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Abstract. A point is called binary if its coordinates are equal to either
zero or one. It is well known that it is hard to find a binary solution
to the system of linear equations whose coefficients are integers with
small absolute values. The aim of the article is to propose an effective
probabilistic reduction from the system to the unique equation when
there is a small difference between the number of binary solutions to
the first equation and the number of binary solutions to the system.
There exist nontrivial examples of linear equations with small positive
coefficients having a small number of binary solutions in high dimensions.
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1 Introduction

Let us consider a system of linear equations over integers. The problem of the
existence of a (0, 1)-solution to the system is NP -complete [1]. The (0, 1)-solution
is also referred to as either binary or Boolean one.

In case of the unique equation, one can either find some (0, 1)-solution or
prove the absence of such solutions, using dynamic programming [2–6]. More-
over, the number of (0, 1)-solutions to the linear equation over integers can be
computed in pseudopolynomial time [3]. On the other hand, the problem is to
solve the system that consists of the linear equation and the set of quadratic
equations x2

1 = x1,. . . , x2
n = xn. If there is no solution, then a direct proof of

the insolvability of the system by means of Hilbert’s Nullstellensatz requires to
produce polynomials of high degree [7]. All known methods for solving systems
of algebraic equations require at least exponential time in general case [8,9].
There exists a one-to-one correspondence between the (0, 1)-solutions and sin-
gular points of the effectively computed cubic hypersurface [10]. Some singular
points can be found by means of the method described in [11]. Another approach
to the problem is based on L-class enumeration algorithm [12].
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There is also the related optimization problem to find the maximum of the
linear functional on the set of (0, 1)-points satisfying a unique inequality. It
is called the knapsack problem. There are well known both fully polynomial
time approximation scheme and pseudopolynomial time algorithm for solving
the problem. The obstacle for solving the optimization problem is a large number
of values of the linear functional at different (0, 1)-points. If all coefficients are
small positive integers, then the linear functional is bounded. Thus, the set of
its values at (0, 1)-points is small. Howbeit, the NP -complete problem seems
insolvable in polynomial time. Moreover, the polynomial hierarchy is infinite
relative to a random oracle with probability one [13].

2 Preliminaries

The running time of the algorithm is the number of arithmetic operations (+, −,
and ×) as well as of verifications of two binary predicates = and < over integers.
The Õ notation suppresses a factor that is polylogarithmic in the input size. The
O∗ notation suppresses a factor that is polynomial in the input size.

The symbol x denotes the integer sequence (x1, . . . , xn). Both k and j are
integer so that k ≤ m and j ≤ n, where m is an integer.

The number of (0, 1)-solutions to the linear equation β + α1x1 + . . . + αnxn =
0 over integers is equal to the coefficient of the monomial t−β of the univariate
Laurent polynomial

F (t) =
n∏

j=1

(1 + tαj )

In case the j-th coefficient αj is negative, one can make the linear transformation
xj �→ 1−xj . Thus, without loss of generality, one can assume that all coefficients
αj are positive, that is, the Laurent polynomial F (t) is a polynomial.

Proposition 1 (Smolev [3]). The number of (0, 1)-solutions to the linear equa-
tion β + α1x1 + . . . + αnxn = 0 over integers can be computed in pseudopoly-
nomial time O(n3a), where a = maxj |αj |.

So, the counting problem seems to be as hard as the recognition problem, that
is, whether there exists a (0, 1)-solution to the linear equation. If all coefficients
αj are positive, the recognition problem coincides with the subset sum problem.

Remark 1. The subset sum problem can be solved in exponential time O∗(2n/2)
as well as in exponential space O∗(2n/2) according to [14]. On the other hand,
it can be solved in probabilistic time O∗(20.86n) and in polynomial space [15].

