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Entomoparasitic nematodes are natural control agents for many insect pests, including fleas that transmit Yersinia pestis, a causative
agent of plague, in the natural foci of this extremely dangerous zoonosis. We examined the flea samples from the Volga-Ural natural
focus of plague for their infestation with nematodes. Among the six flea species feeding on different rodent hosts (Citellus pygmaeus,
Microtus socialis, and Allactaga major), the rate of infestation varied from 0 to 21%. The propagation rate of parasitic nematodes
in the haemocoel of infected fleas was very high; in some cases, we observed up to 1,000 juveniles per flea specimen. Our study
of morphology;, life cycle, and rDNA sequences of these parasites revealed that they belong to three distinct species differing in
the host specificity. On SSU and LSU rRNA phylogenies, these species representing three genera (Rubzovinema, Psyllotylenchus,
and Spilotylenchus), constitute a monophyletic group close to Allantonema and Parasitylenchus, the type genera of the families
Allantonematidae and Parasitylenchidae (Nematoda: Tylenchida). We discuss the SSU-ITSI1-5.8S-LSU rDNA phylogeny of the
Tylenchida with a special emphasis on the suborder Hexatylina.

1. Introduction Phylogenies obtained from SSU and partial LSU rDNA data
often disagree with classifications based on morphology and
life cycle [14-21]. Phylogenetic resolution inside the order is
far from being clear, which in many respects results from
the insufficiency of data available to adequately describe its
diversity. As for tylenchid parasites of fleas, only 31 species are
described to date [9, 22-31], with no molecular vouchering.
Here we present a study of parasitic nematodes isolated from

fleas sampled from different rodent hosts in a natural focus of

More than 150 species of fleas feeding on different mam-
malian hosts, primarily rodents, are vectors of the bacterium
Yersinia pestis, a causative agent of plague [1, 2]. In natural
foci of plague, the dynamics of flea populations are among
the main factors controlling the incidence of epizootics that
pose a threat to humans inhabiting the areas [3-5]. Ento-
moparasitic nematodes of the order Tylenchida are known to

control populations of various insect hosts [6-9]. The rate of
tylenchid infestation in fleas reaches 50-60% in some cases
(10, 11], when the nematodes cause castration and early death
of the flea hosts [9, 12, 13].

Despite high importance of the Tylenchida as a nema-
tode order harboring entomoparasites and notorious crop
pests, their reliable phylogeny is still a challenge. Tylenchid
nematodes differ widely in life cycle, parasitic strategies, and
the host range that spans plants, fungi, and invertebrates.

plague.

2. Materials and Methods

2.1. Collection of Samples. Samples were collected in 2012
(spring and autumn) and 2013 (spring) in the Volga-Ural nat-
ural focus of plague (Figure 1). The sampled rodents included
sousliks (Citellus pygmaeus), mouse-like rodents (Microtus
socialis and Apodemus uralensis), and jerboas (Allactaga
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FIGURE 1: The sampling region on the map of Europe.

major). Three flea species (Citellophilus tesquorum, Neopsylla
setosa, and Frontopsylla semura) were sampled on sousliks;
two species (Amphipsylla rossica and Ctenophthalmus secun-
dus) were on M. socialis voles; and one species (Mesopsylla
hebes) was on jerboas. Fleas were examined for nematode
infestation (Table 1). Examination and dissection of fleas were
carried out using the dissecting microscope MBS-2 (LOMO,
Russia). A half of parasitic nematodes sampled from each flea
was preserved for subsequent DNA extraction, and another
half was used for morphological analysis. Live fleas infected
with nematodes were placed in glass flasks with river sand
to obtain free-living forms. Insects were kept in a KBF 720
(E5.2) climate chamber (Binder, Germany) at 26°C and 80%
humidity.

2.2. Morphological Analysis. Fixation and clarification of
nematode preparations were performed using standard tech-
niques described by De Grisse [32]. Material was mounted
on slides in a drop of glycerin, bound by a paraffin circlet
(http://pest.cabweb.org). Color staining of preparations was
not performed. Morphometric analysis was conducted using
the light microscope “Leica DM 1000” (Leica, Germany)
with an eyepiece micrometer. Pictures of nematodes were
taken with the microscope “DFC 425” (Leica, Germany).
Published data on morphometrics [23, 25, 26] were used for
comparison.

2.3. DNA Extraction, PCR, and Sequencing. DNA samples
were extracted with a Diatom DNA Prep (IsoGen Lab,
Russia). rDNA fragments were amplified using an Encyclo
PCR kit (Evrogen, Russia) and primers given in Table 2.
The amplified rDNA fragments were sequenced using an
Applied Biosystems 3500xL DNA analyzer. Sequence reads
were assembled with the CAP contig assembly program [33]
and proofread with the BioEdit software [34]. For three
isolates, almost complete sequences of 18S and 28S rRNA and
complete sequences of 5.8 rRNA, internal transcribed spacers
ITSI and ITS2 were assembled. The sequences were submitted
to GenBank under accession nos. KF155281-KF155283. For
the rest of isolates, partial (750-800 bp) sequences of 18S and
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28S rRNA genes were submitted to GenBank under accession
nos. KF373731-KF373740.

