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Non-uniformizable sets with countable cross-sections on a
given level of the projective hierarchy

by

Vladimir Kanovei and Vassily Lyubetsky (Moscow)

Abstract. We present a model of set theory in which, for a given n ≥ 2, there exists
a planar non-ROD-uniformizable lightface Π1

n set, all of whose vertical cross-sections are
countable sets and, more specifically, Vitali classes, while all planar boldface Σ1

n sets with
countable cross-sections are ∆1

n+1-uniformizable. Thus it is true in this model that the
ROD-uniformization principle for sets with countable cross-sections first fails precisely at
a given projective level.

1. Introduction. The uniformization problem was introduced into de-
scriptive set theory by Luzin in a short note [31] and in a more detailed
paper [32] (1). According to Luzin, a planar set Q in the real number plane
R × R is said to be uniform (or single-valued) if it intersects every vertical
straight line in at most one point. If Q ⊆ P ⊆ R × R for a uniform set Q
whose projection to the first axis is equal to that of P , then Luzin says that
the set Q uniformizes P . In other words, uniformizing a given planar set P
means choosing a point qx in every non-empty vertical cross-section Px of P ,
and then gathering all the chosen points qx, or more precisely, all the pairs of
the form 〈x, qx〉, into a single uniformizing set Q ⊆ P . According to Luzin,
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(1) These notes were not published among Luzin’s papers on descriptive set theory in
Volume II of his collected works [34]. However its main elements were considered, partially
translated, and analyzed in detail by V. A. Uspensky in [38]. In [31], Luzin gives a rather
long citation from Hadamard’s first letter in the well-known “Five letters” [10], which can
be understood to mean that Hadamard makes a distinction between a pure Zermelo-style
choice and a choice of elements in non-empty sets by means of a concrete effectively
defined function. This gave Luzin an occasion to connect the uniformization problem with
the name of Hadamard in the titles of [31, 32]. Uspensky argues in [38, Section 4] that
the role of Hadamard is definitely exaggerated here, while the priority with regard to the
uniformization problem and related notions belongs to Luzin himself.
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the uniformization problem consists in the question: is it possible or not to
define a point set E for which we cannot name any uniformizing set E′?
(The translation is quoted from [38, p. 120], the italic text by Luzin and
Uspensky.)

In modern set-theoretic terminology, there exist exact definitions for such
notions of “näıve” set theory as ‘to define’, ‘to name’, ‘to give an effective
construction’, and the like. The largest class of effectively defined sets is
usually assumed to be the class ROD of real-ordinal definable sets, which
consists of all sets definable by a formula with real numbers and ordinals
as parameters of the definition. The class ROD contains the subclass OD of
all ordinal-definable sets, namely, sets definable by a formula with ordinals
(but not reals) as parameters.

There are more special subclasses of ROD and OD, namely, projective
classes Σ1

n, Π1
n, and ∆1

n = Σ1
n ∩Π1

n, and resp. effective projective classes
Σ1
n, Π1

n, and ∆1
n = Σ1

n ∩Π1
n; here n ≥ 1. See [35], as well as [23], [25], [26],

[14], [17], for projective hierarchy. Recall that ∆1
1 = Borel sets, Σ1

1 = Suslin,
or A-sets, Π1

1 = co-Suslin, or CA-sets, at the level n = 1.
The following uniformization theorem is considered to be one the most

important results in classical descriptive set theory.

Theorem 1.1 (Novikov–Kondo–Addison). Every planar set in one of
the classes Π1

1, Π1
1 , Σ1

2, Σ1
2 can be uniformized by a set in the same class.

The key ingredient here was P. S. Novikov’s method (introduced in [33])
of effectively choosing a point in every non-empty Π1

1 set. Relying on this
method, Kondo [29] obtained the result for Π1

1. Addison [2, 3] transferred
it to the effective class Π1

1 . The results for classes Σ1
2, Σ

1
2 are obtained by

an elementary argument. For these and other theorems on uniformization
and related questions see references above, as well as [39, 36, 11, 5, 8, 7] for
modern studies; see also the introductory section of [21].

For Π1
2 and higher projective classes, similar uniformization theorems

are not available since there exist models of set theory in which certain
Π1

2 sets are not uniformizable not only by a projective set (of any class),
but even in general by a ROD set. The first such model was defined by
Levy in [30, Theorem 3], where the counterexample required is a Π1

2 set
P = {〈x, y〉 ∈ R2 : y /∈ L[x]}, which is not uniformizable by a ROD set in
the model. Recall that L[x] contains all sets Gödel constructible relative to x.