The running time of the algorithm solving the subset sum problem by means
of dynamic programming is bounded by O(n2a log2(na)), where a = maxj |αj |.
Furthermore, in case the coefficients αk are large, if the difference between
maxk αk and mink αk is bounded by a polynomial in n, then the subset sum
problem can be solved in polynomial time [3].
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There are some ways to improve the upper bound. In accordance with [5], in
case n < |β|, the problem can be solved in pseudopolynomial time Õ(

√
n|β|). In

accordance with [6], the problem can be solved by a probabilistic algorithm in
pseudopolynomial time O(n+ |β| log2 |β| log32(n/ε) log2 n) with error probability
at most ε. On the other hand, the subset sum problem can be solved in poly-
nomial space Õ(n2) and in pseudopolynomial time Õ(n3|β| log2 |β|) according
to [16]. There exists another space-efficient algorithm [17].

Let us consider linear forms α1x1+· · ·+αnxn over integers, where the greatest
common divisor GCD(α1, . . . , αn) = 1. The greatest coefficient that appears in
such linear forms vanishing on a set of n − 1 linearly independent (0, 1)-points
is at most 2−n(

√
n + 1)n+1. The upper bound is based on the inequality for

determinants [18]. It is almost tight [19,20]. So, the distribution of the number
of (0, 1)-solutions as a function in β is complicated [21].

Proposition 2 [1,22]. Given the system of m linear equations βk + αk1x1 +
· · ·+αknxn = 0 over integers. The set of (0, 1)-solutions to the system coincides
with the set of (0, 1)-solutions to the unique equation

m∑

k=1

γk

⎛

⎝βk +
n∑

j=1

αkjxj

⎞

⎠ = 0,

where integers γk = (an + b + 1)k−1, a = maxk,j |αkj |, and b = maxk |βk|.
Remark 2. On the other hand, in accordance with Proposition 1 as well as
Remark 1, if all coefficients of the unique linear equation belong to a small
segment near zero, then the equation can be solved by dynamic programming.
Therefore, it is important to look for the coefficients γk as small as possible.

Propositions 2 and 1 together provide an algorithm whose running time
is exponential in the number m. Let us compare the algorithm with what is
obtained as a result of elimination of m variables. In this case, the absolute val-
ues of the coefficients of the resulting linear equation can rapidly increase during
the process of elimination. This method allows to quickly find all (0, 1)-solutions
to the system only under the condition n − m = O(log2 n).

Proposition 3. There exists an algorithm that accepts the system of m indepen-
dent linear equations βk+αk1x1+· · ·+αknxn = 0 if and only if it has some (0, 1)-
solution. The running time of the algorithm is bounded by O(nm2 + nm2n−m).

Proof. Elimination of m variables produces a linear equation that depends on at
most n−m variables. Therefore, it suffices to go over all (0, 1)-points of (n−m)-
dimensional space and to verify for each of them whether it corresponds to the
(0, 1)-solution to the input system. ��

So, the most difficult case is when n ≈ 2m.
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Remark 3. If some linear equation of the system has small coefficients and a
small number of (0, 1)-solutions, then one can compute the list of all (0, 1)-
solutions to the equation by means of a binary search tree. Next, one can check
step by step whether a (0, 1)-solution from the list is the solution to the system.
But the task is more difficult, when there are sufficiently many (0, 1)-solutions
to each linear equation.

3 Main Results

Theorem 1. Given the positive number ε and the system of m ≥ 2 linear equa-
tions �k(x) = 0 over integers, where �k(x) = βk + αk1x1 + · · · + αknxn. Assume
the first linear equation has at most μ redundant (0, 1)-solutions, which do not
satisfy the system. If all random integers η2,. . . ,ηm are independent and uni-
formly distributed over the set from zero up to the number N = 
μ/ε�, then the
probability that each (0, 1)-solution to the linear equation

(Nm(an + b) + 1)�1(x) +
m∑

k=2

ηk�k(x) = 0

satisfies the system is at least 1 − ε, where a = maxk,j |αkj | and b = maxk |βk|.
Proof. If either the first equation has no (0, 1)-solution or each (0, 1)-solution to
the first equation satisfies the whole system, then the desired result is obvious.
Else let us define a subset of the set of all (0, 1)-points

S = {x ∈ {0, 1}n : �1(x) = 0 ∧ (∃k ≤ m)�k(x) �= 0}.

