π| is a multiforcing. Let a π-multitree be any multitree p ∈ MT such that 

|p| ⊆ |π|, and if ξ ∈ |p| then the tree p(ξ) = Tp
ξ belongs to Pξ . The set MT(π) of all π -multitrees can be 

identified with the finite support product 
∏

ξ∈|π| Pξ of the arboreal forcings Pξ involved.

Definition 4.1. Multitrees p, q are incompatible, in symbol p⊥q , if there is an index ξ ∈ |p| ∩ |q| such that 
[Tp

ξ ] ∩ [T q
ξ ] = ∅, and compatible otherwise. Any set A ⊆ MT of pairwise incompatible multitrees is an 

antichain. �
Corollary 4.2 (of Lemma 3.2). Let π be a regular multiforcing. Then any multitrees p, q ∈ MT(π) are 
MT(π)-compatible (i.e., there is r ∈ MT(π) with r � p and r � q) iff p, q are compatible in the sense of 
Definition 4.1. Thus a set A ⊆ MT(π) is a MT(π)-antichain (that is, a set of pairwise MT(π)-incompatible 
trees) iff A is an antichain as in Definition 4.1. �

If π, ϙ are multiforcings then a multiforcing σ = π ∪cw ϙ (the componentwise union) is defined so that 
|σ| = |π| ∪ |ϙ| and

σ(ξ) =

⎧⎪⎨
⎪⎩

π(ξ) in case ξ ∈ |π|� |ϙ| ,
ϙ(ξ) in case ξ ∈ |ϙ|� |π| ,

π(ξ) ∪ ϙ(ξ) in case ξ ∈ |ϙ| ∩ |π| .

Lemma 4.3. If π, ϙ coincide on the common domain d = |π| ∩ |ϙ|, i.e., π�d = ϙ�d, then π ∪cw ϙ = π ∪ ϙ, 
the ordinary union. (This includes the case of disjoint domains |π| ∩ |ϙ| = ∅, of course.) �

Given any sequence #”π = 〈πα〉α<λ of multiforcings, we similarly define the componentwise union π =⋃cw #”π =
⋃cw

α<λ πα ∈ MF so that |π| =
⋃

α<λ |πα| and π(ξ) =
⋃

α<λ, ξ∈|πα| πα(ξ) for ξ ∈ |π|.

Remark 4.4. Any arboreal forcing P ∈ AF is considered as a forcing notion (if T ⊆ T ′ then T is a stronger 
condition); such a forcing adds a real in 2ω .

Accordingly any forcing notion of the form MT(π), where π = 〈Pξ〉ξ∈|π| ∈ MF, adjoins a generic 
sequence 〈xξ〉ξ∈|π| , each xξ = xξ[G] ∈ 2ω being a Pξ -generic real. Reals of the form xξ[G] are principal 
generic reals in V[G]. �
5. Refinements

The following definition reminds the notions related to density in the forcing context.
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Definition 5.1. If P ⊆ R ⊆ PT then the set P is

— dense in R iff ∀T ∈ R ∃S ∈ P (S ⊆ T ),
— open dense in R iff in addition ∀T ∈ R ∀S ∈ P (T ⊆ S =⇒ T ∈ P ),
— pre-dense in R iff the set P ′ = { T ∈ R : ∃S ∈ P (T ⊆ S) } is dense.

In the case of multitrees, if P ⊆ R ⊆ MT then similarly the set P is

— dense in R iff ∀ q ∈ R ∃p ∈ P (p � q),
— open dense in R iff in addition ∀ q ∈ R ∀p ∈ P (q ≤ p =⇒ q ∈ P ),
— pre-dense in R iff the set P ′ = { q ∈ R : ∃p ∈ P (q ≤ p) } is dense. �
Now let P, Q ∈ AF be arboreal forcings. We say that Q is a refinement of P (in symbol P � Q) if

(1) the set Q is dense in P ∪Q: if T ∈ P then ∃Q ∈ Q (Q ⊆ T );
(2) if T ∈ Q then T ⊆fin ⋃

P , that is, there is a finite set D ⊆ P such that T ⊆
⋃

D , or equivalently 
[T ] ⊆

⋃
S∈D[S];

(3) if T ∈ Q and S ∈ P then [S] ∩ [T ] is clopen in [T ] and S �⊆ T .

Lemma 5.2.

(i) If P � Q and S ∈ P , T ∈ Q, then [S] ∩ [T ] is meager in [S], therefore P ∩ Q = ∅ and Q is open 
dense in P ∪Q;

(ii) if P � Q � R then P � R, thus � is a strict partial order on AF;
(iii) if 〈Pα〉α<λ is a �-increasing sequence in AF and 0 < μ < λ then P =

⋃
α<μ Pα � Q =

⋃
μ≤α<λ Pα ;

(iv) if 〈Pα〉α<λ is a �-increasing sequence in AF and each Pα is special then P =
⋃

α<λ Pα ∈ AF, P is 
regular, and all Pγ are pre-dense in P .

Proof. (i) Otherwise there is a string u ∈ S such that [S� u] ⊆ [T ] ∩ [S]. But S� u ∈ P , which contradicts 
to (3) above.

To prove (ii) it suffices to verify (3). Let S ∈ P and T ∈ R. By (2) for Q � R, there is a finite D ⊆ Q

such that T ⊆
⋃
D . If U ∈ D then [S] ∩ [U ] is clopen in [U ], so [S] ∩ [

⋃
D] is clopen in [

⋃
D]. We conclude 

that [S] ∩ [T ] is clopen in [T ]. Moreover, if U ∈ D then [U ] ∩ [T ] is meager in [U ] while [S] ∩ [U ] is meager 
in [S], by (i). Thus [S] ∩ [T ] is meager in [S].

To prove (iii) in part (3), let S ∈ P and T ∈ Q, so that S ∈ Pα and T ∈ Pγ , α < μ ≤ γ . But then 
Pα � Pγ .

(iv) To check the regularity, let S ∈ Pα , T ∈ Pβ , α ≤ β . If α = β then, as Pα is special, the trees S, T
either satisfy S⊥T or are ⊆-comparable. If α < β then [S] ∩ [T ] is clopen in [T ] by (3) above.

To check the pre-density of Pγ , let S ∈ Pα , α �= γ . If α < γ then by (1) above there is a tree T ∈ Pγ , 
T ⊆ S . Now let γ < α. Then S ⊆fin ⋃

Pγ by (2), hence there is a tree T ∈ Pγ such that [S] ∩ [T ] �= ∅. 
However [S] ∩ [T ] is clopen in [S] by (3) above. Therefore S� u ⊆ T for a string u ∈ S . Finally S� u ∈ Pα

since Pα ∈ AF. �
In the case of multiforcings, a multiforcing ϙ is a refinement of π (in symbol π �� ϙ) if |π| ⊆ |ϙ| and 

π(ξ) � ϙ(ξ) in AF for all ξ ∈ |π|.

Corollary 5.3 (of Lemma 5.2(ii)). �� is a strict partial order on MF. �
Lemma 5.4. If π′ ⊆ π �� ϙ ⊆ ϙ′ are multiforcings then π′ �� ϙ′ .
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Proof. By definition, |π′| ⊆ |π| ⊆ |ϙ| ⊆ |ϙ′| holds, and if ξ ∈ |π′| then π′(ξ) = π(ξ) � ϙ(ξ) = ϙ(ξ′). �
Lemma 5.5. Let 〈πα〉α<λ be a ��-increasing sequence of special multiforcings, and 0 < μ < λ. Then the 
componentwise union π =

⋃cw
α<λ πα is a regular multiforcing, each MT(πα) is pre-dense in MT(π), and 

we have 
⋃cw

α<μ πα = π<μ �� π≥μ =
⋃cw

μ≤α<λ πα .

Proof. If ξ ∈
⋃

α<λ |πα| then π(ξ) =
⋃

α<λ,ξ∈|πα| πα(ξ) is a regular arboreal forcing by Lemma 5.2(iv). The 
pre-density claim also follows from Lemma 5.2(iv). To prove the last claim make use of Lemma 5.2(iii). �
6. Sealing dense sets

A key property of Jensen’s refinement construction is that it allows to seal dense sets, i.e., keep them to 
be still pre-dense after a refinement is adjoined. In the easier case of arboreal forcings this is based on the 
following definition.

Definition 6.1. Let P, Q ∈ AF and D ⊆ P . Say that Q seals D over P , symbolically P �D Q, if P � Q

holds and every tree S ∈ Q satisfies S ⊆fin ⋃D , that is, S ⊆
⋃

D′ for a finite subset D′ ⊆ D . �
As we’ll see now, a sealed set is pre-dense after the refinement. The additional importance of sealing 

refinements lies in the fact that, once established, it is preserved under further simple refinements, as in (ii)
of the following lemma:

Lemma 6.2.

(i) If P �D Q, D ⊆ P , then D is pre-dense in P ∪Q;
(ii) if 〈Pα〉α<λ is a �-increasing sequence in AF, 0 < μ < λ, and P =

⋃
α<μ Pα �D Pμ , then P �D Q =⋃

μ≤α<λ Pα .

Proof. (i) Let T0 ∈ P ∪ Q. By (1) in Section 5, there is a tree T ∈ Q, T ⊆ T0 . Then T ⊆fin ⋃
D , in 

particular, there is a tree S ∈ D with X = [S] ∩ [T ] �= ∅. However X is clopen in [S] by (3) in Section 5. 
Therefore there is a tree T ′ ∈ Q with [T ′] ⊆ X , thus T ′ ⊆ S ∈ D and T ′ ⊆ T ⊆ T0 . We conclude that T0
is compatible with S ∈ D in P ∪Q.

(ii) By Lemma 5.2(ii), P � Q. Now let T ′ ∈ Q. So for some μ ≤ α < λ, T ′ ∈ Pα , and since Pμ � Pα , 
we have T ′ ⊆fin ⋃

Pμ . Thus for some finite D′ ⊆ Pμ , T ′ ⊆
⋃

D . But, as P �D Pμ , for each T ∈ D′ the 
relationT ⊆fin ⋃D holds, hence T ′ ⊆fin ⋃D .2 �

In the case of multiforcings, we modify the above definitions as follows. First of all, if u is a multitree 
and D a collection of multitrees, then u ⊆fin ∨

D will mean that there is a finite set D′ ⊆ D satisfying 
1) |v| = |u| for all v ∈ D′ , and 2) [u] ⊆

⋃
v∈D′ [v]. (See Section 4 on [u].)

Definition 6.3. Let π, ϙ be multiforcings. Say that ϙ seals a set D ⊆ MT(π) over π , symbolically π ��D ϙ, 
if π �� ϙ and the following holds:

(∗) if p ∈ MT(π), u ∈ MT(ϙ), |u| ⊆ |π|, |u| ∩ |p| = ∅, then there is q ∈ MT(π) such that q � p, still 
|q| ∩ |u| = ∅, and u ⊆fin ∨D|u|

q , where D|u|
q = { u′ ∈ MT(π) : |u′| = |u| and u′ ∪ q ∈ D} . �

Lemma 6.4. Let π, ϙ, σ be multiforcings and D ⊆ MT(π). Then:

2 This proof of (ii), correcting our original one, was suggested by the anonymous referee.
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(i) if π ��D ϙ then D is pre-dense in MT(π ∪cw ϙ);
(ii) if π is regular, π ��Di

ϙ for i = 1, . . . , n, all sets Di ⊆ MT(π) are open dense in MT(π), and 
D =

⋂
i Di , then π ��D ϙ;

(iii) if 〈πα〉α<λ is a ��-increasing sequence of special multiforcings, 0 < μ < λ, π<μ =
⋃cw

α<μ πα , D is 
open dense in MT(π<μ), and π<μ ��D πμ , then π<μ ��D π≥μ =

⋃cw
μ≤α<λ πα .

Proof. (i) Let r ∈ MT(π ∪cw ϙ). Due to the product character of the multiforcing MT(π ∪cw ϙ), we can 
assume that |r| ⊆ |π|. Let

X = {ξ ∈ |r| : T r
ξ ∈ MT(ϙ)} , Y = {ξ ∈ |r| : T r

ξ ∈ MT(π)} .

Then r = u ∪ p, where u = r�X ∈ MT(ϙ), p = r�Y ∈ MT(π). As ϙ seals D , there is a multitree 
q ∈ MT(π) such that q � p, |q| ∩ |u| = ∅, and u ⊆fin ∨

D|u|
q . Easily there is a multitree u′ ∈ D|u|

q

compatible with u in MT(ϙ); let w ∈ MT(ϙ), w � u, w � u′ , |w| = |u′| = |u|. Then the multitree 
r′ = w ∪ q ∈ MT(π ∪cw ϙ) satisfies r′ � r and r′ � u′ ∪ q ∈ D .

(ii) Let p ∈ MT(π), u ∈ MT(ϙ), |u| ⊆ |π|, |u| ∩ |p| = ∅. Iterating (∗) for Di , i = 1, . . . , n, we find a 
multitree q ∈ MT(π) such that q � p, the equality |q| ∩ |u| = ∅ holds, and u ⊆fin ∨

(Di)|u|
q for all i, 

where

(Di)|u|
q = {u′ ∈ MT(π) : |u′| = |u| and u′ ∪ q ∈ Di} .

Thus there exist finite sets Ui ⊆ (Di)|u|
q such that [u] ⊆

⋃
v∈Ui

[v] for all i. Using the regularity assumption, 
we get a finite set W ⊆ MT(π) such that |w| = |u| for all w ∈ W , the equality 

⋂
i

⋃
v∈Ui

[v] =
⋃

w∈W [w]
holds, and if i = 1, . . . , n and w ∈ W then [w] ⊆ [v] for some v ∈ Ui — hence w ∪ q ∈ Di . We conclude 
that if w ∈ W then w∪ q ∈ D , hence w ∈ D|u|

q . Thus W ⊆ D|u|
q . However [u] ⊆

⋃
w∈W [w] by the choice 

of W . Thus u ⊆fin ∨D|u|
q .

(iii) Both π<μ and π≥μ are regular multiforcings by Lemma 5.5. To check that π≥μ seals D over π<μ , 
let u ∈ MT(π≥μ), |u| ⊆ |π<μ|, p ∈ MT(π<μ), |u| ∩ |p| = ∅. There is a finite set U ⊆ MT(πμ), such that 
|v| = |u| for all v ∈ U , and [u] ⊆

⋃
v∈U [v]. As π<μ ��D πμ , by iterated application of Definition 6.3(∗)

we get a multitree q ∈ MT(π<μ) such that q � p, |q| ∩ |u| = ∅, and if v ∈ U then v ⊆fin ∨D|u|
q , where

D|u|
q = {v′ ∈ MT(π<μ) : |v′| = |v| = |u| ∧ v′ ∪ q ∈ D} .

And finally u ⊆fin ∨U by construction, hence u ⊆fin ∨D|u|
q as well. �

7. Sealing real names

In this section we present another extension of the refinement technique, discovered in [31], related to 
the structure of real names, i.e., names of reals in 2ω in the context of forcing notions of the form MT(π).

Let a real name be any set c ⊆ MT × (ω × 2) such that the sets Kc
ni = { p ∈ MT : 〈p, n, i〉 ∈ c } satisfy 

the following: if n < ω and p ∈ Kc
n0 , q ∈ Kc

n1 , then the multitrees p, q are incompatible in the sense of 
Definition 4.1.

Let Kc
n = Kc

n0 ∪Kc
n1 ; then Kc

n ⊆ MT.
A real name c is small if each Kc

n is at most countable — then the set |c| =
⋃

n

⋃
p∈Kc

n
|p|, and c itself, 

are countable, too.
Now let π be a multiforcing. A real name c is π-complete if the set

Kc
n↑π = {p ∈ MT(π) : ∃ q ∈ Kc

n (p ≤ q)}
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is dense in MT(π) for each n. (We do not require here that c ⊆ MT(π) × (ω × 2), or equivalently, 
Kc

n ⊆ MT(π), ∀n.) In this case, if a set (a filter) G ⊆ MT(π) is MT(π)-generic over the family of all sets 
Kc

n↑π , n < ω , then we define a real c[G] ∈ 2ω so that c[G](n) = i iff G ∩ (Kc
n↑π) �= ∅.

Example 7.1. Assume that ξ < ω1 . Define a real name .
xξ ∈ L such that each set K

.
xξ

ni consists of a single 
multitree P ξ

ni , where |P ξ
ni| = { ξ} (the domain), P ξ

ni(ξ) = Tni , and Tni = { s ∈ 2<ω : lh(s) ≤ n ∨s(n) = i }.
We leave it as a routine exercise to prove that, in L, .

xξ is a small real name, π-complete for any 
multiforcing π , and if a set G ⊆ MT(π) is MT(π)-generic over L, then the real .

xξ[G] is identic to xξ[G]
defined as in Remark 4.4. Thus .

xξ is a canonical name for the generic real xξ[G]. �
Direct forcing. Assume that c is a real name. Say that a multitree p:

• directly forces c(n) = i, where n < ω and i = 0, 1, iff there is a multitree q ∈ Kc
ni such that p � q ;

• directly forces s ⊂ c, where s ∈ 2<ω , iff for all n < lh(s), p directly forces c(n) = i, where i = s(n);
• directly forces c /∈ [T ], where T ∈ PT, iff there is a string s ∈ 2<ω�T such that p directly forces s ⊂ c.

The definition of direct forcing is not explicitly associated with any concrete forcing notion, but in fact it is 
compatible with any multiforcing.