Note that every vertical cross-section Px = RrL[x] of the set P is either
empty (provided that R ⊆ L[x]), or uncountable, so that it can never be non-
empty finite or countable. (In the Solovay model [37] all cross-sections Px
are co-countable.) The problem of the existence of non-uniformizable Π1

2

sets with countable vertical cross-sections was solved in [19] by a model
containing such a set. Then a more precise result was obtained:
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Theorem 1.2 (proved in [21], equal to the case n = 2 in the next
Theorem 2.1). There exists a model of ZFC in which it is true that there
is a planar Π1

2 set W ⊆ R2, all of whose non-empty vertical cross-sections
Wx are Vitali classes (2), and which is not uniformizable by a ROD set.

The proof involves a forcing notion defined in the constructible uni-
verse L as an uncountable product of invariant versions of the Jensen mini-
mal forcing [13]. (See also [12, 28A] for Jensen’s forcing.) Some other results
obtained by this method include a countable Π1

2 set containing no defin-
able elements [27], a Vitali class with the same properties [18], and a Π1

2

Groszek–Laver pair of Vitali classes [18]. See [21, 2.6] for the interest in
Vitali classes in the context of these results.

2. The main results. In continuation of this research line, we prove
here the following theorem.

Theorem 2.1. Let n ≥ 3. There is a model of ZFC set theory in which
the following is true:

(i) there is a Π1
n set P ⊆ R×R such that all sections Px = {y : 〈x, y〉 ∈ P }

are Vitali classes, and P is not uniformizable by a ROD set;
(ii) if p ∈ R then every Σ1

n(p) set P ′ ⊆ R × R with countable vertical
sections, is uniformizable by a ∆1

n+1(p) set, hence, by a ROD set.

Following the modern style in descriptive set theory based on certain
technical advantages, we shall consider the Cantor discontinuum 2ω with a
special equivalence relation (3) E0 , instead of the real line R with the Vitali
equivalence relation, in the substantial part of the proof. Thus the following
theorem will be proved:

Theorem 2.2. Let n ≥ 3. There exists a model of ZFC in which the
following holds:

(i) there exists a Π1
n set W ⊆ 2ω × 2ω such that all vertical cross-sections

Wx = {y : 〈x, y〉 ∈ W } are E0 -classes, and W is not uniformizable by
a ROD set;

(ii) if p ∈ R then every Σ1
n(p) set W ′ ⊆ 2ω×2ω, all of whose sections W ′x =

{y : 〈x, y〉 ∈W ′} are countable sets, is uniformizable by a ∆1
n+1(p) set.

Theorem 2.2 implies Theorem 2.1. The transformation of a set W
as in 2.2(i) into a set P as in 2.1(i) is carried out by means of elementary
topological arguments, close to a similar transformation in [21, § 17], so

(2) A Vitali class is any set of the form x+ Q, i.e., a shift of the set Q of rationals.

(3) The relation E0 is defined on 2ω so that xE0 y iff the equality x(n) = y(n) holds
for all but finitely many n. If X,Y ⊆ 2ω then X ≡ E0 Y means that every element a ∈ X
is E0 -equivalent to some b ∈ Y , and vice versa. See more on this e.g. in [24, 25, 17].
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we skip this argument. The derivation of 2.1(ii) from 2.2(ii) is carried out
by means of an effective homeomorphism between the real line R and the
co-countable set X = {x ∈ 2ω : ∀m ∃ j ≥ m (x(j) = 0)}.

3. Structure of the paper. The proof of Theorem 2.2 is organized as
follows.

The notions related to perfect trees in the set of all dyadic strings 2<ω

are introduced in Sections 4 and 5. We consider a collection LT of all large
trees—essentially those on which the relation E0 does not admit a Borel
transversal. Every set P ⊆ LT closed under truncating trees at strings, and
E0 -invariant , i.e., invariant relative to that action of finite strings which
induces the relation E0 (Remark 4.1), is considered (Section 6) as a forcing
notion adding a P -generic real x ∈ 2ω. In fact, as P is E0 -invariant, an entire
E0 -equivalence class [x]E0 = {y ∈ 2ω : xE0 y} of generic reals is adjoined.

Then in Section 7 we define the set MT of all multitrees, equal to the
countable-support product LTω1 . We study multitrees (including the behav-
ior of continuous functions on multitrees) in Sections 8–11.

Arguing in the constructible universe L, we define a forcing notion for
Theorem 2.2 in Section 15 in the form of a countable-support product � =∏
ξ<ω1

P(ξ) ⊆ MT, where each factor P(ξ) ⊆ LT has the form of a union
P(ξ) =

⋃
ξ≤α<ω1

Pα(ξ), where all summands are countable E0 -invariant sets

Pα(ξ) ⊆ LT in L, pre-dense in P(ξ). �-generic extensions of L will be models
for Theorem 2.2. It turns out that each factor P(ξ) adjoins a P(ξ)-generic
real xξ, so that the whole extension is equal to L[〈xξ〉ξ<ω1 ]. The following is
the first key property of the forcing notion �:

(1) if ξ < ω1 then the set P(ξ) is E0 -invariant.

