
RESEARCH ARTICLE Open Access

Algorithms for reconstruction of
chromosomal structures
Vassily Lyubetsky, Roman Gershgorin, Alexander Seliverstov and Konstantin Gorbunov*

Abstract

Background: One of the main aims of phylogenomics is the reconstruction of objects defined in the leaves
along the whole phylogenetic tree to minimize the specified functional, which may also include the phylogenetic
tree generation. Such objects can include nucleotide and amino acid sequences, chromosomal structures,
etc. The structures can have any set of linear and circular chromosomes, variable gene composition and
include any number of paralogs, as well as any weights of individual evolutionary operations to transform a
chromosome structure. Many heuristic algorithms were proposed for this purpose, but there are just a few
exact algorithms with low (linear, cubic or similar) polynomial computational complexity among them to our
knowledge. The algorithms naturally start from the calculation of both the distance between two structures
and the shortest sequence of operations transforming one structure into another. Such calculation per se is
an NP-hard problem.

Results: A general model of chromosomal structure rearrangements is considered. Exact algorithms with
almost linear or cubic polynomial complexities have been developed to solve the problems for the case of any
chromosomal structure but with certain limitations on operation weights. The computer programs are tested on
biological data for the problem of mitochondrial or plastid chromosomal structure reconstruction. To our knowledge,
no computer programs are available for this model.

Conclusions: Exactness of the proposed algorithms and such low polynomial complexities were proved. The
reconstructed evolutionary trees of mitochondrial and plastid chromosomal structures as well as the ancestral
states of the structures appear to be reasonable.

Keywords: Chromosomal structure, Rearrangement of chromosomal structure, Ancestral chromosomal structure,
Distance between chromosomal structures, Lowest weight transformation of one chromosome structure into
another, Exact linear algorithm calculating the distance and transformation, Generation of a phylogenetic tree of
chromosomal structures, Exact reconstruction algorithm with cubic complexity

Background
Calculation of the distance and shortest sequence
between chromosome structures
Reconstruction of chromosome structures is considered
based on the model of chromosome structure as an arbi-
trary set of paths and circles composed of vectors: genes
denoted by the index i and paralogs of any gene i de-
noted by the index i.j. The model includes four opera-
tions transforming one structure into another referred to
as standard as well as accessory operations deleting and

inserting a chromosome region. Detailed description of
the model is given in the Section “Definition of the
model of chromosome structure”. Significant constraints
were imposed on the model in [1] and many other publi-
cations: constant gene content is provided in the se-
quence of transformations from one structure into
another, paralogs are not allowed, operation weights are
equal (thus, are not used), etc.
If the weights are considered at the level of an exact

algorithm, they should have a specific form considering
the NP-hardness of the considered problem. Part “Exact
linear algorithm calculating the distance between chromo-
some structures” of this work proposes an almost linear
algorithm transforming one chromosome structure into

* Correspondence: gorbunov@iitp.ru
Institute for Information Transmission Problems of the Russian Academy of
Sciences (Kharkevich Institute), Bolshoi Karetnyi lane, 19, 127051 Moscow,
Russia

© 2016 Lyubetsky et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Lyubetsky et al. BMC Bioinformatics (2016) 17:40
DOI 10.1186/s12859-016-0878-z

mailto:gorbunov@iitp.ru
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

another working in the absence of all these constraints,
although we had to impose a condition on the proportion
between operation weights. This cannot be avoided owing
to the NP-hardness of the considered problem in general
terms. The proposed proportion of weights differs from
commonly accepted ones. The reconstruction of struc-
tures in Part “Reconstruction of chromosome structures
for mitochondria of sporozoans and plastids of rhodophy-
tic branch” had to rely on the proportion between the
weights for which our algorithm is heuristic although
close to exact.
The term almost appears due to the problem of para-

logs, it is solved by means of linear programming, which
is known to produce an exact solution within almost
linear time [2–4].
Although the algorithm proposed here conforms to

the basic concept of the algorithm in [1], it is radically
more complex; while the exactness proof was essentially
trivial for the algorithm in [1], the exactness here is a kind
of a theory. The current work introduces a sequence of
lemmas constituting this proof, although certain details
were given in [5, 6]. The algorithm was implemented as
a computer program available together with calculation
samples, tests on artificial data, and the user manual at
http://lab6.iitp.ru/en/chromoggl/.
Computer-aided comparison of our algorithm with other

heuristic ones is problematic, since the model of chromo-
some rearrangement at the level of generalization used here
was considered only in [7–10] to our knowledge. These
publications offer no program implementation. It should
be noted that a computer implementation in the absence
of the insertion and deletion operations as well as the
operation weights was presented in [11]; however, this
is far from our case.
Let us recall that an algorithm is exact if it was

proved that it always produces the minimum corre-
sponding functional; in this case, the minimum total
weight for the sequence of operations transforming
one chromosome structure into another. Here we use
a slightly relaxed version of this: our algorithm pro-
duces the sequence with the total weight differing
from the minimum by a fixed additive quantity d, for
example 0.7 (see the Section “Condition for the exact-
ness of the algorithm and operation weight values”).
One more concern pertinent to the algorithm exact-
ness is discussed in the beginning of Part “Algorithm
for the reconstruction of chromosome structures with
cubic complexity and sufficient approximation ratio”
the solution produced by the algorithm can differ
from the minimum by a multiplicative value k, for
example 2. Apparently, an algorithm with such com-
plexity can distort the tree topology (see Part “Recon-
struction of chromosome structures for mitochondria
of sporozoans and plastids of rhodophytic branch”). A

linear algorithm has linear computation time over the
input size and uses linear space.

Reconstruction of chromosome structures
As Part “Exact linear algorithm calculating the distance
between chromosome structures” shows, a matrix of pair-
wise distances can be easily generated for a given set of
chromosome structures. Phylogenetic tree with the best
conformity with this matrix is required. This means that
the distance between any two leaves along the tree is
the closest to the corresponding distance in the matrix;
the residual is determined for each pair of leaves as the
difference between these distances. Since this problem
is NP-hard, a tree with an a priori unknown conformity
with the matrix is generated.
Many popular algorithms for tree reconstruction re-

quire more informative input such as an alignment of
nucleotide or amino acid sequences. Widely used so-
phisticated reconstruction programs (PhyloBayes, MrBayes,
RAxML, PHYML, etc.) use a linear form of the recon-
structed object and are, apparently, inapplicable in our case.
For chromosome structures, a simple algorithm based on
the conformity with the distance matrix rapidly generates
their evolutionary tree. The data and results described in
Part “Reconstruction of chromosome structures for mito-
chondria of sporozoans and plastids of rhodophytic branch”
demonstrate that this algorithm outputs sensible trees for
mitochondria and plastids. The algorithm is given at the
same page http://lab6.iitp.ru/en/chromoggl/. Basically, it is
a UPGMA variant, but neighbor joining or other algorithm
proficient in bringing into conformity with the distance
matrix can be used instead.
Part “Algorithm for the reconstruction of chromosome

structures with cubic complexity and sufficient ap-
proximation ratio” considers the natural problem of
reconstructing chromosome structures in internal nodes
of a phylogenetic tree from the chromosome structures
specified in its leaves using the tree generated by the algo-
rithm or an existing one.
Backing away the problem of chromosome structures, for

species the algorithms reconstructing evolutionary scenar-
ios with cubic computational complexity are given in [12].
A similar problem for regulatory systems is considered, e.g.,
in [13, 14]. Actually, to our knowledge, many heuristic algo-
rithms but few exact algorithms with low (linear, cubic,
etc.) polynomial complexity were proposed for the recon-
struction of objects specified in the leaves. This specifically
applies to the problem of chromosome structure recon-
struction using the model defined in the Section “Definition
of the Model of Chromosome Structure”.
Arrangement is a function that assigns a chromosome

structure to each node of the tree; hereafter, a node and
an object assigned to it are synonymous. The functional
defined for all arrangements (for a given tree) or also for

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 2 of 23

http://lab6.iitp.ru/en/chromoggl/
http://lab6.iitp.ru/en/chromoggl/

all trees with specified leaves amounts to the total
distance between edge ends for all edges. In this case,
the breakpoint and biological distances are considered; the
latter essentially is also the edit distance between two
structures, and thus is an analog of pairwise sequence
alignment.
We recall that the breakpoint distance is the number of

gene extremity pairs that are adjacent (or “glued together”)
in one structure and not neighboring or missing in the
other plus the number of genes that are present in one
structure and absent in the other. The biological distance
between structures is the minimum total weight for the se-
quence of operations transforming one structure into the
other; all operations are a priori given individual weights.
The calculation of the distances is also discussed in the
Sections “Calculation of the breakpoint and biological
distances for structures with paralogs” and “Calculation
of biological distance with paths present”.
Let us recall that the considered structures can have any

number of linear and circular chromosomes, variable gene
content, and paralogs; all operations, both standard and
accessory, as well as any operation weights are allowed.
It has been proven that the result of the algorithm

described in Part “Algorithm for the reconstruction of
chromosome structures with cubic complexity and suffi-
cient approximation ratio” falls within the [a, ka] segment,
where a is the absolute minimum and k is a small approxi-
mation ratio. Algorithms with such a property are called
approximate algorithms. Part “Exact linear algorithm
calculating the distance between chromosome structures”
and [1, 5–7, 12] sets the coefficient k equal to 1, while in
Part “Algorithm for the reconstruction of chromosome
structures with cubic complexity and sufficient approxi-
mation ratio” it equals 2 or 11/6. These cases are funda-
mentally different from heuristic algorithms, whose results
are in unknown relation to the minimum (“true”) solution.
Moreover, even the convergence of the computational
process has not been confirmed for many heuristic algo-
rithms, and it is terminated following a not substantiated
rule. In practical terms, the approximation ratio of 2 can
give rise to inadequate trees. This difficulty is concerned
for our data in Part “Reconstruction of chromosome
structures for mitochondria of sporozoans and plastids of
rhodophytic branch”.
Part “Algorithm for the reconstruction of chromosome

structures with cubic complexity and sufficient approxi-
mation ratio” follows the work in [15] presenting an
algorithm of reconstruction for 0–1 sequences. It is
readily applicable to biological sequences. To our know-
ledge, reconstruction of chromosome structures within
the frames of the model described in the Section “Defin-
ition of the Model of Chromosome Structure” has never
been considered as an exact problem or realized as a
computer program.

Thus, the problem in Part “Algorithm for the reconstruc-
tion of chromosome structures with cubic complexity and
sufficient approximation ratio” is as follows. We are given
m chromosome structures. It is required to find a binary
tree T with m leaves and the given structures assigned to
them as well as the arrangement of structures at all in-
ternal nodes with the minimum total distance between
edge ends for all edges. This sum is called the weight of
tree T or the weight of the corresponding arrangement.
The case of a non-binary tree is similar to that of a

binary one and presents no new difficulties. The same
holds true for the case of an unrooted tree.
Finally, Part “Reconstruction of chromosome struc-

tures for mitochondria of sporozoans and plastids of
rhodophytic branch” illustrates the algorithms described
in Parts “Exact linear algorithm calculating the distance
between chromosome structures” and “Algorithm for
the reconstruction of chromosome structures with cubic
complexity and sufficient approximation ratio” and one
more algorithm proposed in [1] by generating phylogen-
etic trees and reconstructing chromosome structures
of mitochondria in sporozoans and plastids of rhodo-
phytic branch. The test on artificial data is available
at http://lab6.iitp.ru/en/chromoggl/.