Lemma 7.2. Assume that π is a multiforcing, c is a π-complete real name, and p ∈ MT(π). If n < ω then 
there exists i = 0, 1 and a multitree q ∈ MT(π), q � p, which directly forces c(n) = i. If T ∈ PT then 
there exists s ∈ T and a multitree q ∈ MT(π), q � p, which directly forces c /∈ [T � s].

Proof. To prove the first claim use the density of sets Kc
n↑π by the definition of completeness. To prove the 

second claim, pick n such that T ∩ 2n contains at least two strings. By the first claim, there is a multitree 
q ∈ MT(π), q � p, and a string t ∈ T ∩ 2n such that q directly forces t ⊂ c. Now take any s ∈ T ∩ 2n , 
s �= t. �

Sealing names. The next definition extends Definition 6.3 to real names.

Definition 7.3. Assume that π, ϙ are multiforcings, c is a real name, and π �� ϙ. Say that ϙ seals c over 
π , symbolically π ��c ϙ, if ϙ seals, over π , each set Kc

n↑π = { p ∈ MT(π) : ∃ q ∈ Kc
n (p ≤ q) }. �

Non-principal names. The following definition presents conditions which will work towards a given real 
name c being NOT a name of a real of the form xξ[G] in the context of Remark 4.4.

Definition 7.4. Let π be a multiforcing, ξ ∈ |π|. A real name c is non-principal over π at ξ , if the following 
set is open dense in MT(π):

Dπ
ξ (c) = {p ∈ MT(π) : ξ ∈ |p| ∧ p directly forces c /∈ [Tp

ξ ]} .

Let ϙ be another multiforcing, and π �� ϙ. Say that ϙ avoids a real name c over π at ξ , in symbol 
π ��c

ξ ϙ, if for each Q ∈ ϙ(ξ), ϙ seals the set

D(c, Q,π) = {r ∈ MT(π) : ξ ∈ |r| ∧ r directly forces c /∈ [Q]} ,

over π in the sense of Definition 6.3 — that is formally π ��D(c,Q,π) ϙ. �
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8. Consequences for generic extensions

We first prove a lemma on adequately representation of reals in MT(π)-generic extensions by real names. 
Then Theorem 8.2 will show corollaries for non-principal names.

Lemma 8.1. Suppose that π is a regular multiforcing. If MT(π) is a CCC forcing notion, G ⊆ MT(π) is 
MT(π)-generic over the ground ZFC universe V, and x ∈ V[G] ∩2ω , then there is a small π-complete real 
name Here we follow the ‘Forcing over the Universe’ approach as in Kunen, Set Theory, IV.5.2. c ∈ V, 
c ⊆ MT(π) × ω × 2, such that x = c[G].

Proof. It is an instance of a general forcing theorem that there is a (not necessarily small) π-complete real 
name d ∈ V, d ⊆ MT(π)×ω× 2, such that x = d[G]. To get a small name, extend each set Kd

n ⊆ MT(π)
to an open dense set

Kd
n ↑π = {p ∈ MT(π) : ∃ q ∈ Kd

n (p ≤ q)} ,

choose maximal (countable by CCC) antichains An ⊆ Kd
n ↑π in those sets, and then let Ani = { p ∈ An :

∃ q ∈ Kd
ni (p ≤ q) } and c = { 〈p, n, i〉 : p ∈ Ani}. �

Theorem 8.2. Let π be a regular multiforcing and ξ ∈ |π|. Then

(i) if MT(π) is CCC, a set G ⊆ MT(π) is MT(π)-generic over the ground set universe V, and x ∈
V[G] ∩ 2ω , x �= xξ[G], then, in V, there is a small π-complete real name c ⊆ MT(π) × (ω × 2), 
non-principal over π at ξ and such that x = c[G];

(ii) if c ⊆ MT(π) × (ω × 2) is a π-complete real name, ϙ is a multiforcing, π ��c
ξ ϙ, and a set G ⊆

MT(π ∪cw ϙ) is MT(π ∪cw ϙ)-generic over V, then c[G] /∈
⋃

Q∈ϙ(ξ)[Q].

Proof. (i) Let x �= xξ[G]. By Lemma 8.1, there is a π-complete real name c such that x = c[G] and MT(π)
forces that c �= xξ[G]. It remains to show that c is a non-principal name over π at ξ , that is, the set

Dπ
ξ (c) = {p ∈ MT(π) : ξ ∈ |p| ∧ p directly forces c /∈ [Tp

ξ ]} .

is open dense in MT(π). The openness is clear, let us prove the density. Consider any q ∈ MT(π). Then 
q MT(π)-forces c �= xξ[G] by the choice of c, hence we can assume that, for some n, c(n) �= xξ[G](n) is 
MT(π)-forced by q . Then by Lemma 7.2 there is a multitree p ∈ MT(π), p � q , and s ∈ ωn+1 , such that 
p directly forces s ⊆ c. Now it suffices to show that s /∈ Tp

ξ . Suppose otherwise: s ∈ Tp
ξ . Then the tree 

T = Tp
ξ � s still belongs to MT(π). Therefore the multitree r defined by T r

ξ = T and T r
ξ′ = Tp

ξ′ for each 
ξ′ �= ξ , belongs to MT(π) and satisfies r � p � q . However r directly forces both c(n) and xξ[G](n) to be 
equal to one and the same value � = s(n), which contradicts to the choice of n.

(ii) Suppose towards the contrary that Q ∈ ϙ(ξ) and c[G] ∈ [Q]. By definition, ϙ seals, over π , the set

D(c, Q,π) = {r ∈ MT(π) : ξ ∈ |r| ∧ r directly forces c /∈ [Q]} .

Therefore D(c, Q, π) is pre-dense in MT(π ∪cw ϙ) by Lemma 6.4(i), and hence G ∩D(c, Q, π) �= ∅, i.e., 
there is a multitree r ∈ MT(π) which directly forces c /∈ [Q]. Then c[G] /∈ [Q], which is a contradiction. �
9. Refinement construction by Jensen

The splitting/fusion construction was originally invented as a method to obtain perfect sets in Polish 
spaces. Jensen modified it in [22] in order to get refinements of arboreal forcing notions. The definition below 
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in this Section, taken from [31], introduces essentially a product version of Jensen’s refinements. As we deal 
with finite support products, the standard technique in the theory of countable-support Sacks products, 
as e.g. in [17] or [24], is not fully applicable. The notion of a system in the next definition will be the key 
instrument. That finite-support products of Jensen-style forcing notions are CCC, preserve cardinals (unlike 
finite-support Sacks products), and admit a suitable version of splitting/fusion technique, was demonstrated 
in [26].

9A. Systems. Suppose that π = 〈Pξ〉ξ∈|π| is a multiforcing. Let a π-system be any map ϕ defined on 
a finite set |ϕ| ⊆ |π| × ω such that if 〈ξ, k〉 ∈ |ϕ| then ϕ(ξ, k) =

〈
nϕ
ξk, T

ϕ
ξk

〉
∈ ω ×

⋃fin
Pξ , where 

⋃fin
Pξ

consists of all finite unions of trees in Pξ , as above. A system ϕ is antichain-like if for any two different 
pairs of indices 〈ξ, k〉 �= 〈η, m〉 in |ϕ| we have Tϕ

ξk ⊥Tϕ
ηm .

We order the set Sys(π) of all π -systems componentwise: ϕ � ψ (ϕ extends ψ) iff |ψ| ⊆ |ϕ| and 〈
nϕ
ξk, T

ϕ
ξk

〉
�

〈
nψ
ξk, T

ψ
ξk

〉
for all 〈ξ, k〉 ∈ |ψ| in ω × PT (Section 3).

A set Δ ⊆ Sys(π) is dense if for any ψ ∈ Sys(π) there is ϕ ∈ Δ with ϕ � ψ .

Lemma 9.1. If π is a multiforcing and ϕ ∈ Sys(π) then there is an antichain-like system ψ ∈ Sys(π) such 
that |ψ| = |ϕ| and ψ � ϕ.

Proof. If S, T ∈ PT then there are ⊂-incomparable tuples u ∈ S , v ∈ T . The claim on this line is true in 
case S=T as well, so no change is necessary Then the trees S′ = S� u , T ′ = T � v satisfy S′ ⊥T ′ . Moreover if 
S ∈ P and T ∈ Q, where P, Q are arboreal forcings, then still S′ ∈ P and T ′ ∈ Q. We get an antichain-like 
system ψ � ϕ by consecutive shrinking trees in ϕ. �
Remark 9.2. This definition of systems somewhat differs from the one considered in [31, Definition 7.1]. The 
difference is that the version of [31] requires that all numbers nϕ

ξk are equal to one and the same number 
n = nϕ . Call such a system uniform and let Sysunif(π) ⊆ Sys(π) be the set of all uniform systems. We may 
note that Sysunif(π) is dense in Sys(π): if ψ ∈ Sys(π) then there is a system ϕ ∈ Sysunif(π), ϕ � ψ . (This 
is because clearly 〈n, T 〉 � 〈m, T 〉 for any tree T in case n > m.) Therefore each M-generic sequence Φ
of systems in Sys(π) contains an M-generic infinite subsequence Φ′ in Sysunif(π). The version developed 
here will allow us to use product-generic arguments in the proof of Theorem 26.1 below, ineffective in the 
Sysunif version. �

9B. A power-free subtheory. Let ZFC−
1 be the theory ZFC with the powerset axiom removed, the 

collection scheme in place of the replacement scheme, the version of the axiom of choice which states that 
every set can be well-ordered, plus the axiom “P(ω) exists”.3 Using the “P(ω) existence” principle (which 
accounts for the index 1), ZFC−

1 proves that continual objects, such as ωω , ω1 , PT, MT, sMF (small 
multiforcings) do exist as sets.

9C. Generic sequences of systems. Let M be a countable transitive model (CTM) of ZFC−
1 . Suppose 

that π = 〈Pξ〉ξ∈|π| ∈ M is a multiforcing.

(I) As M is countable, there is a �-decreasing sequence Φ = 〈ϕj〉j<ω of systems ϕj ∈ Sys(π), M-generic
in the sense that it intersects every set Δ ∈ M , Δ ⊆ Sys(π), dense in Sys(π). (See Subsection 9A on 
the density.)

Fix any such an M-generic �-decreasing sequence Φ of systems in Sys(π).

3 It is known that without the powerset axiom, the collection and replacement schemes are not equivalent and neither are the 
various forms of the axiom of choice equivalent over ZF. See more in [15] on power-free subtheories of ZFC.
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(II) By definition, we have ϕj = 〈
〈
n
ϕj

ξ k, Tϕj

ξ k
〉
〉〈ξ,k〉∈|ϕj | for all j , where |ϕj | ⊆ |π| × ω is finite, and each 

tree Tϕj

ξk belongs to 
⋃fin

Pξ . We have nϕj

ξk → ∞ with j → ∞ monotonously for each ξ, k .
(III) Let ξ ∈ |π|, k < ω . By the genericity assumption, there is a number j(ξ, k) such that if j ≥ j(ξ, k)

then 〈ξ, k〉 ∈ |ϕj |, hence the pair ϕj(ξ, k) =
〈
n
ϕj

ξk , T
ϕj

ξk

〉
is defined, Tϕj

ξk ∈
⋃fin

Pξ , and we have

. . . �
〈
n
ϕj(ξ,k)+2
ξk , T

ϕj(ξ,k)+2
ξk

〉
�

〈
n
ϕj(ξ,k)+1
ξk , T

ϕj(ξ,k)+1
ξk

〉
�

〈
n
ϕj(ξ,k)
ξk , T

ϕj(ξ,k)
ξk

〉
,

with n
ϕj(ξ,k)
ξk ≤ n

ϕj(ξ,k)+1
ξk ≤ n

ϕj(ξ,k)+2
ξk ≤ . . . → ∞, by (II) above.

(IV) Then it follows by Lemma 3.3 that each intersection QΦ
ξk =

⋂
j≥j(ξ,k) T

ϕj

ξk is a tree in PT (not 
necessarily in Pξ ), and

〈
n
ϕj(ξ,k)
ξk ,QΦ

ξk

〉
�

〈
n
ϕj(ξ,k)
ξk , T

ϕj

ξk

〉
holds for all j ≥ j(ξ, k). We put QΦ

ξ = { QΦ
ξk� s : k < ω ∧ s ∈ QΦ

ξk}.
(V) We put ϙ = lim[Φ] := 〈QΦ

ξ 〉ξ∈|π| ; then π ∪cw ϙ = 〈Pξ ∪ QΦ
ξ 〉ξ∈|π| . If ϙ = lim[Φ] is obtained from an 

M-generic sequence Φ as in (I)–(V) above, then ϙ is called an M-generic refinement of π .

Remark 9.3. A somewhat stronger notion of genericity was considered in [31]. Let HC be the set of all 
hereditarily countable sets; X ∈ HC iff the transitive closure TC (X) is at most countable. Let M+ be 
the set of all sets X ⊆ HC definable in HC by an ∈-formula with sets x ∈ M as parameters; clearly 
M � M+ . The notion of an M+ -generic sequence of systems in Sys(π) is introduced similarly to (I), with 
the condition of non-empty intersection with every dense set Δ ∈ M+ , as well as the ensuing definition of 
an M+ -generic refinement similar to (V).

Yet it will be demonstrated below that the M-genericity suffices to infer all crucial consequences of the 
stronger M+ -genericity obtained in [31]. �
Lemma 9.4. If M |= ZFC−

1 is a CTM and π ∈ M is a multiforcing, then there exists an M-generic sequence 
Φ of systems in Sys(π) as in (I), and hence there is a M-generic refinement ϙ of π as in (V).

Proof. Use the countability of M. �
10. Jensen’s construction indeed yields a refinement

It is not immediately clear that the construction of M-generic refinements indeed results in refinements 
in the sense of Section 5. This is a subject of the next theorem, proved in [31] under the stronger assumption 
of M+ -genericity.

Theorem 10.1. Assume that M |= ZFC−
1 is a CTM, π = 〈Pξ〉ξ∈|π| ∈ M is a regular multiforcing, Φ =

〈ϕj〉j<ω is an M-generic �-decreasing sequence of systems in Sys(π), as in (I) of Section 9, and ϙ =
lim[Φ] = 〈 Q ξ〉ξ∈|π| is an M-generic refinement of π , as in (V) of Section 9. Then in the notation of items
(I)–(V) of Section 9 we have:

(i) ϙ is a small special multiforcing, |ϙ| = |π|, and π �� ϙ;
(ii) if pairs 〈ξ, k〉 �= 〈η, �〉 belong to |π| × ω then [QΦ

ξ k] ∩ [QΦ
η�] = ∅;

(iii) if ξ ∈ |π|, S ∈ Q ξ and T ∈ Pξ then [S] ∩ [T ] is clopen in [S] and T �⊆ S , in particular, Q ξ ∩Pξ = ∅;
(iv) if ξ ∈ |π| then the set Q ξ is open dense in Q ξ ∪ Pξ ;
(v) if ξ ∈ |π| and D ∈ M, D ⊆ Pξ is pre-dense in Pξ then Pξ �D Q ξ ;
(vi) if in addition π =

⋃cw
α<λ πα , where the ordinal λ < ω1 is limit and 〈πα〉α<λ ∈ M is a ��-increasing 

sequence of small special multiforcings, then πα �� ϙ for allα < λ, and |ϙ| =
⋃

|πα|;
α<λ
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(vii) if D ∈ M, D ⊆ MT(π), and D is open dense in MT(π), then π ��D ϙ, and hence D is pre-dense 
in MT(π ∪cw ϙ) by Lemma 6.4;

(viii) if c ∈ M is a π-complete real name then π ��c ϙ.
(ix) if η ∈ |π| and c ∈ M is a π-complete real name non-principal over π at η , then π ��c

η ϙ.

Proof. We argue in the notation of items (I)–(V) of Section 9.
(ii) By Lemma 9.1, the set D of all antichain-like systems ϕ ∈ Sys(π), such that |ϕ| contains both 〈ξ, k〉

and 〈η, �〉, is dense in Sys(π), and obviously D ∈ M. Thus ϕj ∈ D for some j < ω . Then Tϕj

ξk ⊥T
ϕj

η� since 

ϕj is antichain-like. But QΦ
ξ k ⊆ T

ϕj

ξk , QΦ
η� ⊆ T

ϕj

η� by construction.
(iii) Let k < ω and S = QΦ

ξ k . (We don’t need to consider all trees S = QΦ
ξk� s, s ∈ QΦ

ξk , since any [QΦ
ξk� s]

is clopen in [QΦ
ξk� s].) To prove the clopenness claim, note that the set D(T ) of all systems ϕ ∈ Sys(π)

such that

〈ξ, k〉 ∈ |ϕ|, and if s ∈ Uϕ = 2n
ϕ
ξk ∩ Tϕ

ξk then either Tϕ
ξk� s ⊆ T or Tϕ

ξk� s ⊥T ,

is dense in Sys(π), and obviously D(T ) ∈ M. Thus ϕj ∈ D(T ) for some j < ω . Then the disjoint sets

U+ = {s ∈ Uϕj
: Tϕ

ξ k� s ⊆ T } and U− = {s ∈ Uϕj
: Tϕ

ξ k� s ⊥T }

satisfy U+ ∪ U− = Uϕj
, and obviously the set [Tϕ

ξk] ∩ [T ] =
⋃

s∈U+ [Tϕ
ξk� s] is clopen in [Tϕ

ξk]. However 
QΦ

ξ k ⊆ T
ϕj

ξk by construction.
To prove T �⊆ S , note that the set D′(T ) ∈ M of all systems ϕ ∈ Sys(π), such that 〈ξ, k〉 ∈ |ϕ| and 

T �⊆ Tϕ
ξk , is dense. Then argue as above.