The next principal issue in the construction of forcing notions P(ξ) is
similar to the construction of Jensen’s forcing in [13] and in some other
cases. It consists in the definition of every “level” Pα(ξ) as generic in some
sense over the previous “levels” Pγ(ξ), γ < α. This involves a fairly complex
construction in Sections 12–14, based on the splitting technique for perfect
trees. This implies cardinal preservation (Lemma 16.3), continuous reading
of names (Lemma 17.4), as well as the following:

(2) for every index ξ < ω1, the set of all P(ξ)-generic reals in the extension
is equal to the E0 -class [xξ]E0 of the generic real xξ, and also is equal
to the intersection Yξ =

⋂
ξ≤α<ω1

⋃
T∈Pα(ξ)[T ].

Basically we need here only the equality [xξ]E0 = Yξ (Theorem 18.1). The
passage from a single generic real, as in Jensen, to an E0 -class of generic
reals is implied here by the E0 -invariance property as in (1). As a corollary,
the definability of the set W = {〈ξ, y〉 : ξ < ω1 ∧ y ∈ [xξ]E0 } (the base
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for a counterexample for 2.2(i)) in a �-generic extension follows from the
definability of the indexed set 〈Pα(ξ)〉ξ≤α<ω1 in L (Section 19).

Following this idea, we proved Theorem 1.2 in [21] (= case n = 2 in
Theorem 2.2). By the way, the ROD-non-uniformizability of W follows from
the E0 -invariance of each component of the forcing notion � by (1), both
in [21] and here. The main case n ≥ 3 in Theorem 2.2 differs from the
case n = 2 in that it is necessary to prove claim (ii) of the theorem in the
extension, while that claim immediately holds for n = 2 by Theorem 1.1.
We get 2.2(ii) via the following property true in �-generic extensions:

(3) if x ∈ 2ω and X ⊆ 2ω is a countable Σ1
n(x) set then X ⊆ L[x].

This property holds in Cohen and some other generic extensions even for
OD(x) sets X (see [20]). It also holds in MT-generic extensions of L, where
it is implied by the permutation invariance of the forcing notion MT = LTω1

and by a very special feature of those extensions, namely,

(4) if x, y ∈ 2ω in a MT-generic extension L[〈xξ〉ξ<ω1 ], and y /∈ L[x], then
there exists an ordinal ξ such that xξ ∈ L[y] but x ∈ L[〈xη〉η 6=ξ]

(compare to [16, Theorem 20] for the ω1-product of the Sacks forcing).
�-generic extensions satisfy (4) as well. (See Theorem 17.5, based on the
study of continuous functions, defined on multitrees, in Section 8.) Yet this
does not directly imply (3) since the forcing notion � =

∏
ξ P(ξ) is not

permutation-invariant as the components P(ξ) are pairwise different.

This leads to the following modification of the forcing construction. Gen-
erally, the construction of � can be viewed as the choice of a maximal chain
in a certain partially ordered set P of cardinality ℵ1 in L.

(5) We require that this maximal chain intersects all sets dense in P which
belong to the definability class Σ1

n−1. (See Theorem 15.4, item (ii) of
which contains a property more flexible than this straightforward gener-
icity, but also more difficult to formulate.)

Theorem 15.4 evaluates the definability of this construction. This leads to
the definability class Π1

n of the set W (see above) in suitable generic exten-
sions. In addition, the forcing notion � turns out to be enough “generic”
in MT, so that it intersects all sets of definability class Σ1

n−1, dense in MT
(Lemma 16.4). This implies a degree of “similarity” of �-generic and permu-
tation-invariant MT-generic extensions, up to the nth level of the projective
hierarchy. And further, by fairly complicated arguments in Sections 20–22
(which also make use of (4)), we obtain (3) in �-generic extensions, circum-
venting the above-mentioned problem of the permutation noninvariance of
� and leading to item (ii) of Theorem 2.2.
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4. Trees and large trees. Here and in the next section, we reproduce
some definitions and results from [9] related to perfect and large trees and
their transformations.

Strings. 2<ω is the set of all strings (finite sequences) of numbers 0, 1,
including the empty string Λ. If t ∈ 2<ω and i = 0, 1 then tai is the extension
of t by i as the rightmost term. If s, t ∈ 2<ω then s ⊆ t means that the
string t extends s (including the case s = t), while s ⊂ t means proper
extension. The length of s is lh(s), and 2n = {s ∈ 2<ω : lh(s) = n} (strings
of length n).

Action. Every string s ∈ 2<ω acts on 2ω so that if x ∈ 2ω then
(s · x)(k) = x(k) + s(k) (mod 2) for k < lh(s), and (s · x)(k) = x(k)
otherwise. If X ⊆ 2ω and s ∈ 2<ω then let s ·X = {s · x : x ∈ X}.

Remark 4.1. This action induces the relation E0 (footnote 3), so that
if x, y ∈ 2ω then xE0 y is equivalent to y = s·x for a string s ∈ 2<ω.