2.4. Phylogenetic Analysis. The newly obtained rDNA se-
quences of tylenchid parasites of fleas were aligned with a
selected set of other tylenchid sequences obtained from the
GenBank. The main selection criterion was to sample repre-
sentatives of all clades that occur in published SSU and LSU
rDNA phylogenies of the Tylenchida [16-21, 39]. Apart from
the D2-D3 LSU rDNA expansion segment commonly used in
previous studies, we included all LSU rDNA sequence data
available for the Tylenchida, with the exception of Basiria
sp. SAN-2005 (accession nos. DQI145619, DQ145667) that
in our preliminary analyses (data not shown) demonstrated
a disputable affinity to the Tylenchida. For the species
Anguina tritici, Globodera pallida, Heterodera glycines, Praty-
lenchus vulnus, and Radopholus similes the nearly complete
rDNA sequences were assembled with appropriate cDNA
fragments identified with BLAST [40]. Partial LSU rDNA
sequence of Ditylenchus dipsaci was combined with the
soil environmental clone NTS_28S_061A_2_b4 (accession no.
KC558346), as the clone sequence appeared to represent a
close tylenchid relative of D. dipsaci. Chimeric sequences
were also created in some cases when closely related partial
rDNA sequences were found in the database. All sequences
and their accession numbers are listed in Table 3. Cephalo-
bidae and Chambersiellidae were chosen as the outgroup.
Alignments were constructed with the MUSCLE program
[41] and refined manually using the MEGA 5.0 software
package [42]. Three alignments were generated: (1) SSU
rDNA, (2) D3 region of LSU rDNA, and (3) concatenated
rDNA data including SSU, LSU, 5.8S rDNA, and highly
conserved regions of ITSI. After discarding ambiguously
aligned positions, the alignments length was 1,723, 592,
and 4,930 positions, respectively. Bayesian reconstruction of
phylogeny was done with the PhyloBayes software, version
3.2 [43] under the GTR + CAT + DP model [44]. Eight
independent runs were performed with 4,000,000 cycles
each; the first 3,000,000 cycles were discarded. A consensus
tree with Bayesian posterior probabilities was constructed
for the remained tree sample. Bayesian reconstruction was
also performed using the MrBayes software [45] under the
GTR + G8 + I model [46] in two independent runs, each
with four Markov chains. The chains were run for 5,000,000
generations, with trees sampling every 1,000th generation.
The consensus posterior probabilities were calculated after
discarding the first 3,000,000 generations. Partitioning “by
genes” was used for the concatenated alignment with all
parameters unlinked, except for the topology and branch
lengths. In addition, node support was estimated with max-
imum likelihood bootstrap as implemented in the RAXML
software, version 7.2.6 [47], under the GTR + G + I model with
1,000 bootstrap replicates. Alternative topologies were tested
using the approximately unbiased (AU) [48] and Kishino and
Hasegawa [49] tests implemented in the CONSEL software
[50] and the expected likelihood weight test [51] imple-
mented in the TREE-PUZZLE software [52]. TREEVIEW
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TABLE 1: Number of fleas studied and the percentage of fleas infected with nematodes.

Time of Host rodent Flea species Number of Number of Percentage of infected
sampling species collected fleas infected fleas fleas
. Citellophilus tesquorum 41 7 17.1%
April 2012 Citellus Neopsylla set 73 5 6.8%
pygmaeus ylla setosa .8%
Frontopsylla semura 54 7 13%
October 2012 Microtus socialis Amphipsylla rossica 135 ? 6.7%
Ctenophthalmus secundus 88 1 1.1%
Citellus Citellophilus tesquorum 34 0 0
pygmacus Neopsylla setosa 271 22 8.1%
April 2013 Frontopsylla semura 19 4 21%
Microtus socialis Amphipsylla rossica 6 0 0
and Ap gdemus Ctenophthalmus secundus 52 0 0
uralensis
Allactaga major Mesopsylla hebes 34 2 5.9%
TaBLE 2: Nucleotide sequences of primers used in this study.
Primer Sequence Orientation References
Nik22 tmycygrttgatyctgyc F This study
A gtatctggttgatcctgecagt F [35]
Q5nemCh gccgegaayggctcattayaac F This study
GI8SU gcttgtctcaaagattaagec F [36]
Vesl8-d9 gtcgtaacaaggtatccgtaggtgaac F This study
RI8Tyll ggtccaagaatttcacctcte R [36]
B gtaggtgaacctgcagaaggatca R [35]
Q39nem gaaaccttgttacgacttttrcbygg R This study
58d1 rcatcgatgaagaacgywg F [37]
58r nem gcwgcgttcttcatcgacyc R This study
28d3 gtcttgaaacacggaccaagg F [37]
28d6 ggtyagtcgrtcctrag F [37]
D2A acaagtaccgtgagggaaagttg F (38]
28r4 gctatcctgagggaaacttcgg R [37]
28r2nem cggtacttgttcgctatcg R This study
28r7 agccaatccttwtcccgaagttac R [37]
28r12 ttctgacttagaggcegttcag R [37]
D3B tcggaaggaaccagctacta R (38]

[53] was used as the tree viewer and editor, and site-wise log-
likelihoods were computed with TREE-PUZZLE under the
GTR + G8 + I model with substitution matrix parameters
estimated by MrBayes.