(iv) The openness easily follows from (iii). To prove the density, let T ∈ Pξ . The set Δ(T ) of all systems 
ϕ ∈ Sys(π), such that 〈ξ, k〉 ∈ |ϕ| and Tϕ

ξk = T for some k < ω , belongs to M and is dense in Sys(π).
(i) By construction, the sets ϙ(ξ) = QΦ

ξ are special arboreal forcings, and hence ϙ is a small special 
multiforcing, and |ϙ| = |π|. To establish π �� ϙ, let ξ ∈ |π|. The relation Pξ � Q ξ follows from (iv) and
(iii).

(v) Assume that ξ ∈ |π|, k < ω , D ∈ M is pre-dense in Pξ . Then the set D′ = { T ∈ Pξ : ∃S ∈ D(T ⊆
S) } is open dense in Pξ , and hence the set Δ ∈ M of all systems ϕ ∈ Sys(π), such that 〈ξ, k〉 ∈ |ϕ|
and Tϕ

ξk� s ∈ D′ for all s ∈ 2n
ϕ
ξk ∩ Tϕ

ξk , is dense in Sys(π). Thus ϕj ∈ Δ for some j , and this implies 
QΦ

ξ k ⊆ T
ϕj

ξk ⊆fin ⋃D .
(vi) We have to prove that πα(ξ) � ϙ(ξ) whenever ξ ∈ |πα|. By (iv) and (iii) already established, it 

suffices to show that QΦ
ξ k ⊆fin ⋃πα(ξ) for any k . Note that the set πα(ξ) ∈ M is pre-dense in π(ξ) = Pξ

by Lemma 5.2. We conclude that the set D = { T ∈ Pξ : ∃S ∈ πα(ξ)(T ⊆ S) } ∈ M is open dense in Pξ . 
This implies that if S ∈

⋃fin
Pξ and m < ω then there is a tree T ∈

⋃fin
Pξ satisfying 〈m, T 〉 � 〈m, S〉 and 

such that if u ∈ T ∩ 2m then T � u ∈ D , and hence overall T ⊆fin ⋃D . It follows that the set Δ ∈ M of all 
systems ϕ ∈ Sys(π), such that 〈ξ, k〉 ∈ |ϕ| and Tϕ

ξk ⊆fin ⋃D , is dense in Sys(π). Therefore QΦ
ξ k ⊆fin ⋃D

by construction, and then obviously QΦ
ξ k ⊆fin ⋃πα(ξ), as required.

(vii) Suppose that p ∈ MT(π), u ∈ MT(ϙ), |u| ∩|p| = ∅, as in (∗) of Definition 6.3; the extra condition 
|u| ⊆ |π| holds automatically as |ϙ| = |π|. We have to find a multitree q which witnesses 6.3 (∗) for u.

Each term Tu
ξ of u (ξ ∈ |u|) is equal to some QΦ

ξ,kξ
� tξ

, where kξ < ω and tξ ∈ QΦ
ξ,kξ

. We w.l.o.g.
assume that just tξ = Λ, so Tu

ξ = QΦ
ξ,kξ

, ∀ ξ .
Let Sysu(π) be the set of all systems ϕ ∈ Sys(π) such that 〈ξ, kξ〉 ∈ |ϕ| for all ξ ∈ |u|, and Tϕ

ξk� t ∈
Pξ = π(ξ) (not just ∈

⋃fin
Pξ !) for all 〈ξ, k〉 ∈ |ϕ| and all t ∈ Tϕ

ξk with lh(t) = nϕ
ξk . If ϕ ∈ Sysu(π) then 

let Sϕ
u consist of all multituples s = 〈sξ〉ξ∈|u| such that sξ ∈ Tϕ

ξ,kξ
and lh(sξ) = nϕ

ξ,kξ
for all ξ ∈ |u|. If 

s = 〈sξ〉ξ∈|u| ∈ Sϕ
u then define a multitree vϕ

s ∈ MT(π) by |vϕ
s | = |u| and T vϕ

s = Tϕ � s for all ξ ∈ |u|.
ξ ξ,kξ ξ
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Now assume that r ∈ MT(π) and |r| ∩ |u| = ∅. Consider the set Δr ∈ M of all systems ϕ ∈ Sysu(π), 
such that there is a multitree q ∈ MT(π) satisfying q � r , still |u| ∩ |q| = ∅, and

(†) if s ∈ Sϕ
u then vϕ

s ∪ q ∈ D .

Lemma 10.2. Under the assumptions of the theorem, if r ∈ MT(π), |r| ∩ |u| = ∅, then the set Δr belongs 
to M and is dense in Sys(π).

Proof (Lemma). Δr ∈ M follows from π ∈ M |= ZFC−
1 .

To prove the density, let ψ ∈ Sys(π). We’ll find a system ϕ ∈ Δr , ϕ � ψ . We w.l.o.g. assume that 
ψ ∈ Sysu(π). (If not then adjoin each 〈ξ, kξ〉 /∈ |ϕ| to |ψ| and define Tψ

ξ,kξ
∈ Pξ arbitrarily. If 〈ξ, k〉 ∈ |ψ|

and t ∈ Tψ
ξk , lh(t) = nψ

ξk , but Tψ
ξk� t ∈

⋃fin
Pξ � Pξ , then shrink Tψ

ξk� t to a tree in Pξ .)
Let s = 〈sξ〉ξ∈|u| ∈ Sψ

u . Consider the multitree vψ
s ∈ MT(π). As D is dense, there are multitrees 

r′, v ∈ MT(π) such that |v| = |u|, v � vψ
s , |r′| ∩ |u| = ∅, r′ � r , and v ∪ r′ ∈ D . Define a system 

ψ′ ∈ Sys(π) with |ψ′| = |ψ| extending ψ , by putting nψ′

ξk = nψ
ξk for all 〈ξ, k〉 ∈ |ψ|, and shrinking each tree 

Tψ
ξ,kξ

� sξ
to T v

ξ , so that Tψ′

ξ,kξ
� sξ

= T v
ξ , but Tψ′

ξ,kξ
� t = Tψ

ξ,kξ
� t for all t ∈ Tψ

ξ,kξ
such that lh(t) = nψ

ξ,kξ
and 

t �= sξ , and finally Tψ′

ηk = Tψ
ηk if 〈η, k〉 ∈ |ψ| does not have the form 〈ξ, kξ〉, where ξ ∈ |u|. Then ψ′ � ψ

and Sψ′
u = Sψ

u by construction.
This construction can be iterated, so that all strings s ∈ Sψ

u are considered consecutively one by one. 
This results in a system ϕ ∈ Sys(π), such that |ϕ| = |ψ|, ϕ � ψ , and Sϕ

u = Sψ
u , and a multitree q ∈ MT(π)

with q � r and still |q| ∩ |u| = ∅, such that if s ∈ Sψ
u then the multitree vψ

s satisfies vψ
s ∪ q ∈ D . Thus 

(†) holds and q witnesses that ϕ ∈ Δr . This completes the proof of the lemma. �

Coming back to (vii) of the theorem, we have ϕ = ϕj ∈ Δp for some j by the lemma and the genericity 
of the sequence of systems ϕj . This is witnessed by some q ∈ MT(π), so that q � p, |u| ∩ |q| = ∅, and 
(†) of Lemma 10.2 holds for ϕ. Then [u] ⊆

⋃
s∈Sϕ

u
[vϕ

s ]. Yet vϕ
s ∈ D|u|

q , ∀ s, by (†).
(viii) Each set Kc

n↑π belongs to M (as so do c and π) and is open dense in MT(π), so it remains to 
apply (vii) already established.

(ix) Let Q ∈ ϙ(η); we have to prove that ϙ seals the set D(c, Q, π) over π . By construction Q = QΦ
ηK � s

for some K < ω and s ∈ QΦ
ηK ; it suffices to consider only the case Q = QΦ

ηK . Following the proof of 
Theorem 10.1(vii), we suppose that p ∈ MT(π), u ∈ MT(ϙ), |u| ∩ |p| = ∅, and Tu

ξ = QΦ
ξ,kξ

, for each 
ξ ∈ |u|. We have to find a multitree q which witnesses 6.3 (∗) for u, p, D = D(c, Q, π). In the remainder 
of the proof, we use the notation in the proof of (vii) of Theorem 10.1, in particular, Sysu(π), Sϕ

u , vϕ
s , kξ .

Note that η may or may not belong to the set |u|, and even if η ∈ |u|, so kη is defined (with Tu
η = QΦ

η,kη
), 

then K may or may not be equal to kη .
Assume that r ∈ MT(π), |r| ∩ |u| = ∅. Consider the set Δr ∈ M of all systems ϕ ∈ Sysu(π), such that 

〈η, K〉 ∈ |ϕ|, and there is a multitree q ∈ MT(π) satisfying q � r , still |u| ∩ |q| = ∅, and

(†′) if s ∈ Sϕ
u and t ∈ Tϕ

ηK ∩ 2n
ϕ
ηK then vϕ

s ∪ q directly forces c /∈ [Tϕ
ηK � t].

Condition (†′) is somewhat similar to (†) of Lemma 10.2, and will play the same role. The direct forcing of 
c /∈ [Q] cannot be used in (†′) as Q is not necessarily an element of M, but c /∈ [Tϕ

ηK ] will be an effective 
replacement.

Lemma 10.3. If r ∈ MT(π), |r| ∩ |u| = ∅, then Δr is dense in Sys(π).



16 V. Kanovei, V. Lyubetsky / Annals of Pure and Applied Logic 175 (2024) 103426
Proof. Following the proof of Lemma 10.2, let ψ ∈ Sys(π). We wlog assume that ψ ∈ Sysu(π) (see 

Lemma 10.2), so 〈ξ, kξ〉 ∈ |ψ| for all ξ ∈ |u| and Tψ
ξk� t ∈ Pξ for all 〈ξ, k〉 ∈ |ψ| and t ∈ 2n

ψ
ξk ∩ Tψ

ξk , 
and 〈η, K〉 ∈ |ψ| as well.

We have to define a system ϕ ∈ Sys(π) such that ϕ � ψ and ϕ ∈ Δr . As in the proof of Lemma 10.2, it 
suffices to fulfill (†′) for one particular pair of s = 〈sξ〉ξ∈|u| ∈ Sψ

u and t ∈ Tψ
ηK ∩ 2n

ψ
ηK ; the final goal is then 

achieved by simple iteration through all such pairs. We have two cases.
Case 1: η ∈ |u|, K = kη , t = sη . Consider the multitree vψ

s ∈ MT(π). The set Dπ
η (c), as in Definition 7.4, 

is dense by the non-principality of c. It follows that there are multitrees q, v ∈ MT(π) such that |v| = |u|, 
v � vψ

s , |q| ∩ |u| = ∅, q � r , and v∪q ∈ Dπ
η (c). Therefore v∪q directly forces c /∈ [T q

η ]. Define a system 
ϕ ∈ Sys(π) with |ϕ| = |ψ|, from ψ by:

(a) shrinking each tree Tψ
ξ,kξ

� sξ
(ξ ∈ |u|) to T v

ξ , so that Tϕ
ξ,kξ

� sξ
= T v

ξ ,
(b) in particular, shrinking Tψ

ηK � t to T v
η , so that Tϕ

ηK � t = T v
η ,

and no other changes. We have 〈n, ϕ〉 � 〈n, ψ〉, vϕ
s = v , and Tϕ

ηK � t = T v
η by construction. Thus vϕ

s ∪ q

directly forces c /∈ [Tϕ
ηK � t], and (†′) holds.

Case 2: not Case 1. By Lemma 7.2, there exist multitrees q, v ∈ MT(π) and a tree T ∈ Pη such that 
T ⊆ Tψ

ηK � t , |v| = |u|, v � vψ
s , |q| ∩ |u| = ∅, q � r , and v ∪ q directly forces c /∈ [T ]. Define a system 

ϕ ∈ Sys(π) with |ϕ| = |ψ|, that extends ψ , by (a) above and

(c) shrinking Tψ
ηK � t to T , so that Tϕ

ηK � t = T ,

and no other changes. Note that (a) and (c) do not contradict each other since 〈η, T, t〉 �= 〈ξ, kξ, sξ〉 for all 
ξ ∈ u by the Case 2 hypothesis. We have ϕ � ψ , vϕ

s = v , and Tϕ
ηK � t = T v

η by construction. In particular, 
vϕ
s ∪ q directly forces c /∈ [Tϕ

ηK � t], thus (†′) holds. This completes the proof of the lemma. �
Come back to (ix) of the theorem. As Δp ∈ M, we have ϕ = ϕj ∈ Δp for some j by the lemma. Let 

this be witnessed by a multitree q ∈ MT(π), so that q � p, |u| ∩ |q| = ∅, and (†′) holds for ϕ = ϕj . 
In particular, as Tϕ

ηK =
⋃

t∈Tϕ
ηK∩2n Tϕ

ηK � t , where n = nϕ
ξk , the multitree vϕ

s ∪ q directly forces c /∈ [Tϕj

ηK ]
whenever s ∈ Sϕ

u , hence directly forces c /∈ [Q] as well, because Q = QΦ
ηK ⊆ Tϕ

ηK by construction. Thus if 
s ∈ Sϕ

u then vϕ
s ∪ q ∈ D(c, Q, π), and hence vϕ

s ∈ D(c, Q, ϕ)|u|
q . On the other hand, [u] ⊆

⋃
s∈Sϕ

u
[vϕ

s ], so 

that u ⊆fin ∨D(c, Q,π)|u|
q , as required. �

11. Combining refinement types

Here we summarize the properties of generic refinements considered above. The next definition combines 
the refinement types �D , ��D , ��c , ��c

ξ .

Definition 11.1. Suppose that π �� ϙ are multiforcings and M is any set. Let π ����∗
M ϙ mean that ϙ is an 

M-generic refinement of π .
Let π ����M ϙ mean that the four following requirements hold:

(1) if ξ ∈ |π|, D ∈ M, D ⊆ π(ξ), D is dense in π(ξ), then π(ξ) �D ϙ(ξ);
(2) if D ∈ M, D ⊆ MT(π), D is open dense in MT(π), then π ��D ϙ;
(3) if c ∈ M is a π-complete real name then π ��c ϙ;
(4) if ξ ∈ |π| and c ∈ M is a π-complete real name, non-principal over π at ξ , then π ��c

ξ ϙ, that is, 
π ��D(c,Q,π) ϙ for all Q ∈ ϙ(ξ). �
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Corollary 11.2. If M |= ZFC−
1 is a CTM, π ∈ M is a small multiforcing. Then π ����∗

M ϙ implies π ����M ϙ.

Proof. We have (1), (2), (3), (4) of Definition 11.1 by resp. (v), (vii), (viii), (ix) of Theorem 10.1. �
Corollary 11.3. Assume that M |= ZFC−

1 is a CTM, 〈πα〉α<λ is a ��-increasing sequence in MF, 0 < μ < λ, 
π<μ =

⋃cw
α<μ πα , and π<μ ����M πμ , then π<μ ����M π≥μ =

⋃cw
μ≤α<λ πα .

Proof. We have (1), (2) of Definition 11.1 for the relation π<μ ����M π≥μ by resp. Lemma 6.2(ii) and 
Lemma 6.4(iii). This also implies (3) of Definition 11.1 since this is a particular case of (2), see the proof of 
Theorem 10.1(viii). It remains to establish (4) of Definition 11.1. Thus assume that ξ ∈ |π<μ| and c ∈ M

is a π<μ-complete real name, non-principal over π<μ at ξ ; we have to prove that π<μ ��c
ξ π≥μ , that is, 

π<μ ��D(c,S,π<μ) π≥μ for any tree S ∈ π≥μ(ξ).
Then there is a finite set { Q1, . . . , Qm} ⊆ πμ(ξ) such that S ⊆ Q1∪· · ·∪Qm . We have π<μ ��D(c,Qi,π<μ)

πμ for all i since π<μ ����M πμ . It follows that π<μ ��D πμ by Lemma 6.4(ii), where D =
⋂

i D(c, Qi, π<μ), 
and further π<μ ��D π≥μ by Lemma 6.4(iii). However D ⊆ D(c, S, π<μ) because S ⊆

⋃
i Qi . We conclude 

that π<μ ��D(c,S,π<μ) π≥μ , as required. �
12. Increasing sequences of multiforcings

Recall that MF is the set of all multiforcings. Let

spMF = {π ∈ MF : π is a special, hence small multiforcing}.

Thus a multiforcing π ∈ MF belongs to spMF if |π| ⊆ ω1 is (at most) countable and if ξ ∈ |π| then π(ξ)
is a special forcing in AF (see Sections 3, 4).

• If κ ≤ ω1 then let #    ”MFκ be the set of all ��-increasing sequences #”π = 〈πα〉α<κ of multiforcings 
πα ∈ spMF, of length dom( #”π) = κ, domain-continuous so that if λ < κ is a limit ordinal then 
|πλ| =

⋃
α<λ |πα|.

• Let #    ”MF =
⋃

κ<ω1

#    ”MFκ (��-increasing sequences of countable length).

The set #    ”MF ∪ #    ”MFω1 is ordered by the relations ⊆, ⊂ of the extension of sequences.

Lemma 12.1. Assume that #”π ∈ #    ”MFκ+1 , κ < ω1 , π = #”π(κ) (the last term), and ξ < ω1 . Then there is a 
sequence #”ϙ ∈ #    ”MFκ+1 such that #”ϙ �κ = #”π �κ, π ⊆ #”ϙ(κ), and | #”ϙ(κ)| = |π| ∪ { ξ}.

