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Abstract: Mathematical methods and models for comparative analysis of large sets of 
protein phylogenies are described. The processes modeled are gene 
duplication, loss, gain, and horizontal transfer. Initially, a species tree is 
constructed as a consensus of the corresponding gene trees using probabilistic 
distribution on source data. Algorithms are further implemented to identify 
vertices accounting for topological disparities between the gene and species 
trees, with possibility to infer underlying evolutionary events. The analysis is 
illustrated on case studies of a prokaryotic protein family and a set of protein 
phylogenies deduced from families from the COGs database (NCBI). The 
potential of the described methods to infer phylogeny and gene evolution 
events is discussed. 
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1. INTRODUCTION 

Methods and algorithms described here are aimed at implementing two 
tasks: reconstruction of prokaryotic species trees and analyzing hypotheses 
about gene evolution. The main emphasis is placed on original algorithms 
and their performance, although, due to space limits, only general 
descriptions are provided along with the necessary references. 

Events in gene evolution are usually viewed as gene divergence during 
species differentiation, gene duplication, gene gain, loss, and horizontal gene 
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transfer (HGT). Molecular data is protein sequences grouped according to 
their amino acid and functional similarity into clusters of orthologous groups 
of proteins (COGs; Tatusov et al., 2001). 

The general approach to reconstruct gene evolution events has long been 
defined (Goodman et al., 1979; Eulenstein et al., 1998), A protein gene 
family is selected, usually from among COGs, with subsequent assembling 
of multiple sequence alignment and reconstruction of the gene tree G (also 
referred to as a protein tree or COG tree). Further analyzed are topological 
similarity and disparity between the gene trees from the set {G\] in order to 
reconstruct the species tree and infer gene evolution events, respectively. 
Topological differences are reconciled to produce the species tree S. 
Alternatively, when inferring gene evolution events, considerable 
topological differences between a particular gene tree G (often pertaining to 
the family [G\]) and the species tree S are the basis of the analysis. 

Mathematic models of gene evolution are formulated to accommodate 
the observed differences, and optimization of model parameters is used as a 
tool to reconstruct evolutionary history of a microbial gene family. The 
evolutionary model is defined as a procedure of comparing the gene and the 
species trees, while its parameters are defined as sets of tree vertices with 
assigned evolutionary events. An optimized model has parameters 
corresponding to the extremes of the relevant evolutionary characteristics. 

2. METHODS AND ALGORITHMS 

2.1 Reconstructing the gene tree 

For a given protein family (usually, for a COG), a multiple sequence 
alignment is assembled (routinely we use the program PROBCONS v. 1.09). 
Sequences with a low level of the overall detectable homology with respect 
to the other family members are identified using the CORE index 
(Notremade et al., 2003), which scores each residue for the amount of 
positional consistency it contains with respect to the other residues occurring 
in the same column (index computed with the program T-COFFEE v. 2.11). 
Sequences with the CORE value below the recommended threshold are 
removed from the alignment. 

At the next step, a list of reliable phylogenetic clades is defined. For this 
purpose, a standard bootstrap analysis is applied. Sufficiently large numbers 
of bootstrapped replicates are generated for primary data using the program 
seqboot from the PHYLIP v. 3.63 package and further used to estimate the 
ML distance matrices under selected evolutionary model using the program 
PUZZLEBOOT. Neighbor joining is used to construct the trees that are 
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further reconciled to produce a 70 % consensus (facilitated by the programs 
neighbor and consense, respectively, from PHYLIP v. 3.63). The groups 
retained in the consensus comprise the list of reliable clades. An ML model 
to be used whenever else needed is selected from more that 50 empirical 
models of protein evolution on the basis of significant improvement in the 
data likelihood according to the likelihood ratio test (Akaike, 1974; 
Goldman, 1993) and the Bayesian (Schwarz, 1978) information criteria. 
Model selection is implemented with the program ModelGenerator. 

High evolutionary rates often lead to mutational saturation and loss of 
phylogenetic signal in highly variable regions of the protein molecule. We 
introduce several functions of conditional entropy in order to range the 
columns of the initial alignment according to the amount of consistency they 
possess with respect to the list of reliable clades and subsequently screen out 
for the non-informative ones. 