3. Results

3.1. Infestation of Fleas with Nematodes. The infestation rate is
shown in Table 1 (in total, 807 flea specimens were studied).
Among the six flea species studied, the population size and
the percentage of infected fleas varied depending on the
season. Three flea species sampled on sousliks (Citellophilus
tesquorum, Neopsylla setosa, and Frontopsylla semura) exhib-
ited a stable population density. In the two species, N. setosa
and E semura, the infestation rate was moderate to high in the
spring seasons of 2012 and 2013. In C. tesquorum, no infected
fleas were detected in spring 2013, whereas in spring 2012 the

fleas were highly infested (171%). The vole flea Amphipsylla
rossica was abundant and moderately infested in autumn,
whereas being less abundant in spring, which may explain the
absence of infected fleas in the spring sample. Another vole
flea, Ctenophthalmus secundus, exhibited a consistently high
population density and low infestation rate in both spring and
autumn samples.

Adult parasitic females and their progeny were found
in the haemocoel of infected fleas. In the infected fleas C.
tesquorum, A. rossica, C. secundus, and Mesopsylla hebes,
only one generation of parasitic females was observed. Their
amount in a flea specimen is determined by the number
of free-living infective females that penetrate into the flea
larva. We observed 1 to 2 or 1 to 4 adult parasitic females
per flea specimen in spring and autumn, respectively. An
additional parthenogenetic generation of parasitic females
was found in some fleas of N. setosa and F. semura, where
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FIGURE 2: Numerous juveniles of Rubzovinema sp. extracted from
the dissected body of a Citellophilus tesquorum flea.

up to 16 specimens per flea were observed. As in other ento-
moparasitic nematodes, the propagation rate depends on the
host age. Thus, in young fleas up to 10 juveniles was found
per flea specimen, whereas up to 1,000 juveniles of different
stages were contained in some old fleas (Figure 2). After
the 2nd molt the number of juveniles is maximal, and 3rd
stage juveniles massively migrate to the rectal section of the
flea intestine for exit to the environment. In some cases,
the observed infestation level was so high that nematodes
penetrated distal segments of the flea legs, from where they
have no way to the environment.

3.2. Morphological Analysis of Entomoparasitic Stages in Nem-
atode Isolates and Their Taxonomic Identification. Analysis
of morphology of entomoparasitic stages suggests that the
studied nematode isolates from three distinct groups. A single
generation of parasitic females was observed in the first two
groups and an additional parthenogenetic generation—in
the third group. According to morphometric data on adult
parasitic females (Tables 4-6), the first two groups belong to
the genera Rubzovinema or Spilotylenchus and the third group
to the genus Psyllotylenchus. Photographs of parasitic females
of Rubzovinema sp., Spilotylenchus sp., and Psyllotylenchus
sp. are depicted in Figure 3. Figure 4 shows their distribution
among flea samples studied.

According to morphometric evidence, parasitic females
and juveniles of the genera Rubzovinema and Spilotylenchus
are very similar. However, in the first two groups of isolates we
found characters bearing discriminative and identificational
value. In particular, the oesophageal glands in juveniles III of
the first group are poorly developed. This is a distinctive fea-
ture of the genus Rubzovinema, where males and females have
shortened oesophageal glands located close to the nerve ring.
In the second group of isolates, oesophageal glands are well
developed and elongated, which is characteristic of the genus
Spilotylenchus. In the first group, the stylet possesses a heavily
sclerotized distal spear with a length of approximately half the
total stylet length and has a stem with a weaker sclerotization
and widening to the base. This stylet structure is characteristic
of the genus Rubzovinema, and stylet length (18.5 (14-22) ym)
is in accordance with morphometrics given in the description
of this genus [26]. In the genus Spilotylenchus, the stylet
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varies in shape but always possesses a shortened conical distal
spear. In the second group of isolates, the stylet structure
was similar to that of Spilotylenchus. Also, the vulval lips of
the first group are more protruded than in Spilotylenchus.
Other features, including the morphometrics, vary widely
in both genera, which hampers taxonomic identification.
Nevertheless, based on distinctive traits, we identified the
first and second group of isolates as Rubzovinema sp. and
Spilotylenchus sp., respectively.

In the genus Rubzovinema, the single species described to
date is Rubzovinema ceratophylla [26]. This species is known
to parasitize exclusively the flea Citellophilus tesquorum that
feeds on sousliks. The specimens of Rubzovinema studied in
this work were isolated from five flea species, C. tesquorum,
Neopsylla setosa, Frontopsylla semura, Amphipsylla rossica,
and Ctenophthalmus secundus, of which the latter two were
sampled on mouse-like rodents. Also, the parasitic females
of Rubzovinema sp. differed from R. ceratophylla by mor-
phology; they have a shorter tail and more protruded vulval
lips. A morphometric comparison of Rubzovinema sp. and R.
ceratophylla is given in Table 4.

The parasitic females of Spilotylenchus sp. were isolated
from the flea Mesopsylla hebes associated with jerboas. The
females were not identified to the species level because of a
small number of available specimens and the lack of a free-
living stage. A morphometric comparison of Spilotylenchus
sp. and the morphologically closest species Spilotylenchus
maisonabei [23] is given in Table 5.

In the genus Psyllotylenchus, descriptions of most species
are fragmentary and incomplete, which precluded the species
identification of the Psyllotylenchus isolates from the fleas N.
setosa and E semura feeding on sousliks. A morphometric
comparison of Psyllotylenchus sp. and the type species of this
genus, Psyllotylenchus viviparous [25], is given in Table 6.