Proof. If ξ ∈ |π| then put #”ϙ = #”π . If ξ /∈ |π| then define ϙ = #”ϙ(κ) by |ϙ| = |π| ∪ { ξ}, ϙ(η) = π(η) for 
η �= ξ , and ϙ(ξ) = P coh , where P coh (Cohen’s forcing) consists of all trees [s] = { t ∈ 2<ω : s ⊂ t ∨ t ⊆ s }, 
s ∈ 2<ω . �
Definition 12.2. Assume that M |= ZFC−

1 is a CTM, sequences #”π , #”ϙ belong to 
#    ”MF, and π =

⋃cw #”π =⋃cw
α<κ

#”π(α). We define:

#”π⊂M
#”ϙ , if #”π ⊂ #”ϙ and π ����M

#”ϙ(κ), where κ = dom( #”π) < dom( #”ϙ) ≤ ω1 , (note that #”ϙ(κ) is the first 
term in #”ϙ missing in #”π );

#”π⊂∗
M

#”ϙ , if #”π ⊂ #”ϙ and π ����∗
M

#”ϙ(κ), where κ = dom( #”π) < dom( #”ϙ). �
We observe that #”π ⊂∗

M

#”ϙ implies #”π ⊂M
#”ϙ by Corollary 11.2.
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Theorem 12.3. If M |= ZFC−
1 is a CTM, κ < λ ≤ ω1 , and #”π ∈ #    ”MFκ∩M, then there is a sequence #”ϙ ∈ #    ”MFλ

with #”π ⊂∗
M

#”ϙ .

Proof. We define terms #”ϙ(α) of the sequence #”ϙ by induction.
Naturally put #”ϙ(α) = #”π(α) for each α < κ.
To define #”ϙ(κ), let ϙ be an M-generic refinement ϙ of π =

⋃cw
α<κ πα ; such a ϙ exists by Lemma 9.4. 

Corollary 11.2 implies π ����M ϙ. By Theorem 10.1(vi), adding ϙ as the last term to #”π , results in a sequence 
#”ϙ � (κ + 1) ∈ #    ”MFκ+1 satisfying #”π ⊂ #”ϙ � (κ + 1).

Assume that κ < β < λ, all terms #”ϙ(α), α < β , are defined, and the sequence #”ϙ �β = 〈 #”ϙ(α)〉α<β

satisfies ( #”ϙ � (κ + 1)) ⊂ ( #”ϙ �β). Pick any CTM N |= ZFC−
1 containing #”ϙ �β . By Lemma 9.4, there is an 

N -generic refinement ϙ of π =
⋃cw

α<κ πα . By Theorem 10.1(vi), adding ϙ as the last term to #”ϙ �β , yields 
a sequence #”ϙ � (β + 1) ∈ #    ”MFβ+1 with #”ϙ �β ⊂ #”ϙ � (β + 1).

This construction results in a sequence #”ϙ ∈ #    ”MFλ satisfying #”π ⊂ #”ϙ and #”ϙ(κ) = ϙ. Then we have 
#”π ⊂∗

M

#”ϙ by the choice of ϙ. �
13. The key sequence

The forcing notion to prove Theorem 1.1, defined (modulo minor details) in our earlier paper [31], will be 
introduced in the next section. It will have the form MT(Π), for a certain multiforcing Π ∈ L with |Π| = ω1
in L. The multiforcing Π itself will be equal to the componentwise union of terms of a certain sequence 
#”
Π ∈ #    ”MFω1 which we present in Definition 13.6.

Recall that HC is the set of all hereditarily countable sets; HC = Lω1 in L. We use ΣHC
n , ΠHC

n , ΔHC
n

(note slanted Σ, Π, Δ) for classes of lightface definability in HC (no parameters allowed), and Σn(HC), 
Πn(HC), Δn(HC) for boldface definability in HC (parameters in HC allowed).

Lemma 13.1 (Lemma 25.25 in [20]). If n ≥ 1 and X ⊆ 2ω then

X ∈ ΣHC
n ⇐⇒ X ∈ Σ1

n+1 , and X ∈ Σn(HC) ⇐⇒ X ∈ Σ1
n+1 ,

and the same for Π , Π , Δ , Δ . �
Definition 13.2 (in L). Let ZFL– be the theory ZFC−

1 , as in Subsection 9B, with the axiom of constructibility 
V = L added.

If x ∈ HC then let L(x) be the least CTM of ZFL– containing x and satisfying x ∈ (HC)L(x) . It 
necessarily has the form L(x) = Lμ for some μ = μx < ω1 .

An ordinal ξ < κ is a ∗crucial ordinal of a sequence #”π = 〈πα〉α<κ ∈ #    ”MFκ if #”π �ξ ⊂∗
L( #”π � ξ)

#”π holds, 
that is, (1) #”π(ξ) is an L( #”π �ξ)-generic refinement of π =

⋃cw
η<ξ

#”π(η), and hence (2) π ����L( #”π � ξ)
#”π(ξ) by 

Corollary 11.2. �
The superscript ∗ is added in the notion of ∗crucial ordinal to distinguish it from the notion of a crucial 

ordinal in [31, Definition 14.3], where it was required that, somewhat weaker, #”π �ξ ⊂L( #”π � ξ)
#”π .

Definition 13.3. A sequence #”π ∈ #    ”MF blocks a set W if either #”π ∈ W (positive block) or there is no #”ϙ ∈ W

extending #”π (negative block). �
Theorem 13.4 (in L). Let n ≥ 3. There exists a sequence #”

Π = 〈Πα〉α<ω1 ∈ #    ”MFω1 satisfying | 
⋃cw #”

Π | = ω1
and the following requirements:

(i) the sequence #”
Π belongs to the definability class ΔHC

n−2 ;
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(ii) if n ≥ 4 and W ⊆ #    ”MF is a boldface Σn−3(HC) set then there is an ordinal γ < ω1 such that the 
sequence #”

Π �γ blocks W ;
(iii) there is a closed unbounded set C ⊆ ω1 such that every γ ∈ C is a limit ordinal and a ∗crucial ordinal 

for #”
Π in the sense of Definition 13.2.

Proof. We argue under V = L. If n ≥ 4 then let unn(p, x) be a canonical universal Σn−3 formula, so that the 
family of all Σn−3(HC) sets X ⊆ HC is equal to the family of all sets Υn(p) = { x ∈ HC : HC |= unn(p, x) }, 
p ∈ HC.

Claim 13.5. If n ≥ 4 then the following set Bn is ΔHC
n−2 :

Bn = {〈 #”π , p〉 : #”π ∈ #    ”MF ∧ p ∈ HC ∧ #”π block s Υn(p)}.

Proof (Claim). We skip a routine check that #    ”MF is ΔHC
1 . If #”π ∈ #    ”MF and p ∈ HC then for #”π to block 

Υn(p) it is necessary and sufficient that

#”π ∈ Υn(p)︸ ︷︷ ︸
ΣHC

n−3

∨ ¬ ∃ #”ϙ
( #”ϙ ∈ #    ”MF ∧ #”ϙ extends #”π︸ ︷︷ ︸

ΔHC
1

∧ #”ϙ ∈ Υn(p)︸ ︷︷ ︸
ΣHC

n−3

)
︸ ︷︷ ︸

ΠHC
n−3

,

so this is a disjunction of ΣHC
n−3 and ΠHC

n−3 , hence, ΔHC
n−2 . �

For α < ω1 , define a sequence #”π [α] ∈ #    ”MF by induction as follows.
We let #”π [0] = ∅, the empty sequence.
Step α → α + 1. Suppose that #”π [α] ∈ #    ”MF is defined, κ = dom #”π [α], π[α] =

⋃cw #”π [α] =
⋃cw

γ<α
#”π [α](γ), 

M = L( #”π [α]), and pα is the α-th element of HC = Lω1 in the sense of the Gödel well-ordering �L .
By Lemma 9.4, there exists an M-generic sequence Φ of systems in Sys(π[α]). We let Φ[α] be the 

≤L -least of them. Then ϙ = lim[Φ[α]] is an M-generic refinement of π[α], and by Theorem 10.1(i),(vi), 
adjoining ϙ to π[α] as the last term results in the sequence #”τ = #”π [α]�ϙ ∈ #    ”MFκ+1 satisfying #”π [α] ⊂∗

M
#”τ . 

By Lemma 12.1, there is a sequence #”ϙ ∈ #    ”MFκ+2 satisfying #”τ ⊂ #”ϙ and α ∈ | #”ϙ(κ + 1)|. Finally if n ≥ 4
then there is a sequence #”π [α+1] ∈ #    ”MF satisfying #”ϙ ⊂ #”π [α+1] and blocking the set Υn(pα), while if n = 3
then put #”π [α + 1] = #”ϙ . To conclude the step, we have:

(‡) #”π [α] ⊂∗
M

#”π [α + 1], κ + 1 < dom #”π [α + 1], α ∈ | #”π [α + 1](κ + 1)|, and if n ≥ 4 then #”π [α + 1] blocks 
Υn(pα).

Note that the axiom V = L is a sine qua non of this construction since otherwise the �L-least choice of 
Φ[α] would not be necessarily possible.

Limit step. If λ < ω1 is limit then we naturally define #”π [λ] =
⋃

α<λ
#”π [α].

Overall, we have α < β =⇒ #”π [α] ⊂ #”π [β] by construction. It follows that #”
Π =

⋃
α

#”π [α] ∈ #    ”MFω1 . This 
completes the construction.

To prove (i), note first of all that the relation

R(π, M, Φ) := “Φ is an M-generic sequence in Sys(π)”

is absolute for all transitive models of ZFC−
1 , hence R is ΔHC

1 . Easily the assignment #”π �→ L( #”π) is ΔHC
1 as 

well. And “to block Υn(p)” is a ΔHC
n−2 relation by Claim 13.5. On the other hand, it is known that, under 
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V = L, choosing the �L -least element in every non-empty section of a ΔHC
k set, k ≥ 1, results in a set 

(transversal) of the same class ΔHC
k . This allows to routinely complete the verification of (i).

To check | 
⋃cw #”

Π | = ω1 , note that α ∈ | 
⋃cw #”π [α + 1]| by construction.

To check (ii) (n ≥ 4), note that any boldface Σn−3(HC) set W ⊆ #    ”MF is equal to Υn(pα) for some 
α < ω1 , so γ = dom #”π [α + 1] is as required.

(iii) The set C = { dom #”π [α] : α < ω1} is closed unbounded by the limit step of the construction. Moreover 
if γ = dom #”π [α] ∈ C then #”

Π �γ = #”π [α], and hence γ is ∗crucial for #”
Π by construction. This ends the proof 

of Theorem 13.4. �
Definition 13.6 (in L). From now on we fix a number n ≥ 3 as in Theorem 1.1. We also fix a sequence
#”
Π = 〈Πα〉α<ω1 ∈ #    ”MFω1 satisfying Theorem 13.4 for this n. In particular, 

⋃
α |Πα| = ω1 , and conditions (i),

(ii), (iii) (with an according club C) of Theorem 13.4 hold. We call this fixed #”
Π ∈ L the key sequence. �

Corollary 13.7. If n ≥ 4 and W ⊆ #    ”MF is a Σn−3(HC) set dense in 
#    ”MF then there is an ordinal γ < ω1

such that #”
Π �γ ∈ W .

Proof. By construction, #”
Π satisfies (ii) of Theorem 13.4, hence there is an ordinal γ < ω1 such that #”

Π �γ
blocks W . The negative block is impossible by the density of W , hence in fact #”

Π �γ ∈ W . �
Remark 13.8. Theorem 13.4 just proved is a clone of Theorem 15.3 in [31]. In fact it is a bit stronger, 
because of the stronger relation ⊂∗ , instead of ⊂ as in [31], in the notion of a ∗crucial ordinal. Therefore 
all consequences of the choice of #”

Π by [31, Theorem 15.3] remain valid in our setting here. �
14. The key forcing notion

The following definition introduces some derived notions.

Definition 14.1 (in L). Using the key sequence #”
Π = 〈Πα〉α<ω1 as in Definition 13.6, we define:

— the multiforcing Π =
⋃cw

α<ω1
Πα ∈ MF, and

— the forcing notion PPP = MT(Π) = MT( #”
Π ).

If ξ < ω1 then, following the equality 
⋃

α |Πα| = ω1 in Definition 13.6, let α(ξ) < ω1 be the least ordinal α
satisfying ξ ∈ |Πα|. Thus a forcing notion Πα(ξ) ∈ AF is defined whenever α satisfies α(ξ) ≤ α < ω1 , and 
〈Πα(ξ)〉α(ξ)≤α<ω1 is a ��-increasing sequence of special forcings in AF, hence Π(ξ) =

⋃
α(ξ)≤α<ω1

Πα(ξ) ∈
AF. �

In the remainder, Π will be referred to as the key multiforcing, whereas the set PPP = MT(Π) will be our
key forcing notion.

Corollary 14.2 (in L). Π is a regular multiforcing and |Π| = ω1 , thus PPP =
∏

ξ<ω1
Π(ξ) (with finite sup-

port). �
Corollary 14.3 (in L). The sequence of ordinals 〈α(ξ)〉ξ<ω1 and the array of forcings 〈Πα(ξ)〉ξ<ω1, α(ξ)≤α<ω1

are ΔHC
n−2 .

Proof. By construction the following double equivalence holds:

α(ξ) ≤ α ⇐⇒ ∃π(π = Πα ∧ ξ ∈ domπ)

⇐⇒ ∀π(π = Π =⇒ ξ ∈ domπ) .
α
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However π = Πα is a ΔHC
n−2 relation by Theorem 13.4(i). It follows that so is the sequence 〈α(ξ)〉ξ<ω1 . The 

second claim is similar. �
Corollary 14.4 (in L, of Lemma 5.2(iv)). If ξ < ω1 and α(ξ) ≤ α < ω1 then the set Πα(ξ) is pre-dense in 
Π(ξ) and in Π. �

In spite of Corollary 14.2, the sets |Π<γ | can be quite arbitrary (countable) subsets of ω1 . However we 
get the next corollary:

Corollary 14.5 (in L, of Corollary 14.2). C′ = { γ < ω1 : |Π<γ | = γ} is closed unbounded in ω1 . �
To prove the CCC property, we’ll need the following result.

Lemma 14.6 (in L). If X ⊆ HC = Lω1 then the set OX of all ordinals γ < ω1 , such that 〈Lγ ; X ∩ Lγ〉 is 
an elementary submodel of 〈Lω1 ; X〉 and X ∩ Lγ ∈ L( #”

Π �γ), is stationary, hence unbounded in ω1 .

Proof. Let C ⊆ ω1 be a club. Let M be a countable elementary submodel of Lω2 containing C, ω1 , X , #”
Π , 

and such that M ∩ Lω1 is transitive. Let φ : M onto−→ Lλ be the Mostowski collapse, and γ = φ(ω1). Then

γ < λ < ω1, φ(X) = X ∩ Lγ , φ(C) = C ∩ γ, φ( #”
Π ) = #”

Π �γ

by the choice of M . It follows that 〈Lγ ; X ∩Lγ , C ∩ γ, #”Π �γ〉 is an elementary submodel of 〈Lω1 ; X, C, #”Π 〉, 
so γ ∈ OX . Moreover, γ is uncountable in Lλ , hence Lλ ⊆ L( #”

Π �γ). (See Definition 13.2 on models 
L( #”π) |= ZFL– .) We conclude that X ∩ Lγ ∈ L( #”

Π �γ) since X ∩ Lγ ∈ Lλ by construction. On the other 
hand, C ∩ γ is unbounded in γ by the elementarity, therefore γ ∈ C , as required. �
Corollary 14.7 (in L). The forcing PPP satisfies CCC. Therefore PPP-generic extensions of L preserve cardinals.

Proof. Suppose that A ⊆ PPP = MT( #”
Π ) is a maximal antichain. By 13.6 and Theorem 13.4(iii), there is a 

closed unbounded set C ⊆ ω1 such that every γ ∈ C is a ∗crucial ordinal for #”
Π . By Lemma 14.6, there is 

an ordinal γ ∈ C such that A′ = A ∩ PPP<γ is a maximal antichain in PPP<γ = MT( #”
Π �γ) and A′ ∈ L( #”

Π �γ). 
It follows that the set D(A′) = { p ∈ PPP<γ : ∃ q ∈ A (p ≤ q) } ∈ L( #”

Π �γ) is open dense in PPP<γ .
Yet γ is a ∗crucial ordinal for #”

Π , therefore by Lemma 6.4(iii) both the set D(A′), and hence A′ itself as 
well, remain pre-dense in the whole set PPP = MT( #”

Π ). We conclude that A = A′ is countable. �
Corollary 14.8 (in L). If a set D ⊆ PPP is pre-dense in PPP then there is an ordinal γ < ω1 such that D ∩PPP<γ

is already pre-dense in PPP.

Proof. We can assume that D is dense. Let A ⊆ D be a maximal antichain in D ; then A is a maximal 
antichain in PPP because of the density of D . Then A ⊆ PPP<γ for some γ < ω1 by Corollary 14.7. But A is 
pre-dense in PPP. �
15. The key model

Our final goal will be to prove Theorem 1.1 by means of PPP-generic extensions of L. These extensions 
we’ll call key models.

