INTERNATIONAL PROGRAM COMMITTEE

Nikolay Kolchanov, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia (Chairman of the Conference)
Ralf Hofstädter, University of Bielefeld, Germany (Co-Chairman of the Conference)

Alexandr Ratushny, Seattle BioMed and Institute for Systems Biology, Seattle, USA
Andrey Rzhetsky, The University of Chicago, USA
David Liberles, University of Wyoming, USA
Dmitry Afonnikov, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Egor Prokhorchuk, Bioengineering Center RAS, Moscow, Russia
Elena Salina, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Evgenii Rogayev, Institute of Energy Problems of Chemical Physics RAS, Moscow, Russia
Frank Eisenhaber, Bioinformatics Institute, A-STAR, Singapore
Irina Larina, SSS RF Institute for Biomedical Problems, RAMS, Moscow, Russia
Konstantin Anokhin, NRC “Kurchatov Institute”, Moscow, Russia
Konstantin Skryabin, Bioengineering Center RAS, Moscow, Russia
Lars Kaderali, Dresden University of Technology, Germany
Limsoon Wong, National University of Singapore, Singapore
Maria Samsonova, Saint Petersburg State Polytechnic University, Saint Petersburg, Russia
Maxim Fedorov, University of Strathclyde, UK
Ming Chen, Zhejiang University, China
Nikolay Podkolodnyy, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Vladimir Ivansenko, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Vsevolod Makeev, Vavilov Institute of General Genetics RAS, Moscow, Russia
Yijun Ruan, The Jackson Laboratory, USA
Yuriy Orlov, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Yury Matushkin, Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia

LOCAL ORGANIZING COMMITTEE

Svetlana Zubova, ICG SB RAS (Chairwoman)
Andrey Kharkevich, ICG SB RAS
Anna Onchukova, ICG SB RAS
Erlan Tokpanov, ICG SB RAS
Galina Kiseleva, ICG SB RAS
Ilya Akberdin, ICG SB RAS
Nadejda Glebova, ICG SB RAS
Dmitry Oshchepkov, ICG SB RAS
Evgenia Oshchepkova, ICG SB RAS
Oleg Pupik, ICG SB RAS
Tatyana Karamysheva, ICG SB RAS

CONTACTS

Organizing committee: bgrs2014@bionet.nsc.ru
The Siberian Branch of the Russian Academy of Sciences
RUSSIAN FEDERATION
630090 Novosibirsk, Lavrentyeva, 10
Tel: +(7(383) 363-49-80
Fax: +(7(383) 333-12-78
URL - ICG SB RAS: www.bionet.nsc.ru

A DATABASE OF RHODOPHYTE PLASTID PROTEIN FAMILIES AND REGULATION OF moeB GENES

Zverkov O.A.*, Seliverstov A.V., Lyubetsky V.A.

Institute for Information Transmission Problems RAS (Kharkevich Institute), Moscow, Russia

e-mail: zverkov@iitp.ru

*Corresponding author

Key words: orthology relationship, database of plastid protein families, plastids, algae, transcription regulation, molybdopterin biosynthesis

Motivation and Aim: The orthology relationship is not yet decisively formalized, and some of its important features may depend on the taxonomic context. Gene moeB is tackled as an example, and is itself an interesting object of research. It encodes an E1-like family enzyme involved in molybdopterin and thiamine biosynthesis. This family includes proteins that catalyze ATP adenylation of the C-terminal glycine carboxyl group in sulfur carrier proteins, e.g., MoaD or ThiS. Gene moeB is present in plastids of all sequenced red algae (Rhodophyta), with the exception of Cyanidioschyzon merolae.

Methods and Algorithms: All plastid proteins of the red algae available in GenBank, NCBI, were considered for the study. Analyses were conducted with original algorithms.

Results: We report a first complete database of plastid protein families from the red algae. The families contain proteins with maximal sequence similarity and minimal paralogous content, and were built based on an original definition of paralogy. The database contains 6005 protein entries, 495 families, 286 non-singletons (from which 235 are paralog-free, and other 51 contain at maximum two proteins per species). We will report results of a systematic comparison of the database with biological data and conclusions drawn from analyzing the database. Gene moeB exemplifies the results. Candidate bacterial-type promoters in 5'-leader regions of moeB distinctly differ from the template. In all sequenced species, except for Cyanidium caldarium, these regions contain a conserved 12 nt-long motif. Its high conserved part has the consensus TAGAT. In Gracilaria tenuistipitata the motif adjoins the -35 promoter box; in Gratelouopia taiwanensis it coincides with the -35 box; in Porphyridium purpureum and Chondrus crispus the motif is distanced from the -35 box; in Calliarthron tuberculatum, Porphyra purpurea, Pyropia haitanensis, and P. yezoensis the -35 box is not determined, although the AT-rich region found downstream may represent a functioning -10 promoter box.

Conclusion: A notable distinction of the identified promoters from the consensus and presence of a closely located conserved motif suggest this motif to be a putative binding site of a transcription factor activating transcription of moeB. In most species, presence of an actively transcribed tRNA gene on the opposite strand precludes moeB transcription from a distantly located promoter. Lack of the motif and the bacterial-type promoter upstream moeB in Cyanidium caldarium suggests a different regulation mechanism for this gene, which comes in agreement with its loss in the close species Cyanidioschyzon merolae.


Acknowledgements: The study was supported by RFBR, research grant 13-04-40196-H.