In order to detect the amount of columns needed to be removed from the 
initial alignment to achieve maximum performance of phylogenetic 
inference, we implement a criterion based on two statistics. After eliminating 
a subsequent portion of highest entropy positions, we compute for the 
resulting alignment (1) the percentage of unresolved quartets of taxa and (2) 
gpstatistic. Procedures of estimating the statistics were modified as follows. 

(1) Maximum-likelihood mapping. The quartet analysis was conducted 
so that the phylogenetic signal related to robust clades does not contribute to 
the percentage of unresolved quartets. Namely, sequences corresponding to 
the taxa in a reliable clade from the list were substituted with an ancestral 
sequence reconstructed with ML at the root of the clade, thus defining a 
reduced alignment. Maximum likelihood mapping (Strimmer and Haeseler, 
1997) was performed with the program TreePuzzle v. 5.02 and ancestral 
sequence reconstruction, with the PAML v. 3.14 package. 

(2) gi-statistic. Under the maximum parsimony, the tree length is defined 
as a minimum number of the changes required to explain its topology. If 
aligned data are phylogenetically structured, the percentage of shorter trees 
among a large set of the randomly generated ones will skew the tree length 
distribution to the left (Hillis and von Huelsenbeck, 1992). The distribution 
skewness is measured with the gi statistic. To preclude the phylogenetic 
signal related to well-resolved groups from contributing to the distribution 
skewness, we constrained analysis by generating random topologies in the 
areas remaining unresolved in the 70 % consensus. 

Alignment columns are removed until both statistics reach extreme 
values. In the cases when the statistics diverge in detecting the optimal 
alignment, phylogenies are estimated with both alignments and further 
reconciled in a strict consensus. In the resulting tree, the evolutionary 
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distances are computed as branch lengths with ML according to the selected 
evolutionary model. 

The entire procedure is iterated until an optimal alignment is found. 
Phylogenetic trees inferred with the described approach always possess a higher 
likelihood with respect to the primary data than do the trees estimated with the 
initial alignment and often do not constitute a confidence set with them. 

2.2 Constructing the bacterial species tree 

A species tree is produced by reconciling a set of the gene trees {G/}. It is 
defined as such S from the space of all suitable species trees that maximizes 
a certain parameter, e.g., the similarity between S and all G/. There exist 
several natural definitions of this 'similarity' (examples are provided below), 
while a priory suitability requirements to be imposed on species trees are not 
biologically straightforward. 

Mapping of and the cost for dissimilarity of trees were introduced by 
Goodman et al. (1979), Guigo et al. (1996), and Page and Charlstone (1997). 
This cost definition was modified by V'yugin and Lyubetsky (2002) by 
substituting the number of edges with the sum of the corresponding edge 
lengths, introducing edge length normalization, parameter y, and probabilistic 
distribution over the primary sequence data (details are discussed below). The 
interpretation of the edge length in the tree G depends on the tree inference 
method. It can either be an estimate of the edge robustness or evolutionary 
distance between vertices. 