Results of most relevant works
Let us briefly review the background of the algorithm in
Part “Exact linear algorithm calculating the distance be-
tween chromosome structures”. Following the work by
David Sankoff [16], Pavel Pevzner (reviewed in [17]) and
many other researchers addressed the distance problem
associated with models of chromosome structures; thou-
sands of papers, books, and lecture courses concerning
this problem are available. Analysis of the research in
the field deserves a separate extensive survey accounting
for fine distinctions between the studied models. Let us
consider several publications most relevant to our work.
Yancopoulos et al. [18] proposed a set of operations to
transform chromosome structures; here they are called
standard and are included in our set of operations. This
work presents an algorithm to calculate the shortest dis-
tance between structures composed of paths only (linear
chromosomes); the algorithm computation time tends to
linear but was not explicitly evaluated. These operations
applicable only to paths correspond to inversion, trans-
location, fusion, and fission operations defined in [19].
The distance problem for linear chromosomes only was
solved in [19]. The general case for the same gene con-
tent and the same operation weights was solved in [20].
The case of different gene content requires extra opera-
tions, deletion and insertion of special gene loci, which
were defined in [7].
The adjacency graph is used in [7, 8]: its nodes are ad-

jacent extremities of genes that belong to both structures

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 3 of 23

http://lab6.iitp.ru/en/chromoggl/

as well as extremities of the initial paths. Such nodes are
connected by an edge if they include the same gene. In
addition, the path extremity is considered as connected
to a telomere (an empty end). A region with genes that
belong to a single structure (“special” genes) can reside
between adjacent extremities of common genes; such
genes are assigned to the corresponding node. Such graph
clearly differs from the common graph defined here. The
algorithms computing the shortest sequence transforming
one structure into another using the same operations as in
our work proposed in [7, 8] have a linear running time.
All operation weights equal 1 in [7], while the standard
operation weights equal 1 and the weights of deletions
and insertions are the same and do not exceed 1 in [8]. It
remains unclear if the algorithms from these works can be
related to our algorithm. The proof that the algorithms in
[7, 8] are exact is not available to us, and the accompany-
ing notes give no necessary details.
The same model as in our work is considered in [9]. It

proposes a linear algorithm that relies on the addition of
special genes to both initial structures providing that the
operation weights are the same. Thus, the problem is re-
duced to the case with the same gene content, and the
total number of genes increases by k+t, were k and t are
the numbers of special genes in the initial structures.
The used graph includes an additional pair of extrem-
ities for each special gene, which increases their graph
relative to that used in our algorithm. The graph and the
algorithm differ from those proposed below. The proof
that their algorithm is exact is not available to us, and the
accompanying considerations give no necessary details.
Compeau [10] describes the generalization of the algo-

rithm in [9] for the case when all chromosomes are circu-
lar, standard operation weights equal 1, and the weights of
deletions and insertions are the same. The proof of the
algorithm exactness as well as the proper description of
the algorithm need to be described in full.

Methods, results and discussion
Exact linear algorithm calculating the distance between
chromosome structures
Definition of the model of chromosome structure
The model of chromosome structure is described as a finite
set of paths and circles with directed edges including loops.
Such set can be considered as a directed graph referred to
as a chromosome structure. The graph edge represents
a gene; an individual graph path or circle represents a
chromosome. Each gene is denoted by name, usually by
number i, which can be repeated (for paralogs) and
takes the form i.j. As usual, this model disregards the
lengths of genes and intergenic regions as well as their
content. The edge direction indicates the strand on which
the gene is located. Graph node connects adjacent genes
irrespective of their orientation, i.e., it identifies (or glues

together) two extremities of adjacent genes. Usual structures
include many paths and circles, which leads to a sort of
interaction between them. That is why the cases with many
chromosomes in their structure are in marked contrast
with those with a single chromosome.
The model includes operations over a chromosome

structure; first four of them given in [18, 20] will be re-
ferred to as standard. Let us recall their definitions.
Double-cut-and-paste is cutting two pairs of adjacent
gene extremities and cut-and-pasting four extremities,
which gives rise to a new structure. Sesqui-cut-and-paste
is cutting two adjacent extremities and joining one extrem-
ity to an unconnected extremity so that the other extremity
remains free. Cut-and-join is cutting two adjacent extrem-
ities resulting in two free extremities or, vice versa, joining
two free extremities.
We are given chromosome structures a and b; a gene

that belongs to both structures is called a common gene,
while a gene that belongs to one structure only is a spe-
cial one; an a-gene belongs to structure a; and a b-gene,
to structure b. Let us introduce two accessory operations
that transform a into b: deletion of a (longest continu-
ous) region of special a-genes and insertion of a region
of special b-genes.
If the deleted region was strictly within a path or cir-

cle, the resulting free extremities of common genes are
joined; if the region terminated the path, the common
gene extremity becomes free; if the region was a separate
chromosome, it is naturally deleted. If a (continuous) re-
gion is inserted strictly inside a path or circle, the insertion
point is cut, which is not a separate operation; insertion
can occur into a path end or as a new chromosome. It is
easy to prove that deletions of non-longest (continuous)
regions of special a-genes do not decrease the distance
between structures. Similarly, cutting within special a-re-
gions, insertion of special b-genes into a special a-region,
and double- and sesqui-cut-and-paste operations resulting
in cutting a region of special a-genes and its circularization
can also be excluded from the first three operations. Such
“unnatural” operation variants are not allowed.
Thus, six operations are given and each of them is

assigned a positive rational number referred to as its
weight. The inclusion of weights is the key point of the
model. The objective is to find the shortest sequence of
these operations that transform structure a into structure
b. Naturally, the shortest sequence has the minimum total
weight of all its operations. Each operation in the se-
quence is considered together with the chromosome
structure to which it is applied.

Reduction of the problem of paralogs to linear
programming
For brevity, let us denote structures with paralogs as “par-
structures” and structures without paralogs as “structures.”

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 4 of 23

The distance between two par-structures is defined as
the minimum distance between structures resulting
from a bijection between paralogs of every gene present
in both initial par-structures. Specifically, gene i from
both par-structures a and b can have a different number
of paralogs that belong to sets Ра(i) and Рb(i), respectively.
Let fi be the bijection between parts of sets Ра(i) and Рb(i);
i.j indices are found for all paralogs in Ра(i) and Рb(i), for
which fi is the identity function; all paralogs not included
in the function fi domain and range have different indices.
Of course, the parts have no repetitive indices. The num-
bering has natural interpretation: if y = fi(x), y is “inherited”
from x; other paralogs from Ра(i) and Рb(i) are independ-
ent mutually different genes, and thus they have different j
indices. Paralogs that do not belong to the domain and
range of fi are considered as lost and emerged, respectively
(on the edge connecting a and b on the phylogenetic tree).
Now the distance between a and b is defined as the
minimum distance between a’ and b’, which are derived
from a and b for all specified indices of paralogs
from par-structures a and b.
The calculation of the distance between par-structures

is initially reduced to integer linear programming (ILP),
which is known to give an exact solution with close to
linear time and memory complexity for random data
[2–4]. This special property of linear, integer, and Boolean
programming is formulated as an almost linear algorithm;
it is considered in numerous publications and is not dis-
cussed here. Thus, the solution found by ILP specifies a
set of bijections {fi |i} between paralogs. Then arbitrary in-
dices of paralogs corresponding under these bijections are
selected; the result does not depend on index selection.
Finally, the algorithm described in the Section “Definition
of the common graph and its final form” is applied to
calculate the distance between the obtained structures
a’ and b’. The reduction to ILP is described in the
Sections “Calculation of the breakpoint and biological
distances for structures with paralogs” and “Calculation of
biological distance with paths present”.
Since the algorithm presented below is linear, the cal-

culation of the distance between par-structures becomes
almost linear. The exactness is still observed. Thus, one
can assume the absence of paralogs in the remainder of
Part “Exact linear algorithm calculating the distance be-
tween chromosome structures”.

Definition of the common graph and its final form
In the common graph a+b of two structures a and b, the
nodes are extremities of common genes as well as all
longest continuous regions of special genes; each ex-
tremity is taken once. In more formal terms, gene ex-
tremities are assigned the gene name with indices 1 and
2 for its beginning and end, respectively. Nodes of the
first and second types are referred to as conventional

and special, respectively. An edge connects two conven-
tional nodes if the extremities are adjacent in one of
structures, i.e., neighbor each other on the chromosome.
An edge connects conventional and special nodes if an
extremity of the common gene is adjacent to a marginal
gene in a region of special genes. The edges in the first
and second cases are called conventional and special,
respectively. The marginal edge with a special end in a
path from a+b is referred to as hanging. Edges are de-
noted a or b depending on the structure where joining
occurred; nodes can be connected by double edges.
Special nodes are denoted a- or b-nodes depending on
the source structure. A graph can contain isolated
nodes – regions of special genes. If such region is a cir-
cle in the initial structure, a loop called special is added
to the node. This yields an undirected graph referred to
as a+b.
Analogs of five operations over structures can be ap-

plied to the common graph a+b as follows (see figures
in #1 Section of Additional materials). (1) Delete two
non-incident edges with the same index and connect
four resulting ends by two new non-incident edges with
the same index. (2) Delete an edge (for example, an a-
edge) and connect one of its ends with a conventional
node non-incident to the a-edge or with a special a-
node with no more than one incident a-edge. (3) Delete
any edge. (4) Use an edge (for example, an a-edge) to
connect nodes each of which is a conventional and non-
incident to the a-edge or a special a-edge with no more
than one incident a-edge. If an operation results in two
incident special nodes, they are merged (which is a part
of the operation); the resulting node is given a name
combining those of initial nodes. (5) Delete a special
node or a special loop. If this node had two conventional
nodes incident to it, they are connected with an edge.
An analog of the sixth operation, insertion, is easy to de-
fine; however, it turns out that it can be omitted without
loss of generality. This is a not trivial statement; see
the beginning of the Section “Calculating the distance
between structures”.
The final form of the common graph a+b is defined as

a common graph consisting of isolated conventional
nodes and final 2-circles. The latter is defined as a graph
of two conventional nodes connected by conventional
edges, one from a and one from b. It is easy to show that
the initial objective is equivalent to transforming the graph
a+b into the final form with certain constraints on oper-
ation weights, in particular, when operations other than
insertion and deletion have the same weight.

Calculating the distance between structures
Let us recall that this section assumes the absence of
paralogs but all operations, different gene content,
and any operation weights are allowed. A common graph

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 5 of 23

a+b is trivially constructed from initial structures a
and b. The algorithm goal is to transform a+b into
the final form. Let us denote the length of a path or
circle by the number of internal special nodes plus
the number of conventional edges. For instance, a 2-
circle is a circle of length 2.
Having the same framework, the algorithm depends on

the proportions between operation weights, which are
fixed in advance. The algorithm is the following.

Step 1. Delete all special a-loops.
Step 2. Cut out a conventional edge not included in a
2-circle and close it into the final 2-circle using a double-
(internal edge) or a sesqui-cut-and-paste (extreme edge)
or a join (singular edge) operation. Repeat the operation
if possible. If the double-cut-and-paste weight does not
exceed that of sesqui-cut-and-paste, all double operations
are performed first; otherwise, all sesqui operations
go first. Figures shown in #2 Section of Additional
materials can be helpful for understanding the
algorithm flow.
Let us explain steps 3 and 4 prior to their formal
description. Step 3 uses operations transforming certain
combinations of two, three, or four paths into a single
path. Each operation applied decrements the number
of special nodes by 1. The combinations are specified
by the type of a path or circle, which is defined below.
Step 4 is used if the deletion of a b-node has a higher
weight compared to all other operations. The current
set of paths and circles is split into pairs, joint
processing of which replaces the deletion of a b-node
with a lower weight cut-and-paste operation joining
two b-nodes; the total number of operations remains
unaltered. We have demonstrated that the sequence
procedures specified below in steps 3 and 4 provide for
the optimal result.
Let us define the types. A path is referred to as odd and
even if its length is odd and even, respectively. a-Path
denotes an isolated b-node or an odd path where extreme
non-hanging edges marked as a; b-path is defined
symmetrically. The paths and circles remaining after
steps 1 and 2 (excluding the final 2-circles and isolated
conventional nodes) are assigned the following types:
a-circle, for a 2-circle containing an a-node but not a
b-node; b-circle, vice versa; circle, for a circle including
both a- and b-nodes; loop, for a special b-loop.
a-Paths are assigned to the following types: 1а if the
path has a single hanging edge; 2а, if it has two
hanging edges; 2a’, if it is an isolated special b-node; 3а,
if it has no hanging edges but has both a- and b-nodes
(the path length should be strictly greater than 1 in this
case); and 3a’, if there are neither hanging edges nor
b-nodes. b-Path types are defined in a similar way. Even
paths are assigned to the following types: 1, if the path

has a single hanging edge and a b-node; 1', if it has one
conventional node and one special a-node incident to it;
1" if it has one conventional node and one special
b-node incident to it; 2, if it has two hanging edges and a
non-hanging edge; 2', if it has only two hanging edges;
and 3, if it has only non-hanging edges. Type 1 is
subdivided into types 1a and 1b if the extreme special
node is an a-node and b-node, respectively. Type 2a
is a combination of types 2a and 2a’; type 3b, 3b and
3b’; type 1b, 1b and 1″ and type 2, 2 and 2'.
Let us introduce a special type 1c corresponding to a
deferred choice between path types 1a and 1b, which are
possible results of the operation. The algorithm stores
both results up to steps 4.15–4.23 when a decision on
either of two results is made, and thus the whole sequence
of operations becomes unambiguously defined.
In the description of step 3 below, a combination of
path types (separated by ‘+’) on the left of ‘=’ is
transformed into a combination of path types on the
right of ‘=’. The resulting combination omits isolated
conventional nodes and final 2-circles; no type is
assigned to them. Hereafter, if a substep includes several
equations, actions of the first one are described; other
substeps are analogous.
Step 3. The algorithm performs the actions described
below; each action is repeated as long as it is applicable.
Figures in #2 Section of Additional materials can be
helpful.
3.1. 1a + 1b = 1c. Cut an extreme non-hanging edge in

one of two paths of types 1a and 1b and join the
corresponding special node with the extreme special
node of the other path (sesqui-cut-and-paste operation).