The cardinality of the set S is at most μ. Let us define the polynomial

f(y2, . . . , ym) =
∏

x∈S

(
m∑

k=2

�k(x)yk

)

In particular, if the set S is empty, then one can set f = 1. If a sequence γ2,. . . ,γm

increases sufficiently fast, then f(γ2, . . . , γm) does not vanish, consequently, the
polynomial f does not vanish identically. Note that deg f ≤ μ.

Let random integers ηk be independent and each ηk is uniformly distributed
over the set {0, . . . , N}. In accordance with the Schwartz–Zippel lemma [23], the
probability of vanishing f(η2, . . . , ηm) is at most ε.

In case f(η2, . . . , ηm) �= 0, to prove that the system has no redundant (0, 1)-
solution, it is sufficient to prove that there exists no redundant (0, 1)-solution to
the following system of two linear equations

{
�1(x) = 0

η2�2(x) + · · · + ηm�m(x) = 0
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In turn, a (0, 1)-point is the solution to the system if and only if it satisfies the
unique linear equation

(Nm(an + b) + 1)�1(x) +
m∑

k=2

ηk�k(x) = 0.

In particular, if μ = 0, then the equation coincides with the first equation. ��
Remark 4. The number N can be replaced by another large number. So, without
loss of generality one can assume N = 2ν − 1, where ν is integer. In this case,
random numbers can be identified with sequences of independent random bits.
There exist other methods for calculating random variables by coin tossing,
cf. [24].

Remark 5. Of course, instead of the first equation one can use the sum h(x) of
both the first equation and a linear combination of all other equations having
small coefficients. But this h(x) must be explicitly defined.

Next, let us consider a Las Vegas algorithm what uses random integers while
it is running, but always either returns the correct answer or never halts.

Theorem 2. There exists a zero-error probabilistic algorithm such that for each
integer μ ≥ 0 and for each system of m ≥ 2 linear equations �k(x) = 0 over
integers, where �k(x) = βk +αk1x1 + · · ·+αknxn, if the first linear equation has
at most μ redundant (0, 1)-solutions, which do not satisfy the system, then the
algorithm returns the linear equation h(x) = 0 over integers, where

h(x) = (2μm(an + b) + 1)�1(x) + γ2�2(x) + · · · + γm�m(x)
a = maxk,j |αkj |
b = maxk |βk|

(∀k)γk ≤ 2μ

so that each (0, 1)-solution to the equation h(x) = 0 is the solution to the system.
In the case, the running time of the algorithm is pseudopolynomial in expectation.
If the condition for μ is false, then the algorithm either returns an equation
h(x) = 0 or never halts.

Proof. Let η2,. . . , ηm be independent random integers from zero to 2μ.
At first, the algorithm chooses these random integers, sets

h(x) = (2μm(an + b) + 1)�1(x) + η2�2(x) + · · · + ηm�m(x),

and computes the number λ0 of (0, 1)-solutions to the equation h(x) = 0 by
means of Proposition 1. For each 1 ≤ k ≤ m, it computes the number λk of
(0, 1)-solutions to the system of two equations h(x) = 0 and �k(x) = 0 by means
of Propositions 2 and 1.

If for all k the equation λ0 = λk holds, then the algorithm returns the current
equation h(x), where for all k the coefficients γk = ηk.
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Otherwise the algorithm repeats the same computation with new choice of
random integers η2,. . . , ηm.