Let a denote the conventional mapping of the gene tree G into the species 
tree S and let c{G, S) denote the cost of such mapping, a measure of 
dissimilarity between a and identical mapping of trees, i.e., the extent to 
which the tree G is not identical to the tree S. Remember that a duplication 
event can be thought of as a pair (g, s), where ^ is a vertex in the gene tree G 
and ^ is a vertex in the species tree S satisfying the condition a(g) = a(g') for 
one or both immediate descendants g' of the gene g (one to the left is 
designated as eg; one to the right, as Cg). The vertex s of the species tree S is 
g intermediate, if it is situated exactly between the vertices a(g) and (x(pg), 
where pg stands for the last common ancestor of the vertex g. Let us denote 
M(G, S) as a set of all g intermediate vertices for all gs from G. A member of 
the set M(G, S) is also called a gap. The gap corresponds to the edge (g, pg) 
with the length /(̂ , pg) in the gene tree G. Guigo et al. (1996) proved a 
theorem stating that the total number of gene losses equals to the total 
number of one-side duplications and gaps. 
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Figure -L Evolutionary tree of 40 microorganisms from the following groups: Archaea—(Afu) 
Archaeoglobus fulgidus, (Hbs) Halobacterium sp. NRC-1, (Mja) Methanococcus jannaschii, (Mth) 
Methanobacterium thermoautotwphicum, (Tac) Thermoplasma acidophilum, (Tvo) Thermoplasma 
volcanium, (Pho) Pyrococcus horikoshiU (Pab) Pyrococcus abyssi, (Ape) Aeropymm pembc, and 
(Sso) Sulfolobus solfataricus; Gram-positive bacteria—(Spy) Streptococcus pyogenes, (Bsu) Bacillus 
subtilis, (Bha) Bacillus halodurans, (Lla) Lactococcus lastis, (Sau) Staphylococcus aureus, (Uur) 
Ureaplasma urealyticum, (Mpn) Mycoplasma pneumoniae, and (Mge) Mycoplasma genitalium; 
Alpha-proteobacteria—(Mlo) Mesorhizobium loti, (Ccr) Caulobacter crescentus, and (Rpr) Rickettsia 
prowazekii; Beta-proteobacteria—(Nme) Neisseria meningitidis MC58; Gamma-proteobacteria— 
(Eco) Escherichia coli Kl 2, (Buc) Buchnera sp. APS, (Pae) Pseudomonas aeruginosa, (Vch) V//?n(9 
cholerae, (Hin) Haemophilus influenzae, (Pmu) Pasteurella multocida, and (Xfa) Xylella fastidiosa; 
Epsilon-proteobacteria—(Hpy) Helicobacter pylori and (Cje) Campylobacter jejuni'. Chlamydia— 
(Ctr) Chlamydia trachomatis and (Cpn) Chlamydia pneumoniae'. Spirochetes—(Tpa) Treponema 
pallidum and (Bbu) Borrelia burgdorferi', and DMS—(Dra) Deinococcus radiodurans, (Mtu) 
Mycobacterium tuberculosis, (Syn) Synechocystis, (Aae) Aquifex aeolicus, and (Tma) Thermotoga 
maritima. Vertices are assigned the total number of duplications for 132 protein families. The list of 
the families is taken from Wolf et al. (2001). 
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Remember that the dupHcation (g, s) is one-sided if either of the conditions 
a{g) = a(cg) or a{g) = oiCg) is true. A one-side dupHcation (g, s) 
corresponds to the edge (g, eg) or (g, Cg) with the length /(̂ , ̂ g) in the gene 
tree G. A set of all one-side duplications is designated as 0(G, S). 

The dupHcation (g, ^) is considered to have occurred in the vertex s. The 
number of such pairs under fixed s defines the number of dupHcations in the 
vertex. The total number of duplications in the genome assigned to the 
vertex s is the sum of aH one-side dupHcations in the vertex over aH gene 
famiHes from a fixed set of famiHes (Figure 1). The statement 'in the 
genome' impHes that the set is assembled to be maximaHy representative. 
For an individual protein family, the total number of duplication in 
descendants of the vertex s is estimated as a sum of one-side duplications in 
all vertices of the clade contained in s, A more sophisticated procedure is 
used to infer the number of gene losses in the vertex. Remember that a gene 
loss in the vertex s corresponds to the pair (g, s), where g contains a 
duplication, s descends from a(g), and the clade s does not contain either of 
genes from the clade g\ g' being an immediate descendant of g, while the 
clade ps does contain genes from both clades g' (Eulenstein et al., 1998). 
This definition is sometimes made more complex with additional conditions 
imposed on the pair (g, s). The number of losses in s is defined as the 
number of all such pairs (g, s) under fixed s. Other types of evolutionary 
events are treated analogously. The total estimates are considered as 
important characteristics of vertices of the species tree, protein families 
(genomes), and phylogenetic clades. HOT is considered as a special case of 
gene gain when its origin can be traced. 

The cost of mapping of the gene tree G into the species tree S is defined as 

c(G,S) = \0(G,S)\ + y'\M(G,S% 

where |{ • }| stands for the cardinality {•}, i.e., the number of set members. 
Otherwise, it can be given by two sums: 

C{G,S)= X h.cs,+y- Z hs.r^r 
geO(G,S) geMiCS) 

By minimizing the value of c(G, S) under 7= 1, the total number of gene 
losses is minimized. If y < 1, the cost favors duplications over gaps. In some cases, 
only the number of duplications is minimized (Page and Charlstone, 1997). 

