NEW FEATURES IN MATHPARTNER 2021

Malaschonok Gennadi and Seliverstov Alexandr
National University of Kyiv-Mohyla Academy, Kyiv, Ukraine
Institute for Information Transmission Problems of the RAS, Moscow, Russia

29 July 2021

CAM 2021
out :

К ДИСКУССИИ

MathPartner - это то, что должно прийти в школу вместе с
(1) Базой учебников,
(2) Базой самостоятельных и контрольных работ
(3) Кабинетами для Ученика, Учителя, Директора, Министра образования.
(4) ЕГЭ экзамен по математике и физике будет происходить интерактивно out :

PLAN

New functions:

(1) arithmetic-geometric mean
(2)geometric-harmonic mean
(3) modified arithmetic-geometric mean proposed by Semjon Adlaj
(4) Sylvester matrices of the first and the second kind

Today's list of matrix functions:

inverse, adjugate, conjugate, transpose,
generalized inverse,
pseudo inverse,
determinant, kernel, echelon form,
characteristic polynomial,
Bruhat decomposition, LDU decomposition,

Numerical matrix functions:

QR decomposition,
SVD decomposition,
out :
3.141592653589793238462643

SIX MEANS AND THE COMPLETE ELLIPTIC INTEGRALS

Given two non-negative numbers x and y, we can define their
(1) arithmetic: $\frac{x+y}{2}$,
(2) geometric: $\sqrt{x y}$,
(3) harmonic: $\frac{2 x y}{x+y}$ means.
(4) $\mathbf{A G M}(\mathbf{x}, \mathbf{y})$ denotes the arithmetic-geometric mean.

> (Johann Carl Friedrich Gauss at the end of the 18th century).
(5) $\mathbf{\operatorname { G H M }}(\mathbf{x}, \mathbf{y})$ denotes the geometric-harmonic mean.
(6) MAGM (x, y) denotes the modified arithmetic-geometric mean.
It is defined bySemjon Adlaj.

Every mean is a symmetric homogeneous function in their two variables x and y.
$\operatorname{AGM}(\mathbf{x}, \mathbf{y})$ is equal to the limit of both sequences x_{n} and y_{n}, where $x_{0}=x, y_{0}=y, x_{n+1}=\frac{1}{2}\left(x_{n}+y_{n}\right)$, and $y_{n+1}=\sqrt{x_{n} y_{n}}$.
$\operatorname{GHM}(x, y)$ is equal to the limit of both sequences x_{n} and y_{n}, where $x_{0}=x, y_{0}=y, x_{n+1}=\sqrt{x_{n} y_{n}}$, and $y_{n+1}=\frac{2 x_{n} y_{n}}{x_{n}+y_{n}}$. Note that $\operatorname{AGM}(\mathbf{x}, \mathbf{y}) \operatorname{GHM}(\mathbf{x}, \mathbf{y})=\mathbf{x y}$.
$\operatorname{MAGM}(\mathbf{x}, \mathbf{y})$ is equal to the limit of the sequence x_{n}, where $x_{0}=x, y_{0}=y, z_{0}=0, x_{n+1}=\frac{x_{n}+y_{n}}{2}$, $y_{n+1}=z_{n}+\sqrt{\left(x_{n}-z_{n}\right)\left(y_{n}-z_{n}\right)}$, and $z_{n+1}=z_{n}-\sqrt{\left(x_{n}-z_{n}\right)\left(y_{n}-z_{n}\right)}$.

EXAMPLE:

$S P A C E=R 64[] ; F L O A T P O S=4 ;$
$a=\operatorname{AGM}(1,5) ; g=\mathbf{G H M}(1,5) ; m=\operatorname{MAGM}(1,5)$;
[a, g, m]
out :
[2.604, 1.9201, 2.6105]

Elliptic integrals

These means are applicable, in particular, to calculate the complete elliptic integrals of the first and second kind. Let us use the parameter $0 \leq k \leq 1$.

The complete elliptic integral of the first kind $K(k)$ is defined as

$$
K(k)=\int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}}
$$

It can be computed in terms of the arithmetic-geometric mean:

$$
K(k)=\frac{\pi}{2 \operatorname{AGM}\left(1, \sqrt{1-k^{2}}\right)}
$$

On the other hand, for $k<1$, it can be computed in terms of the geometric-harmonic mean:

$$
K(k)=\frac{\pi}{2} \mathbf{G H M}\left(1, \frac{1}{\sqrt{1-k^{2}}}\right)
$$

The complete elliptic integral of the second kind $E(k)$ is defined as

$$
E(k)=\int_{0}^{1} \sqrt{\frac{1-k^{2} t^{2}}{1-t^{2}}} d t
$$

It can be computed in terms of the modified arithmetic-geometric mean:

$$
E(k)=K(k) \mathbf{M A G M}\left(1,1-k^{2}\right)
$$

The circumference of an ellipse is equal to

$$
2 \pi \frac{\operatorname{MAGM}\left(a^{2}, b^{2}\right)}{\operatorname{AGM}(a, b)},
$$

where the semi-major and semi-minor axes are denoted a and b.
On the other hand, π can be expressed as

$$
\pi=\frac{(\operatorname{AGM}(1, \sqrt{2}))^{2}}{\operatorname{MAGM}(1,2)-1}
$$