3.2. 2a + 3b = 1b, 2b + 3a = 1a, 2b’ + 3a = 1a, 2b + 3a’ = 1a,
and 2b’ + 3a’ = 1'. Cut an external edge in the 3b-path
and join the special node with the extreme special
node of the 2a-path.

3.3. 2 + 3 = 1c. Cut an external edge in the 3-path and
join the special node with the extreme special node
of the 2-path. This results in a path of type 1a or 1b
depending on which of two external edges was cut.

3.4. 1b + 2a + 3 = 2 + 3 = 1c, 1a + 2b + 3 = 2 + 3 = 1c, and
1a + 2b’ + 3 = 2 + 3 = 1c. First carry out the 1b + 2a = 2
operation (see below) and then the 2 + 3 = 1c one.

3.5. 1a + 3b + 2 = 3 + 2 = 1c, 1b + 3a + 2 = 3 + 2 = 1c, and
1b + 3a’ + 2 = 3 + 2 = 1c. First carry out the 1a + 3b = 3
operation (see below) and then the 2 + 3 = 1c one.

3.6. 1a + 2 = 2a and 1b + 2 = 2b. Cut an external edge in
the 1a-path and join the special node with the
extreme special node of the 2-path.

3.7. 1a + 3 = 3a and 1b + 3 = 3b. Cut an external b-edge
in the 3-path and join the special node with the
extreme special node in the 1a-path.

3.8. 1a + 1a + 2b + 3b = 2 + 3 = 1c, 1a + 1a + 2b’ + 3b = 2 +
3 = 1c, 1b + 1b + 2a + 3a = 2 + 3 = 1c, and 1b + 1b +

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 6 of 23

2a + 3a’ = 2 + 3 = 1c. First carry out the 1a + 2b = 2
and 1a + 3b = 3 operations; then the 2 + 3 = 1c one.

3.9. 1a + 1a + 2b = 3a + 2b = 1a, 1a + 1a + 2b’ = 3a + 2b’ =
1a, and 1b + 1b + 2a = 3b + 2a = 1b. First carry out the
1a + 1a = 3a operation (see below); then 2b + 3a = 1a
one.

3.10. 1a+ 1a+ 3b = 1a+ 3 = 3a, 1b+ 1b + 3a= 1b + 3 = 3b,
and 1b + 1b + 3a’ = 1b + 3 = 3b. First carry out the
1a + 3b = 3 operation; then the 1a + 3 = 3a one.

3.11. 1a + 1a = 3a and 1b + 1b = 3b. Join the extreme
special nodes of two 1a-paths.

3.12. 1a + 2b = 2, 1a + 2b’ = 2, and 1b + 2a = 2. Cut an
external edge in the 1a-path and join the special
node with the extreme special node of the 2b-path.

3.13. 1a + 3b = 3, 1b + 3a = 3, and 1b + 3a’ = 3. Cut
an external edge in the 3b-path and join the
special node with the extreme special node of
the 1a-path.

3.14. 2a + 2b + 3 + 3 = 2 + 3 = 1c and 2a + 2b’ + 3 + 3 =
2 + 3 = 1c. First carry out the 2a + 2b + 3 = 2
operation (hereafter, the descriptions are given
below); then the 2 + 3 = 1c one.

3.15. 3a + 3b + 2 + 2 = 3 + 2 = 1c and 3a’ + 3b + 2 + 2 =
3 + 2 = 1c. First carry out the 3a + 3b + 2 = 3
operation; then the 2 + 3 = 1c one.

3.16. 2a + 3 + 3 = 1a + 3 = 3a, 2b + 3 + 3 = 1b + 3 = 3b,
and 2b’ + 3 + 3 = 1b + 3 = 3b. First carry out the
2a + 3 = 1a operation; then the 1a + 3 = 3a one.

3.17. 3b + 2 + 2 = 1b + 2 = 2b, 3a + 2 + 2 = 1a + 2 = 2a,
and 3a’ + 2 + 2 = 1a + 2 = 2a. First carry out the
3b + 2 = 1b operation; then the 1b + 2 = 2b one.

3.18. 2a + 2b + 3 = 2a + 1b = 2 and 2a + 2b’ + 3 = 2a +
1b = 2. First carry out the 2b + 3 = 1b operation; then
the 1b + 2a = 2 one.

3.19. 3a + 3b + 2 = 3a + 1b = 3 and 3a’ + 3b + 2 = 3a’ +
1b = 3. First carry out the 3b + 2 = 1b operation; then
the 1b + 3a = 3 one.

Step 4. If the weight of double-cut-and-paste is greater
than that of sesqui-cut-and-paste, actions 4.1–4.24 are
sequentially performed whenever possible; otherwise
actions 4.1'–4.24' specified when they differ from the
corresponding actions 4.1–4.24 are performed. Figures
in #2 Section of Additional materials illustrating all
actions can be helpful.
4.1. “Loop” + any type t with a b-node = type t. Join

the b-node of the loop with the b-node of t-type
chromosome by double-cut-and-paste (if this path is
not an isolated b-node) or by sesqui-cut-and-paste
(otherwise).

4.2. “Circle” + any type t with a b-node and an a-node =
type t. Insert the circle (by double-cut-and-paste com-
bining two b-nodes) near the b-node from t-type
chromosome on the side of the a-node; cut out the
resulting conventional edge.

4.3. 2a + 2b = 2 + 1'. Perform the sesqui-cut-and-paste
with cutting out two 2b-path nodes (the extreme
a-node and the neighboring conventional node) and
joining the resulting extremity with the extreme
special b-node of the 2a-path.

4.3'. 2a’ + 2b = 2 + 1'.
4.4. 3a + 3b = 3. Cut an external edge in the 3a-path

and join the special node with the extreme
conventional node of the 3b-path.

4.4'. 3a + 3b’ = 3.
4.5. 2a + 3 = 1a and 2b + 3 = 1b. Cut an external b-edge

in the 3-path and join the special node with the
extreme special node of the 2a-path.

4.5'. 2a’ + 3 = 1a.
4.6. 3a + 2 = 1a and 3b + 2 = 1b. Cut an external edge in

the 3a-path and join the special node with the
extreme special node of the 2-path.

4.6'. 3a + 2' = 1a and 3b’ + 2 = 1b.
4.7'. Join the extreme special nodes of the two paths.
4.7. 2a’ + 2a = 2a.
4.8. 3a + 3a = 3a and 3b + 3b = 3b. Connect two

extreme conventional nodes of the paths by a
conventional edge, and then cut out this edge.

4.8'. 3b’ + 3b = 3b.
4.9. 1a + 2a = 1a and 1b + 2b = 1b. Connect the

extreme special nodes of the two paths.
4.9'. 1a + 2a’ = 1a.
4.10. 1a + 3a = 1a and 1b + 3b = 1b. Connect two

extreme conventional nodes of the paths by a
conventional edge, and then cut out this edge.

4.10'. 1b + 3b’ = 1b.
4.11. 2a + 2 = 2 and 2b + 2 = 2. Connect the extreme

special nodes of the two paths.
4.11'. 2a’ + 2 = 2, 2a + 2' = 2, and 2b + 2' = 2.
4.12. 3a + 3 = 3 and 3b + 3 = 3. Connect two extreme

conventional nodes of the paths by a conventional
edge, and then cut out this edge.

4.12'. 3b’ + 3 = 3.
4.13. 2 + 2 = 2 + 1'. Perform the sesqui-cut-and-paste

operation with cutting out two nodes of the 2-
path (the extreme special a-node and the neigh-
boring conventional node) and joining the resulting
terminus with the extreme special b-node of the other
2-path.

4.13'. 2' + 2 = 2 + 1'.
4.14. 3 + 3 = 3. Cut an external a-edge in the 3-path

and join the resulting extremity with the b-extremity
of the other 3-path.

4.14'. Null action.
4.15. 1a + 1a = 1a, 1b + 1b = 1b, and 1b + 1c = 1b (set c = b).

Cut an external non-hanging edge in the 1a-path and
join the special node with the extreme special node of
the other 1a-path.

4.15'. 1" + 1b = 1b and 1" + 1c = 1b (set c = b).

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 7 of 23

4.16. 1a+ 1b= 1a, 1b+ 1a = 1b, and 1a+ 1c = 1a (set c= b).
Cut an external non-hanging edge in the 1b-path and
join the special node with the extreme special node of
the 1a-path.

4.16'. 1a + 1" = 1a.
4.17. 1a+ 1a= 1a, 1b + 1b= 1b, and 1b+ 1с= 1b (set c= b).

Cut an external edge in the 1a-path and join the
special node with the extreme special node of the
1a-path.

4.17'. 1b + 1" = 1b.
4.18. 2a + 1b = 2a, 2b + 1a = 2b, and 2a + 1c = 2a

(set c = b). Cut an external non-hanging edge in the
1b-path and join the special node with the extreme
special node of the 2a-path.

4.18'. 2a’ + 1b = 2a, 2a + 1″ = 2a, and 2a’ + 1c = 2a
(set c = b).

4.19. 3a + 1a = 3a, 3b + 1b = 3b, and 3b + 1c = 3b
(set c = b). Cut an external edge in the 3a-path and
join the special node with the extreme special node
of the 1a-path.

4.19'. 3b’ + 1b = 3b, 3b + 1" = 3b, and 3b’ + 1c = 3b
(set c = b).

4.20. 2 + 1a = 2, 2 + 1b = 2, and 2 + 1c = 2 (set c = b). Cut
an external non-hanging edge in the 1a-path and
join the special node with the extreme special node
of the 2-path.

4.20'. 2' + 1a = 2, 2' + 1b = 2, 2 + 1" = 2, and 2' + 1c = 2
(set c = b).

4.21. 3 + 1a = 3, 3 + 1b = 3, and 3 + 1c = 3 (set c = b). Cut
an external edge in the 3-path and join the special
node with the extreme special node of the 1a-path.

4.21'. 3 + 1" = 3.
4.22. 1a + 1c = 1a (set c = a), 1b + 1c = 1b (set c = a),

1a + 1с = 1a (set c = a), 2b + 1c = 2b (set c = a),
and 3a + 1c = 3a (set c = a).

4.22'. Null action.
4.23. For the remaining paths of type 1c, set c = b and

perform the 1b + 1b = 1b operation.
4.23'. Null action.
4.24. Paths with a non-hanging edge are closed into

circles by joining (path types 2a, 2b, 3a, and 3b),
sesqui-cut-and-paste with merging the special
nodes (path types 1a, 1b, 1c, and 2) or without it
(path types 1a, 1b, and 3). Set c = b after closing a
path of type 1c. When closing a path of type 2,
select the variant with merging two b-nodes and
delete the a-node from the resulting path of type
1'. Cut out conventional edges from the circles
resulting from closing paths of type 3a or 3b. Then
execute step 4.2 again.

Step 5. Delete isolated special nodes and loops. Delete
special notes from the remaining paths. Cut out 2-circles
from circles longer than 2 so that two b-nodes merge
(thus, the a-node is included into the 2-circle; see figure

in #2 Section of Additional materials). Delete special
nodes from 2-circles.

Proof of the algorithm exactness
Clearly, the time and memory complexity of the algo-
rithm are linear. Its exactness is demonstrated using the
following sequence of lemmas 1–8 and the constraint
presented in the following subsection; certain details can
be found in [5, 6].
For initial structures a and b, the shortest sequence of

operations transforming a into b is referred to as the
shortest sequence.

1) There exists the shortest sequence with no
operations that include cutting a region of a-special
genes. This is proved by induction on the weight of
such sequence.

2) There exists the shortest sequence subject to the
previous condition where all deletions precede all
insertions. Accordingly, the common graph
transformation into the final form can be done
without the insertion operation. This is proved by
displacement of all operations decreasing the
number of special nodes to the beginning of the
sequence.

3) The sequence of operations specified in step 3
provides the greatest possible saving in the number
of operations relative to processing each path
individually. This is proved by induction on actions
in step 3: the resulting sequence can be continued
upon the completion of each action as long as such
saving remains possible. Thereafter, the path or
circle is called a component.

4) After an action in step 4 is executed, it cannot be
applied again (except 4.2 in 4.24), i.e., further actions
do not introduce any components to which this
action can be applied. This is proved by
enumerating actions in step 4.

5) After step 4, there are 0, 1, or 2 components with a
b-node excluding the initial circles with a b-node
but no a-node. This is proved by contradiction: if
there were more than two such components, they
would be subject to one of actions in step 4, which
contradicts the previous lemma.