Thus, the species tree S is produced by minimizing the value 

c = c(S) = c(Gu S) + c(G2, 5) + ... + c(Gn, 5), 
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where all gene trees G/ are already obtained, and the unknown species tree S 
is being produced under certain a priory imposed conditions. This value will 
also be referred to as a cost of mapping of the gene tree set {G/}. From the 
mathematical standpoint of computational complexity theory, finding the 
minimum of c{S) is a highly nontrivial task. Importantly, more robust edges 
of the trees G/ have more impact on minimization of the function c{S). The 
edge lengths (robustness or divergence times) of trees G/ can be induced on 
the resulting species tree S. 

V'yugin et al. (2003) proposed a partial solution of the known issue with 
reconstructing species trees caused by long branch attraction artifact. 
Namely, the minimization of function c{S) is preceded by normalization of 
the edge lengths in gene trees from {G/}. Edge lengths are re-estimated using 
the formula 

where h-p stands for the mean edge length of gene trees. The normalization 
procedure reduces the impact of extreme edge lengths in G, on the resulting 
tree S. 

Let us now concern the selection of value for parameter y, which 
determines the ratio between the numbers of duplications and losses. Many 
of the loss events, especially in vertices close to the root of the species tree S, 
may represent false predictions incurred from incorrect topologies of the 
source trees. Apart from that, mapping a does not accurately account for the 
gene gain events (particularly, HGT). A putative gene gain event can be 
alternatively explained by the topological disparities between the gene and 
species trees caused by a small number of gene duplications compared to a 
magnitude-larger number of gene losses. Therefore, a species tree 
constructed with optimization of an a-based model may be improved by 
assigning more weight to duplications, which are predicted more accurately. 
In our experiments, we generally assumed y = 0.1. 

Our algorithm constructs an optimal tree 5 as a specific local minimum. 
Since the algorithm produces a local minimum depending on the initial 
species tree So, we developed an ad hoc approach to construct the initial 5o. 
Namely, a probability distribution in the set of all initial species trees is 
built; it is defined automatically by the family {G/} of gene trees as follows. 
For any species a and b, the distribution j9(fe|a) is defined as a probability for 
both b and a to form an elementary tree (i.e., to be located at a distance less 
than or equal to some fixed r, for example, r = 2). Let Â^ be the number of 
the gene trees containing species a, and let Na, b be the number of trees 
containing a and b located at a distance r. Then, p{b\ä) - Na, i/Na, and 
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1 - ^p{b\ä) is the probability of the event that there is no occurrence of 
b 

bi^a'm any elementary tree containing a (i.e., there is no species b located at 
a distance r from a). We considered small species trees defined with the 
distances r = 2, 3, 4, etc., although larger distances require larger sets of 
primary data. The random binary tree ô is generated with the distribution 
and is taken as an initial tree in the search algorithm. The final output is a 
consensus tree computed on a subset of the resulting trees with a sufficiently 
small value of the function c. Edges of this consensus tree are assigned 
values of support of the corresponding clusters. 

2*3 Identification of vertices introducing incongruence 
between gene and species trees 

Optimizing of parameters of the above-described models requires 
identification of the tree vertices informative with respect to the inferring 
events of gene evolution. A substrate for this type of analysis is a topological 
incongruence between some gene trees G/ and the consensus species tree 5, 
which can be accounted for by actual events in gene evolutionary history or 
artifacts in reconstruction of the source trees, the latter representing a 
problem of its own. 

Three algorithms for detecting sets of incongruent vertices are described. 
The first algorithm is based on identification of the subset G of terminal 
vertices (leaves) in the gene tree G representing the gene gain events. The 
evolutionary model is two mappings a with different domains: initially, a is 
defined on the gene tree G and, subsequently, on its subset of the leaves 
G\G' obtained by excluding the leaves with putative HGTs. The subset G\G' 
is transformed into a binary tree using a standard procedure. Liberally 
speaking, G\G' can be considered as a subtree of G. The set G' is a parameter 
of the model, and its selection (optimization of parameter G') is carried out 
by maximizing a set-dependent value. Other evolutionary events are defined 
via mapping a as described above. 