From now on, we’ll typically argue in L and in ωL
1 -preserving generic extensions L, in particular, in 

PPP-generic extensions (see Theorem 14.7). Thus it will always be the case that ωL
1 = ω1 . This allows us to 

think that |Π| = ω1 (rather than ωL
1 ).
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Definition 15.1. Let a set G ⊆ PPP be generic over the constructible universe L. If ξ < ω1 , then following 
Remark 4.4 at the end of Section 4,

— we define G(ξ) = { Tp
ξ : p ∈ G ∧ ξ ∈ |p| } ⊆ Π(ξ);

— we let xξ = xξ[G] ∈ 2ω be the only real in 
⋂

T∈G(ξ)[T ];

— we let X[G] = 〈xξ[G]〉ξ<ω1 = { 〈ξ, xξ[G]〉 : ξ < ω1}.

Thus PPP adjoins an array X[G] of reals to L, where each xξ = xξ[G] ∈ 2ω ∩L[G] is a Π(ξ)-generic real over 
L, and L[G] = L[X[G]]. �
Theorem 15.2. Let G ⊆ PPP be PPP-generic over L. Then, in L[G], X[G] is a set of definability class ΠHC

n−2 , 
hence, also of class Π1

n−1 by Lemma 13.1.

Proof. Assume that ξ < ω1 , and x ∈ L[G] ∩ 2ω . The following are equivalent:

(1) x = xξ[G]; (2) x is Π(ξ)-generic over L ;
(3) x ∈

⋂
α(ξ)≤α<ω1

⋃
T∈Πα(ξ)[T ].

Indeed (1) =⇒ (2) is routine (see Remark 4.4). To check (2) =⇒ (3) recall that each set Πα(ξ) is pre-dense 
in Π(ξ) by Lemma 5.2(iv).

It remains to establish (3) =⇒ (1). Suppose that (1) fails, that is, x �= xξ[G]. By Theorem 8.2(i) there 
is a small (recall that PPP = MT(Π) is CCC by Corollary 14.7) Π-complete real name c ∈ L, such that 
c ⊆ PPP × ω × 2, x = c[G], and c is non-principal over Π at ξ , meaning that the set

DΠ
ξ (c) = {p ∈ PPP = MT(Π) : ξ ∈ |p| ∧ p directly forces c /∈ [Tp

ξ ]}

is open dense in PPP = MT(Π). By the smallness of c and Corollary 14.8, there is an ordinal γ < ω1 such that 
c is a Π<γ-complete real name and DΠ

ξ (c) ∩ PPP<γ is pre-dense in PPP, therefore, open dense in PPP<γ — and 
then c is non-principal over Π<γ at ξ . We can further assume that c ∈ L( #”

Π �γ). (If not then take a bigger 
γ .) Finally, we can assume that γ belongs to the set C of Theorem 13.4(iii) because C is a club. Then γ
is ∗crucial for #”π , that is, Π<γ ����∗

L( #”
Π � γ) Πγ . It follows that Π<γ ����∗

L( #”
Π � γ) Π≥γ by Corollary 11.3. Then 

Π<γ ��c
ξ Π≥γ holds as well by Corollary 11.2, since c ∈ L( #”

Π �γ) and because of the non-principality of c. 
Now Theorem 8.2(ii) with π = Π<γ and ϙ = Π≥γ (note that π∪cwϙ = Π) implies x = c[G] /∈

⋃
Q∈Π≥γ(ξ)[Q], 

in particular, x /∈
⋃

Q∈Πγ(ξ)[Q]. In other words, (3) fails as well.
Thus the equivalence (1) ⇐⇒ (2) ⇐⇒ (3) is established.
We conclude that the following holds in L[G]: 〈ξ, x〉 ∈ X[G] iff

∀α < ω1 ∃T ∈ Πα(ξ)
(
α(ξ) ≤ α =⇒ x ∈ [T ]

)
,

which can be re-written as

∀α < ω1 ∀μ < ω1 ∀Y ∃T ∈ Y
(
μ = α(ξ) ∧ Y = Πα(ξ) ∧ μ ≤ α =⇒ x ∈ [T ]

)
.

Here the equality μ = α(ξ) is ΔHC
n−2 by Corollary 14.3, and so is the equality Y = Πα(ξ) by Corollary 14.3. 

It follows that the whole relation is ΠHC
n−2 , since the quantifier ∃T ∈ Y is bounded. �

16. Δ1
n -good well-orderings in the key model

The next theorem proves that the key model satisfies (i) of Theorem 1.1. The reals in Theorem 1.1 are 
treated here as points of the Cantor space 2ω .
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Theorem 16.1. If G ⊆ PPP is PPP-generic over L then it holds in L[G] that there is a Δ1
n -good well-ordering of 

2ω of length ω1 .

Proof. We argue in L[G]. Let X = X[G]. If γ < ω1 then let X�γ = 〈xξ[G]〉ξ<γ . The map γ �→ X�γ is 
ΠHC

n−2 in L[G] by Proposition 15.2 since

Y = X�γ ⇐⇒ Y is a function on γ ∧ ∀ ξ < γ (〈ξ, Y (ξ)〉 ∈ X) .

Now if x ∈ 2ω (in L[G]) then x ∈ L[X�γ] for some γ < ω1 by Proposition 15.2, hence we let γ(x) be 
the least γ < ω1 such that x ∈ L[X�γ], and ν(x) < ω1 be the index of x in the canonical ΔHC

1 ({ X�γ})
well-ordering ≤X� γ of 2ω in L[X�γ] (by Gödel). We claim that the maps x �→ γ(x) and x �→ ν(x) are 
ΔHC

n−1 . Indeed,

γ = γ(x) ⇐⇒ ∃Y
(
Y = X�γ ∧ x ∈ L[Y ] ∧ ∀ γ′ < γ (x /∈ L[Y �γ′])

)
⇐⇒ ∀Y

(
Y = X�γ =⇒ x ∈ L[Y ] ∧ ∀ γ′ < γ (x /∈ L[Y �γ′]

)
.

This easily yields the result for the map x �→ γ(x). The result for the other map follows by a similar rather 
routine estimation.

Now let � be the well-ordering of the set 2ω ∩L[G] according to the lexicographical well-ordering of the 
triples 〈max{ γ(x), ν(x) }, γ(x), ν(x)〉. It easily follows from the results for maps x �→ γ(x) and x �→ ν(x)
that � is ΔHC

n−1 , hence Δ1
n by Lemma 13.1.

Finally to check the Δ1
n -goodness, it remains to prove that, given a Δ1

n set P ⊆ 2ω × 2ω , the set 
Q = { 〈z, x〉 : ∀ y � x ¬ P (z, y) } has to be Δ1

n too. The class Π1
n is obvious as � is already shown to be 

Δ1
n . Thus we have to verify the class Σ1

n , or equivalently, class ΣHC
n−1 , for Q. But this is true as Q(z, x) is 

equivalent to

for all γ′, ν′ ≤ max{ γ(x), ν(x) }, if the triple 〈max{ γ′, ν′}, γ′, ν′〉 non-strictly precedes 〈max{ γ(x), ν(x) },
γ(x), ν(x)〉 lexicographically, then there is a real y ∈ 2ω such that γ′ = γ(y), ν′ = ν(y), and ¬ P (z, y).

However the quoted formula is essentially ΣHC
n−1 since the bounded quantifiers ∀ γ′, ν′ ≤ max{ γ(x), ν(x) } do 

not destroy Σ -classes over HC. �
17. Non-existence of Σ1

n−1 well-orderings in the key model

We begin here a lengthy proof of the claim that the key model also satisfies (ii) of Theorem 1.1. This 
amounts to the following theorem.

Theorem 17.1. If n ≥ 4 and a set G ⊆ PPP is PPP-generic over L then it holds in L[G] that there is no 
Σ1

n−1 well-orderings of the reals, and even more, there is no Σ1
n−1 binary relation which well-orders the set 

{ xξ[G] : ξ < ωL
1 }.

The theorem leaves aside the case n = 3 in (ii) of Theorem 1.1 which thereby needs a separate consider-
ation to justify the assumption n ≥ 4.

Case n = 3. We claim that (ii) of Theorem 1.1 holds in the key model L[G], where G is PPP-generic over 
L. Suppose to the contrary that (ii) of Theorem 1.1 fails, so that (as n = 3) there is a Δ1

2 well-ordering of 
the reals (even not necessarily good) in L[G]. Then by Theorem 25.39 in [20] there is a real x ∈ 2ω ∩ L[G]
such that 2ω ⊆ L[x] in L[G]. But this is definitely not the case for the key model L[G] we consider.
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Indeed, arguing in L[G], suppose to the contrary that a real x ∈ 2ω ∩ L[G] = L[〈xξ[G]〉ξ<ω1 ] satisfies 
2ω ∩ L[G] ⊆ L[x]. It follows by Corollary 14.7 that there is an ordinal λ < ω1 = ωL

1 such that x ∈
L[〈xξ[G]〉ξ<λ]. However the real y = xλ[G] does not belong to L[〈xξ[G]〉ξ<λ] by the product forcing theory. 
Therefore y /∈ L[x], contrary to the choice of x. �(Case n = 3)

The proof of Theorem 17.1 involves several technical definitions and results from [31], introduced in 
sections 18 to 22. Beginning the proof, our plan will be to infer a contradiction from the following contrary 
assumption.

Assumption 17.2. Assume to the contrary that a set G ⊆ PPP is PPP-generic over L, and it holds in L[G] that 
there is a Σ1

n−1 binary relation which strictly well-orders the set A[G] = { xξ[G] : ξ < ωL
1 } — so that there 

is a Σ1
n−1 parameterfree formula Φ(·, ·, ·), and a parameter u ∈ 2ω ∩ L[G] such that the relation <u

Φ iff 
Φ(x, y, u), strictly well-orders A[G]. �

Under this assumption, Theorem 8.1 implies that, in L, there exist:

− a small Π-complete real name c ∈ L, c ⊆ PPP × ω × 2, such that u = c[G],
− a condition p ∈ G which PPP-forces, over L, that:

“the relation <c[G]
Φ , defined by x <c[G]

Φ y iff Φ(x, y, c[G]), well-orders the set { xξ[G] : ξ < ωL
1 } in L[G]”.

− limit ordinals α, β < ωL
1 such that p ∈ MT( #”

Π (α)), c ⊆ MT( #”
Π �α) × ω × 2, and | #”

Π (α)| ⊆ β, so that 
|c| ∪ |p| ⊆ β.

We fix c, p, α, β henceforth. We’ll work towards a contradiction. The contradiction will be obtained in the 
form of a non-empty subset X ′ of the set A[G] as above, containing no <c[G]

Φ -least real, see Section 27.

18. An auxiliary forcing relation

Here we introduce an auxiliary forcing relation, not explicitly connected with any particular forcing 
notion, in particular, with the key forcing PPP.

We argue in L. Consider the language of 2nd order arithmetic, with variables k, l, m, n, . . . of type 0 over 
ω and variables a, b, x, y, . . . of type 1 over 2ω , whose atomic formulas are those of the form x(k) = n. Let 
L be the extension of this language, which allows to substitute variables of type 0 with natural numbers 
and variables of type 1 with small real names (see Section 7) c ∈ L. We consider the natural classes LΣ1

n , 
LΠ1

n (n ≥ 1) of L -formulas. Let L(ΣΠ)11 be the closure of LΣ1
1 ∪ LΠ1

1 under ¬, ∧, ∨ and quantifiers 
over ω .

A relation p forc #”π ϕ between multitrees p, sequences #”π ∈ #    ”MF, and closed L -formulas ϕ in L(ΣΠ)11
or LΣ1

n ∪ LΠ1
n , n ≥ 2, was defined in [31, §22] by induction on the complexity of ϕ as follows. Inductive 

steps 2◦ and 3◦ demonstrate similarities with various conventional forcing notions.

1◦ . Let #”π ∈ #    ”MF, p ∈ MT (not necessarily p ∈ MT( #”π)), and ϕ is a closed L(ΣΠ)11 formula. We define 
p forc #”π ϕ iff there is a CTM M |= ZFL– (recall Definition 13.2 on ZFL–), an ordinal ϑ < dom #”π , and 
a multitree p0 ∈ MT( #”π �ϑ), such that
(1) p � p0 (meaning: p is stronger),
(2) M contains #”π �ϑ (then contains MT( #”π �ϑ) and p0 as well),
(3) every name c in ϕ belongs to M and is ( #”π �ϑ)-complete,
(4) #”π �ϑ ⊂M

#”π in the sense of Section 12, and
(5) p0 MT( #”π �ϑ)-forces ϕ[G] over M in the usual sense.
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2◦ . If ϕ(x) is a LΠ1
n formula, n ≥ 1, then p forc #”π ∃x ϕ(x) iff there is a small real name c such that 

p forc #”π ϕ(c).
3◦ . If ϕ is a closed LΠ1

n formula, n ≥ 2, then p forc #”π ϕ iff there is no sequence #”τ ∈ #    ”MF and multitree 
p′ ∈ MT( #”τ ) such that #”π ⊆ #”τ , p′ � p, and p′ forc #”τ ϕ− , where ϕ− is the result of the canonical 
transformation of ¬ ϕ to a LΣ1

n form.

It is not immediately clear that the definition is consistent in part 1◦ , i.e., it is impossible that both 
p forc #”π ϕ and p forc #”π ¬ ϕ hold via two different triples of ϑ, p0, M. This will be subject of Corollary 18.5.

Remark 18.1. The condition “p0 MT( #”π �ϑ)-forces ϕ[G] over M” in 1◦ does not depend on the choice of 
a CTM M containing #”π �ϑ and ϕ, since if ϕ is L(ΣΠ)11 then all transitive models agree on the formula 
ϕ[G] by the Mostowski absoluteness theorem [20, Theorem 25.4]. �

The following lemma discovers the monotone character of forc.

Lemma 18.2 (in L). If sequences #”π ⊆ #”ϙ belong to 
#    ”MF, q � p are multitrees, ϕ is a closed formula in 

L(ΣΠ)11 or in LΣ1
n , LΠ1

n (n ≥ 2), and p forc #”π ϕ, then q forc #”ϙ ϕ.

Proof. Let ϕ be a closed L(ΣΠ)11 formula, and p forc #”π ϕ is witnessed by M, ϑ, p0 containing the relevant 
information as in 1◦ . Then the same M, ϑ, p0 witness q forc #”ϙ ϕ.

The induction step ∃ , as in 2◦ , is pretty elementary.
If ϕ is a LΠ1

n -formula, n ≥ 2, and q forc #”ϙ ϕ fails, then by 3◦ there is a sequence #”ϙ ′ ∈ #    ”MF and 
multitree q′ ∈ MT( #”ϙ ′) such that #”ϙ ⊆ #”ϙ ′ , q′ � q , and q′ forc #”ϙ ′ ϕ− . Then #”π ⊆ #”ϙ ′ and q′ � p, so 
p forc #”π ϕ fails by 3◦ . �

The next lemma presents a useful connection with the usual forcing.

Lemma 18.3 (in L). Assume that #”π ∈ #    ”MF, p ∈ MT( #”π), ϕ is a formula in L(ΣΠ)11 , #”π ⊆ #”ϙ ∈ #    ”MF∪ #    ”MFω1 , 
p forc #”π ϕ, and N |= ZFL– is a transitive model containing #”ϙ , ϕ. Then p MT( #”ϙ)-forces ϕ[G] over N in 
the usual sense.

Proof. By definition there is an ordinal ϑ < dom #”π , a multitree p0 ∈ MT( #”π �ϑ), and a CTM M |= ZFL–

satisfying (1)–(5) above. Let’s first consider the case M ⊆ N . Suppose that G ⊆ MT( #”ϙ) is a set MT( #”ϙ)-
generic over N , and p ∈ G — then p0 ∈ G, too. We have to prove that ϕ[G] is true in N [G].

We claim that the set G′ = G ∩ MT( #”π �ϑ) is MT( #”π �ϑ)-generic over M. Indeed, let a set D ∈ M, 
D ⊆ MT( #”π �ϑ), be open dense in MT( #”π �ϑ). Then, as #”π �ϑ ⊂M

#”ϙ , it follows by Lemma 6.4 and Theo-
rem 10.1(vii) that D is pre-dense in MT( #”ϙ). Moreover D ∈ M ⊆ N . We conclude G ∩ D �= ∅ by the 
choice of G. It follows that G′ ∩D �= ∅.

Now if c is a name in ϕ then c ∈ M and c is #”π �ϑ-complete, hence c[G′] ∈ 2ω is defined. Therefore 
c[G] = c[G′], because G′ ⊆ G. Thus ϕ[G] coincides with ϕ[G′]. Note also that p0 ∈ G′ . We conclude that 
ϕ[G′] holds in M[G′] as p0 forces ϕ[G] over M. The same formula ϕ[G] holds in N [G] by the Mostowski 
absoluteness theorem [20, Thm 25.4], as required.

Now suppose that M �⊆ N . Then N ⊆ M. By the part already established, p MT( #”ϙ)-forces ϕ[G] over 
M in the usual sense. Assume towards the contrary that p does not MT( #”ϙ)-force ϕ[G] over N . Then 
there is a condition q ∈ MT( #”ϙ), q � p, which MT( #”ϙ)-forces ¬ ϕ[G] over N . Consider an arbitrary set 
G ⊆ MT( #”ϙ), MT( #”ϙ)-generic over M – then over N as well since N ⊆ M, and containing q , hence, p too. 
Then the same formula ϕ[G] is true in M[G] (as p ∈ G) but false in N [G] (as q ∈ G). But this contradicts 
the Mostowski absoluteness theorem. �
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Lemma 18.4 (in L). Assume that #”π ∈ #    ”MF, p ∈ MT( #”π), ϕ is a formula in L(ΣΠ)11 , M |= ZFL– is a 
transitive model containing #”π , each name c in ϕ belongs to M and is #”π-complete, and p MT( #”π)-forces 
ϕ[G] over M. Then there exists a sequence #”ϙ ∈ #    ”MF such that #”π ⊂M

#”ϙ and p forc #”ϙ ϕ.