Similarly if s ∈ 2m, t ∈ 2n, m ≤ n then define a string s · t ∈ 2n so that
(s·t)(k) = t(k)+s(k) (mod 2) for k < m, and (s·t)(k) = t(k) for m ≤ k < n.
But if m > n then let s · t = (s�n) · t. In both cases, lh(s · t) = lh(t). If
T ⊆ 2<ω then we let s · T = {s · t : t ∈ T }.

Trees. A set T ⊆ 2<ω is a tree if for any strings s ⊂ t in 2<ω, t ∈ T
implies s ∈ T . If T ⊆ 2<ω is a tree and u ∈ T , then define a truncated
subtree T �u = {t ∈ T : u ⊆ t ∨ t ⊆ u} of T . Clearly if σ ∈ 2<ω then
σ · (T �u) = (σ · T )�σ·u. A non-empty tree T ⊆ 2<ω is perfect , in symbols
T ∈ PT, if it has no endnodes and no isolated branches. In this case, there
is a longest string s = stem(T ) ∈ T satisfying T = T � s (the stem of T );
then sa0 ∈ T and sa1 ∈ T . If T ∈ PT then the set [T ] = {a ∈ 2ω :
∀n (a�n ∈ T )} of all branches of T is a perfect set in 2ω.

Large trees. A tree T ∈ PT is large, T ∈ LT, if there exists a system
of strings qik = qik[T ] ∈ 2<ω, k < ω and i = 0, 1, such that

(1) lh(q0k) = lh(q1k) ≥ 1 and q0k(0) = 0, q1k(0) = 1 for all k;

(2) T consists of all strings of the form s = raqi00
aqi11

a · · · aqinn and their
substrings, where n < ω, r = stem(T ), ik = 0, 1 for all k.

It this case, the set [T ] consists of all infinite strings of the form
a = raqi00

aqi11
aqi22

a · · · ∈ 2ω, where ik = 0, 1 for all k. We let

spln(T ) = lh(r) + lh(qi00 ) + lh(qi11 ) + · · ·+ lh(q
in−1

n−1 )

(independent of the values of ik = 0, 1). In particular, spl0(T ) = lh(r).
Thus spl(T ) = {spln(T ) : n < ω} ⊆ ω is the set of all splitting levels of T .
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Remark 4.2. If T ∈ LT then the set [T ] is E0 -nonsmooth, that is,
there is no Borel map f : [T ] → 2ω satisfying xE0 y ⇔ f(x) = f(y) for all
x, y ∈ [T ]. Conversely, every E0 -nonsmooth Borel set X ⊆ 2ω contains a
subset of the form [T ], where T ∈ LT. See [6], [17, 10.9], [28, 7.1] on this
category of sets.

5. Splitting. The simple splitting of a tree T ∈ LT consists of subtrees
T (→i) = T � rai, i = 0, 1, where r = stem(T ), so that [T (→i)] = {x ∈ [T ] :

x(lh(r)) = i}. Then T (→i) ∈ LT, stem(T (→i)) = raqi0(T ), qjk(T (→i)) =

qjk+1(T ) for all k and j = 0, 1, and spl(T (→i)) = spl(T ) r {spl0(T )}.
Splittings can be iterated. We let T (→Λ) = T for the empty string Λ,

and if s ∈ 2n, s 6= Λ then we define

T (→s) = T (→s(0))(→s(1))(→s(2)) . . . (→s(n− 1)) ∈ LT.

Example 5.1. If s ∈ 2<ω then the tree T [s] = {t ∈ 2<ω : s ⊆ t ∨ t ⊂ s}
belongs to LT, stem(T [s]) = s, and qik(T [s]) = 〈i〉. In particular T [Λ] = 2<ω

and T [s] = (2<ω)(→s) = (2<ω)� s for all s.

Lemma 5.2. Let T ∈ LT. If s ∈ 2<ω then T (→s) = T �u[s], where

u[s] = u[s, T ] = stem(T (→s)) = stem(T )aq
s(0)
0

aq
s(1)
1

a · · · aqs(n−1)n−1 ∈ T .
Conversely, if u ∈ T then there is a string s = s[u] ∈ 2<ω such that
T �u = T (→s).

Proof. To prove the converse, we put s(k) = u(splk(T )) for all k such
that splk(T ) < lh(u).

Lemma 5.3. Let T ∈ LT, n < ω, h = spln(T ). Then:

(i) if u, v ∈ T ∩ 2h then T �u = (u·v)·(T � v);
(ii) if s, t ∈ 2n then T (→s) = σ ·(T (→t)), where σ = u[s, T ] · u[t, T ];
(iii) if u, v ∈ T ∩ 2j, j < ω, then T �u = σ ·(T � v) for some σ ∈ 2<ω.