The first algorithm consists of the two segments. 
The first segment. The terminal gene g in gene tree G is considered as 

putative HOT, if all genes gu gi^ ---^ gn in its proximity except for g itself are 
mapped with a onto the species -̂i, S2, ..., Sn distant from the species 
s = a{g). It is also prerequisite that the set of species {s\,S2, ...,Sn} is located 
compact enough in the species tree 5, i.e., its ancestor ô is close enough to 
the leaves and the distance between ô and s is considerably large in 5. The 
genes gi, g2, ..., gn are defined as a set of terminal vertices without g 
separated in G with a distance less than r, where the distance is the length of 
the path from g to gi\ it either takes into account the edge lengths or does not 
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if those are unit lengths. The gene set {gu g2, ..., gn) is also called the 
punctured neighborhood of the gene g with a radius r. Usually, under unit 
lengths, we assumed r = 4. Let us provide some more details. 

If two terminal genes g and gi are located at a small distance in G but 
species a(g) and a(g\) in mapping a are at a great distance in S, it may 
suggest an abnormal position of one of the genes. Hence, the distance r(g, gt) 
in the gene tree and the distance r(s, si) in the species tree are calculated, 
where / = 1, ,.., n, and thus the average values are 

r(g) = (l/n) ^ r ( g , g . ) a n d r(s) = {l/n) ^ r ( ^ , 5 . ) . 

The value of R^ = r{syr(g) determines the extent to which the size of the 
species set {̂ -i, 5*2, ..., ^̂ } is larger than that of the gene set {gi, g2, ..., gn}-
Large values of R^ can be interpreted as suggesting abnormality in location 
of the gene g in the species tree. Conventional p-values are calculated for the 
statistic p(.) using the formula 

pig) = \{g'\R,->R,}\/m, 

where m is the number of all terminal vertices. The computer program 
selects all genes g with p(g) < po, where po is a threshold. Such genes are 
considered as abnormally positioned. 

The algorithm also selects all cases when the species ^1, ^2, ..., Snare part 
of a taxonomic group that does not contain species s and its ancestor SQ is 
sufficiently separated from s in S. This suggests that this group is a putative 
origin of a horizontally transferred gene g. 

The second segment. Suppose that each abnormally located gene 
generates a series of invalid duplications and losses under mapping a, which 
are required to explain incongruence between the gene G and species S trees 
in the model. Therefore, temporarily omitting the transferred gene g from G 
and re-estimating a after the deletion entails an essential reduction in the 
cost c(G, S) of mapping G into S. Therefore, we calculate c{G, S) and 
subsequently remove each gene g from G to obtain the reduced gene tree Gg 
and compute the cost c^ of mapping of the new gene tree Gg into the same 
species tree S. The relative change in the mapping cost is Fg = (cg - c)/c. As 
above, we use p-values for the statistic F^ for all genes g from the given 
COG G. Similarly, the computer program selects all the genes g for which 
P(<?)<Po. 

The mean and standard deviation of the statistic F^ can be used, if the 
empirical distribution of the statistic F^ is normal. Interestingly, our studies 
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reveal a considerably high support for the hypothesis of normality of the 
empirical distribution of F^ and log-normality of Rg for most COGs. 

The genes selected at the second segment of the algorithm are interpreted 
as gained (not only due to HGT, as its origin is not always determined). The 
genes selected in both segments are considered as gained during an 
evolutionary event, probably, a HGT. 

The first algorithm is designed to detect the recent HGTs, when the 
recipient and donor species did not diverge greatly in evolution. Gorbunov 
and Lyubetsky (2005) proposed two novel algorithms as generalization of 
the first algorithm to be able to detect deeper ancestral HGTs, In this sense, 
ancestral genes are those existing in an internal vertex of the phylogenetic 
tree. To stress this discrimination, extant genes are sometimes referred to as 
those existing in terminal vertices. 

The second algorithm implements a juxtaposition of the gene tree G with 
the species tree S using graph ß instead of mapping a in the first algorithm. 
Let us define some terminology. 

Each vertex g in a tree corresponds to the set K of all leaves contained in 
the vertex g, in which sense the vertex g and clade K are mutually 
deterministic. The graph ß contains all clades in G and all clades in S as 
vertices, with each clade K mG connected via one edge with each clade K' 
in 5, edge K, K'; the graph contains no other edges. Let us define the 
components of the edge K, K' as two sets M = K\K' and M' = K'\K, 

For each edge K, K\ we calculate the ratio of the cardinality of 
component M to the cardinality of the components containing clade K, the 
Ml IMI 
;—rvalue, and, analogously, the \—r value for the clade K\ Let us 

\K\ k1 
remember that the cardinality | M | of set M is defined as the number of its 

members. The probability of the component Mon edge K, K', we define as 
\M\ IMI 

1 -•'j—p, and, analogously, the probability of the component M' as 1 --̂ ^—~. 
\K\ \K 

Each edge K, K' in the graph ß is assigned the two probabilities, which we 
define as probabilities of the edge K, K'. The edge K, K' can be viewed as an 
analogue to the pair < g, a(g)> in the first algorithm. 