6) The sequence of actions specified in step 4 provides
for the greatest possible number (with an accuracy
of 1) of replacements of high-weight b-node deletion
operation with another one. This follows from the
previous lemma and from the opportunity to transform
any component with b-nodes into the final form using
a sequence containing exactly one operation of b-node
deletion.

7) The total weight C of a sequence of operations
generated by the algorithm is derived from readily

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 8 of 23

calculated properties of the initial common graph.
Namely, C = B + S +D–P + ε(B’ + n), where B is the
number of special nodes, S is the sum of integer
parts of half-lengths of the longest regions composed
of conventional edges plus the number of such
boundary regions of odd length minus the number of
such circular regions, D is the number of operations
not decreasing the number of special nodes that are
required for the transformation of odd chromosomes
individually into the final form excluding the
operations in step 2 (this number can be determined
for any chromosome from its type), P is the number
of operations saved in step 3, ε is the weight of b-node
deletion minus 1, B’ is the number of circles with a
b-node but with no a-nodes, and n is 0, 1, or 2.

8) Induction on the total weight M of the shortest
sequence is used to prove that C =M. Inductive
step: for any operation o applied to any common
graph G, its weight is at least C(G)–C(o(G)), where
C(G) is defined for a given G as in the previous
lemma. This is proved by enumerating all operations
and types of paths and circles to which they are
applied.

Condition for the exactness of the algorithm and
operation weight values
In practical computations we considered two weight
patterns referred to as circular and linear applied to
plastids and mitochondria, respectively. When passing
from a to b, the patterns are defined by any inexact descent
in operation weights in the following order. Circular
pattern: b-node deletion, sesqui-cut-and-paste, a-edge
insertion or b-edge deletion, double-cut-and-paste, and
a-node deletion. Linear pattern: b-node deletion, double-
cut-and-paste, sesqui-cut-and-paste, a-edge deletion or
b-edge insertion, and a-node deletion. The sequence of
transformations from a to b has the minimum length
when the length is minimal among all possible sequences
of transformations from a to b.
The proposed algorithm is exact in two cases: (1) when

the given structures have the same gene content and the
weight pattern is cyclic or linear (the algorithm is exact
for sequences of minimal length) and (2) when inequality
d≤c ≤2d is satisfied for the weight c of b-node deletion and
identical weights d of other operations.
In case (2), the total weight for the sequence of opera-

tions generated by the above algorithm differs from the
total weight of the shortest sequence by no more than d;
this uncertainty stems from the accuracy to 1 to which
the number of operation replacements is maximized at
step 4.
In the case of arbitrary weights in the range from 0.8

to 1.5, which we actually used, the algorithm becomes

heuristic although the deflection of its result from the
minimum solution is no more than 1.5 times according
to our tests (data not shown).
Part “Reconstruction of chromosome structures for

mitochondria of sporozoans and plastids of rhodophytic
branch” considers circular and linear patterns of oper-
ation weights with the following weight values (the order
of operations is pattern-specific): 1.5, 1.2, 1.1, 1, 0.9, and
0.8. Clearly, computations for other weight values and
routine analysis of the obtained results are of interest;
however, this will generate an enormous volume of data.

Algorithm simulation example
Let us consider structures a and b shown in Fig. 1.
Figure 2 shows the sequence of structures and opera-

tions generated by the algorithm to transform the com-
mon graph a+b of structures a and b shown in Fig. 1
into the final form.
The algorithm generates this sequence for any oper-

ation weights. This sequence is the shortest for linear
weights with the total weight of 5.4. For circular weights,
this sequence is not the shortest; its total weight is 5.7,
while that of operations shown in Fig. 3 is 5.4.

Algorithm for the reconstruction of chromosome
structures with cubic complexity and sufficient
approximation ratio
Approximate algorithms solving the reconstruction prob-
lem with the approximation ratio of 2 and 11/6 have been
developed for the breakpoint and biological distances be-
tween chromosome structures. The two developed algo-
rithms have a cubic and a quintic polynomial complexities,
respectively. These two algorithms and the respective
proofs are presented below. Let n be the total number of
genes (in other words, gene names or numbers) in a given
set of m structures.
Just as Alon et al. [15], we reduce the reconstruction

problem to the minimum Steiner tree problem. Let us
remind it. Given an undirected graph G with non-
negative numbers (“weights”) assigned to its edges; m
nodes of the graph called terminals are fixed. It is neces-
sary to find a connected tree S (possibly unrooted and
non-binary) in G that includes all terminals and has the
minimum sum of numbers assigned to all edges in S. This
sum is called the weight of tree S.

1 5 2

3 6 4
9

7 2 1

8 4 3

Structure a Structure b

Fig. 1 Two chromosome structures

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 9 of 23

In order to solve the reconstruction problem, let us con-
sider G as a complete graph of all chromosome struc-
tures with no more than n genes, where each edge is
assigned the distance between two structures at its ends.
The nodes corresponding to m given structures will be
taken as terminals. The following lemma establishes a

correspondence between the reconstruction problem
and the Steiner problem for the specified G.

Lemma
Any solution T of the reconstruction problem with linear
complexity can be transformed into a solution S of the

Fig. 2 Sequence of structures and operations generated by the algorithm for the example shown in Fig. 1

Fig. 3 Shortest sequence of structures and operations in the case of circular weights for the example shown in Fig. 1

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 10 of 23

Steiner problem, and the weight of S is no more than the
weight of T. Any solution S of the Steiner problem with
the same complexity can be transformed into a solution
(the proper T and the arrangement for it) of the recon-
struction problem, and the weight of T is no more than
the weight of S.

Proof
Forward. Let us join every set of T-nodes with identical
labels into a single node. Eliminate circles, e.g., by gen-
erating any spanning tree in the derived graph, and the
result is isomorphically embedded in G.
Backward. If there is a node of degree 2 in S, let us

take it as a root; otherwise let us add a root node to one
edge and assign a structure of one of its ends to it. Let
us add an incident edge to each terminal non-leaf node
in S with the same structure at the end, which gives us a
leaf in T; this ensures that all given structures are
present in the leaves of T. To generate the proper T, let
us remove non-terminal leaves in S together with edges
incident to them and non-root nodes of degree 2, and
then join the edges. Each non-binary node is arbitrarily
binarized, and the structure assigned to it is assigned to
new nodes. This gives us a binary tree T with the weight
not exceeding that of S.
Two algorithms are known to solve the Steiner prob-

lem, and each of them can be transformed to solve the
reconstruction problem.

The first algorithm solving the reconstruction problem for
structures without paralogs
This algorithm is faster but has the approximation ratio
of 2 owing to the corresponding solution of the Steiner
problem [21]. The second one is slower but has the ap-
proximation ratio of 11/6; it is considered in the Section
“The Second Algorithm Solving the Reconstruction
Problem for Structures without Paralogs” below.
Let us recall the first algorithm solving the Steiner

problem. It generates the complete graph G’, whose nodes
are m given terminals, and each edge (u,v) is labeled by
the length of the shortest path between u and v in the ini-
tial graph G. A minimum spanning tree is generated for
G’. Each edge in it is replaced with some shortest path in
G. The circles are eliminated by removing the edges, and
the resulting tree is the solution of the Steiner problem.
The approximation ratio of the algorithm is 2, i.e., the
weight of the solution differs from the minimum one by a
factor of no more than 2.
Our first algorithm operates on the graph G that was

used in the Lemma. It has a number of nodes exponen-
tial in n, but it does not have to be processed completely:
only m chromosomal structures are needed. Indeed, it
follows from the triangle inequality that the shortest
path between the vertices in G is the edge connecting

them. Accordingly, plotting the graph G’ is equivalent to
computing a distance matrix for initial m structures.
Considering that the computation of the breakpoint dis-
tance between structures without paralogs has a linear
complexity on the size of structures, the matrix can be
computed in nm2 steps. The minimum spanning tree in
a graph with m nodes is generated using the Prim’s algo-
rithm in m2 steps. Thus, the proposed algorithm has the
complexity of nm2 and the approximation ratio of 2.
The biological distance between structures a and b is

asymmetrical, i.e., the distance from a to b can be not
equal to the distance from b to a. Thus, hereafter, bio-
logical distance denotes the mean of these two distances.
All properties of biological distance specified above re-
main unaltered in this case. If an edge to which struc-
tures a and b are assigned is directed, i.e., the edge is in
a rooted tree and a is closer to the root, the biological
distance for the edge is computed from a to b and is
called the one-way biological distance.
According to our data (see Part “Exact linear algorithm

calculating the distance between chromosome structures”
and [5, 6]), the computation of the biological distance
between structures without paralogs also has a linear
complexity. Consequently, our first algorithm and the
conclusions concerning it remain unaltered for the bio-
logical distance.

Calculation of the breakpoint and biological distances for
structures with paralogs
If there are paralogs and the breakpoint distance is con-
sidered, its computation is reduced to a Boolean linear
programming as implemented in the reconstruction of
chromosome structures along the tree in [22]. In this
case, the tree includes a single edge with chromosome
structures at its ends. From this, the algorithm complex-
ity is easy to evaluate; the approximation ratio remains
unaltered.
Assume that there are paralogs and the biological dis-

tance is considered. Let us show how its computation
can be reduced to Integer linear programming if all
chromosomes are circular and operation weights are
equal. The first limitation is lifted in the following section,
while the second one remains in effect through the end of
this Part “Algorithm for the reconstruction of chromosome
structures with cubic complexity and sufficient approxima-
tion ratio”.
Hence, the common graph includes only circles, and

the length of the shortest path equals B+S1–S2, where B
is the number of blocks (i.e., special nodes) in the com-
mon graph, S1 is the sum of integer parts of half of
lengths of maximum (by inclusion) regions (in circles)
composed of conventional edges, and S2 is the number
of circles composed of conventional edges [1, 5]. The

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 11 of 23

following reduction to the specified programming is used
to compute the summands B, S1, and S2. We will call a
pair of adjacent gene extremities an adjacent pair.
Let a and b be two given chromosomal structures. Let

us define a Boolean variable zkij; it equals 1 if paralog i
of gene k in structure a corresponds to paralog j of the
same gene k in structure b, otherwise it equals 0. The
constraints for these variables are that the sums of vari-
ables over the third index are no more than 1 for any
fixed k and i (or k and j).

1) Calculation of B. Each adjacent pair s in structure a
is described by a Boolean variable xas; it equals 1 if
this pair is at the border of an a-block, otherwise it
equals 0. A similar description holds for structure b.
The respective constraints are that if an extremity of
paralog i1 of gene k is adjacent to an extremity of

paralog i2 of gene l in s, then xas≥
X

j

zki1j−
X

j

zli2j

and xas≥
X

j

zli2j−
X

j

zki1j; similar inequalities hold for

pairs in b. These inequalities mean that if
X

j

zki1j
and

X

j

zli2j are not equal, i.e., a common and a

special genes are adjacent in s, then xas = 1.
Let us define the minimized function as F ¼ 0:5⋅X

s

xas þ xbsð Þ þ…, where other summands are

described below. If
X

j

zki1j equals
X

j

zli2j , then

xas = 0, since xas and xbs are summands of F with the
positive coefficient. Each block is assigned two
boundary variables so that the sum of xas and xbs
with coefficient of 0.5 equals B.

2) Calculation of S1. Each adjacent pair s in structure a
is described by a Boolean variable yas; it equals 0 if
this pair is at the border or within a block. A similar
description holds for structure b. For adjacent pairs
of common genes, variables yas and ybs take on
alternating values of 0 and 1 within each region of
conventional edges, and this alternation starts from
0 at one of borders. Let us describe the constraints.
Two adjacent pairs are defined as potential neighbors
(as edges in the common graph) if they belong to
different structures and include the same extremity
of paralogs of the same gene. The following constraints
are imposed for any potentially neighboring s1 (in a)
and s2 (in b): yas1≤4−zkij−

X

j

zk1i1j−
X

j

zk2ji2−ybs2

and ybs2≥zkij þ
X

j

zk1i1j þ
X

j

zk2ji2−2−yas1, where

paralog i of gene k is adjacent to paralog i1 of gene k1
in s1, and paralog j of gene k is adjacent to paralog i2
of gene k2 in s2. These inequalities mean that the
values of yas and ybs alternate at each region of
conventional edges.

Let us continue the definition: F ¼ ⋯þ
X

s

yas þ ybsð Þ þ⋯, where other summands are

described above and below. At the borders of
regions with odd length composed of conventional
edges as well as within or at the borders of a block,
variables yas and ybs equal 0, since they are
summands of F with the positive coefficient. Thus,
the sum of all variables yas and ybs equals S1.

3) Calculation of S2. Each adjacent pair s in structures a
and b is described by an integer (rather than Boolean)
variable us limited by the inequality us ≤ms, where ms

takes values from 1 to the total number of adjacent
pairs in a and b. Let us also introduce a Boolean
variable ps limited by the inequality psms ≤ us, which
indicates whether us takes the (maximum possible)
value of ms.