The 18S and 28S rDNA sequences of Rubzovinema sp.
specimens from A. rossica and C. secundus were 100% identi-
cal, which indicates that the isolates belong to the same
species. The sequences of Rubzovinema sp. ex C. tesquorum,
Rubzovinema sp. ex N. setosa, and Rubzovinema sp. ex F.
semura diverged from one another and from the gene sequen-
ces of Rubzovinema sp. ex A. rossica and Rubzovinema sp. ex
C. secundus by 0.4-0.7%, which corresponds to the levels of
intraspecific variation [14, 114-119]. The 18S and 28S rDNA
sequences of Psyllotylenchus sp. ex N. setosa and Psylloty-
lenchus sp. ex F. semura were 100% identical, indicating that
they belong to the same species. The 18S and 28S rDNA
sequences of Rubzovinema sp. and Psyllotylenchus sp. diverge
by 1.2% and 1.9%, respectively. Those of Spilotylenchus sp.
ex M. hebes were found to be more divergent. The degree
of divergence of the 18S rDNA sequence of Spilotylenchus
sp. ex M. hebes from those of either Rubzovinema sp. or
Psyllotylenchus sp. was 2.4%; the D3 expansion segment
of 28S rDNA diverged by 13.1% and 12.0%, respectively.
The observed divergence rate of rDNA sequences agrees
well with published evidence on entomoparasitic nematodes
[14, 114-118]. Thus, intraspecific divergence of 18S rDNA in
Deladenus siricidicola is 1% [120], of D2 and D3 expansion
segments in the phytoparasite Bursaphelenchus xylophilus is
from 0% to 0.6%, and the interspecific variation between the
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(c) (d)

FIGURE 3: Parasitic females of the studied nematode species. (a) Rubzovinema sp., heterogeneous female; (b) Spilotylenchus sp., heterogeneous
female; (c) Psillotylenchus sp., heterogeneous female of the first generation; (d) (c): Psillotylenchus sp., parthenogenetic female of the second
generation. Scale bar—200 ym.

TaBLE 4: Comparison of morphometrics in parasitic females of Rubzovinema sp. and Rubzovinema ceratophylla.

Character Rubzovinema sp. (this study) Rubzovinema ceratophylla [26]
N 29 27

L 1278,6 (840-1570) 1265,1 (810-1840)
D 120,8 (85-145) 1373 (62-200)
A 11,19 (7,9-16,1) 9,51 (6,4-16,8)
C 65,4 (31,4-100) 44,10 (10-86,4)
V% 96,4 (93,1-97,9) 95,44 (92-98,9)
Total length of stylet (St) 18,5 (14-22) 19,5 (18-21)
Length of distal edge of stylet 7,2 (5-8,7) —
Distance between anterior end and excretory pore (Ex) 20,7 (10-31) —
Distance between anterior end and nerve ring 61,2 (50-74,5)

Total length of tail (Cd) 21,9 (10-42) 26,35 (14-47,5)
Distance between vulva and tail end 46,1 (23-75) —
Distance between vulva and anus (V-A) 26,9 (13-40) —

All measurements are in gm and in the form mean (range).
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TaBLE 5: Comparison of morphometrics of parasitic females in Spilotylenchus sp. and Spilotylenchus maisonabei.

Characters Spilotylenchus sp. (this study) Spilotylenchus maisonabei [23]
N 2 6

L 1,600-1,840 1,244 (1,200-1,320)
D 155-160 125 (107-160)

A 10.3-11.5 10.3 (75-12)

C 167.3-177.8 84.4 (64.5-121)
V% 97.4-977 96.2 (95.8-96.5)
Total length of stylet (St) 9.5-9.8 9-10
Distance between anterior end and excretory pore 1.5-15.5 23.3 (20-28)
Distance between anterior end and nerve ring — 52-54

Total length of tail (Cd) 9-11 15.4 (10-19)
Distance between vulva and tail end 41.5-43 47 (42-52)
Distance between vulva and anus (V-A) 32-33 —

All measurements are in ym and in the form mean (range).

TABLE 6: Comparison of morphometrics of parasitic females in Psyllotylenchus sp. and Psyllotylenchus viviparous.

Psyllotylenchus sp. (this study)

Psyllotylenchus viviparous [25]

Character

Gamogenetic Parthenogenetic Gamogenetic Parthenogenetic
N 3 7 8 10
L 1,016.7 (900-1,100) 446 (420-500) 1,000 (840-1,480) 500 (360-840)
D 81.3 (79-84) 70 (60-80) 77 (62-115) 60 (54-100)
A 12.5 (11.1-13.3) 6.25 (5.6-7) — —
C 64.3 (60-68.2) 40.15 (37.1-43.5) — —
V% 95.1 (95-95.4) 93.3 (90-95.3) — —
Total length of stylet (St) 175 (17-18,5) 5.25 (4-6) 17 (15-20) 7 (5-8)
Length of the distal edge of stylet 8.6 (8-9) — — —
Distance between anterior end and excretory pore 26.5 (25-31.5) 17.5 (15-19.5) 23 (13-33) 22 (14-46)
Distance between anterior end and nerve ring — 51.7 (50-55) — —
Total length of tail (Cd) 15.8 (15-17) 11.1 (10.5-11.5) 25 (17-35) 9 (1-17)
Distance between vulva and tail end 48 (45-51) 30.5 (19.7-55) 56 (37-71) 52 (40-104)

Distance between vulva and anus (V-A) 30.8 (29-31.5)

13.5 (11.7-21.6)

All measurements are in ym and in the form mean (range).

phytoparasites B. xylophilus and Bursaphelenchus mucronatus
is from 1.7% to 3.7%. The spacers ITS1 and ITS2 are generally
more diverged; the intra- and interspecific variation for these
species is from 0 to 3.1% and 11.2 to 13.4%, respectively [121-
123].