Let us define the workmate M* of the set M of leaves (terminal genes) as 
a complement of M to the set of all leaves in a certain subtree of G. Two 
alternatives of defining the subtree are considered: the subtree is rooted in 
the last common ancestor of all members of the set M; otherwise, it is rooted 
in the node parental to this ancestor. Let us call these the first and second 
workmates. The Sets M and M* usually are not clades. 
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The algorithm described tests the possibiUty of HGT between the 
ancestor of set M and the ancestor of its workmate M* in the species tree S. 
The algorithm is as follows. A list of all edges K, K' in the graph ß is 
defined, for which at least one of the probabilities is above a certain 
threshold. For each nonempty component M with such probability, both 
workmates M* are analyzed. The pair < M, M*> is called a candidate pair, if 
three simple conditions are satisfied: 

(1) Similarity of the candidate pair < M, M*>, measured as a mean 
distance between the elements of the two sets in the gene tree G (if edge 
lengths are present) or as a percent identity in pairwise alignments of the 
corresponding sequences, is under a certain threshold. 

(2) Compactness of the set M in species tree 5, defined as the ratio of the 
cardinality of M to the cardinality of the leaf set in a subtree of S rooted in 
the last common ancestor of all leaves from M as well as the analogous 
compactness of the set M*, are above certain threshold. 

(3) The distance between the last common ancestor of the set M and the 
analogous ancestor of M''' in the species tree S exceeds a certain considerable 
threshold. (If the ancestors are close in the tree 5, conditions (1) and (2) may 
be true simply due to relatedness of M and M*). This requirement is 
supplementary to the requirement that the compactness of the union of all 
species from M and M* is below a certain threshold. Low values of this 
compactness, to the contrary, suggest a HGT event. 

The more edges are in the graph ß that imply the pair <M, M*> with 
higher probability, the higher weight is given by the algorithm to the pair as 
a candidate HGT between ancestors of M and M*. 

Performance of the second algorithm can be assessed on a case example 
of two trees, species tree (((a,(^, /7)),(3,(4, 5))),((1, 2),(c, d))) and gene tree 
((((a, Z?),(c, J)),e),((3,(4, 5)),(1, 2))), with M = {a, b) and its second 
workmate M* = {c,d}. 

For reasons of conciseness, the third algorithm will be described for the 
case when a gene copy persists in the source lineage after HGT. The 
algorithm is not sensitive to this constraint. It is based on analysis of fuzzy 
gene sets from a fixed COG. 

The fuzzy gene set R is defined by a credibility function, which estimates the 
'credibility of membership' in R of each gene from a fixed COG. Let JST be a 
clade in the species tree and P be the set of all genes from the COG belonging to 
K, The fuzzy set R is given by P, i.e., given is a string of numbers, credibilities 
Pg, for all genes g from the COG. In the simplest case, pg is proportional to 
similarity of the gene g to its closest match gx from P. The similarity can be 
estimated from COGs multiple alignment, from a path in the COG tree, or, in 
absence of the two former, simply from a percent identity of pairwise 
alignments of the corresponding sequences (Gorbunovand Lyubetsky, 2(X)5). 
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Instead of similarity, one may calculate 'informativity about the gene g 
contained in gi or 'informativity about the gene g contained in set F. To do so, 
we applied the Lempel-Ziv algorithm originally modified to use the entry gx 
sequence or entry set P. For the basics, one may consult Otu et al. (2003). 

Hence, for an arbitrary pair of clades K and K' in the species tree, one can 
calculate a pair of the corresponding fuzzy sets R and R\ Let the quality 
Q(K, K') of the clade pair be the ratio of the cardinality of 'fuzzy 
intersection' of/? and R' to the cardinality of 'fuzzy union' of/? and /?', i.e., 

^min(/7^,^^) 

by definition, Q(K,K') = — Let the kernel M of two primary 

8 

clades K and K' be a set of genes g from the COG, for which min(pg, q^) is 
above a certain threshold. The genes from M may be interpreted as 
descendants of a horizontally transferred gene. The algorithm searches for 
HGTs as pairs of disjoint clades in the species tree 5, with their kernel M 
containing two gene sets M\ and M2, both having sufficient compactness in S 
and their union closely coinciding with M, and not having high compactness 
in S (relevant thresholds implied). 