Let us continue the definition: F ¼ …−
X

s

ps , where

other summands are described above; ps variables are
terms of F with the negative coefficient; hence, if us
equals ms, then ps = 1. Let us add the constraints for

each adjacent pair s with a paralog i of gene k in a: us≤

ms

X

j

zkij as well as similar constraints us≤ms

X

j

zkji for

adjacent pairs in b. These inequalities ensure that us = 0
if s is within or at the border of a block. Let us add the
constraints for any potentially neighboring adjacent pairs
s1 in a and s2 in b: us1 ≤ us2 +ms1∙(1–zkij) and us2 ≤ us1 +
ms2∙(1–zkij), where s1 includes paralog i of gene k and s2
includes paralog j of gene k. These inequalities ensure
that us1 = us2 for two neighboring edges s1 and s2 of the
common graph. Accordingly, variables us take the same
value, and exactly one of these variables reaches its max-
imum for each circle of conventional edges. For circles
that contain blocks, these variables equal zero so neither
of them reaches its maximum. Thus, the number of vari-
ables us that reach their maximum (and equal to the
sum of variables ps) equals S2.
Let us evaluate the number of variables and the num-

ber of limitations by an example: let each structure in-
clude genes with numbers from 1 to 200 and each gene
has 5 paralogs; thus, each structure has 1000 genes.
Then the number of variables zkij is 5000 and there are
2000 constraints for them. The number of variables xas
does not exceed 1000 and there are no more than 2000
constraints for them. The same is true for xbs. The total
number of variables yas and ybs does not exceed 2000
and there are no more than 4000 constraints for them.
The total number of variables us and ps does not exceed
4000 and there are no more than 10000 constraints for
them. Overall, no more than 13000 variables and no

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 12 of 23

more than 20000 constraints are introduced, so that the
volume of data can be processed by integer linear pro-
gramming packages. In particular, such task is executed
by the Lomonosov supercomputer at Moscow State
University.

Calculation of biological distance with paths present
If structures a and b include paths in addition to circles,
the following approximate (possibly with a high approxi-
mation ratio) algorithm is used. Let us close all paths in
a into circles; the resulting structure will be referred to
as a’. Apply the above algorithm to calculate the distance
between structures a’ and b’. The obtained distance
added to the total number of paths in a and b is the
algorithm output, which should be close to the distance
between the initial a and b.
Let us evaluate the accuracy of this algorithm. Suppose

n1 and n2 are the numbers of paths in a and b, respect-
ively; while t and t’ are the minimum numbers of opera-
tions to transform a into b and a’ into b’, respectively. It
follows from the triangle inequality that n1 + t + n2 ≥ t’
and n1 + t’ + n2 ≥ t, then t’ ≤ n1 + n2 + t and n1 + t’ + n2 ≤ t
+ 2(n1 + n2). The number of operations that the algo-
rithm needs exceeds the minimum number of operations
by no more than 2(n1 + n2).

Remark
Martinez et al. [23] presented the calculation of the bio-
logical distance between two chromosome structures
when chromosomal deletions and insertions are not
allowed. It is reduced to integer linear programming,
and it is assumed that two structures can have different
gene content but special genes are ignored after bijec-
tions fi are established between paralogs. Each pair of
paralogs k.i and k.j of gene k from different structures is
given a similarity value s(k.i,k.j), which ranges from 0 to
1. The minimized function is augmented with a penalty
for incomplete similarity between paralogs, which equals
the sum of 1–s(k.i,k.j) for all pairs of paralogs k.i and k.j
with established bijections. Paralogs can correspond to
each other only if the similarity between them is strictly
positive, and there are no two free (i.e., with no corres-
pondence) paralogs with a positive similarity. In our
terms, these ideas can be easily realized by supplement-
ing F with the sum of zkij∙(1–s(k.i,k.j)) for all pairs of
paralogs k.i and k.j, and by adding the constraints that

zkij = 0 if s(k.i,k.j) = 0 and that
X

j0
zkij0 þ

X

i0
zki0j≥1 if

s(k.i,k.j) > 0.

The second algorithm solving the reconstruction problem
for structures without paralogs
Essentially, it is the Zelikovsky’s algorithm, which has
the approximation ratio of 11/6 [24] as completely

proved elsewhere [25]. First, recall the Zelikovsky’s algo-
rithm. For an arbitrary graph G, define t(G) as the
weight of minimum spanning tree in it, and G[z] is a
graph derived from G by zeroing the numbers on any
two out of three edges connecting the nodes that belong
to z, where z is a set of three nodes in G.

Step 1. Build a complete graph G’ where m given
terminals are the nodes and each edge (u,v) is labeled by
the length of the shortest path from u to v in graph G.
Step 2. For each triplet z = {a,b,c} of different terminals
in graph G, a node v(z) with the minimum sum d(z) of
labels on edges (z,a), (z,b), and (z,c) is sought.
An empty set A is defined.
Step 3. It is required to find triplet z of terminals with
the maximum value of w = t(G’)–t(G’[z])–d(z). If w ≤ 0,
then go to step 4. Otherwise take graph G’[z] as G’, add
node v(z) to A, and return to step 3.
Step 4. Build a complete graph G” that extends G’. Its
nodes include m given terminals and all nodes from A,
and each edge (u,v) is labeled by the shortest distance
from u to v in graph G. A minimum spanning tree is
generated in G”. Each edge in it is replaced with some
shortest path in graph G. Circles are eliminated by
removing edges; and the resulting tree is a solution of
the Steiner problem.

Let us follow these steps to describe our algorithm solving
the reconstruction problem for the breakpoint distance.
The distance matrix is computed at steps 1 and 4. At step
2, the structure v(z) is generated and d(z) is calculated using
our algorithm [1], which arranges chromosome structures
at the ancestral nodes of the given tree to minimize the
sum of breakpoint distances between structures for all
edges of the tree. Namely, it is applied to the tree with three
leaves originating from a common ancestor (root). The
structures from the triplet z are identified among leaves.
The structure v(z) is assigned to the root. The time of calcu-
lation of v(z) and d(z) for a single triplet z is linear in n [1].
Let us evaluate the maximum cardinality of the set A

that does not exceed the maximum number of iterations
at step 3 and also evaluate the number of these iterations.
It is easy to show that if graph G2 is produced from

graph G1 by zeroing the label at edge e, the minimum
spanning tree T2 for G2 can be derived from the minimum
spanning tree T1 for G1 in the following way. If e belongs
to T1 or already has a zero label, then T2 = T1. Otherwise,
let us consider the only circle in T1 + e, select the edge e’
with the greatest label, and replace the edge e’ with e in
T1, which gives us the tree T2; this circle is identified by
depth-first traversal of T1 within time linear in m. At each
iteration, the labels of two edges of the graph are zeroed,
and at least one of these edges has a positive label (since
w > 0). Thus, each iteration adds at least one edge to the

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 13 of 23

spanning tree of graph G’, which remains there until the
end of step 3. Since the number of edges in the spanning
tree does not exceed the number of nodes m, |A| ≤m and
the number of iterations does not exceed m.
Each next spanning tree is derived from the previous

one by edge replacement described above. Consequently,
we have the following estimates of the proposed algo-
rithm complexity: nm2 at step 1, nm3 at step 2, m5 at
step 3, and nm2 at step 4. The total complexity evaluates
to m3∙max(n,m2). Since the modification concerned the
way how steps are taken but not their results, the ap-
proximation ratio of 11/6 is preserved.
If the biological distance is used instead of the break-

point one, steps 1 and 4 are executed in the same man-
ner due to our linear algorithm calculating the distance
between two structures; step 3 also remains unaltered.
In this case, a problem emerges at step 2. We are un-

aware of an exact polynomial algorithm finding structure
d for structures a, b, and c with the minimum sum of
distances between d and these structures even for the
same gene content. That is why the node v(z) and the
value d(z) are calculated heuristically, which makes the
whole algorithm heuristic. This is the first heuristic algo-
rithm proposed in this paper. Specifically, the shortest
path of operations is found to transform a into b and to
transform every intermediate structure into c. Symmetry
operations are executed for pairs (a,c) and (b,c). The
structure with the minimum total distance to a, b, and c
is chosen as d among all encountered structures.

The case of paralogs
For the breakpoint distance, the problem of searching
the node v(z) as well as the problem of calculating the
distance between two structures is reduced to the prob-
lem of Boolean linear programming in a manner similar
to reconstruction of chromosome structures along the
tree [22]. In the present case, the tree consists of three
edges going from the root, and chromosome structures
a, b, and c are assigned to the leaves. The algorithm gen-
erates the ancestral structure v(z) in the root.
For the biological distance, the problem of searching

the node v(z) becomes more complex. The result ob-
tained for the breakpoint distance can be improved by
local rearrangements using the descent algorithm in [1].
But we start from the exact breakpoint decision [22].
To our knowledge, these are the first algorithms with

such exactness and polynomial complexity. The test on
artificial data is available at http://lab6.iitp.ru/en/chro-
moggl/.

Reconstruction of chromosome structures for mitochondria
of sporozoans and plastids of rhodophytic branch
This part illustrates the algorithms from Parts “Exact linear
algorithm calculating the distance between chromosome

structures” and “Algorithm for the reconstruction of
chromosome structures with cubic complexity and suffi-
cient approximation ratio” as well as the descent algorithm
from [1] using the data on mitochondrial and plastid
chromosome structures. The algorithm from Part “Exact
linear algorithm calculating the distance between chromo-
some structures” works adequately with any data, while the
algorithm from Part “Algorithm for the reconstruction of
chromosome structures with cubic complexity and suffi-
cient approximation ratio” presumably does not always
give the correct answer with complex data. This can be at-
tributed to the twofold difference from the minimum solu-
tion, which can distort the tree topology in some cases. We
used the descent algorithm mentioned above as an alterna-
tive to the algorithm from Part “Algorithm for the recon-
struction of chromosome structures with cubic complexity
and sufficient approximation ratio”. It is of interest that,
despite the absence of many usual tools (removal of long
branches and less informative columns in the supermatrix,
stochastic evolutionary models, bootstrap, etc.), these algo-
rithms generate sensible reconstructions. We considered
relatively close mitochondrial genomes as an example of
simple data; and quite distant plastid genomes with intri-
cate organization, as complex data.
Let us recall the descent algorithm from [1]. An evolu-

tionary tree is generated based on its similarity to the
matrix of pairwise distances as described in the beginning
of the Section “Reconstruction of chromosome struc-
tures”. The proper reconstruction first finds the arrange-
ment of chromosome structures at internal nodes of the
generated tree with the minimum sum F of breakpoint
distances between the structures at the edge ends for all
edges. This is performed using the exact algorithm de-
scribed in detail in [1], in the absence of paralogs. Boolean
linear programming is used in the presence of paralogs
[22]. Then, the obtained arrangement is sequentially im-
proved with reference to the biological distance. Namely,
all operations applicable to a given structure assigned to
an internal tree node are searched through to find the op-
eration and structure that provide for the greatest de-
crease in the sum (for all edges) G of biological distances
between structures at the edge ends, and the result re-
places the initial structure at the node. This yields the next
arrangement. The process is repeated until the sum G
reaches the minimum, and the algorithm outputs the final
arrangement. Its computer implementation is available at
http://lab6.iitp.ru/en/chromoggl/.
In the case of paralogs, their coordination among all

edges is used for the calculation of tree distance as well
as for tree reconstruction.