Proof. To prove (ii) use Lemma 5.2. To prove (iii) take the least number
h ∈ spl(T ) with j ≤ h. There is a unique pair of strings u′, v′ ∈ 2h satisfying
u ⊆ u′, v ⊆ v′. Then T �u = T �u′ , T � v = T � v′ , and T �u′ = (u′ ·v′)·(T � v′).

Refinement. If R, T ∈ LT and n ∈ ω then define R ⊆n T (refinement)
if R(→s) ⊆ T (→s) for all s ∈ 2n; R ⊆0 T is equivalent to R ⊆ T . Clearly
R ⊆n+1 T implies R ⊆n T (and R ⊆ T ). Moreover, if n ≥ 1 then R ⊆n T
is equivalent to stem(R) = stem(T ), qik[R] = qik[T ] for all i = 0, 1 and
k < n− 1, and qin−1[T ] ⊆ qin−1[R] for all i = 0, 1.

Lemma 5.4. If T ∈ LT, s0 ∈ 2n, and U ∈ LT, U ⊆ T (→s0), then there
is a unique tree T ′ ∈ LT satisfying T ′ ⊆n T and T ′(→s0) = U . We have:

(i) T ′(→s) = u[s0, T ]·u[s, T ]·T ′(→s0) for all s ∈ 2n;
(ii) if [U ] is clopen in [T (→s0)] then [T ′] is clopen in [T ].
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Proof. If s ∈ 2n then T (→s) = u[s0, T ]·u[s, T ]·T (→s0) by Lemma 5.3.
Put Us = u[s0, T ]·u[s, T ]·U for all s ∈ 2n, in particular, Us0 = U . The tree
T ′ =

⋃
u∈2n Us is as required.

The next lemma is a more complex version of ⊆n-refinement. For the
proof see [9, Lemma 4.1(iv)].

Lemma 5.5. If T ∈ LT, s0, s1 ∈ 2n, and U, V ∈ LT, U ⊆ T (→s0
a0),

V ⊆ T (→s1
a1), and [U ] ≡E0 [V ] (see footnote 3 for ≡E0 ), then there exists

a tree T ′ ∈ LT satisfying T ′ ⊆n+1 T , T ′(→s0
a0) ⊆ U , T ′(→s1

a1) ⊆ V .

Lemma 5.6. Let · · · ⊆3 T2 ⊆2 T1 ⊆1 T0 be an infinite sequence of trees
in LT. Then T =

⋂
n Tn ∈ LT and T ⊆n+1 Tn for all n.

Proof. Note that spl(T ) = {spln(Tn) : n < ω}; this implies both
claims.

6. Large tree forcings

Definition 6.1. Let a LT-forcing be any set P ⊆ LT satisfying

(A) if u ∈ T ∈ P then T �u ∈ P , or equivalently, if T ∈ P and s ∈ 2<ω then
T (→s) ∈ P ;

(B) P is E0 -invariant , i.e., if T ∈ P and σ ∈ 2<ω then σ · T ∈ P .

If in addition 2<ω ∈ P then P is a regular LT-forcing.

Any LT-forcing P can be considered as a forcing notion (a set of forcing
conditions), ordered so that if T ⊆ T ′ then T is a stronger condition. Such
a forcing P adjoins a real x ∈ 2ω. That is, if a set G ⊆ P is P -generic over
a ground model M , then the intersection

⋂
T∈G[T ] contains a unique real

x = x[G] ∈ 2ω, and this real satisfies M [G] = M [x[G]] and G = {T ∈ P :
x ∈ [T ]}. Reals x[G] of this form are called P -generic.

Example 6.2. The set LT of all large trees is clearly a LT-forcing.
Another example of a LT-forcing is the countable set Pcoh = {T [s] : s ∈ 2<ω}
of all trees T [s] of Example 5.1, i.e. Cohen’s forcing . Finally, if ∅ 6= Q ⊆ LT
then

P = {σ · (T �u) : u ∈ T ∈ Q∧σ ∈ 2<ω} = {σ · (T (→s)) : T ∈ Q∧s, σ ∈ 2<ω}
is a LT-forcing by [21, Lemma 5.4].

A tree T ∈ LT is an n-collage over a LT-forcing P if T (→u) ∈ P for
all u ∈ 2n. Thus a 0-collage is just a tree in P , and every n-collage is an
n+ 1-collage as well.

Lemma 6.3. If T ∈ LT, P is a LT-forcing, u ∈ 2n, and T (→u) ∈ P ,
then T is an n-collage over P . In particular, under the assumptions of Lem-
ma 5.4, if U ∈ P then the tree T ′ obtained is an n-collage over P .
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Proof. If v ∈ 2n then T (→v) = τ ·T (→u) for a string τ ∈ 2<ω by
Lemma 5.3. Thus T (→v) ∈ P since T (→u) ∈ P .

If T ∈ LT and D ⊆ LT then T ⊆fin
⋃
D means that there is a finite set

D′ ⊆ D satisfying T ⊆
⋃
D′, or equivalently, [T ] ⊆

⋃
S∈D′ [S].