Performance of the algorithm can be illustrated on the same case study as 
provided above after defining reasonable distances between the genes with 
respect to the gene tree and assuming a simple transformation of the distance x 
from gene g to its closest match g\ from P into credibility pg as p^ = 32 • (4-^). 

3. RESULTS AND DISCUSSION 

3.1 Reconstruction of bacterial species phylogeny 

Consider a typical output of the algorithm described in section 2.1. It was 
run to infer the phylogeny of 40 microorganisms with 132 protein families. 
A detailed description of the primary data is provided in V'yugin et al. 
(2003; Figure 1). The search algorithm runs on a set of 5000 generated initial 
species trees ^o as described above. The minimum value of c was 42 648. 
Robustness of the algorithm can be judged from the observation that two 
groups of resulting species trees selected by the algorithm, a set of 48 trees 
with 42 648 < c < 42 991 and a set of 182 trees with 42 648 < c < 44 861, 
have identical consensus topologies. The same holds true for a number of 
subsequently constructed species trees. The incongruence between the 
species tree thus obtained and the best species tree published in Wolf et al. 
(2001, approach (v)) is negligible and occurs only with respect to the relative 
position of groups of epsilon-proteobacteria, Aae, and Tma. 
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3,2 Deciding between two alternative hypotheses 

Consider a typical case when decision is to be made in favor of either a 
small number of HGTs or a considerable number of gene losses. Application 
of the first algorithm to COG0272 (NAD-dependent DNA ligase) returns the 
following result: the initial mapping a onto the species tree detects 5 
duplications (with 4 existing in the vertex of species tree) and 17 gaps, thus 
giving 22 gene losses in total. It identifies the gene yicF from E. coli as largely 
accounting for the incongruence between the protein and species trees. 

After omitting gene yicF from the gene tree, the number of duplications 
reduces to two and the number of gaps, to five, giving a total of seven 
gene losses. 

Thus, assuming HGT with yicF decreases the number of losses by 15 
(Figure 2). The first algorithm concludes with a high confidence that the gene 
yicF was horizontally transferred from some spirochaete bacteria. 

Figure -2. A part of the evolutionary history of COG0272 (NAD-dependent DNA ligase). The 
hypothesis about the absence of HGT events for gene yicF requires assuming 3 additional 
duplications and 15 additional losses of this and other genes. Duplications are marked with D; 
losses, with L. 
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3.3 Reconstruction of ancestral events in gene evolution 

We conducted mass analyses of COGs using the tree algorithms (for 
more detail, refer to V'yugin et al., 2003; Lyubetsky et al., 2003a, b). 
Consider a typical result obtained for the above-mentioned 132 protein 
families. Initially, we tested all genes from each COG and selected 365 of 
those that contribute the most to the incongruence between the gene and 
species trees. Subsequently, all the 365 genes selected were omitted from 
their gene trees, and the mapping a of each of the gene trees into the species 
tree was re-estimated. For both cases, we counted the numbers of gene 
duplications and losses for each COG. In the first case, called non-GAIN 
scenario, the algorithms detect 1558 gene duplications and 9009 gene losses. 
The second case is called GAIN scenario and produces 1392 gene 
duplications, 7400 gene losses, and 365 GAIN events. The hypothesis about 
single GAIN event reduces the number of losses by an average of 4.4 (the 
difference between 9009 losses in non-GAIN and 7400 losses in GAIN 
scenario divided by 365 gains). The distribution of total estimated 
duplications under the GAIN scenario across prokaryotic families is as 
follows: Archaea, 154 (94 in the root); gram-positive bacteria, 65 (8 in the 
root); alpha-proteobacteria, 7 (all in the root); beta-proteobacteria, 0; 
gamma-proteobacteria, 124 (20 in the root); and chlamydias and spirochetes, 
2 (both in the root; Figure 1). 