Protein clustering algorithm and data
All data were obtained from GenBank. Proteins were clus-
tered using the algorithm described elsewhere [26–28]

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 14 of 23

http://lab6.iitp.ru/en/chromoggl/
http://lab6.iitp.ru/en/chromoggl/
http://lab6.iitp.ru/en/chromoggl/

with the parameters E = 0.001, L = 0, and H = 0.6. Orthol-
ogy of genes was determined from thus obtained cluster-
ing. The database of plastid and mitochondrial protein
clusters is available at http://lab6.iitp.ru/ppc/redline67/.
Genome compositions were checked by BLASTalignments
and Rfam database search.
The evolution of mitochondrial chromosome structure

was studied in the sporozoan class Aconoidasida com-
posed of subclasses Haemosporida and Piroplasmida
(Table 1). Here, even closely related species can have lin-
ear and circular chromosomes (Table 1, column 4). No
paralogs were found in the considered mitochondria.
The analyzed 66 species with rhodophytic plastids are

listed in Table 2. In the analysis of the evolution of plas-
tid chromosomal structure, the genes available in many
species and encoding proteins with a certain function
were used: chaperone clpC; subunits of photosystem I
psaA, psaB, psaC, psaD, psaE, psaF, psaI, psaJ, psaK,
psaL, and psaM; subunits of photosystem II psb28,
psb30, psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI,
psbJ, psbK, psbL, psbN, psbT, psbV, psbX, psbY, and psbZ;
rubisco large subunit rbcL; RNA polymerase subunits
rpoA, rpoB, rpoC1, rpoC2, and rpoZ; ribosomal proteins
rpl1, rpl2, rpl3,rpl4, rpl5, rpl6, rpl9, rpl11, rpl12, rpl13,
rpl14, rpl16, rpl18, rpl19, rpl20, rpl21, rpl22, rpl23,
rpl24, rpl27, rpl28, rpl29, rpl31, rpl32, rpl33, rpl34,
rpl35, rpl36, rps1, rps2, rps20, rps3, rps4, rps5, rps6, rps7,
rps8, rps9, rps10, rps11, rps12, rps13, rps14, rps16, rps17,

rps18, and rps19; and elongation factor tufA. Paralogs of
the psbY gene can be found in Odontella sinensis, Phaeo-
dactylum tricornutum, Thalassiosira pseudonana, Tha-
lassiosira oceanica, Ulnaria acus, Asterionella formosa,
Asterionellopsis glacialis, Didymosphenia geminata,
Lithodesmium undulatum, Eunotia naegelii, Chaetoceros
simplex, Roundia cardiophora, Cerataulina daemon, and
Thalassiosira weissflogii. Paralogs of the clpC gene can
be found in Theileria parva, Babesia bovis, Chromera
velia, Thalassiosira oceanica, Nannochloropsis gaditana,
Nannochloropsis granulata, Nannochloropsis oculata,
Nannochloropsis salina, Nannochloropsis limnetica,
Nannochloropsis oceanica, and Rhizosolenia imbricata.
Consecutive paralogs of the rpoC2 can be found in
Theileria parva, Leucocytozoon caulleryi, and Plasmodium
chabaudi. In Rhizosolenia imbricata, a long duplication
includes the psbA, psaC, rps6, clpC, rps10, rps7, and rps12
genes. Notice formal errors in gene names in GenBank
annotations: rpo instead of proС1 in Nannochloropsis
gaditana, rpoC instead of proС1 in Cyanidioschyzon
merolae, and rpoС2-n-terminal instead of proС2 in
Babesia bovis.

Evolution and reconstruction of mitochondrial structures
in sporozoans
The reconstructions of chromosome structures of mito-
chondria in sporozoan class Aconoidasida were generated
using the biological distance from data shown in Table 1.

Table 1 Mitochondrial chromosome structures in the class Aconoidasida

Subclass Species Locus in GenBank Type Composition

Haemosporida Leucocytozoon fringillinarum FJ168564.1 C ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss6 ls7 ss4

Leucocytozoon majoris FJ168563.1 C ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss6 ls7

Leucocytozoon sabrazesi NC_009336.1 L ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2

Plasmodium berghei NC_015303.1 L ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2

Plasmodium falciparum NC_002375.1 L ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7

Plasmodium floridense NC_009961.2 L ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7

Plasmodium fragile AY722799.1 C ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb

Plasmodium gallinaceum NC_008288.1 L ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2

Plasmodium juxtanucleare NC_008279.1 L ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2

Plasmodium knowlesi NC_007232.1 C ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb

Plasmodium mexicanum NC_009960.2 L ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7

Plasmodium reichenowi NC_002235.1 L ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7

Plasmodium relictum NC_012426.1 C ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7

Plasmodium simium NC_007233.1 C ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 cox1 cytb ls8 ss5 ss1

Plasmodium vivax NC_007243.1 C ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb

Piroplasmida Babesia bovis NC_009902.1 L cox1 *cox3 ls1 *ls2 *ls3 *cytb *ls4 ls5

Theileria parva NC_011005.1 L cox1 *cox3 ls1 *ls3 *cytb *ls5 ls4

Theileria annulata CR940346.1 L cox1 *cox3 ls1 *ls3 *ls2 *cytb *ls5 ls4

Circular and linear chromosomes are marked by C and L, respectively. Everywhere in the list of genes asterisk indicates the complementary strand relative to that
specified in GenBank. The rightmost column shows the gene order using standard gene names

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 15 of 23

http://lab6.iitp.ru/ppc/redline67/

The tree shown in Fig. 4 was generated by the descent
algorithm. It consists of two clades including mitochon-
dria of piroplasmids (genera Babesia and Theileria) and
haemosporids (genera Plasmodium and Leucocytozoon),
respectively. Two genera Plasmodium and Leucocytozoon
cannot be resolved on the tree, in particular, due to the
presence of linear and circular mitochondrial DNA in
both of them.
The phylogenetic reconstruction generated by the des-

cent algorithm of mitochondrial chromosome structures
in Aconoidasida is shown in Table 3.
For mitochondria, the algorithm from the Section

“The first algorithm solving the reconstruction prob-
lem for structures without paralogs” generated a valid
unrooted non-binary tree shown in Fig. 5. The leaves
with the same structures generated by the same algorithm
were combined into a single leaf. Namely, the leaves of
Plasmodium vivax, Leucocytozoon majoris, Plasmodium
fragile, and Plasmodium knowlesi are represented by
the former (marked by the bold font); the same applies to
the leaves of Plasmodium falciparum, Plasmodium

Table 2 Analyzed 66 species with rhodophytic plastids

Locus in
GenBank

Species #prot #clust #sing

NC_024079.1 Asterionella formosa 134 129 0

NC_024080.1 Asterionellopsis glacialis 145 138 1

NC_012898.1 Aureococcus anophagefferens 105 105 0

NC_012903.1 Aureoumbra lagunensis 110 110 0

NC_011395.1 Babesia bovis T2Bo 32 22 7

NC_021075.1 Calliarthron tuberculosum 201 200 1

NC_025313.1 Cerataulina daemon 132 130 0

NC_025310.1 Chaetoceros simplex 131 128 0

NC_020795.1 Chondrus crispus 204 204 0

NC_026522.1 Choreocolax polysiphoniae 71 71 0

NC_014340.2 Chromera velia 78 51 24

NC_014345.1 Chromerida sp. RM11 81 69 5

NC_024081.1 Coscinodiscus radiatus 139 130 0

NC_013703.1 Cryptomonas paramecium 82 79 3

NC_004799.1 Cyanidioschyzon merolae strain
10D

207 189 18

NC_001840.1 Cyanidium caldarium 197 186 11

NC_024082.1 Cylindrotheca closterium 161 141 13

NC_024083.1 Didymosphenia geminata 130 128 0

NC_014287.1 Durinskia baltica 129 127 0

NC_013498.1 Ectocarpus siliculosus 148 143 1

NC_004823.1 Eimeria tenella strain Penn State 28 21 7

NC_007288.1 Emiliania huxleyi 119 112 7

NC_024928.1 Eunotia naegelii 160 136 2

NC_015403.1 Fistulifera solaris 135 130 1

NC_016735.1 Fucus vesiculosus 139 139 0

NC_024665.1 Galdieria sulphuraria 182 181 1

NC_023785.1 Gracilaria salicornia 202 200 2

NC_006137.1 Gracilaria tenuistipitata var. liui 203 201 2

NC_021618.1 Grateloupia taiwanensis 233 201 32

NC_000926.1 Guillardia theta 147 142 5

NC_010772.1 Heterosigma akashiwo 156 139 3

NC_014267.1 Kryptoperidinium foliaceum 139 132 6

NC_027093.1 Lepidodinium chlorophorum 62 52 7

NC_024084.1 Leptocylindrus danicus 132 130 0

NC_022667.1 Leucocytozoon caulleryi 30 30 0

NC_024085.1 Lithodesmium undulatum 138 129 0

NC_020014.1 Nannochloropsis gaditana 119 116 3

NC_022259.1 Nannochloropsis granulata 125 123 0

NC_022262.1 Nannochloropsis limnetica 124 123 0

NC_022263.1 Nannochloropsis oceanica 126 123 1

NC_022260.1 Nannochloropsis oculata 126 123 0

NC_022261.1 Nannochloropsis salina 123 123 0

NC_001713.1 Odontella sinensis 140 128 9

Table 2 Analyzed 66 species with rhodophytic plastids
(Continued)

NC_020371.1 Pavlova lutheri 111 102 9

NC_016703.2 Phaeocystis antarctica 108 108 0

NC_021637.1 Phaeocystis globosa 108 108 0

NC_008588.1 Phaeodactylum tricornutum 132 130 0

NC_023293.1 Plasmodium chabaudi chabaudi 31 31 0

NC_000925.1 Porphyra purpurea 209 209 0

NC_023133.1 Porphyridium purpureum 224 183 40

NC_021189.1 Pyropia haitanensis 211 210 1

NC_024050.1 Pyropia perforata 209 207 2

NC_007932.1 Pyropia yezoensis 209 206 3

NC_025311.1 Rhizosolenia imbricata 135 123 1

NC_009573.1 Rhodomonas salina 146 143 3

NC_025312.1 Roundia cardiophora 140 126 0

NC_018523.1 Saccharina japonica 139 139 0

NC_014808.1 Thalassiosira oceanica CCMP1005 142 126 1

NC_008589.1 Thalassiosira pseudonana 141 127 0

NC_025314.1 Thalassiosira weissflogii 141 127 0

NC_007758.1 Theileria parva strain Muguga 44 27 12

NC_001799.1 Toxoplasma gondii RH 26 21 5

NC_026851.1 Trachydiscus minutus 137 124 8

NC_016731.1 Ulnaria acus 130 128 0

NC_011600.1 Vaucheria litorea 139 138 1

NC_026523.1 Vertebrata lanosa 192 191 1

#Prot, number of plastid-encoded proteins in the species; #clust, number of
clusters containing at least one from the species and one out of the species;
and #sing, number of plastid-encoded proteins from the species not included
in any cluster

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 16 of 23

reichenowi, and Plasmodium mexicanum as well as of
Leucocytozoon sabrazesi, Plasmodium juxtanucleare,
Plasmodium gallinaceum, and Plasmodium berghei. The
tree was rooted at the node to provide the best tree as the
total one-way distance along all directions from the root
to edges. The proper reconstruction generated by the
same algorithm is shown in Table 4. Thus, both algo-
rithms reconstructed identical evolutionary scenario of
chromosome structures.

Evolution of chromosome structures in plastids of
rhodophytic branch
The tree (not shown) generated by the algorithm from the
Sections “Calculation of the breakpoint and biological dis-
tances for structures with paralogs” and “Calculation of
biological distance with paths present” for the data shown
in Table 2 is not reasonable. This can be attributed to the
twofold difference between the weights of trees recon-
structed by this algorithm and the minimum tree.
The tree of plastids generated by the descent algo-

rithm is shown in Fig. 6, and it seems quite possible.
We discuss it below.
This tree is in good agreement with previously pub-

lished data, in particular, with the corresponding trees of
species. The most significant distinctions are special tree

positions of photosynthetic alveolate Chromera velia and
rhodophytic alga Porphyridium purpureum, whose order
of genes substantially differs from that in related species.
This has been mentioned previously in the study of the
moeB gene regulation [29]. A separate clade was formed
by plastids of the Nannochloropsis genus, which consti-
tute an isolated portion of the large Stramenopiles
phylum [30].
All diatoms composed a large clade also including cer-

tain stramenopiles as well as alveolate species Durinskia
baltica and Kryptoperidinium foliaceum, whose plastids
are of tertiary origin descending from diatom ones [31].
Another large clade was formed by plastids of rhodo-

phytic algae excluding Porphyridium purpureum, crypto-
phytes, certain alveolates, haptophytes, and stramenopiles
Aureococcus anophagefferens and Aureoumbra lagunensis
[32] as well as raphidophyte Heterosigma akashiwo [33]
and xanthophyte Vaucheria litorea.
All brown algae Ectocarpus siliculosus, Fucus vesiculo-

sus, and Saccharina japonica [34, 35] composed another
clade.
The alveolate species whose plastids are close to those

of rhodophytic algae include all considered sporozoans
as well as the photosynthetic alveolate Chromerida sp.
RM11. The common origin of these plastids has been

Plasmodium fragile AY 722799

Leucocytozoon majoris FJ 168563

Plasmodium knowlesi NC 007232

Plasmodium vivax SaI-1 NC 007243

Leucocytozoon fringillinarum FJ 168564

Plasmodium simium NC 007233

Plasmodium reichenowi NC 002235

Plasmodium falciparum NC 002375

Plasmodium mexicanum NC 009960

Plasmodium floridense NC 009961

Plasmodium relictum NC 012426

Plasmodium juxtanucleare NC 008279

Plasmodium gallinaceum NC 008288

Leucocytozoon sabrazesi NC 009336

Plasmodium berghei NC 015303

Theileria annulata CR 940346

Theileria parva NC 011005

Babesia bovis T2Bo NC 009902

Fig. 4 The tree of chromosome structures of mitochondria in sporozoan class Aconoidasida generated by the descent algorithm.
(http://purl.org/phylo/treebase/phylows/study/TB2:S18685?x-access-code=bf7e98f7d030be83c7c2d1116c7faf0e&format=html)