Molecular vouchering is proved to efficiently complement
morphological species identification in nematodes [73, 122,
124-128]. Combining the rDNA and morphological data
confirms the species identity within each of the three studied
groups of isolates.

3.3. Phylogenetic Analysis. In phylogenetic analyses of rDNA
we used a dataset with extensive species and gene sam-
pling (SSU-ITS1-5.85-LSU) compared to earlier published
tylenchid phylogenies, most of which were based on SSU
rDNA or D2-D3 expansion segments [17, 19-21, 39, 129].
The SSU-ITSI1-5.8S-LSU rDNA tree topology (Figure5) is
highly similar to other published phylogenies of tylenchids.
In this tree, tylenchomorphs are represented by the sister

groups Aphelenchidae and Tylenchida. Most of the tylenchid
clades occur in published trees but often contradict classifi-
cations based on morphology, as it was also noted by other
authors [17, 19-21, 39, 129]. The three robust major branches
in the SSU-ITSI-5.8S-LSU rDNA tree (Bayesian posterior
probabilities of 0.99-1.0) are (1) the clade includes repre-
sentatives of the suborders Hoplolaimina, Criconematina,
and Tylenchina (excluding Anguinoidea); (2) the majority of
classic Anguinata; (3) the suborder Hexatylina. The studied
parasites of fleas form a monophyletic group (bootstrap
support of 100%) within the Hexatylina.

The nonredundant rDNA data on the Hexatylina in Gen-
Bank mostly represents the D2-D3 expansion segments of
LSU rDNA. To maximize species sampling of the Hexatylina,
we chose the D3 expansion segment as the molecular marker.
The phylogenetic tree with the Anguinoidea as an outgroup
is shown in Figure 6. In this tree, the suborder Hexatylina
consists of two well-supported clades, in accordance with
previously published D2-D3 rDNA phylogenies [19, 20, 39].
The clade of the studied flea parasites is placed within the
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FIGURE 4: Distribution of the studied nematode species among the
flea species studied, whose rodent hosts are given below. The vertical
axis shows the numbers of infected fleas.

largest branch of the Hexatylina, similarly to the result of the
concatenated rDNA analysis.

The three alternative relationships between the three
major branches of Tylenchida (Figure 5) are not discrim-
inated by the AU and Kishino and Hasegawa tests, and
only the basal position of the Hexatylina is rejected by the
expected-likelihood weights test (Table 7). All three tests do
not discriminate between the alternative placement of the
flea parasites as closest to the Allantonema, Parasitylenchus,
or Deladenus branches; however, its positioning outside
this grouping is not rejected only by a less conservative
Shimodaira-Hasegawa test [50].

4. Discussion

4.1. Ribosomal DNA Phylogeny of the Tylenchida and Relation-
ships within the Suborder Hexatylina. Phylogenetic analyses
of SSU [16, 17, 19, 39] and D2-D3 [20, 39] rDNA data using
various methods and species sampling generally agree on the
monophyly of most tylenchid clades and contradict classic
morphology based classifications. In the SSU-ITSI-5.8S-LSU
tree (Figure5), the monophyletic Tylenchida consists of
three major robust clades. The first clade diverges into six
groups: (1) the “Tylenchidae (part 2)” (by [17]), (2) the
Tylodoridae (represented by the two genera, Cephalenchus
and Eutylenchus [83]), (3) Boleodorinae + “Tylenchidae
(part 1)” (by [Bert]), (4) the Merliniidae [130], (5) Cricone-
matina + Sphaeronematidae + selected Tylenchina, and (6)
Belonolaimidae + “Hoplolaimina” The Merliniidae group

BioMed Research International

corresponds to Clade C in [19] and includes partially the
polyphyletic “Telotylenchinae” [131], “Pratylenchidae’, and
“Hoplolaimina” (Psilenchus cf. hilarulus). Group (5) cor-
responds to Clade 12A in [129], where Sphaeronematidae
(Sphaeronema and Meloidoderita) were earlier shown to
be closely related to Criconematina [20, 89], and selected
Ecphyadophoridae + Ottolenchus + Malenchus were found
to represent a monophyletic clade within the paraphyletic
Tylenchina likely to be related to the Criconematina [18, 82].
Group (6) corresponds to Clade VII in [20], Clade 12B in
[129], and Clade A + Clade B in [19]. Belonolaimidae (the
genera Belonolaimus and Ibipora) tend to occupy the basal
position. Clade A in [19] contains a “long branch” of the
burrowing nematode Radopholus similes (“Pratylenchidae”)
in sister position to the Hoplolaimidae [17,19]. This nematode
occupies a similar position relative to the Hoplolaimidae in
the SSU-ITS1-5.8S-LSU tree, and we consider this unlikely to
be an LBA artefact. Similarly to [95], Carphodorus and Moru-
laimus that belong to the classic Belonolaimidae comprise the
basal branch of Clade A sensu [19]. The clade corresponding
to Clade B in [19] contains Meloidogynidae, Dolichodoridae,
paraphyletic Pratylenchidae, and a part of Telotylenchidae.

The second major clade of the Tylenchida includes rep-
resentatives of the classic infraorder Anguinata, with a well-
supported monophyletic origin, except for a few species. They
belong outside the second clade and may initially have been
wrongly identified.