If the number μ satisfies the condition, then the probability that the algo-
rithm returns a correct answer is at least 1

2 at each round according to Theorem 1.
The probability of there is no correct answer in a long series of repeats is small.
Thus, the expected running time is almost as small as the running time of one
round of the algorithm. ��
Theorem 3. Given the system of m linear equations �k(x) = 0 over integers,
where m > r > 0. Assume the subsystem of equations �1(x) = 0,. . . , �r(x) = 0
has at most μ redundant (0, 1)-solutions, which do not satisfy the system. There
exist integers γr+1,. . . , γm belonging to the segment from zero up to the integer μ
such that each (0, 1)-solution to the new system of linear equations �1(x) = 0,. . . ,
�r(x) = 0, and γr+1�r+1(x) + · · · + γm�m(x) = 0 satisfies the initial system.

Proof. If either the considered subsystem has no (0, 1)-solution or each (0, 1)-
solution to the subsystem satisfies the whole system, then the desired result is
obvious. Else let us define a subset of the set of all (0, 1)-points

S = {x ∈ {0, 1}n : �1(x) = 0 ∧ · · · ∧ �r(x) = 0 ∧ (∃k ≤ m)�k(x) �= 0}.

The cardinality of the set S is at most μ. Let us define the polynomial

f(yr+1, . . . , ym) =
∏

x∈S

(
m∑

k=r+1

�k(x)yk

)

In particular, if the set S is empty, then one can set f = 1. If a sequence
γr+1,. . . ,γm increases sufficiently fast, then f(γr+1, . . . , γm) does not vanish, con-
sequently, the polynomial f does not vanish identically. On the other hand, the
inequality deg f ≤ μ holds. In accordance with the Schwartz–Zippel lemma [23],
there exist desired integers γr+1,. . . , γm belonging to the segment from zero
up to the integer μ. ��

4 Discussion

In case a correct value for μ is known, either Theorems 1 or 2 together with
Proposition 1 provide the probabilistic algorithm to enumerate (0, 1)-solutions to
the system of linear equations over integers because each solution to the system
satisfies all linear combinations of the equations. The first algorithm halts in
one-sided error polynomial time. The second algorithm does not make errors.

If a (0, 1)-solution exists, then it can be found by binary search. Moreover,
all (0, 1)-solutions can be listed in this way. Any substitution for a variable by
either zero or one does not increase the number of solutions. Thus, the reduction
of dimension require at most 2n steps. If all coefficients αkj are nonnegative,
then the search of (0, 1)-solutions to the system can be improved by means of
new algorithms for the subset sum problem, which are listed in Remark 1.
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The algorithms can be useful for small both a and μ. The restriction on
both values a = maxk,j |αkj | and b = maxk |βk| is not crucial. The recognition
problem of the existence of a (0, 1)-solution to the system is NP -complete in case
a = 1 without any restriction on the number of solutions, that is, μ = 2n. The
reduction is obvious [1]. Thus, the linear system in n variables can be reduced to
the another linear system in O(n log2(ab)) variables such that new coefficients
have small absolute values. Furthermore, in case a is small, the running time of
the algorithms depends weakly on b because without loss of generality one can
assume the inequality b ≤ an holds. Otherwise the system has no (0, 1)-solution.
But the upper bound on the value μ is crucial.

If the first equation of the system has a small number of (0, 1)-solutions,
then μ can be chosen small too. But in the case, one can to check all these (0, 1)-
solutions by means of the deterministic algorithm. Nontrivial case is when each
equation has many (0, 1)-solutions, but there is a small difference between the
number of (0, 1)-solutions to the first equation and the number of (0, 1)-solutions
to the system.

There exist at most 2n−m binary solutions to the system of m linearly inde-
pendent linear equations in n variables. In accordance with Proposition 1, the
number λ1 of (0, 1)-solutions to the first equation can be found in pseudopoly-
nomial time. So, there is the lower bound on the value μ ≥ λ1 − 2n−m. Another
way to obtain the lower bound on the value μ is to compute the upper bound
on the dimension of the affine hull of (0, 1)-solutions to the first equation of the
system.