Large total numbers of gene duplications (comparable to the number of 
protein families) assigned to a vertex of the gene tree might suggest whole 
genome duplications. Such are the group of 92 duplications in the root of 
Archaea and the group of 83 duplications in the root of 
(((Pmu,Hin),(Eco,Buc)),Vch). 

Table -1. Selected number of reconstructed evolutionary events 

1 
COG 
COG0012 
COCO 102 
COG0143 
COCO 198 
COG0215 
COG0272 
COG0290 
COG0343 
COG0544 
COG0571 
COG0653 
COG1160 

2 
Dupl 

12 
13 
16 
18 
16 
8 
9 

14 
4 
9 
8 
5 

non-GAIN scenario 
3 

Loss 
63 
71 

102 
99 
71 
51 
41 
70 
30 
59 
39 
27 

4 
Gain 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

5 
Dupl 

9 
11 
14 
13 
11 
5 
8 

13 
5 
4 
7 
4 

GAIN scenario 
6 

Loss 
48 
53 
80 
67 
46 
28 
28 
65 
25 
22 
29 
23 

7 
Gain 

1 
1 
2 
1 
2 
1 
2 
1 
1 
3 
2 
1 
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The computer programs also output mappings of each COG tree into the 
species tree for purposes of evolutionary history reconstruction under both 
scenarios for each of the 132 protein families (Lyubetsky et al., 2003b). 
Selected numbers of evolutionary events thus reconstructed are given in 
Table 1; columns 2-4 contain inferences under non-GAIN scenario and 
columns 5-7, those under GAIN scenario. 

To continue, let us provide some details on the event reconstructions for 
selected COGs. 

COG0012 (predicted GTPase). Buchnera aphidicola, a member of the 
gamma-proteobacteria group, occurs in the species tree in the same cluster 
with E. coli, but its gene bul91 is found close to chlamydial genes in the 
gene tree. We suggest that this group is the source of HGT. Also suggested 
is that the gene sll0245 is horizontally transferred to the genome of 
Synechocystis sp. from spirochetes. 

COG0215 (aminoacyl-tRNA synthetases and alternative system for 
amino acid activation). It is suggested that the gene vngI095G from 
Halobacterium sp. (halophilic archaebacteria originating from eubacteria) is 
horizontally transferred from the genome of an organism similar to 
Deinococcus radiodurans. It is likely that the gene xf0995 from the organism 
Xylella fastidiosa, which occurs in the same cluster, is transferred from some 
alpha-proteobacteria similar to Caulobacter crescentus. 

COG0143 (methionyl-tRNA synthetase). The mlr5926 gene from 
Mesorhizobium loti (alpha-proteobacteria) is a putative HGT from some 
archaebacteria. Moreover, this event entailed subsequent divergence of 
paralogous genes in this genome. 

COG0102 (ribosomal protein, large subunit) provides an example of a 
ribosomal gene HGT. The dr0174 gene from Deinococcus radiodurans (LI3 
protein) is likely transferred from a genome of some gamma-proteobacteria. 

COG0198 (ribosomal protein, large subunit). The bb0489 gene from 
Borrelia burgdorferi (Spirochaeta; encodes LI3 protein) is transferred from 
some gamma- or beta-proteobacteria. 

COG0272 (basal replication machinery). The yicF gene from E, coli 
(NAD-dependent DNA ligase) is horizontally transferred from spirochaete 
bacteria. In addition, the E. coli genome contains gene lig, bearing the same 
function as yicF. 

COG0343. The afl485 gene from Archaeoglobus fulgidus (queuine/ 
archaeosine-tRNA ribosyltransferase) is likely to be transferred from eubacteria. 

The second and third algorithms converge in inferring the same ancestral 
HGTs. Thus, for COG0180 (tryptophanyl-tRNA synthetase), the algorithms 
predicted putative HGTs between the ancestors of groups {Bha, Bsu, Sau} 
and {Vch, Eco, Buc, Hin, Pmu}. The predictions corresponded to 6 edges in 
graph ß, high densities and 6 pairs of clades in species tree producing the 
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same kernel M = {Bha, Bsu, Sau, Vch, Eco, BUG, Hin, Pmu, Hpy, Mtu} 
(refer to descriptions of the second and third algorithms). 

Putative HGTs can be alternatively identified with non-phylogenetic 
approaches based on comparative analyzes of codon usage, frequencies of 
genomic features, and other contextual characteristics (Garcia-Vallve 
et al., 2003). 