The third major clade includes representatives of the
classic suborder Hexatylina and consists of two groups. The
smaller one unites the three species of Sphaerularia, Helion-
ema sp., cf. Hexatylus sp., Deladenus sp. PDL-2005, and Not-
hotylenchus acris (Anguinata: Nothotylenchidae). It is further
referred to as the Sphaerularioidea according to the type
genus. The larger group contains the clade of studied flea par-
asites and members of the superfamilies Iotonchioidea (Skar-
bilovinema spp., Parasitylenchus spp., and Wachekitylenchus
bovieni) and Sphaerularioidea (Allantonema mirable, Bra-
dynema spp., Howardula spp., and Contortylenchus sp. (fam.
Allantonematidae); Deladenus durus, Deladenus proximus,
Deladenus siricidicola, Fergusobia spp., and Gymnotylenchus
sp. (fam. Neotylenchidae)). One species of the Anguinata,
Sychnotylenchus sp., also joins the larger group. Our study
renders the genera Howardula and Deladenus paraphyletic,
as was earlier shown in [19, 39, 71, 119].

The genus Howardula is paraphyletic in published rDNA
and mitochondrial COI phylogenies [71]. Such charac-
ters of Howardula as the degeneration of oesophagus, tail
shape, and the absence of stylet in males seem to have
evolved independently by convergence. The paraphyletic
genus Deladenus is more closely related to either ancestral
forms of the Hexatylina or forms typical to the Anguinata.
The infraorder Anguinata includes soil-dwelling nematodes,
mostly mycetophagous or parasitizing various parts of plants.
However, an unidentified entomoparasitic nematode was
also grouped within the Anguinoidea [39]. The life cycle
of Deladenus spp. is an irregular alternation of free-living
and entomoparasitic forms. The nematode D. siricidicola
is able of producing an unlimited number of free-living
generations in the absence of the host larvae of siricid
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FIGURE 5: Phylogenetic tree of Tylenchida, inferred from SSU-ITSI1-5.8S-LSU rDNA sequences. Topology was inferred using the PhyloBayes
software (maxdiff = 0.36). Node support values are shown as follows: the first two values are Bayesian posterior probability assessed using
the PhyloBayes and MrBayes software, respectively, and the third is bootstrap support assessed by the ML method. Thick lines lead to the
nodes, in which at least one support value of posterior probability is 0.95 and higher. Names of clades (framed) are mainly given by type
genera included in them (with the exception of Iotonchioidea). Formal taxonomic position (family by [8]) is shown on the right to the color
bar. Colors indicate the ecologies (see the legend). Names of the species of Hexatylina that have a mycetophagous stage in their life cycle are
shown in blue. The three robust major branches of Tylenchida are marked by gradient.
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FIGURE 6: Phylogenetic tree of Hexatylina, inferred from D3 expansion segment of LSU rDNA. Topology was inferred using the PhyloBayes
software. Node support values are shown as follows: Bayesian posterior probability/bootstrap support assessed by the ML method. Thick lines
indicate the nodes supported at the level of 0.95 and higher. Color of lines indicates the ecologies (see the legend). Names of species were
shown in different colors indicating their taxonomic position. Three families that include their type genera (shown as circles) are marked by
gradient.
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TABLE 7: Results of tree topology tests for alternative hypotheses on (1) the initial divergence of Tylenchida (Figure 4) and on (2) the
relationships within the monophyletic branch that includes the studied group of nematodes parasitizing fleas (designated by asterisk).

Topology Rank obs au np bp PP kh sh c-ELW
(((H,An),T),0) 1 -18 0.787 0.415 0.402 0.804 0.663 0.969 0.4197
((An,(H,T)),0) 2 41 0.326 0.198 0.205 0.013 0.254 0.623 0.1848
((H,(An,T)),0) 3 6.9 0.061 0.013 0.014 0.001 0.101 0.492 0.0186
((((+,Al),P),Ds),0) 1 -1.8 0.787 0.415 0.402 0.804 0.663 0.969 0.4197
((((*,P),Al),Ds),0) 2 1.8 0.495 0.242 0.247 0.130 0.337 0.813 0.2249
(((*,(ALP)),Ds),0) 3 27 0.371 0.110 0.105 0.052 0.243 0.824 0.1209
((*,((ALP),Ds)),0) 6 15.7 0.063 0.024 0.025 le — 007 0.053 0.153 0.0272
(((x,Ds),(ALP)),0) 7 183 0.013 0.002 0.002 9e — 009 0.020 0.096 0.0028

Al: Allantonematidae, An: Anguinata, Ds: Deladenus siricidicola—D. proximus group, H: Hexatylina, P: Parasitylenchidae, T: Tylenchina, o: outgroup.