Note that μ can be a rough upper bound on the difference between the
total number of (0, 1)-solutions to the first equation and the number of (0, 1)-
solutions to the system. On the other hand, it is hard to compute this difference.
Otherwise, it would be easy to calculate the number of (0, 1)-solutions to the
system, that is, to solve the hard counting problem.

Of course, if all absolute values of the coefficients αj are small integers, then
there exists a number β such that the linear equation β +α1x1 + · · ·+αnxn = 0
has at least 2n/(1 + na) binary solutions, where a = maxj |αj |. Let us consider
examples of linear equations with small positive coefficients having a few (0, 1)-
solutions. In particular, if the first equation of the system coincides with one of
exemplified equations, then one can use a small value of μ.

Example 1. If all the coefficients αk are strictly positive, then there exists exactly
one (0, 1)-solution to the equation

n∑

j=1

αjxj =
n∑

j=1

αj ,

that is, (1, . . . , 1). Moreover, if the inequality α1 + · · · + αn−1 < αn holds, then
the equation

n∑

j=1

αjxj =
n−1∑

j=1

αj

has exactly one (0, 1)-solution, that is, (1, . . . , 1, 0).
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Example 2. If n = p+ q, where p �= q and both numbers p and q are prime, then
there exist exactly two (0, 1)-solutions to the equation

p∑

j=1

qxj +
p+q∑

j=p+1

pxj = pq.

These antipodal points are (1, . . . , 1, 0 . . . , 0) and (0, . . . , 0, 1, . . . , 1), where the
number of zeros is equal to either p or q. The equations x1 = x2 = · · · = xp hold
because

q

p∑

j=1

xj ≡ 0 (mod p).

The equations xp+1 = xp+2 = · · · = xn hold because

p

p+q∑

j=p+1

xj ≡ 0 (mod q).

The maximum of the linear form over the set {0, 1}n is equal to 2pq.

Example 3. If n = p + q + 1, where p �= q and both numbers p and q are prime,
then there are exactly three (0, 1)-solutions to the equation

p∑

j=1

qxj +
p+q∑

j=p+1

pxj + pqxn = pq.

These points are (1, . . . , 1, 0 . . . , 0, 0), (0, . . . , 0, 1, . . . , 1, 0), and (0, . . . , 0, 1). The
maximum of the linear form over the set {0, 1}n is equal to 3pq.

Example 4. If n = p + q + r, where p < q < r and the numbers p, q, and r are
prime, then there are exactly three (0, 1)-solutions to the equation

p∑

j=1

qrxj +
p+q∑

j=p+1

prxj +
p+q+r∑

j=p+q+1

pqxj = pqr.

The maximum of the linear form over the set {0, 1}n is equal to 3pqr.

In this way, one can construct other examples with arbitrary given number
of (0, 1)-solutions for almost all n. Linear transformations of coordinates of the
type xj �→ 1−xj allow constructing other examples with coefficients of different
signs.

The abundance of such examples allows to hope that the discussed algorithm
can find practical application, in particular, in bioinformatics and economics [25].

Theorem 3 provides an improvement of the Proposition 2. If there exists a
subsystem with a small number of redundant (0, 1)-solutions, which do not sat-
isfy the system, then one can reduce the number of equations without a consid-
erable increment of absolute values of its coefficients. Unfortunately, it requires
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guessing this subsystem. Assume the initial system has no (0, 1)-solution. At
first, it can be reduced to the new system according to Theorem 3. Next, it can
be reduced to the unique equation according to Proposition 2. At last, one can
count the number of (0, 1)-solution according to Proposition 1. So, this particular
instance of the coNP -complete problem can be solved by the non-deterministic
algorithm. Of course, if the hypothesis NP �= coNP holds, then the running
time of the algorithm must be sufficiently large in some cases.

The same result is also applicable to the case of (−1, 1)-solutions, that is,
solutions to the set partition problem.

Acknowledgements. The author would like to thank the anonymous reviewers for
useful comments.
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