Definition 6.4 (extensions). Let P,Q ⊆ LT be LT-forcings. The forcing
Q is an extension of P , in symbols P < Q, if

(1) Q is dense in P ∪Q: if T ∈ P then ∃S ∈ Q (S ⊆ T );
(2) if S ∈ Q then S ⊆fin

⋃
P .

If M is any set, and, in addition to P < Q, S ⊆fin
⋃
D holds for all S ∈ Q

and all sets D ∈M, D ⊆ P , which are pre-dense (4) in P , then we say that
Q is an M-extension of P , written P <M Q.

Lemma 6.5.

(i) If Q ⊆ Q′ and S ⊆fin
⋃
Q for all S ∈ Q′ then Q < Q′;

(ii) if P <M Q < R (the second relation is <, not <M!) then P <M R;
(iii) if 〈Pα〉α<λ is an <-increasing sequence of LT-forcings and 0 ≤ µ < λ

then the set Pµ, is pre-dense in P =
⋃
α<λ Pα.

Proof. (ii) P < R is clear. Assume that a setD ∈M,D ⊆ P , is pre-dense
in P , and S ∈ R. Then S ⊆fin

⋃
Q (since Q < R), thus S ⊆ T1 ∪ · · · ∪ Tn,

where T1, . . . , Tn ∈ Q. Now Ti ⊆fin
⋃
D, i = 1, . . . , n, since P <M Q. It

follows that S ⊆fin
⋃
D holds as well.

(iii) Let S ∈ Pα. If α ≤ µ then T ∈ Pµ, T ⊆ S holds by 6.4(1). If µ < α
then S ⊆ T1∪· · ·∪Tn, where T1, . . . , Tn ∈ Pµ. Then S� t ⊆ Ti for some t ∈ S
and i. But S′ = S� t ∈ Pα.

7. Multitrees. Let a multitree be any function T : |T| → LT, where
|T| = domT ⊆ ω1 is at most countable and every value T(ξ), ξ ∈ |T|, is
a tree in LT. Let MT denote the set of all multitrees. If T ∈ MT then we
define a brick in (2ω)|T|,

[T] = {x ∈ (2ω)|T| : ∀ ξ ∈ |T| (x(ξ) ∈ [T(ξ)])}
= {x ∈ (2ω)|T| : ∀ ξ ∀m (x(ξ)�m ∈ T(ξ))},

naturally identified with the cartesian product
∏
ξ∈|T|[T(ξ)].

If B ⊆ ω1 is at most countable then let MTB = {T ∈MT : |T| = B}.
The set MT is ordered componentwise: T 6 S (T is a stronger multitree)

whenever |S| ⊆ |T| and T(ξ) ⊆ S(ξ) for all ξ ∈ |S|. Thus the ordering of
multitrees corresponds to componentwise inclusion. The weakest (the largest

(4) Pre-density means that every tree T ∈ P is compatible in P with some S ∈ D, i.e.
there is a tree R ∈ P satisfying R ⊆ T and R ⊆ S.
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in the sense of 6) condition in MT is the empty multitree Λ, satisfying
|Λ| = ∅.

It takes some effort to get right versions of definitions and results of
Section 5 in the context of multitrees.

Definition 7.1. If T ∈ MTB and C ⊆ B, then T�C ∈ MTC is the
ordinary restriction. But if B ⊆ C then a multitree T↑C ∈MTC is defined
by (T↑C)(ξ) = T(ξ) for ξ ∈ B, and (T↑C)(ξ) = 2<ω for ξ ∈ C rB.

Definition 7.2. If U is a multitree and D is a set of multitrees, then
U ⊆fin

∨
D means that there is a finite set D′ ⊆ D such that (1) |V| ⊆ C =

|U| for all V ∈ D′, and (2) [U] ⊆
⋃

V∈D′ [V↑C] (see Definition 7.1 for ↑ ).
If in addition (3) [V↑C] ∩ [V′↑C] = ∅ for all V 6= V′ in D′, then we write
U ⊆fd

∨
D.

Definition 7.3. Let B ⊆ ω1 be finite or countable. Fix a function

φ : ω
onto−−→ B that takes each value infinitely many times, so that if ξ ∈ B

then

φ−1(ξ) = {k : φ(k) = ξ} = {k0ξ < k1ξ < k2ξ < · · ·}
is an infinite set. Such a function will be called B-complete. If m < ω
then let νmξ be equal to the number of indices k < m, k ∈ φ−1(ξ). Then∑

ξ∈B νmξ = m, and νmξ > 0 holds for all ξ ∈ φ”m = {φ(k) : k < m}.
Let m < ω and σ ∈ 2m. If ξ ∈ φ”m then the set φ−1(ξ) cuts a substring

σ��ξ ∈ 2νmξ of length lh(σ��ξ) = νmξ off σ, defined by σ��ξ(j) = σ(kjξ) for all
j < νmξ. Thus the string σ ∈ 2m splits into a system of strings σ�� ξ ∈ 2νmξ

(ξ ∈ φ”m) of total length
∑

ξ∈φ”m νmξ = m.