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 17 of 23

http://purl.org/phylo/treebase/phylows/study/TB2:S18685?x-access-code=bf7e98f7d030be83c7c2d1116c7faf0e&format=html

previously confirmed by protein alignment [36, 37]. In
addition, we have predicted a uniform ycf24 (sufB) ex-
pression regulation in plastids of sporozoans and certain
rhodophytic algae [38], which corroborates the close po-
sitions of these species on the generated tree. A signifi-
cant variation between plastids is observed among
stramenopiles. The distinction of haptophytes agrees
with the independent origin of plastids in Haptophyta

and Stramenopiles proposed previously [39]. However,
the independent origin of cryptophyte plastids is not
confirmed. Overall, one can propose that plastids of rho-
dophytic branch are monophyletic and descend from
plastids of rhodophytic algae, while this statement seems
questionable for cryptophytes and sporozoans.
The tree of chromosome structures in apicoplasts was

reconstructed using an entirely different approach in [40],

Table 3 Phylogenetic reconstruction of mitochondrial chromosome structures in sporozoan class Aconoidasida

Tree node Chromosome structure

Plasmodium fragile – Babesia bovis ss1 cox1 *cox3 ls1 *ls3 *ss3 *ls6 ls8 ss5 (C) | *ls7 *ss6 *ss4 ls9 ss2 ls4 ls5 cytb ls2 (L)

Theileria annulata – Babesia bovis *ls4 ls5 cytb ls2 ls3 *ls1 cox3 *cox1 (L)

Theileria annulata – Theileria parva *ls4 ls5 cytb ls2 ls3 *ls1 cox3 *cox1 (L)

Theileria annulata (l) cox1 *cox3 ls1 *ls3 *cytb *ls5 ls4 (L)

Theileria parva (l) cox1 *cox3 ls1 *ls3 *ls2 *cytb *ls5 ls4 (L)

Babesia bovis (l) cox1 *cox3 ls1 *ls2 *ls3 *cytb *ls4 ls5 (L)

Plasmodium fragile – Plasmodium berghei *ls7 *ss6 *ss4 *ls1 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium juxtanucleare – Plasmodium berghei ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium juxtanucleare – Leucocytozoon sabrazesi ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium juxtanucleare – Plasmodium gallinaceum ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium juxtanucleare (l) ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium gallinaceum (l) ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Leucocytozoon sabrazesi (l) ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium berghei (l) ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium fragile – Plasmodium relictum ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium reichenowi – Plasmodium relictum ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium floridense – Plasmodium relictum ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium floridense (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium relictum (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (C)

Plasmodium reichenowi – Plasmodium mexicanum ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium reichenowi – Plasmodium falciparum ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium reichenowi (l) ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium falciparum (l) ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium mexicanum (l) ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium fragile – Plasmodium simium ss1 cox1 cytb ls1 ss4 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 (C)

Plasmodium fragile – Leucocytozoon fringillinarum ss1 cox1 cytb ls1 ss4 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 (C)

Plasmodium fragile – Plasmodium vivax ss1 cox1 cytb ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 (C)

Plasmodium fragile – Plasmodium knowlesi ss1 cox1 cytb ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 (C)

Plasmodium fragile – Leucocytozoon majoris ss1 cox1 cytb ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 (C)

Plasmodium fragile (l) ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb (C)

Leucocytozoon majoris (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss6 ls7 (C)

Plasmodium knowlesi (l) ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb (C)

Plasmodium vivax (l) ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb (C)

Leucocytozoon fringillinarum (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss6 ls7 ss4 (C)

Plasmodium simium (l) ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 cox1 cytb ls8 ss5 ss1 (C)

Reconstruction was generated by the descent algorithm for the tree in Fig. 4. Circular and linear chromosomes are marked by C and L, respectively. The left
column shows a non-leaf tree node by the first and the last leaves. The right column shows the chromosome structure in the node (the order of rows
corresponds to the traversal of the tree in Fig. 4). The leaves are labelled by (l), only their chromosomal structures are feeded to the input of our algorithm

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 18 of 23

Fig. 7. It shows some similarity with the corresponding
subtree of our tree of plastids. For instance, Chromerida is
an early separated branch in both cases. According to the
number of edges on the path, Plasmodium neighbors
Toxoplasma and the both neighbor Theileria. At the same
time, the trees are distinct, which can be attributed to a
different number of analyzed genes and species (there are
many distant species in our case).

Reconstruction of chromosome structures in rhodophytic
plastids along the tree of their evolution by the descent
algorithm
For brevity, the reconstructions in two subtrees of the
tree shown in Fig. 6 are presented: from the common
ancestor of Leptocylindrus danicus and Odontella sinen-
sis (hereafter, small tree) and from the common ancestor

of Porphyra purpurea and Vaucheria litorea NC 011600
(hereafter, large tree). The result of reconstruction for the
small tree is given in Additional file 1, #3 (Table S3a) and
the corresponding evolutionary scenario is shown in
Fig. 7a. The corresponding reconstruction for the large
subtree is shown in Table S3b and Fig. 7b.
In Tables S3a–S3b, the genes are specified accord-

ing to their order on the chromosome; everywhere as-
terisk marks genes on the complementary strand.
Both trees were reconstructed using a Boolean linear
programming with 2 millions of variable and 4 mil-
lions of linear equalities and inequalities. Two para-
logs of the рsbY, rpoC2, clpC, and some other genes
can be distinguished by the subscript index. If a
structure contains several chromosomes, they are sep-
arated by vertical lines.

Theileria parva NC 011005

Babesia bovis T2Bo NC 009902

Theileria annulata CR 940346

Plasmodium falciparum NC 002375

Plasmodium relictum NC 012426

Plasmodium floridense NC 009961

Leucocytozoon fringillinarum FJ 168564

Plasmodium simium NC 007233

Plasmodium vivax SaI-1 NC 007243

Leucocytozoon sabrazesi NC 009336

Fig. 5 The tree of chromosome structures of mitochondria in sporozoan class Aconoidasida. The tree was generated by the algorithm from the
Section “The first algorithm solving the reconstruction problem for structures without paralogs”. (http://purl.org/phylo/treebase/phylows/study/
TB2:S18685?x-access-code=bf7e98f7d030be83c7c2d1116c7faf0e&format=html)

Table 4 Phylogenetic reconstruction of mitochondrial chromosome structures in sporozoan class Aconoidasida

Tree node Chromosome structure

Theileria parva –Leucocytozoon sabrazesi ss1 cox1 *cox3 ls1 *ls3 *ss3 *ls6 ls8 ss5 (C) | *ls7 *ss6 *ss4 ls9 ss2 ls4 ls5 cytb ls2 (L)

Theileria parva–Theileria annulata *ls4 ls5 cytb ls2 ls3 *ls1 cox3 *cox1 (L)

Theileria parva (l) cox1 *cox3 ls1 *ls3 *ls2 *cytb *ls5 ls4 (L)

Babesia bovis (l) cox1 *cox3 ls1 *ls2 *ls3 *cytb *ls4 ls5 (L)

Theileria annulata (l) cox1 *cox3 ls1 *ls3 *cytb *ls5 ls4 (L)

Leucocytozoon sabrazesi (l) ls1 ss4 ss6 ls7 ls6 ss3 ls3 ls9 ss2 ls4 ls5 *cox3 ls8 ss5 ss1 cox1 cytb ls2 (L)

Plasmodium falciparum–Plasmodium vivax ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium falciparum–Plasmodium floridense ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium falciparum (l) ss3 ls3 ls9 ss2 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Plasmodium relictum (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (C)

Plasmodium floridense (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss4 ss6 ls7 (L)

Leucocytozoon fringillinarum–Plasmodium vivax ss1 cox1 cytb ls1 ss4 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 (C)

Leucocytozoon fringillinarum (l) ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb ls1 ss6 ls7 ss4 (C)

Plasmodium simium (l) ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 cox1 cytb ls8 ss5 ss1 (C)

Plasmodium vivax (l) ls1 ss6 ls7 ss3 ls3 ls9 ss2 ls4 *cox3 ls8 ss5 ss1 cox1 cytb (C)

Reconstruction was generated by the algorithm from the Section “The first algorithm solving the reconstruction problem for structures without paralogs” for the
tree in Fig. 5

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 19 of 23

http://purl.org/phylo/treebase/phylows/study/TB2:S18685?x-access-code=bf7e98f7d030be83c7c2d1116c7faf0e&format=html
http://purl.org/phylo/treebase/phylows/study/TB2:S18685?x-access-code=bf7e98f7d030be83c7c2d1116c7faf0e&format=html

Note that all plastid chromosomes are circular in the
reconstruction.
The result of reconstruction for the large tree is shown

in Additional file 1, #3 (Table S3b) and the corresponding
evolutionary scenario is shown at Fig. 7b. As previously,
all chromosomes are circular; the most of ancestral struc-
tures include a single chromosome in the subtree up to
the common ancestor of Porphyra purpurea and Gal-
dieria sulphuraria; while most structures contain several
chromosomes in the remaining part of the subtree. This

can point to active chromosome rearrangements in ances-
tral species in this part of the subtree.
The presence of several circular chromosomes in a

structure does not necessarily indicate the presence of
an ancestral species with such structure, since it can cor-
respond to evolutionary periods when translocations of
chromosome regions occurred. Indeed, translocation is
represented by two consecutive operations: cutting out
and circularization of a fragment and its insertion into a
different locus. Thus, reconstruction can expose

Fig. 6 Tree of chromosomal structures of rhodophytic plastids generated by the descent algorithm. The data were obtained from GenBank for
chromosomes listed in Table 2. The chromosome structures that were fed to our algorithm are shown in Additional file 1, #3, Tables S3a–S3b in
rows denoted by (l). (http://purl.org/phylo/treebase/phylows/study/TB2:S18685?x-access-code=bf7e98f7d030be83c7c2d1116c7faf0e&format=html)

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 20 of 23

http://purl.org/phylo/treebase/phylows/study/TB2:S18685?x-access-code=bf7e98f7d030be83c7c2d1116c7faf0e&format=html

intermediate states of such rearrangements. The gener-
ated scenario includes only a small number of such
events.

Conclusions
A high-level model of chromosome structure was
proposed together with computer programs that allow
its efficient utilization. A database of protein families
encoded in rhodophytic plasmids was generated (available
at http://lab6.iitp.ru/ppc/redline67/). The scenarios of
chromosome rearrangements were deduced in rhodo-
phytic plastids and sporozoan mitochondria. The sce-
narios, in particular, demonstrate the similarity of
chromosome structures in sporozoan apicoplasts and
rhodophytic plastids, which agrees with the previ-
ously proposed common origin of expression regula-
tion in a few genes from these species, including the
common pattern of translation initiation regulation
for genes coding for DNA-directed RNA polymerase
beta chain and the protein SufB involved in iron-sul-
fur cluster formation. The similarity of chromosome
structures is observed in rhodophytic and cryptophytic
plastids. On the other hand, our results indicate an early
and independent segregation of diatom and haptophyte
plastids.
Chromosome structures in plastids of the rhodophyte

alga Porphyridium purpureum and the photosynthetic
alveolate alga Chromera velia deviate considerably from
those in their relatives. In such cases, chromosomes can-
not be used to infer phylogenetic relationships but can

provide comparative information for understanding the
role of chromosome rearrangement in gene expression
regulation. Such analysis was published for plastids of
higher plants [41].
Chromosome rearrangements can considerably affect

patterns of gene expression, particularly due to competi-
tion between RNA polymerases [42]. In chromosomes with
labile structures, transcription terminators are naturally
expected to occur between genes, and gene expression
is largely regulated at the translation level, which was
described for many plastids e.g., [26].
The model and computer programs can be used to ex-

plore the evolution of chromosome structures in other
genomes.

Declarations
Availability of data and materials
The database of plastid and mitochondrial protein clusters
is available at http://lab6.iitp.ru/ppc/redline67/. The pro-
grams below were tested on several artificial sets of data,
which are available together with program distributives.