Proof. Theorem 12.3 yields a sequence #”ϙ ∈ #    ”MF such that #”π ⊂M
#”ϙ . Then the triple of M, ϑ = dom( #”ϙ), 

p0 = p witnesses that p forc #”ϙ ϕ by 1◦ . �
Corollary 18.5 (in L). Let #”π ∈ #    ”MF, p ∈ MT( #”π), ϕ be a closed formula in L(ΣΠ)11 or LΣ1

n , n ≥ 2. Then 
p forc #”π ϕ and p forc #”π ϕ− cannot hold together.

Proof. Let ϕ ∈ L(ΣΠ)11 . If both p forc #”π ϕ and p forc #”π ϕ− then, by Lemma 18.3, p MT( #”π)-forces both 
ϕ[G] and ϕ−[G] over a large enough CTM M, a contradiction. If ϕ ∈ LΣ1

n then the result follows by 
3◦ . �
19. Definability of the auxiliary forcing

If K is one of the classes L(ΣΠ)11 , LΣ1
n , LΠ1

n (n ≥ 2), then let FORC[K] consist of all triples 〈 #”π , p, ϕ〉
such that #”π ∈ #    ”MF, p ∈ MT, ϕ is a formula in K , and p forc #”π ϕ. Then FORC[K] is a subset of HC.

Lemma 19.1 (in L). FORC[L(ΣΠ)11] ∈ ΔHC
1 , whereas if n ≥ 2 then FORC[LΣ1

n] belongs to ΣHC
n−1 and 

FORC[LΠ1
n] belongs to ΠHC

n−1 . �
Proof. Relations like #”π ∈ #    ”MF, “being a formula in L(ΣΠ)11”, p ∈ MT( #”ρ), forcing over a CTM, etc. are 
definable in HC by bounded formulas, hence ΔHC

1 . Moreover, the model M can be tied by both ∃ and ∀
in 1◦ , see Remark 18.1. This wraps up the ΔHC

1 estimation for L(ΣΠ)11 .
The inductive step by 2◦ is quite simple.
Now the step by 3◦ . Assume that n ≥ 2, and it is already established that FORC[LΣ1

n] ∈ ΣHC
n−1 . Then 

〈 #”π , p, ϕ〉 ∈ FORC[LΠ1
n] iff #”π ∈ #    ”MF, p ∈ MT, ϕ is a closed LΠ1

n formula, and, by 3◦ , there exist no triple 
〈 #”τ , p′, ψ〉 ∈ FORC[LΣ1

n] such that #”τ ∈ #    ”MF, #”π ⊆ #”τ , p′ ∈ MT( #”τ ), p′ � p, and ψ is ϕ− . We easily get 
the required estimation ΠHC

n−1 of FORC[LΠ1
n]. �

20. Tail invariance

Invariance theorems are rather typical for all kinds of forcing. We present here an invariance theorem 
on the auxiliary forcing forc . It deals with the tail invariance, and it is considerably stronger than a 
tail invariance theorem established in [31]. Another invariance theorem (Section 21 below) explores the 
permutational invariance.

Arguing in L, if #”π = 〈πα〉α<λ ∈ #    ”MF and γ < λ = dom #”π , then let the γ -tail #”π �≥γ be the restriction 
#”π � [γ, λ) to the semiinterval [γ, λ) = { α : γ ≤ α < λ }. in ω1 . Thus essentially #”π �≥γ is a ��-increasing 
sequence of length λ − γ (= the unique ordinal β with γ + β = λ), whose domain is shifted to the right in 
ω1 . In this case the set MT( #”π �≥γ) =

⋃cw
γ≤α<λ

#”π(α) is open dense in MT( #”π).
Therefore it can be expected that if #”ϙ is another sequence of length μ = dom #”ϙ , and δ < μ is such that 

μ − δ = λ − γ and the according restriction #”ϙ �≥δ is shift-equal to #”π �≥γ in the sense that #”ϙ �≥δ(δ + α) =
#”π �≥γ(γ +α) for all α < μ − δ = λ − γ , then the according dense sets MT( #”π �≥γ) and MT( #”ϙ �≥δ) coincide, 
and we can expect that the relations forc #”π and forc #”ϙ coincide too. And indeed this turns out to be the 
case.

Theorem 20.1 (in L). Assume that #”π , #”ϙ are sequences in 
#    ”MF, γ < λ = dom #”π , δ < μ = dom #”ϙ , #”ϙ �≥γ is 

shift-equal to #”π �≥δ , p ∈ MT, n ≥ 2, and ϕ is a formula in LΠ1
n∪LΣ1

n+1 . Then p forc #”π ϕ iff p forc #”ϙ ϕ.
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Proof. Part 1: the LΠ1
2 case. Let ψ(x) be a LΣ1

1 formula. Suppose that p forc #”ϙ ∀x ψ(x) fails, so there is 
#”ϙ ′ ∈ #    ”MF and a multitree q ∈ MT( #”ϙ ′) such that #”ϙ ⊆ #”ϙ ′ , q � p, and q forc #”ϙ ′ ∃x ψ−(x). We can assume 
that q ∈ MT( #”ϙ ′�≥δ). By definition there is a small real name c such that q forc #”ϙ ′ ψ−(c).

Let μ′ = dom #”ϙ ′ . Define a sequence #”π ′ so that dom #”π ′ = λ′ = λ + (μ′ − μ), #”π ⊆ #”π ′ , and #”π ′(λ + α) =
#”ϙ ′(μ + α) for all α < μ′ − μ, so that #”π ′�≥λ is shift-equal to #”ϙ ′�≥μ . Then #”π ′�≥γ is shift-equal to #”ϙ ′�≥δ

either, hence q ∈ MT( #”π ′�≥γ) ⊆ MT( #”π ′).
Consider any CTM N |= ZFL– containing ψ , c, #”π ′ , #”ϙ ′ . Then q MT( #”ϙ ′)-forces ψ−(c)[G] over 

N by Lemma 18.3. Yet the forcing notions MT( #”π ′), MT( #”ϙ ′) contain one and the same dense set 
MT( #”π ′�≥γ) = MT( #”ϙ ′�≥δ). Thus q also MT( #”π ′)-forces ψ−(c)[G] over N . By definition q forc #”π ′ ψ−(c)
and q forc #”π ′ ∃x ψ−(x), hence p forc #”π ∀x ψ(x) fails, as required.

Part 2: the step LΠ1
n → LΣ1

n+1 , n ≥ 2. Let ϕ(x) be a formula in LΠ1
n . Assume that p forc #”π ∃x ϕ(x). 

By definition (see 2◦ in Section 18), there is a small real name c such that p forc #”π ϕ(c). Then we have 
p forc #”ϙ ϕ(c) by the inductive hypothesis, thus p forc #”ϙ ∃x ψ(x).

Part 3: the step LΣ1
n → LΠ1

n , n ≥ 3. Assume that ϕ is a LΠ1
n formula, and p forc #”ϙ ϕ fails. Then by 

3◦ of Section 18, there is a sequence #”ϙ ′ ∈ #    ”MF and a multitree p′ ∈ MT( #”ϙ ′) such that #”ϙ ⊆ #”ϙ ′ , p′ � p, 
and p′ forc #”ϙ ′ ϕ− . As #”ϙ ′ is ��-increasing, there is a multitree r ∈ MT( #”ϙ ′�≥γ), r � p′ . Then r � p

and r forc #”ϙ ′ ϕ− . Define a sequence #”π ′ ∈ #    ”MF as in Part 1 so that #”π ⊆ #”π ′ , and #”π ′�≥λ is shift-equal to 
#”ϙ ′�≥μ . Then r ∈ MT( #”π ′�≥γ), r � p, and also r forc #”π ′ ϕ− by the inductive hypothesis. We conclude that 
p forc #”π ϕ fails as well. �

Let π be a multiforcing in spMF (not a sequence of multiforcings). Theorem 20.1 allows us to meaning-
fully define p forcπ ϕ iff p forc #”π ϕ, where #”π = 〈π〉 ∈ #    ”MF is a one-term sequence defined by dom( #”π) = 1
and #”π(0) = π .

Corollary 20.2 (in L). Let #”π ∈ #    ”MF, dom #”π = λ + 1, π = #”π(λ), p ∈ MT(π), n ≥ 2, ϕ is a formula in 
LΠ1

n ∪ LΣ1
n+1 . Then p forc #”π ϕ iff p forcπ ϕ. �

21. Permutation invariance

Arguing in L, let PERM be the set of all permutations of indices, that is, all bijections h : ω1
onto−→ ω1 , 

such that h = h−1 and the non-identity domain NI(h) = { ξ : h(ξ) �= ξ} is at most countable. Elements of 
PERM are called permutations.

Let h ∈ PERM. We extend the action of h as follows.

• if p is a multitree then hp is a multitree, |hp| = h”|p| = { h(ξ) : ξ ∈ |p| }, and (hp)(h(ξ)) = p(ξ)
whenever ξ ∈ |p|;

• if π ∈ MT is a multiforcing then h·π = π ◦ (h−1) is a multiforcing, |h·π| = h”π and (h·π)(h(ξ)) =
π(ξ) whenever ξ ∈ |π|;

• if c ⊆ MT × (ω × ω) is a real name, then put hc = { 〈hp, n, i〉 : 〈p, n, i〉 ∈ c }, thus easily hc is a real 
name as well;

• if #”π = 〈πα〉α<κ ∈ #    ”MF, then h #”π = 〈h·πα〉α<κ , still a sequence in 
#    ”MF;

• if ϕ := ϕ(c1, . . . , cn) is an L -formula (with all names explicitly indicated), then hϕ is ϕ(hc1, . . . , hcn).

Many notions and relations defined above are clearly PERM-invariant, e.g., p ∈ MT(π) iff hp ∈
MT(h·π), π �� ϙ iff h·π �� h·ϙ, et cetera. The invariance also takes place with respect to the rela-
tion forc itself.
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Theorem 21.1 (in L). Assume that #”π ∈ #    ”MF, p ∈ MT( #”π), h ∈ PERM, n ≥ 2, and ϕ ∈ LΠ1
n ∪ LΣ1

n+1 . 
Then p forc #”π ϕ iff (hp) forch #”π (hϕ).

Proof. Let #”ϙ = h #”π , q = hp.
Part 1: the LΠ1

2 case. Assume that ϕ(x) is a LΣ1
1 formula, ψ(x) := hϕ(x), and q forc #”ϙ ∀x ψ(x) fails. 

Then by definition (3◦ and 2◦ in Section 18) there is a sequence #”ϙ ′ ∈ #    ”MF, a multitree q′ ∈ MT( #”ϙ ′), and 
a small real name d, such that #”ϙ ⊂ #”ϙ ′ , q′ � q , and q′ forc #”ϙ ′ ψ−(d). The sequence #”π ′ = h−1 #”ϙ ′ then 
satisfies #”π ⊂ #”ϙ , the multitree p′ = h−1q′ belongs to MT( #”π ′), p′ � p, and c = h−1d is a small real name. 
However we cannot claim immediately that p′ forc #”π ′ ϕ−(c), since the existence of M and ϑ as in 1◦ in 
Section 18 is not necessarily preserved by the action of h−1 or h.

To circumvent this difficulty, we make use of two lemmas above. Let M |= ZFL– be a CTM containing 
#”π ′ ,

#”ϙ ′ , h, c , d and (all names in) ϕ, ψ . Then q′ MT( #”ϙ ′)-forces ψ−(d)[G] over M by Lemma 18.3. Then 
p′ MT( #”π ′)-forces ϕ−(c)[G] over M , by the standard theorems of forcing. Lemma 18.4 yields a sequence 
#”τ ∈ #    ”MF with #”π ′ ⊂ #”τ , such that p′ forc #”τ ϕ−(c), hence p′ forc #”τ ∃x ϕ−(x) by 2◦ . However #”π ⊂ #”π ′ ⊂ #”τ

and p′ � p. Thus p forc #”π ∀x ϕ(x) fails by 3◦ , as required.
Part 2: the step LΠ1

n → LΣ1
n+1 , 2 ≤ n. Let ϕ(x) be a formula in LΠ1

n and ψ(x) := hϕ(x). Assume that 
p forc #”π ∃x ϕ(x). By definition (2◦ in Section 18), there is a small real name c such that p forc #”π ϕ(c). 
Then we have q forc #”ϙ ψ(d) by inductive assumption, where d = hc is a small real name itself. Thus 
q forc #”ϙ ∃x ψ(x).

Part 3: the step LΣ1
n → LΠ1

n , n ≥ 3. Let ϕ be a formula in LΠ1
n , and q forc #”ϙ ψ fails, where q = hp, 

#”ϙ = h #”π , and ψ is hϕ, as above. By 3◦ , there is a sequence #”ϙ ′ ∈ #    ”MF and a multitree q′ ∈ MT( #”ϙ ′) such 
that #”ϙ ⊆ #”ϙ ′ , q′ � q , and q′ forc #”ϙ ′ ψ− . Now let p′ = h−1q′ and #”π ′ = h−1 #”ϙ ′ , so that p′ � p and #”π ⊆ #”π ′ . 
We have p′ forc #”π ′ ϕ− by inductive assumption. We conclude that p forc #”π ϕ fails, as required. �

22. Forcing inside the key sequence

Theorem 22.3 below shows that the forcing relation forc #”π , considered with countable initial segments 
#”π = #”

Π �α of the key sequence #”
Π , coincides with the true PPP-forcing relation (see Definition 14.1) up to the 

level LΣ1
n−1 .

We argue in L. Recall that the key sequence #”
Π = 〈Πα〉α<ω1 ∈ #    ”MFω1 , satisfying | 

⋃cw #”
Π | = ω1 and (i),

(ii), (iii) of Theorem 13.4, was introduced by Definition 13.6, and PPP = MT( #”
Π ) is our forcing notion. In 

addition, n ≥ 4 by the conditions of Theorem 17.1.

Definition 22.1. We write p forcα ϕ instead of p forc #”
Π �α ϕ, for the sake of brevity. Let p forc∞ ϕ mean: 

p forcα ϕ for some α < ω1 . �
The following technical lemma contains some useful results.

Lemma 22.2 (in L). Assume that p ∈ PPP, α < ω1 , and p forcα ϕ. Then:

(i) if α ≤ β < ω1 , q ∈ PPP<β = MT( #”
Π �β), and q � p, then q forcβ ϕ;

(ii) if q ∈ PPP, q � p, then q forcβ ϕ for some β ; α ≤ β < ω1 ;
(iii) if q ∈ PPP and q forc∞ ϕ− then p⊥q in the sense of Definition 4.1;
(iv) therefore, 1st, if p, q ∈ PPP, q � p, and p forc∞ ϕ then q forc∞ ϕ, and 2nd, p forc∞ ϕ, p forc∞ ϕ−

cannot hold together.
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Proof. To prove (i) apply Lemma 18.2. To prove (ii) pick β such that α < β < ω1 and q ∈ MT( #”
Π �β), and 

apply (i). To prove (iii) note that p, q are incompatible in PPP, as otherwise (i) leads to contradiction, but 
the incompatibility in PPP implies ⊥ by Corollary 4.2. �
Theorem 22.3. If ϕ is a closed L -formula in L(ΣΠ)11 ∪ LΣ1

2 ∪ LΠ1
2 ∪ . . . ∪ LΣ1

n−2 ∪ LΠ1
n−2 ∪ LΣ1

n−1
and p ∈ PPP, then p PPP-forces ϕ[G] over L in the usual sense, if and only if p forc∞ ϕ.

Proof. Let ‖− denote the usual PPP-forcing relation over L.
Part 1: ϕ is a formula in L(ΣΠ)11 . If p forc∞ ϕ then p forc #”

Π � γ ϕ for some γ < ω1 , and then p ‖− ϕ[G]
by Lemma 18.3 with #”ϙ = #”

Π and N = L.
Suppose now that p ‖− ϕ[G]. There is an ordinal γ0 < ω1 such that p ∈ PPPγ0 = MT( #”

Π �γ0) and ϕ
belongs to L( #”

Π �γ0). (Recall Definition 13.2 on models L(x) |= ZFL– .) The set U of all sequences #”π ∈ #    ”MF
such that γ0 < dom #”π and there is an ordinal ϑ, γ0 < ϑ < dom #”π , such that #”π �ϑ ⊂L( #”π �ϑ)

#”π , is dense in 
#    ”MF by Theorem 12.3, and is Δ1(HC). Therefore by Corollary 13.7 there is an ordinal γ < ω1 such that 
#”π = #”

Π �γ ∈ U . Let this be witnessed by an ordinal ϑ, so that γ0 < ϑ < γ = dom #”π and #”π �ϑ ⊂L( #”π �ϑ)
#”π . 

We claim that p MT( #”π �ϑ)-forces ϕ[G] over L( #”π �ϑ) in the usual sense — then by definition p forc #”π ϕ, 
as required.

To prove the claim, assume otherwise. Then there is a multitree q ∈ MT( #”
Π �ϑ), q � p, which MT( #”π �ϑ)-

forces ¬ ϕ[G] over L( #”π �ϑ). Then by definition (1◦ in Section 18) q forc #”π ¬ ϕ holds, hence q forc∞ ¬ ϕ, 
and then q ‖− ¬ ϕ[G] (see above), with a contradiction to p ‖− ϕ[G].