pine-killing wood wasps [132]. Like in Anguinata, the free-
living forms of Deladenus spp. are fungal feeding. Such
characters of Deladenus asthe mycetophagy, enlargement of
subventral glands in entomoparasitic females versus their
reduction in free-living forms, the hypertrophy of dorsal
glands, and stylet reduction in free-living forms seem to be
symplesiomorphic. Resemblance with the Anguinata is also
typical of other mycetophagous free-living forms: Hexatylus
(Neotylenchidae), Rubzovinema (Neotylenchidae), Prothal-
lonema (Sphaerularioidae) Helionema (Hexatylina dubia),
and Paurodontidae. For the latter, the entomoparasitic stage
is expected but has never been observed. The relationship
between the Hexatylina and Anguinata was earlier hypoth-
esized based on morphology (7, 8, 130, 133, 134]. On rDNA
phylogenies of tylenchids, the monophyly of the Hexatylina
+ Anguinata is either supported [19] or not rejected [20]. In
the SSU-ITS1-5.85-LSUrDNA tree obtained in this study, the
monophyly of the Hexatylina + Anguinata has the Bayesian
posterior probability of 0.91, but the maximum-likelihood
bootstrap support is low; the AU and Kishino and Hasegawa
tests did not discriminate between alternative hypotheses.
According to our SSU-ITS1-5.85-LSU rDNA phylogeny
(Figure 5), the major robust branches of the Tylenchida are
incongruent with morphology-based classifications suggest-
ing three rather than four suborders (the rank is adopted
from morphological systems of tylenchids). Among them, the
Hexatylina and Anguinata (both are monophyletic) are likely
to be sister groups. The third emerged suborder includes
representatives of three classic suborders: Tylenchina, Hoplo-
laimina, and Criconematina, among which only the latter
does not contradict morphology-based classifications.
Considering ecological traits coded in Figure 5, the myce-
tophagy and/or facultative ectophytoparasitism are likely to
be ancestral in the Tylenchida. Sedentary phytoparasites
(root-knot species of Meloidogyne, the false root-knot genus
Nacobbus, and cyst-forming Heterodera and Globodera) and
other obligate endoparasites of plants evolved several times
from free-living or facultative sedentary forms, as it was
previously hypothesized in accordance with the concept of
evolutionary trend to endoparasitism in phytonematodes
[135]. Similarly, obligate endoparasites of insects from the

Hexatylina are likely to have evolved from mycetophagous
forms, with some species retaining the ancestral mycetopha-
geous stage in the life cycle (e.g., species of the paraphyletic
genus Deladenus and flea nematodes of the genus Rubzov-
inema). An interesting specific case in the Hexatylina is the
genus Fergusobia that includes plant parasites associated with
insects [68, 70], which may have transited to plant parasitism
via entomoparasitism [39].

4.2. Ribosomal DNA Phylogeny of the Flea Nematodes and
Their Classification. The nematodes of fleas do not group
with the families known as their relatives in morphology-
based systems, as these families do not form monophyletic
groups in the tree. However, they do group with both type
genera of the families Parasitylenchidae and Allantonemati-
dae (Parasitylenchus and Allantonema, resp.). This grouping
is preceded by a successive divergence of Deladenus durus
and Deladenus siricidicola (Figure 5). As mentioned above,
the pronounced free-living form in Deladenus seems to be
ancestral to this group.

Only 31 tylenchid species that parasitize in fleas have been
described to date. They differ by morphology, life cycle, and
the host specificity, and belong to the five genera: Spiloty-
lenchus (8 species), Psyllotylenchus (20 species), Incurvinema
(1 species) Kurochkinitylenchus (1 species), and Rubzovinema
(1 species). According to the classification of Siddiqi [8],
the genera Spilotylenchus and Psyllotylenchus belong to the
family Parasitylenchidae, whereas the genus Rubzovinema is
a member of the Neotylenchidae. The two families repre-
sent two superfamilies, Iotonchioidea and Sphaerularioidea,
respectively. All rDNA phylogenies published to date suggest
that these superfamilies are paraphyletic [19, 20, 39], which is
also inferred in our study with an extensive gene and taxon
sampling.

A high degree of rDNA similarity in the three studied
species suggests a closer relationship of these species than
that assumed by the accepted system of classification. Earlier,
Slobodyanyuk proposed to unite all known flea parasites
into one family, the Spilotylenchidae. Its four subfamilies,
Spilotylenchinae, Rubzovinematinae, Psyllotylenchinae, and
Kurochkinitylenchinae, are discriminated based on the life
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cycle features [28]. In Spilotylenchinae and Rubzovinemati-
nae, the entomoparasitic stage is represented by parasitic
females of one heterosexual generation. In Psyllotylenchinae,
in addition to the heterosexual generation, a parthenogenetic
generation occurs in the flea haemocoel. In Kurochkinity-
lenchinae, two heterosexual generations exist in the haemo-
coel: the first generation produces parasitic females and the
second generation produces both females and males [28].
Siddiqi also considered the unification of all flea tylenchids
into one family but observed the need for further evidence in
support [8].

Our results strongly suggest the inclusion of the three
genera, Rubzovinema, Psyllotylenchus, and Spilotylenchus, in
one family, the Spilotylenchidae [28]. The ribosomal DNA
genetic distance within the family Spilotylenchidae is much
smaller than that of certain tylenchid genera, for example,
Meloidogyne (Figure 4) or Pratylenchus [19, 84].

4.3. Host Specificity of Flea Nematodes. The majority of
tylenchid nematodes are monoxenous or oligoxenous; in
particular, flea parasites were thought to be strictly host
specific. Earlier papers suggested the lack of strict host
specificity in Psyllotylenchus pawlowskyi and Psyllotylenchus
viviparous [13, 25]. However, later these species were found to
be heterogeneous and sustained revision [9, 27-29]. Spiloty-
lenchus pawlowskyi and Spilotylenchus caspius were referred
to as single-host parasites of the flea Coptopsylla lamellifer
[27, 136]. Kurochkinitylenchus laevicepsi and Spilotylenchus
ivashkini also share the same flea host, Nosopsyllus laeviceps
[28,29]. Before our study, the genus Rubzovinema was known
to contain a single species, Rubzovinema ceratophylla, which
parasitizes exclusively the flea Citellophilus tesquorum.