1) Chromo program:
Project name: Chromo
Project home page: http://lab6.iitp.ru/en/chromoggl/
Operating system: Windows 7
Programming language: C++
License: Freeware

2) ChromoReconstruction program:
Project name: ChromoReconstruction

Fig. 7 a Evolutionary scenario of chromosome structures along the small tree. The following events are shown on edges: −1, loss of one of two
paralogs of gene psbY; +1, emergence of a paralog of gene psbY; +R, emergence of an inverted repeat of a chromosome segment; I1, inversion
of a chromosome segment; T1, transversion of a chromosome segment; T2, translocation of a chromosome segment; I2, insertion of a chromosome
segment, and D – disappearance of a chromosome segment. The number of the events is given in parentheses when greater than 1. For the
reconstruction details, see Table S3a in Additional file 1, #3. b Evolutionary scenario of chromosome structures along the large tree. The following
events are shown on edges: −1, loss of gene psbY; −2, loss of one of two paralogs of gene rpoC2; +2, emergence of a paralog of gene rpoC2; +3,
emergence of a paralog of gene clpC; I1, inversion of a chromosome segment; T1, transversion of a chromosome segment; T2, translocation of a
chromosome segment; 2 F, fusion of two paralogs of gene rpoC2 into one large gene, and D, deletion of a chromosome segment. The number of
the events is given in parentheses when greater than 1. For the reconstruction details, see Table S3b in Additional file 1, #3

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 21 of 23

http://lab6.iitp.ru/ppc/redline67/
http://lab6.iitp.ru/ppc/redline67/
http://lab6.iitp.ru/en/chromoggl/

Project home page: http://lab6.iitp.ru/en/chromoggl/
Operating system: Windows 7
Programming language: Delphi
License: Freeware

Additional file

Additional file 1: #1 (Standard and extra operations allowed to
transform initial structures and the joint graph); #2 (Figurs to the
algorithm of transforming a joint graph into the final form: the case
of different operation weights and all operations.); #3 (Reconstruction
of chromosome structures in plastids of rhodophytic branch along
the tree of their evolution shown in Fig. 6, Tables S3a and S3b.).
(DOCX 679 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
VAL and KYG conceived all related algorithms and mathematical statements.
RAG programmed all algorithms and computed the data. AVS, KYG, and VAL
analyzed the computer output. VAL, KYG, and AVS wrote the manuscript.
They have read and approved the final manuscript.

Acknowledgements
We thank the Editors and anonymous reviewers for valuable comments
and recommendations.
The study was supported by the Russian Science Foundation
(project no. 14-50-00150).

Received: 14 August 2015 Accepted: 6 January 2016

References
1. Gorbunov KY, Gershgorin RA, Lyubetsky VA. Rearrangement and inference

of chromosome structures. Mol Biol (Mosk). 2015;49(3):327–38.
2. Ed K, Newman Alexandra M. Practical guidelines for solving difficult linear

programs. Surveys in Operations Research and Management Science.
2013;18(1–2):1–17.

3. Ed K, Newman Alexandra M. Practical guidelines for solving difficult mixed
integer linear programs. Surveys in Operations Research and Management
Science. 2013;18(1–2):18–32.

4. Schrijver A. Theory of linear and integer programming. New York:
Wiley; 1986.

5. Gorbunov KYu, Lyubetsky VA. Exact linear algorithms for structure
rearrangement. Problems of InformationTtransmission. 2015. in press.

6. Gorbunov KYu., Lyubetsky VA. Exact linear algorithms for the shortest
rearrangement of structures with different operation weights. Problems of
InformationTtransmission. 2015. in press.

7. Braga MDV, Willing E, Stoye J. Double cut and join with insertions and
deletions. J Comput Biol. 2011;18(9):1167–84.

8. da Silva PH, Machado R, Dantas S, Braga MDV. DCJ-indel and DCJ-
substitution distances with distinct operation costs. Algorithms Mol Biol.
2013;8:21.

9. Compeau PEC. DCJ-indel sorting revisited. Algorithms Mol Biol. 2013;8:6.
10. Compeau PEC. A generalized cost model for DCJ-indel sorting. Lect Notes

Comput Sci. 2014;8701:38–51.
11. Hilker R, Sickinger C, Pedersen C, Stoye J. UniMoG - a unifying framework

for genomic distance calculation and sorting based on DCJ. Bioinformatics.
2012;28:2509–11.

12. Rusin LY, Lyubetskaya EV, Gorbunov KY, Lyubetsky VA. Reconciliation of
gene and species trees. BioMed Res Int (Current Advances in Molecular
Phylogenetics). 2014;2014:Article ID 642089. doi:10.1155/2014/642089.

13. Gorbunov KY, Laikova ON, Rodionov DA, Gelfand MS, Lyubetsky VA.
Evolution of regulatory motifs of bacterial transcription factors. In Silico Biol.
2010;10:0012.

14. Lopatovskaya KV, Gorbunov KY, Rusin LY, Seliverstov AV, Lyubetsky VA.
The evolution of proline synthesis transcriptional regulation in

gammaproteobacteria. Mosc Univ Biol Sci Bull. 2010;65(4):211–2.
doi:10.3103/S0096392510040255.

15. Alon N, Chor B, Pardi F, Rapoport A. Approximate maximum parsimony and
ancestral maximum likelihood. IEEE/ACM Trans Comput Biol Bioinf. 2010;7:183–7.

16. Blanchette M, Kunisawa T, Sankoff D. Gene order breakpoint evidence in
animal mitochondrial phylogeny. J Mol Evol. 1999;49(2):193–203.

17. Chauve C, El-Mabrouk N, Tannier E. Models and Algorithms for Genome Evolution.
19 volume, Computational Biology, Springer; 2013. doi: 10.1007/978-1-4471-5298-9.

18. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic
permutations by translocation, inversion and block interchange.
Bioinformatics. 2005;21:3340–6.

19. Hannenhalli S, Pevzner PA. Transforming Men into Mice (Polynomial
Algorithm for Genomic Distance Problem). In FOCS IEEE Computer Society;
1995:581–592. doi: 10.1109/SFCS.1995.492588.

20. Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rearrangements.
Algorithms in Bioinformatics, LNCS. 2006;4175:163–73.

21. Kou L, Markowsky G, Berman L. A fast algorithm for Steiner trees. Acta
Inform. 1981;15:141–5.

22. Gershgorin RA, Gorbunov KY, Seliverstov AV, Lyubetsky VA. Evolution of
Chromosome Structures, “Information Technology and Systems 2015”
An IITP RAS Interdisciplinary Conference & School (ITaS’15), Sochi, Russia,
Sep 7–11 2015. 2015. p. 105–20.

23. Martinez FV, Feijão P, Braga MDV, Stoye J. On the family-free DCJ distance
and similarity. Algorithms Mol Biol. 2015;10:13. doi:10.1186/s13015-015-0041-9.

24. Zelikovsky A. An 11/ 6-approximation algorithm for the network Steiner
problem. Algorithmica. 1993;9:463–70.

25. Cheng X, Du D-Z, editors. Steiner Trees in Industry. Dordrecht: Kluwer
Academic Publishers; 2001.

26. Zverkov OA, Seliverstov AV, Lyubetsky VA. Plastid-encoded protein families
specific for narrow taxonomic groups of algae and protozoa. Mol Biol. 2012;
46(5):717–26. doi:10.1134/S0026893312050123.

27. Lyubetsky VA, Seliverstov AV, Zverkov OA. Elaboration of the homologous
plastid-encoded protein families that separate paralogs in magnoliophytes.
Mathematical Biology and Bioinformatics. 2013;8(1):225–33 (in Russian).

28. Lyubetsky VA, Seliverstov AV, Zverkov OA. Transcription regulation of plastid
genes involved in sulfate transport in Viridiplantae. BioMed Res Int. 2013;
2013:413450.

29. Zverkov OA, Seliverstov AV, Lyubetsky VA. A database of plastid protein
families from red algae and Apicomplexa and expression regulation of the
moeB gene. BioMed Res Int. 2015;2015:510598.

30. Wei L, Xin Y, Wang D, Jing X, Zhou Q, Su X, et al. Nannochloropsis plastid
and mitochondrial phylogenomes reveal organelle diversification
mechanism and intragenus phylotyping strategy in microalgae. BMC
Genomics. 2013;14:534.

31. Imanian B, Pombert JF, Keeling PJ. The complete plastid genomes of the
two ‘dinotoms’ Durinskia baltica and Kryptoperidinium foliaceum. PLoS
ONE. 2010;5(5):E10711.

32. Ong HC, Wilhelm SW, Gobler CJ, Bullerjahn G, Jacobs MA, McKay J,
et al. Analyses of the complete chloroplast genome sequences of
two members of the Pelagophyceae: Aureococcus anophagefferens
CCMP1984 and Aureoumbra lagunensis CCMP1507. J Phycol.
2010;46(3):602–15.

33. Cattolico RA, Jacobs MA, Zhou Y, Chang J, Duplessis M, Lybrand T, et al.
Chloroplast genome sequencing analysis of Heterosigma akashiwo
CCMP452 (West Atlantic) and NIES293 (West Pacific) strains. BMC
Genomics. 2009;9:211.

34. Wang X, Shao Z, Fu W, Yao J, Hu Q, Duan D. Chloroplast genome of one
brown seaweed, Saccharina japonica (Laminariales, Phaeophyta): its
structural features and phylogenetic analyses with other photosynthetic
plastids. Mar Genomics. 2013;10:1–9.

35. Le Corguille G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, et al.
Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus
vesiculosus: further insights on the evolution of red-algal derived plastids.
BMC Evol Biol. 2009;9:253.

36. Janouškovec J, Horak A, Obornik M, Lukes J, Keeling PJ. A common red
algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
Proc Natl Acad Sci U S A. 2010;107(24):10949–54.

37. Janouškovec J, Liu SL, Martone PT, Carre W, Leblanc C, Collen J, et al.
Evolution of red algal plastid genomes: ancient architectures, introns,
horizontal gene transfer, and taxonomic utility of plastid markers. PLoS ONE.
2013;8(3):E59001.

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 22 of 23

http://lab6.iitp.ru/en/chromoggl/
dx.doi.org/10.1186/s12859-016-0878-z
http://dx.doi.org/10.1155/2014/642089
http://dx.doi.org/10.3103/S0096392510040255
http://dx.doi.org/10.1007/978-1-4471-5298-9
http://dx.doi.org/10.1109/SFCS.1995.492588
http://dx.doi.org/10.1186/s13015-015-0041-9
http://dx.doi.org/10.1134/S0026893312050123

38. Sadovskaya TA, Seliverstov AV. Analysis of the 5′-leader regions of several
plastid genes in protozoa of the phylum apicomplexa and red algae. Mol
Biol. 2009;43(4):552–6. doi:10.1134/S0026893309040037.

39. Baurain D, Brinkmann H, Petersen J, Rodriguez-Ezpeleta N, Stechmann A,
Demoulin V, et al. Phylogenomic evidence for separate acquisition of
plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol.
2010;27(7):1698–709.

40. Garg A, Stein A, Zhao W, Dwivedi A, Frutos R, Cornillot E, et al. Sequence
and annotation of the apicoplast genome of the human pathogen babesia
microti. PLoS ONE. 2014;9(10):e107939.

41. Andreica A, Chira C. Best-order crossover in an evolutionary approach to
multi-mode resource-constrained project scheduling. International
Journal of Computer Information System and Industrial Management
Applications. 2014;6:364–72.

42. Andreica A, Chira C. Best-order crossover for permutation-based
evolutionary algorithms. Appl Intell. 2014;42(4):751–76. doi:10.1007/s10489-
014-0623-0.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Lyubetsky et al. BMC Bioinformatics (2016) 17:40 Page 23 of 23

http://dx.doi.org/10.1134/S0026893309040037
http://dx.doi.org/10.1007/s10489-014-0623-0
http://dx.doi.org/10.1007/s10489-014-0623-0

	Abstract
	Background
	Results
	Conclusions

	Background
	Calculation of the distance and shortest sequence between chromosome structures
	Reconstruction of chromosome structures
	Results of most relevant works

	Methods, results and discussion
	Exact linear algorithm calculating the distance between chromosome structures
	Definition of the model of chromosome structure

	Reduction of the problem of paralogs to linear programming
	Definition of the common graph and its final form
	Calculating the distance between structures
	Proof of the algorithm exactness
	Condition for the exactness of the algorithm and operation weight values
	Algorithm simulation example
	Algorithm for the reconstruction of chromosome structures with cubic complexity and sufficient approximation ratio
	Lemma
	Proof

	The first algorithm solving the reconstruction problem for structures without paralogs
	Calculation of the breakpoint and biological distances for structures with paralogs
	Calculation of biological distance with paths present
	Remark

	The second algorithm solving the reconstruction problem for structures without paralogs
	The case of paralogs
	Reconstruction of chromosome structures for mitochondria of sporozoans and plastids of rhodophytic branch
	Protein clustering algorithm and data
	Evolution and reconstruction of mitochondrial structures in sporozoans
	Evolution of chromosome structures in plastids of rhodophytic branch
	Reconstruction of chromosome structures in rhodophytic plastids along the tree of their evolution by the descent algorithm

	Conclusions
	Declarations
	Availability of data and materials

	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