If T ∈MTB then define a multitree T(⇒σ) ∈MTB so that T(⇒σ)(ξ) =
T(ξ)(→σ�� ξ) for all ξ ∈ B. In particular, if ξ ∈ Brφ”m then T(⇒σ)(ξ) =
T(ξ), where m = lh(σ), because lh(σ�� ξ) = νmξ = 0 holds for ξ /∈ φ”m.

If σ, τ ∈ 2m, m < ω, then put D[σ, τ ] = Br {φ(i) : i < m∧σ(i) 6= τ(i)}.
Let T,S ∈ MTB. Define T 6m S if T(ξ) ⊆νmξ S(ξ) for all ξ ∈ B. This

is equivalent to T(⇒σ) ⊆ S(⇒σ) for all σ ∈ 2n.

Lemma 7.4. In the notation of Definition 7.3, let T ∈MTB. Then:

(i) if σ ∈ 2<ω then T(⇒σ) ∈MTB and the set [T(⇒σ)] is clopen in [T];
(ii) if m < ω and σ, τ ∈ 2m then T(⇒σ)�D[σ, τ ] = T(⇒τ)�D[σ, τ ];
(iii) if x ∈ [T], and U is an open nbhd of x, then there exists a string

σ ∈ 2m satisfying x ∈ [T(⇒σ)] ⊆ U ;
(iv) if m < ω, σ ∈ 2m, and U ∈ MTB, U 6 T(⇒σ), then there exists a

unique multitree S ∈ MTB such that S 6m T and S(⇒σ) = U, and
then if [U] is clopen in [T(⇒σ)] then [S] is clopen in [T];

(v) if D is a set of multitrees and T ⊆fin
∨
D, then there is a string

σ ∈ 2<ω and a multitree S ∈ D such that T(⇒σ) 6 S.
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Proof. (i) is clear. (iii) We have {x} =
⋂
m[T(⇒a�m)] for a suitable

sequence a ∈ 2ω. By compactness, there is m such that T(⇒a�m) ⊆ U .
(iv) If ξ ∈ B then U(ξ) ⊆ T(⇒σ)(ξ) = T(ξ)(→s), where s = σ �� ξ. By

Lemma 5.4 there is a tree Sξ ∈ LT satisfying Sξ ⊆n T(ξ), where n = νmξ =
lh(s), and Sξ(→s) = U(ξ). Let S(ξ) = Sξ for all ξ.

(v) There is a multitree S ∈ D such that |S| ⊆ B = |T| and the inter-
section U = [T]∩ [S↑B] has a non-empty interior in [T]. It remains to refer
to (iii).

Lemma 7.5. In the notation of Definition 7.3, let · · · 63 T2 62 T1 61 T0

be a sequence of multitrees in MTB. Then the multitree T =
∧
n Tn, defined

by T(ξ) =
⋂
n Tn(ξ) for all ξ ∈ B, belongs to MTB and T 6n+1 Tn for

all n.

Proof. Apply Lemma 5.6 componentwise.

8. Continuous maps and reducibility. We consider here some de-
tails related to continuous maps defined on bricks coming from multitrees,
similar to some results obtained in [15, 16] in the context of perfect sets
and trees. Assume that a set B ⊆ ω1 is countable, T ∈ MTB, and maps
f, g : [T]→ ωω are continuous. We say that:

• f is reduced to C ⊆ B on [T] if f(x) = f(y) holds whenever x, y ∈ [T]
and x�C = y�C;
• f is reduced to g on [T] if f(x) = f(y) holds whenever x, y ∈ [T] and
g(x) = g(y);
• f captures α ∈ B on [T] if the co-ordinate map cα(x) = x(α) is reduced

to f , so that x(α) = y(α) holds whenever x, y ∈ [T] and f(x) = f(y).

Lemma 8.1. If T ∈ MT, C0, C1, . . . ⊆ B = |T|, f : [T] → ωω is contin-
uous and reduced to every Ck on [T], then f is reduced to

⋂
k Ck on [T].

Proof. For just two sets, if C = C0 ∩ C1 and x, y ∈ [T], x�C = y�C,
then, using the product structure, find a point z ∈ [T] with z�C0 = x�C0

and z�C1 = y�C1. Then f(x) = f(z) = f(y). The case of finitely many
sets follows by simple induction. As for the general case, we can assume
that C0 ⊇ C1 ⊇ C2 ⊇ · · · , by the above. Let C =

⋂
k Ck, x, y ∈ [T],

x�C = y�C. There is a sequence of points xk ∈ [T] satisfying xk�Ck = x�Ck
and xk� (B r Ck) = y� (B r Ck). Then immediately f(xk) = f(x) for all k.
On the other hand, clearly xk → y, hence f(xk)→ f(y) as f is continuous.
Thus f(x) = f(y).