So, to calculate π one can run the commands
$S P A C E=R[] ; F L O A T P O S=24 ;$
$w=\sqrt{(2) ;}$
$P i=\operatorname{AGM}(1, w)^{2} /(\operatorname{MAGM}(1,2)-1)$;
$p i=\operatorname{value}(\pi) ; \operatorname{print}(P, p i)$;
out :
$P=3.141592653589793238462643$
$p i=3.141592653589793238462643$

The period of the pendulum

Let a point mass be suspended from a pivot with a massless cord. The length of the pendulum is denoted by L. It swings under gravitational acceleration $g=9.80665 \mathrm{~m} / \mathrm{s}^{2}$. The maximum angle that the pendulum swings away from the vertical, called the amplitude, is denoted by θ_{0}.

One can find the period T of the pendulum using the arithmetic-geometric mean

$$
T=\frac{2 \pi}{\operatorname{AGM}\left(1, \cos \left(\theta_{0} / 2\right)\right)} \sqrt{\frac{L}{g}}
$$

If $L=1 \mathrm{~m}$ and $\theta_{0}=120^{\circ}$, then $T=2.7546 \mathrm{~s}$.
To calculate the period one can run the commands
$S P A C E=R 64[] ; F L O A T P O S=4 ; L=1 ; g=9.80665$;
value $(2 \cdot \pi \cdot \sqrt{L / g} / \operatorname{AGM}(1,0.5))$
out :

THE SYLVESTER MATRICES, THE RESULTANT, AND THE DISCRIMINANT

Let us consider two univariate polynomials

$$
f(x)=f_{n} x^{n}+\ldots+f_{1} x+f_{0}, \quad g(x)=g_{m} x^{m}+\ldots+g+1 x+g_{0},
$$

where $\operatorname{deg}(f)=n, \operatorname{deg}(g)=m$, and $m \leq n$ hold. James Joseph Sylvester introduced two matrices associated to $f(x)$ and $g(x)$. More precisely, there are two different Sylvester matrices associated with two univariate polynomials. Let us denote

The Sylvester matrix of the first kind was introduced in 1840. It is the $(n+m) \times(n+m)$ matrix.
Its determinant is called the resultant of f and g.
For example, if $f=x^{3}+p x+q$ and $g=3 x^{2}+p$, then the Sylvester matrix of the first kind is equal to

$$
\left(\begin{array}{lllll}
1 & 0 & p & q & 0 \\
0 & 1 & 0 & p & q \\
3 & 0 & p & 0 & 0 \\
0 & 3 & 0 & p & 0 \\
0 & 0 & 3 & 0 & p
\end{array}\right)
$$

and its determinant equals $4 p^{3}+27 q^{2}$, i.e., it is the opposite of the discriminant of f.
The Sylvester matrix of the second kind was introduced in 1853 as an improvement of the Sturm theory. It is the $(2 n) \times(2 n)$ matrix, where $n \geq m$. The first and the second rows are

$$
\left(\begin{array}{ccccccccc}
f_{n} & \ldots & f_{m+1} & f_{m} & \ldots & f_{0} & 0 & \ldots & 0 \\
0 & \ldots & 0 & g_{m} & \ldots & g_{0} & 0 & \ldots & 0
\end{array}\right)
$$

The next pair is the first pair, shifted one column to the right; the first elements in the two rows are zero. The remaining rows are obtained the same way as above.

For example, if $f=x^{3}+p x+q$ and $g=3 x^{2}+p$, then the Sylvester matrix of the second kind is equal to

$$
\left(\begin{array}{llllll}
1 & 0 & p & q & 0 & 0 \\
0 & 3 & 0 & p & 0 & 0 \\
0 & 1 & 0 & p & q & 0 \\
0 & 0 & 3 & 0 & p & 0 \\
0 & 0 & 1 & 0 & p & q \\
0 & 0 & 0 & 3 & 0 & p
\end{array}\right)
$$

The Sylvester matrix can be calculated in MathPartner \backslash sylvester $(f, g$, kind $)$, kind $=0$ or 1 .

The resultant of two univariate polynomials can be calculated as
\backslash resultant (f, g).
EXAMPLE:
$S P A C E=Z[a, b, c, x] ; f=a \cdot x^{2}+b \cdot x+c ; g=2 \cdot a \cdot x+b ;$
resultant (f, g);
out :
$4 c a^{2}-b^{2} a$
The discriminant of a univariate polynomial

$$
f(x)=f_{d} x^{d}+\ldots+f_{0}
$$

is equal to

$$
\operatorname{discriminant}(f)=\frac{(-1)^{d(d-1) / 2}}{f_{d}} \operatorname{resultant}(f, D(f))
$$

EXAMPLE
$S P A C E=Z[a, b, c, x]$;
$f=a \cdot x^{2}+b \cdot x+c ;$
discriminant (f);
out :
$-4 c a+b^{2}$