Part 2: the step LΠ1
m → LΣ1

m+1 (1 ≤ m ≤ n − 2). Consider a LΠ1
m formula ϕ(x). Assume 

p forc∞ ∃x ϕ(x). By definition there is a small real name c such that p forc∞ ϕ(c). By inductive hy-
pothesis, p ‖− ϕ(c)[G], that is, p ‖− ∃x ϕ(x)[G]. Conversely, assume that p ‖− ∃x ϕ(x)[G]. As PPP is CCC, 
there is a small real name c (in L) such that p ‖− ϕ(c)[G]. We have p forc∞ ϕ(c) by the inductive 
hypothesis, hence p forc∞ ∃x ϕ(x).

Part 3: the step LΣ1
m → LΠ1

m (2 ≤ m ≤ n − 2). Assume that ϕ is a closed LΣ1
m formula, and 

p forc∞ ϕ− . By Lemma 22.2(iv), there is no multitree q ∈ PPP, q � p, with q forc∞ ϕ. This implies 
p ‖− ϕ− by the inductive hypothesis.

Conversely, let p ‖− ϕ− . There is an ordinal γ0 < ω1 such that p ∈ PPPγ0 = MT( #”
Π �γ0) and ϕ belongs 

to L( #”
Π �γ0). Consider the set U of all sequences #”π ∈ #    ”MF such that dom #”π > γ0 and there is a multitree 

q ∈ MT( #”π) satisfying q � p and q forc #”π ϕ. Then U belongs to Σm−1(HC) (ϕ, p0 as parameters) 
by Lemma 19.1, hence to Σn−3(HC). Recall that n ≥ 4 by the conditions of Theorem 17.1. Thus by 
Definition 13.6 (and (ii) of Theorem 13.4) there is an ordinal γ < ω1 such that #”

Π �γ blocks U .
Case 1: #”

Π �γ ∈ U . Let this be witnessed by a multitree q ∈ MT( #”π), so that in particular q � p and 
γ > γ0 . Thus q ∈ MT( #”

Π �γ), q � p, and q forc #”
Π � γ ϕ, that is, q ‖− ϕ[G] by the inductive hypothesis, 

contrary to the choice of p. Therefore Case 1 cannot happen, and we have:
Case 2: no sequence in U extends #”

Π �γ . We can assume that γ > γ0 . (If not, replace γ by γ0 + 1.) We 
claim that p forcγ ϕ− . Indeed otherwise by 3◦ of Section 18 there is a sequence #”π ∈ #    ”MF and a multitree 
q ∈ MT( #”π), such that #”

Π �γ ⊆ #”π , q � p, and q forc #”ϙ ϕ. But then #”π belongs to U . On the other hand, 
#”
Π �γ ⊆ #”π , contrary to the Case 2 assumption. Thus indeed p forc∞ ϕ− , as required. �
23. Embedding multiforcings in the key sequence

We argue in L. The following lemma proves that any special multiforcing in spMF admits an embedding 
into a layer of the key sequence #”

Π , by means of an appropriate permutation, due to the generic properties 
of #”

Π .
We make use of the semiinterval notation [α, β) = { γ : α ≤ γ < β}.
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If β < ϑ < ω1 then define permutations h1[ϑ] , h2[ϑ] ∈ PERM so that

NI(h1[ϑ]) = [β, ϑ) ∪ [ϑ + β, ϑ·2), NI(h2[ϑ]) = [β, ϑ) ∪ [ϑ·2 + β, ϑ·3),

h1[ϑ](ξ) = h1[ϑ]−1(ξ) = ϑ + ξ

h2[ϑ](ξ) = h2[ϑ]−1(ξ) = ϑ·2 + ξ

}
whenever β ≤ ξ < ϑ ,

⎫⎪⎪⎬
⎪⎪⎭ (∗)

where as usual, ϑ·2 = ϑ + ϑ and ϑ·3 = ϑ + ϑ + ϑ.
Note that the inclusion ϙ ⊆ π between multiforcings ϙ and π means simply that d = |ϙ| ⊆ |π| and 

ϙ = π�d, that is, ϙ(ξ) = π(ξ) for all ξ ∈ d.
The next lemma has two applications below. One of them (Lemma 24.1) utilizes the effect of both h1[ϑ]

and h2[ϑ]. The other one (Section 27) involves only h1[θ].

Lemma 23.1 (in L). Assume that α0 < ω1 , and σ ∈ spMF, σ�β = #”
Π (α0)�β. Then there is a refinement 

ϙ ∈ spMF, σ �� ϙ, and ordinals ν > α0 and θ, β < θ < ω1 , such that |ϙ| ⊆ θ, still ϙ�β = #”
Π (ν)�β, and 

the multiforcings ϙ1 = h1[θ]·ϙ, ϙ2 = h2[θ]·ϙ satisfy ϙ1, ϙ2 ⊆ #”
Π (ν).

Proof. Arguing in L, let U be the set of all sequences #”π ∈ #    ”MF such that:

(†) dom( #”π) = ν + 1, where ν > α0 , and there is an ordinal θ, β < θ < ω1 , and a multiforcing ϙ ∈ spMF
such that σ �� ϙ, |ϙ| ⊆ [0, θ), ϙ�β = #”

Π (ν)�β, and the shifted multiforcings ϙ1 = h1[θ]·ϙ, ϙ2 = h2[θ]·ϙ
satisfy ϙ1, ϙ2 ⊆ #”π(ν).

By routine estimation, U is a Σ1(HC) set (with σ, α0, β as the only parameters of the straightforward 
Σ1 definition in HC), hence definitely a Σn−3(HC) set. Thus by (ii) of Definition 13.6 there is an ordinal 
ν < ω1 such that #”

Π �ν blocks U .
We can w.l.o.g. assume that ν = λ + 1 > α0 is a successor ordinal.
Case 1: no sequence in U extends #”

Π �ν . To show that this cannot happen, let τ = #”
Π (λ). Let τ ′ ∈ spMF

satisfy τ �� τ ′ and |τ | = |τ ′|. Let σ′ ∈ spMF satisfy σ �� σ′ and |σ| = |σ′|. We put ϙ = (τ ′�β) ∪
(σ′� (ω1�β)). Let θ < ω1 be the least ordinal satisfying |τ | ∪|σ| ⊆ [0, θ) and β < θ. We define ϙ1 = h1[θ]·ϙ, 
ϙ2 = h2[θ]·ϙ, π = τ ′ ∪ ϙ1 ∪ ϙ2 .

We claim that π is a special multiforcing. Indeed as all three summands are special multiforcings, it 
suffices, by Lemma 4.3, to check that they pairwise coincide on common domains. Note that by construction 
|ϙ| ⊆ β = [0, β), and hence by (∗) we have |ϙ| ∩ |ϙ1| ∩ |ϙ2| ⊆ [0, β) whereas outside the interval [0, β) all 
three domains |ϙ|, |ϙ1|, |ϙ2| are pairwise disjoint. Furthermore ϙ1� [0, β) = ϙ2� [0, β) = ϙ� [0, β) still by (∗), 
so we have got the pairwise coincidence on common domains, as required.

Moreover, as #”
Π (λ) = τ �� τ ′ ⊆ π , we have τ �� π by Lemma 5.4.

Now let #”π be the extension of #”
Π �ν by #”π(ν) = π . It follows from the above that #”π ∈ #    ”MFν+1 . We claim 

that #”π ∈ U via the condition (†) witnessed by ϙ and θ. Indeed the only part of (†) not immediately clear 
is σ �� ϙ. But this follows from the definition of ϙ since σ �� σ′ and σ�β = #”

Π (α0)�β �� τ = #”
Π (λ) �� τ ′ . 

Thus indeed #”π ∈ U .
On the other hand, #”

Π �ν ⊂ #”π . This contradicts the Case 1 assumption.
Case 2: #”π = #”

Π �ν ∈ U . Let this be witnessed by θ, ϙ etc. as in (†). Then ϙ1 ∪ ϙ2 ⊆ #”
Π (ν) immediately 

by (†). �
24. The non-existence claim, part I

The next lemma continues the proof of Theorem 17.1.



V. Kanovei, V. Lyubetsky / Annals of Pure and Applied Logic 175 (2024) 103426 31
Lemma 24.1 (in L). Suppose that α0 < ω1 , σ ∈ spMF, σ�β = #”
Π (α0)�β, s ∈ MT(σ), s � p, and ξ ∈ |σ|, 

ξ ≥ β. Then there is a refinement π ∈ spMF, σ �� π , a condition p ∈ MT(π), p � s, and ordinals μ > α0
and η ∈ |π|, η ≥ β, such that still π�β = #”

Π (μ)�β and p forcπ Φ( .
xη, 

.
xξ, c).

See Section 17 on the definition of sets p, c, β, α occurring in this lemma. A club C ∈ L, C ⊆ ω1 is fixed 
by (iii) of Theorem 13.4 and Definition 13.6.

Proof. We argue in L. By Lemma 23.1, there exist:

(1) ordinals ν > α0 and θ, β < θ < ω1 , and a refinement ϙ ∈ spMF, σ �� ϙ, such that |ϙ| ⊆ θ, still 
#”ϙ �β = #”

Π (ν)�β, and the derived multiforcings ϙ1 = h1[θ]·ϙ, ϙ2 = h2[θ]·ϙ satisfy ϙ1, ϙ2 ⊆ #”
Π (ν).

Let ξ1 = h1[θ](ξ), ξ2 = h2[θ](ξ). Note that β ≤ ξ < θ by construction, and hence we have θ + β ≤ ξ1 < θ·2
and θ·2 + β ≤ ξ2 < θ·3 by (∗) in Section 23.

Pick a condition q ∈ ϙ with q � s. Then

q1 = h1[θ]q ∈ MT(ϙ1) and q2 = h2[θ]q ∈ MT(ϙ2),

hence, q1, q2 ∈ PPP by (1). (Recall that PPP is the key forcing notion, Section 14.) Note that |q1| ∩ |q2| ⊆ [0, β)
by (∗) in Section 23. However both h1[θ] and h2[θ] are equal to the identity on the domain β = [0, β). It 
follows that q1� [0, β) = q2� [0, β) = q� [0, β). We conclude that p′ = q1∪q2 is a multitree in MT( #”

Π (ν)) ⊆ PPP
by (1).

It follows by the choice of p, that there is a condition p1 ∈ PPP, p1 � p′ , which PPP-forces either 
Φ(xξ1 [G], xξ2 [G], c[G]) or Φ(xξ2 [G], xξ1 [G], c[G]). Let p1 PPP-force say Φ(xξ2 [G], xξ1 [G], c[G]) over L. By 
Theorem 22.3, we have

(2) p1 forc #”
Π � (μ+1) Φ( .

xξ2 , 
.
xξ1 , c), or equivalently, by Corollary 20.2,

p1 forc #”
Π (μ) Φ( .

xξ2 , 
.
xξ1 , c), — for some μ ≥ ν ,

where, by Lemma 18.2, p1 and the ordinal μ can be chosen so that p1 ∈ MT( #”
Π (μ)) and [0, θ·3) ⊆ | #”

Π (μ)|. 
Acting by h1[θ] = (h1[θ])−1 on (2), we get

(3) p forcπ Φ( .
xξ2 , 

.
xξ, c)

by Theorem 21.1, where π = h1[θ]( #”
Π (μ)) and p = h1[θ]p1 , since h1[θ](ξ1) = (h1[θ])−1(ξ1) = ξ , h1[θ](ξ2) =

ξ2 , and h1[θ]c = c (because |c| ⊆ β and h1[θ] is the identity on β = [0, β)).
Now we observe that h1[θ]ϙ = ϙ1 ⊆ #”

Π (ν) �� #”
Π (μ), therefore h1[θ]ϙ �� #”

Π (μ) by Lemma 5.4, and then 
we have ϙ �� π since h1[θ] = h1[θ]−1 , so that σ �� π as well by (1). We have p � s by similar reasons. 
And finally, π�β = #”

Π (μ)�β because h1[θ] is the identity on [0, β).
This ends the proof of the lemma, with η = ξ2 . �

25. The non-existence claim, part II

In this section our goal will be to strengthen Lemma 24.1 so that not only one condition p but a whole 
dense set of conditions with the same property will be obtained. Recall that α, β, p, c were introduced in 
Section 17 whereas a club C ∈ L, C ⊆ ω1 is fixed by (iii) of Theorem 13.4 and Definition 13.6.

Lemma 25.1 (in L). There is a limit ordinal λ ∈ C, a sequence #”π = 〈πα〉α<λ ∈ #    ”MFλ , and an increasing 
continuous sequence of ordinals να , α < λ, such that:
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(i) #”
Π (α) ⊆ π0 and |π0| = | #”

Π (α)| ∪ { β };
(ii) πα�β = #”

Π (να)�β;
(iii) if ξ ∈ | #”π |, ξ ≥ β, and q ∈ MT( #”π), q � p, then there is a condition p ∈ MT( #”π), p � q , and an 

ordinal η ∈ | #”π |, η ≥ β such that p forc #”π Φ( .
xη, 

.
xξ, c), or in other words, the set

Dξ[ #”π ] = {p ∈ MT( #”π) : ∃ η ∈ | #”π |� β
(
p forc #”π Φ( .

xη,
.
xξ, c)

)
}

is dense (then open dense by Lemma 18.2) in MT( #”π) below p
(iv) supα<λ να = λ and #”π ∈ L( #”

Π �λ). (See Definition 13.2 on L(x).)

Proof. Following (i), we define π0 so that |π0| = | #”
Π (α)| ∪ { β }, π0(ξ) = #”

Π (α)(ξ) for all ξ ∈ | #”
Π (α)|, and 

finally π0(β) = P coh , where P coh is the Cohen forcing, as in the proof of Lemma 12.1.
Successor step. Assume that πα and να are already defined and satisfy (ii). Then for a certain specially 

picked (see below) pair of ξα ∈ |πα| � β and qα ∈ MT(πα) with qα � p, a multiforcing πα+1 ∈ spMF and 
an ordinal να+1 > να are chosen by Lemma 24.1 so that πα �� πα+1 , πα+1�β = #”

Π (να+1)�β, and

∃pα ∈ MT(πα+1) ∃ ηα ∈ |πα+1|� β
(
pα � qα ∧ pα forcπα+1 Φ( .

xηα
,
.
xξα , c)

)
.

Limit step. Assume that κ < ω1 is limit, and πα and να are already defined for all α < κ, so that 
〈πα〉α<κ ∈ #    ”MFκ and (ii) holds for all α < κ. Let νκ = supα<κ να . By Theorem 12.3, there is a sequence 
#”ϙ ∈ #    ”MFκ+1 with 〈πα〉α<κ ⊂ #”ϙ . Basically, #”ϙ extends 〈πα〉α<κ by an extra term ϙ = #”ϙ(κ) ∈ spMF
satisfying πα �� ϙ for all α < κ. But ϙ�β may not be equal to #”

Π (νκ)�β. To fix this issue, we define πκ so 
that πκ�β = #”

Π (νκ)�β, but πκ(ξ) = ϙ(ξ) for all ξ ∈ |ϙ|, ξ ≥ β. Then still πα �� πκ for all α < κ since the 
sequence #”

Π is ��-increasing.
Choice of ξα and qα . This can be arranged so that for each ordinal α′ in the process, and every ξ ∈

|πα′ | � β and every condition q ∈ MT(πα′), q � p, there is m < ω such that ξα = ξ and qα � q , where 
α = α′ + m.

Choice of λ. The construction above is supposed to run in principle over the whole domain α < ω1 . 
However, as the set C ⊆ ω1 is a club, its subset C′ = { λ ∈ C : νλ = λ } is a club either. Now let’s find λ ∈ C′

such that (iv) holds. Consider the ∈-structure 〈Lω2 ; ω1, C
′, 〈πα〉α<ω1〉, a model of ZFL– (see Definition 13.2). 

It has a countable elementary submodel M ⊆ Lω2 containing ω1 , C′ , and 〈πα〉α<ω1 . The latter admits a 

Mostowski collapse map h : M onto−→ Lϑ |= ZFL– , where ϑ < ω1 . Then h(ω1) = λ < ϑ, h(C′) = C′ ∩λ — and 
hence λ ∈ C′ because C′ is a club, — and h(〈 #”πα〉α<ω1) = 〈πα〉α<λ ∈ Lϑ by construction. On the other 
hand, λ is uncountable in Lϑ by the elementarity. It follows that surely Lϑ ⊆ L( #”

Π �λ), because by definition 
λ is countable in the model L( #”

Π �λ) = Lμ for some μ < ω1 . We conclude that 〈πα〉α<λ ∈ L( #”
Π �λ), as 

required.
Finalization. It remains to check (iii) with λ ∈ C chosen as above. Thus assume that ξ ∈ | #”π | � β, 

and q ∈ MT( #”π), q � p. There exists an ordinal α′ < λ such that ξ ∈ |πα′ | � β and a condition 
q′ ∈ MT(πα′), q′ � q . By construction, there is an ordinal α = α′ + m, m < ω , such that ξα = ξ

and qα � q′ . Moreover (see the successor step) there exists an ordinal η ∈ |πα+1| � β and a condition 
p ∈ MT(πα+1) such that p � qα � q′ � q and p forcπα+1 Φ( .

xη, 
.
xξ, c). By Theorem 20.1 this is equivalent 

to p forc #”π �α+2 Φ( .
xη, 

.
xξ, c). This implies p forc #”π Φ( .

xη, 
.
xξ, c) by Lemma 18.2. �

Let a 25.1-type sequence be any #”π ∈ #    ”MF satisfying Lemma 25.1. Thus if ξ ∈ | #”π | � β then Dξ[ #”π ] is open 
dense in MT( #”π) below p in this case.