We found that at least two out of the three studied
species are not single-host parasites. Psyllotylenchus sp. was
shown to parasitize two flea species feeding on sousliks,
Frontopsylla semura and Neopsylla setosa. Rubzovinema sp.
was found on five flea species feeding on different rodent
hosts: C. tesquorum, E semura, N. setosa (all sampled from
sousliks), Ctenophtalamus secundus, and Amphipsylla rossica
(all sampled from voles). A. rossica, F. semura, and C. tesquo-
rum belong to different families of the superfamily Cerato-
phylloidea (Leptopsyllidae and Ceratophyllidae), whereas C.
secundus and N. setosa belong to the superfamily Hystri-
chopsylloidea. Unlike the host-specific R. ceratophylla, the
studied Rubzovinema sp. parasitizes taxonomically distant
fleas feeding on different rodents. Thus, the common opinion
that flea nematodes are strictly host specific should be
revisited.

As the two species of Rubzovinema demonstrate, even
closely related parasites may exhibit different host range
size. Among other known examples are the entomoparasitic
nematodes of the genus Howardula parasitizing various
beetles and flies [71, 137, 138], many phytonematodes [8],
sibling species of parasitoid flies [128], and herbivorous
insects [139]. The host range of parasites is an indicator
of their evolutionary strategy in the ecosystem. Multihost
parasites can be considered ecological generalists, in contrast
to specialists that coevolve with a particular host. Generalists
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and specialists play different roles in the ecosystem [140],
where they keep in balance, taking advantages and disadvan-
tages of the two strategies. The advantages of generalization
are yet to be explained by evolutionary biologists, whereas
advantages of specialization are obvious, and it is generally
accepted that evolution favors specialism [141, 142]. In the
flea parasites, this trend is demonstrated by a greater species
diversity of ecological specialists, the genera Spilotylenchus
and Psyllotylenchus.

Nevertheless, the generalist Rubzovinema sp. was most
abundant in the studied samples, which indicates that extend-
ing the host range may be evolutionarily successful. Besides
the need to combat the immune response of several hosts,
which is a requirement to widen the hosts range [143], the
free-living stage of Rubzovinema sp. is to adapt to diverse
microbioclimatic conditions of complex environments of
rodent habitats. Multihost parasites pay a cost of adapting
to alternative conditions [141, 144] compensated by stable
survival of the species. Considering the spatial and temporal
dynamics of flea populations feeding on a particular rodent
host (one or two flea species usually dominate over a sampling
season), multihost nematode parasites gain an advantage of
their relative independence of population waves of either flea
hosts or their rodent hosts. A higher infestation rate observed
for Rubzovinema sp., compared to the two other studied
species, may be an indicator of a greater ecological plasticity
of this multihost parasite.

4.4. Entomoparasitic Nematodes in Natural Foci of Plague. In
natural foci of plague, the epizootic dynamics are influenced
by numerous climatic and biotic factors. The spatial and
temporal population dynamics of the plague agent, Y. pestis,
affect the population dynamics of the flea vectors and their
mammalian hosts. Members of the transmission route of the
plague agent also closely interact with other living organisms.
For example, parasites of fleas that in turn feed on rodents
are hyperparasites that play the role of high-level control
agents on the ecosystem level, the role that entomoparasitic
nematodes share with the bacterial plague agent. High-
level control agents render the epidemiological state of a
natural focus of disease less predictable. On the one hand,
a lower density of the flea vector population reduces the
plaque transmission rate; on the other, its growth causes
an exponential decay of the host rodent population [145]
below its epidemiological threshold, above which there is a
threat of spillover of plague infection into human population
[145]. Hypothetically, nematode-induced decrease of flea
population is able to increase the number of rodents above
the threshold and thus trigger an epidemic. The dual effect
of high-level control agents is well exemplified by cases,
when during plague episodes the extermination of rodents
by humans causes the return of infection through stimulating
the migration of fleas, the plaque vectors [5].

The studied entomoparasitic nematodes possess high
potential as control agents of the flea vectors of plague
owing to their high propagation rate within the flea host
(Figure 2) and high infestation level (up to 21% observed in
this study and from 50 to 60%, as estimated by other authors
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(10, 11]). One of the studied nematode species, Rubzovinema
sp., is a multihost parasite. Host-specific parasites reach the
optimal level of pathogenicity by maintaining the trade-
off between pathogenicity and transmissibility. Adding of
a new host to a multihost system makes the model more
complicated [141]. The multihost parasite Rubzovinema sp.
is expected to exhibit different levels of pathogenicity with
respect to different flea hosts which, in turn, play different
roles in the transmission of plague. Epizootics cause sporadic
mortality in local populations of all members involved in
the interaction with the plague agent, and their survival is
contingent on migrations within a metapopulation. It is the
case when the Cope’s law [139, 146] governs the extinction
of specialists on a shorter time scale rather than a geological
period, and evolution may favor the ecological generalists,
such as Rubzovinema sp.

Some authors surmised the involvement of entomopara-
sitic nematodes in the transmission of the plague agent [4],
as it was observed that biofilms of Yersinia pestis adhere to
cuticle receptors of Caenorhabditis elegans [147-149]. In this
perspective, nematodes parasitizing fleas in natural foci of
plague take on greater importance, as they may provide for
the transmission route that does not include a mammal [4].
Further studies will clarify the role of flea nematodes in the
transmission of plague infection.
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