26. The non-existence claim, part III

The next theorem makes use of the results of Section 25.
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Theorem 26.1 (in L). Assume that #”π ∈ #    ”MF is a 25.1-type sequence, λ = dom( #”π). Then there is an extension 
#”ϙ ∈ #    ”MFλ+1 , #”π ⊂ #”ϙ , by an extra term ϙ = #”ϙ(λ), such that ϙ�β = #”

Π (λ)�β, and if #”τ ∈ #    ”MF and #”ϙ ⊆ #”τ

then every set Dξ[ #”π ], ξ ∈ | #”π | � β, is pre-dense in MT( #”τ ) below p.
Therefore, if τ ∈ spMF satisfies ϙ �� τ , and ξ ∈ | #”π | � β, then the set

Dξ[τ ] = {p ∈ MT(τ ) : ∃ η ∈ | #”π |� β
(
p forcτ Φ( .

xη,
.
xξ, c)

)
}

is dense in MT(τ ) below p.

Proof. We argue in L. We know that #”π ∈ M = L( #”
Π �λ) |= ZFL– . In particular, the multiforcing π =⋃cw

α<λ
#”π(α) also belongs to M.

Our plan is to add a λ-th layer ϙ to #”π so that the extended sequence #”ϙ = #”π�ϙ ∈ #    ”MFλ+1 satisfies 
π ��D ϙ = #”ϙ(λ) for any set D ∈ M, D ⊆ MT(π), open dense in MT(π), and still satisfies ϙ�β = #”

Π (λ)�β. 
However a direct application of Lemma 9.4 and then Theorem 10.1(vii) does not yield the result required 
since Lemma 9.4 does not provide ϙ�β = #”

Π (λ)�β. Thus we need a more elaborate construction of ϙ. 
Basically, as the value of π�β = #”

Π (λ)�β is predetermined, we’ll have to define the complementary part 
ϙ� [β, ω1).

For that purpose, let’s split the given sequence #”π at β into sequences #”ε = #”π<β and 
#”

δ = #”π≥β , in 
#    ”MFλ ∩ M, such that dom( #”ε ) = dom( #”

δ ) = λ and #”ε (α) = #”π(α)�β, #”

δ (α) = #”π(α)� [β, ω1) for all α < λ. 
By the way, #”ε (α) = #”

Π (να)�β for all α, where να < λ and supα<λ να = λ as #”π is a 25.1-type sequence. 
Therefore the multiforcings Π<λ =

⋃cw
α<λ

#”
Π (α) and ε =

⋃
α<λ

#”ε (α) are connected so that ε ⊆ Π<λ�β and 
ε is dense in Π<λ�β.

Note that as λ = dom( #”π) ∈ C, the ordinal λ is limit and ∗crucial for #”
Π . This means that #”

Π (λ) = lim[Φ]
is an M-generic refinement of Π<λ via an M-generic �-decreasing sequence Φ = 〈ϕj〉j<ω of systems 
ϕj ∈ Sys(Π<λ), as in (I)–(V) of Section 9. Here each ϕj ∈ Sys(Π<λ) is a map defined on a finite set 
|ϕj | ⊆ |Π<λ| × ω such that if 〈ξ, k〉 ∈ |ϕj | then ϕj(ξ, k) =

〈
n
ϕj

ξk , T
ϕj

ξk

〉
, where nϕj

ξk < ω , Tϕj

ξk ∈
⋃fin Π<λ(ξ), 

and 
⋃fin Π<λ(ξ) consists of all finite unions of trees in Π<λ(ξ), as in Subsection 9A.

To restrict Φ to the domain β = [0, β), we let Φ�β = 〈ϕj �β〉j<ω , where ϕj �β is just the restriction of ϕj

to { 〈ξ, k〉 ∈ |ϕj | : ξ < β }. Thus Φ�β is a �-decreasing sequence of systems ϕj �β in Sys(Π<λ�β). Moreover 
Φ�β is an M-generic sequence by the product forcing theory, since Φ itself is generic.

However ε is dense in Π<λ�β, see above, therefore Sys(ε) is dense in Sys(Π<λ�β). It follows that the 
sequence Φ�β contains an infinite cofinal subsequence Φ′ = 〈ϕjm �β〉m<ω of systems ϕjm �β ∈ Sys(ε), Φ′

is M-generic along with Φ�β by the cofinality, and we have lim[Φ′] = lim[Φ�β] = #”
Π (λ)�β since generally 

#”
Π (λ) = lim[Φ].

Now consider the other half #”

δ = #”π≥β of the given sequence #”π , and the according multiforcing δ =⋃cw
α<κ

#”

δ (α), where 
#”

δ (α) = #”π(α)� [β, ω1). Let Ψ be an arbitrary M[Φ′]-generic and �-decreasing sequence 
of systems ψj ∈ Sys(δ), as above. Here each ψj ∈ Sys(δ) is a map defined on a finite set |ψj | ⊆ |δ| ×ω such 
that if 〈ξ, k〉 ∈ |ψj | then ψj(ξ, k) =

〈
n
ψj

ξk , T
ψj

ξk

〉
, where nψj

ξk < ω , Tψj

ξk ∈
⋃fin

δ(ξ), and the set 
⋃fin

δ(ξ)
consists of all finite unions of trees in δ(ξ).

Note that | #”ε | ⊆ β and | #”

δ | ⊆ [β, ω1) are disjoint sets by construction. It follows that if j < ω then 
|ϕj �β| ∩ |ψj | = ∅, therefore the union ϑj = (ϕj �β) ∪ ψj of functions with disjoint domains is a system in 
Sys(π). Moreover Θ = 〈ϑj〉j<ω is a �-decreasing sequence of systems ϑj ∈ Sys(π), and M-generic by the 
product forcing theorem since Φ�β is M-generic while Ψ is M[Φ]-generic.

It follows from Theorem 10.1 that the according limit multiforcing ϙ = lim[Θ] is a small special multi-
forcing satisfying #”π(α) �� ϙ for all α < λ. We conclude that the extended sequence #”ϙ = #”π�ϙ belongs to 
#    ”MFκ+1 ; note that ϙ = #”ϙ(κ) is the last term of #”ϙ . Moreover, as the (<β)-part of Θ is equal to Φ�β, we 
have ϙ�β = lim[Φ�β] = #”

Π (κ)�β. It follows that #”ϙ �<β ⊂ #”
Π �<β .
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Now let #”τ ∈ #    ”MF be any sequence with #”ϙ ⊆ #”τ . Suppose that ξ ∈ | #”π |. Then the set Dξ[ #”π ] ∈ M

is open dense in MT(π) below p because #”π is an 25.1-type sequence. Therefore the bigger set D =
Dξ[ #”π ] ∪ { p ∈ MT(π) : p⊥p } ∈ M is simply open dense in MT(π). (Recall that ⊥ means incompatibil-
ity.) Therefore π ��D ϙ by Theorem 10.1(vii). It follows by Lemma 6.4 that π ��D τ≥λ , where τ≥κ =⋃cw

κ≤α<dom( #”τ )
#”τ (α), and hence D is pre-dense in MT(π ∪cw τ≥κ). However MT( #”τ ) = MT(π ∪cw τ≥κ). Thus 

D is pre-dense in MT( #”τ ). We conclude that Dξ[ #”π ] is pre-dense in MT( #”τ ) below p.
To prove the ‘therefore’ part of the theorem, let #”τ ∈ #    ”MFλ+2 be the extension of #”ϙ by the extra term 

#”τ (λ + 1) = τ . Let ξ ∈ | #”π | � β. Assume that r ∈ MT(τ ), r � p. By the main part of the theorem, r is 
compatible with some p ∈ Dξ[ #”π ] in MT( #”τ ), so that there exists q ∈ MT( #”τ ) with q � p and q � r . We 
may assume that q belongs to τ (the top level of #”τ ).

Furthermore, as p ∈ Dξ[ #”π ], we have p forc #”π Φ( .
xη, 

.
xξ, c) for an ordinal η ∈ | #”π | � β. Then 

q forc #”τ Φ( .
xη, 

.
xξ, c) holds by Lemma 18.2 and q forcτ Φ( .

xη, 
.
xξ, c) by Theorem 20.1 since τ is just the 

top term of #”τ . Thus q ∈ Dξ[ #”π ]. �
Remark 26.2. In the context of Theorem 26.1, |ϙ| � β �= ∅. Indeed, by (i) of Theorem 25.1, we have 
β ∈ |π0| ⊆ | #”π | ⊆ |ϙ|. �
27. The non-existence claim, part IV, finalization

Arguing in L under the contrary Assumption 17.2, we proceed as follows.

(A) In L, pick a 25.1-type sequence #”π ∈ #    ”MFλ , λ < ω1 , by Lemma 25.1.
(B) Then, still in L, pick #”ϙ ∈ #    ”MFλ+1 by Theorem 26.1, so that #”π ⊂ #”ϙ , the multiforcing ϙ = #”ϙ(λ) satisfies 
ϙ�β = #”

Π (λ)�β, and if ξ ∈ | #”π | � β and τ ∈ spMF, ϙ �� τ , then Dξ[τ ] is dense in MT(τ ) below p.

By Lemma 23.1, there is a refinement χ ∈ spMF ϙ �� χ, and ordinals ν > λ, and θ, β < θ < ω1 , 
such that |χ| ⊆ θ, χ�β = #”

Π (ν)�β, and the permutation h1[θ] (see Section 23) acts so that the shifted 
multiforcing χ∗ = h1[θ]·χ satisfies χ∗ ⊆ #”

Π (ν). We may note that

(C) h1[θ]p = p and h1[θ]c = c by the choice of β in Section 17 and by the fact that h1[θ] is the identity 
on the domain [0, β).

Accordingly let ϙ∗ = h1[θ]·ϙ, # ”ϙ∗ = h1[θ]· #”ϙ , # ”π∗ = h1[θ]· #”π , so that # ”ϙ∗ is an extension of # ”π∗ by ϙ∗ as the 
top element. Note that # ”χ∗(ν) = χ∗ .

Lemma 27.1 (in L). If ξ′ ∈ | # ”π∗| � β and τ∗ ∈ spMF, χ∗ �� τ∗ , then

Dξ′ [τ∗] = {p′ ∈ MT(τ∗) : ∃ η′ ∈ | # ”π∗|� β
(
p′ forcτ∗ Φ( .

xη′ ,
.
xξ′ , c)

)
}

is a dense set in MT(τ∗) below p.

Proof. We argue in L. To prove the lemma we carefully explore the action of h1[θ] on (B) above. The key 
argument will be

(D) Dξ′ [τ∗] = h1[θ] ”Dξ[τ ] = { h1[θ]·p : p ∈ Dξ[τ ] }.

To prove (D) suppose that ξ ∈ | #”π | � β and p ∈ Dξ[τ ] and show that p′ = h1[θ]·p belongs to Dξ′ [τ∗], 
where accordingly ξ′ = h1[θ](ξ). (The inverse implication is similar.) By definition there is an ordinal 



V. Kanovei, V. Lyubetsky / Annals of Pure and Applied Logic 175 (2024) 103426 35
η ∈ |τ | �β such that p forcτ Φ( .
xη, 

.
xξ, c). Then we have p′ forcτ∗ Φ( .

xη′ , .xξ′ , c) by Theorem 21.1 and (C), 
where η′ = h1[θ](η). This completes the proof of (D).

Now to prove the lemma assume that q′ ∈ MT(τ∗) and q′ � p. Note that q′ = h1[θ]·q , where q =
h1[θ]·q′ ∈ MT(τ ), because h1[θ] = h1[θ]−1 . In addition, q � p by (C). Therefore by (B) there exists 
p ∈ Dξ[τ ] ⊆ MT(τ ), satisfying p � q . Finally we put p′ = h1[θ]·p ∈ MT(τ∗), so that p′ � q′ , and in 
addition p′ ∈ Dξ′ [τ∗] by (D). �

The next lemma transfers the pre-density result to the key sequence #”
Π .

Recall that p forc∞ ϕ means that p forc #”
Π �α ϕ holds for some α < ω1 . (See just before Proposition 22.3.)

Lemma 27.2 (in L). If ξ′ ∈ | # ”π∗| � β then the set

Dξ′ = {s ∈ MT( #”
Π ) : ∃ η′ ∈ | # ”π∗|� β

(
s forc∞ Φ( .

xη′ ,
.
xξ′ , c)

)
}

is open dense in PPP = MT( #”
Π ) below p.

Proof. We argue in L. The openness follows from Lemma 18.2. To prove the density, consider any p0 ∈ PPP, 
p0 � p. We have to find an element η′ ∈ | # ”π∗| � β, and a condition s ∈ MT( #”

Π ) = PPP such that s � p0 and 
s forc∞ Φ( .

xη′ , .xξ′ , c).
Since #”

Π is ��-increasing, there is an ordinal γ > ν and a stronger condition p1 ∈ MT( #”
Π (γ)), p1 � p0 . 

Let τ∗ = #”
Π (γ). Then χ∗ ⊆ #”

Π (ν) �� #”
Π (γ) = τ∗ , hence χ∗ �� τ∗ by Lemma 5.4. But p1 ∈ MT(τ∗). 

By Lemma 27.1, there is a condition s ∈ Dξ′ [τ∗], s � p1 . Then we have s forcτ∗ Φ( .
xη′ , .xξ′ , c) for 

some η′ ∈ | # ”π∗| � β, and then s forc #”
Π � (γ+1) Φ( .

xη′ , .xξ′ , c) by Theorem 20.1. By definition this implies 
s forc∞ Φ( .

xη′ , .xξ′ , c), as required. �
Let ‖− be the PPP-forcing relation over L. It essentially coincides with the relation forc∞ by Theo-

rem 22.3. Therefore the lemma implies:

Corollary 27.3 (in L). If ξ′ ∈ | # ”π∗| � β then the set

Δξ′ = {s ∈ MT( #”
Π ) : ∃ η′ ∈ | # ”π∗|� β

(
s ‖− Φ( .

xη′ [G], .
xξ′ [G], c[G])

)
}

is open dense in PPP below p. �
Now we are able to easily accomplish the proof of Theorem 17.1. Namely, as p ∈ G, Corollary 27.3

implies that the set X ′ = { xξ′ [G] : ξ′ ∈ | # ”π∗| � β } (non-empty by Remark 26.2) has no <c[G]
Φ -least element, 

which contradicts Assumption 17.2. � (Theorem 17.1)

Combining this result with Theorem 16.1, already established above, we finalize the proof of Theo-
rem 1.1. � (Theorem 1.1)

28. Conclusions and problems

In this study, the technique of finite-support products of Jensen’s forcing was employed to the problem 
of obtaining a model of ZFC in which, for a given n ≥ 3, there exist good well-orderings of the reals in the 
lightface class Δ1

n , but no well-ordering of the reals (not necessarily good) exists in the boldface class Δ1
n−1

at the previous level. This result (Theorem 1.1 of this paper) is a significant strengthening of our previous 
result in [32], in which the negative part concerned only lightface Δ1

n−1 -good well-orderings. This theorem 
continues our series of resent research such as
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− a Π1
n E0 -equivalence class containing no OD elements, while every countable Σ1

n -set of reals contains 
only OD reals [27],

− a Π1
n real singleton { a } such that a codes a cofinal map f : ω → ωL

1 , while every Σ1
n set X ⊆ ω is 

constructible and hence cannot code a cofinal map ω → ωL
1 , [28],

− a non-ROD-uniformizable Π1
n set with countable cross-sections, while all Σ1

n sets with countable cross-
sections are Δ1

n+1 -uniformizable [29].

Theorem 1.1 may also be a step towards solution of the following all-important problem by S.D. Friedman 
[11, P. 209], [12, P. 602]: assuming the consistency of an inaccessible cardinal, find a model for a given n in 
which all Σ1

n sets of reals are Lebesgue measurable and have the Baire and perfect set properties, but there 
is a Δ1

n+1 well-ordering of the reals.
From our study, it is concluded that the technique of definable generic inductive constructions of forcing 

notions in L, developed for Jensen-type product forcing in our earlier papers [30,31], succeeds to solve (by 
our Theorem 1.1) another descriptive set theoretic problem of the same kind.

From the result of Theorem 1.1, we come to the following problems.

Problem 28.1. Prove that it holds in the model L[G] of Section 15 that there is no boldface Δ1
n−1 well-

ordering of a set of reals, whose domain includes uncountably many reals of the form xξ[G], ξ < ω1 . (See 
Definition 15.1.)

Problem 28.2. Prove a version of Theorem 1.1 with the additional requirement that the negation 2ℵ0 > ℵ1
of the continuum hypothesis holds in the generic extension considered.

The model for Theorem 1.1 introduced in Section 15 (the key model) definitely satisfies the continuum 
hypothesis 2ℵ0 = ℵ1 . The problem of obtaining models of ZFC in which 2ℵ0 > ℵ1 and there is a projective 
well-ordering of the real line, has been known since the early years of modern set theory. See, e.g., problem 
3214 in an early survey [35] by Mathias. Harrington [19] solved this problem by constructing a generic model 
of ZFC, in which 2ℵ0 > ℵ1 and there is a Δ1

3 well-ordering of the continuum. This model involves various 
forcing notions like the almost-disjoint forcing [21] and a forcing notion by Jensen and Johnsbråten [23].

As a concluding remark, we expect that the methods developed for this research can also be useful 
in creating computational algorithmic models, of various complexity in terms of the second order Peano 
arithmetic, that represent the evolution of cell types and are related to the storage and processing of genomic 
information.
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