Theorem 8.2.Let T ∈MTB where B ⊆ ω1 is at most countable, and let
f, g : [T]→ ωω be continuous. Then there is a multitree S ∈ MTB, S 6 T,
satisfying either (i) f is reduced to g on [S], or (ii) there is an ordinal η ∈ B
such that f captures η on [S] while g is reduced to B r {η} on [S].
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The co-ordinate map cη(x) = x(η) is obviously not reducible to Br{η}.
Thus the theorem essentially says that the non-reducibility of f to g is
detected via co-ordinate maps.

Proof. We argue in terms of Definition 7.3. The plan is to define a
sequence of multitrees as in Lemma 7.5, with some extra properties. Let
m < ω. A multitree R ∈MTB is m-good if R 6 T and in addition

(1)f if σ ∈ 2m then either f is reduced to Br{φ(m)} on [R(⇒σ)], or there
is no R′ ∈MTB, R′ 6 R(⇒σ), such that f is reduced to Br {φ(m)}
on [R′];

(1)g the same for g;
(2)f if σ, τ ∈ 2m, then either (i) f is reduced to D[σ, τ ] = B r {φ(i) :

i < m ∧ σ(i) 6= τ(i)} on [R(⇒σ)] ∪ [R(⇒τ)], or (ii) f ”[R(⇒σ)] ∩
f ”[R(⇒τ)] = ∅;

(2)g the same for g.

Lemma 8.3. If m < ω and a multitree R ∈ MTB, R 6 T, is m-good,
then there is an m+ 1-good multitree Q ∈MTB such that Q 6m+1 R.

Proof of Lemma. Consider a string σ′ ∈ 2m+1, and first define a multitree
S ∈ MTB, S 6m+1 R, satisfying (1)f relative to this string only. Let α =
φ(m+ 1). If there exists a multitree R′ ∈MTB, R′ 6 R(⇒σ′), such that f
is reduced to Br {α} on [R′] then let U be one. If there is no such R′ then
simply put U = R(⇒σ′). By Lemma 7.4(iv), there is a multitree S ∈MTB
such that S 6m+1 R and S(⇒σ′) = U. Thus the multitree S satisfies (1)f
with respect to σ′. Now we take S as the “new” multitree R, consider another
string σ′ ∈ 2m+1, and do the same. Treat all strings in 2m+1 consecutively,
with the same procedure. This ends with a multitree S ∈MTB, S 6m+1 R,
satisfying (1)f for all strings in 2m+1.

Now we take care of (2)f . Let η0 = φ(m) and B′ = B r {η0}.
Step 1. We fulfill (2)f for one particular pair σ′ = σa0, τ ′ = σa1, where

σ ∈ 2m. Then D[σ′, τ ′] = B′. The goal is to define a multitree Q ∈ MTB,
Q 6m+1 S, satisfying (2)f relative to this pair.

If f is reduced to B′ on [S(⇒σ)] then f is reduced to B′ on [S(⇒σ′)] ∪
[S(⇒τ ′)] ⊆ S(⇒σ), and we are done. Thus, by (1)f for S(⇒σ), we can
assume that there is no S′ ∈ MTB, S′ 6 S(⇒σ), such that f is reduced
to B′ on [S′].

In particular, f is not reduced to B′ on [S(⇒σ′)]. However S(⇒σ′)�B′ =
S(⇒τ ′)�B′ since B′ = D[σ′, τ ′] = Br {η0}. It follows that there are points
x0 ∈ [S(⇒σ′)] and y0 ∈ [S(⇒τ ′)] such that x0�B′ = y0�B′ and f(x0) 6=
f(y0), that is, f(x0)(k) = p 6= q = f(y0)(k) for some k and p, q = 0, 1, p 6= q.

As f is continuous, there are strings u, v ∈ 2<ω of equal length such that
σ′ ⊂ u, τ ′ ⊂ v, x0 ∈ X = [S(⇒u)], y0 ∈ Y = [S(⇒v)], and f(x)(k) = p,
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f(y)(k) = q for all x ∈ X, y ∈ Y . We are going to define a multitree
Q 6n+1 S such that [Q(⇒σ′)] ⊆ X and [Q(⇒τ ′)] ⊆ Y . Then f ”[Q(⇒σ′)]∩
f ”[Q(⇒τ ′)] = ∅ by construction, as required.

If η ∈ B then we let rη = σ�� η, sη = u�� η, tη = v�� η, νη = νmη = lh(rη),
and also, as usual, X(η) = {x(η) : x ∈ X}, Y (η) = {y(η) : y ∈ Y }.

Consider any index η 6= η0. Then x0(η) = y0(η) (as x0�B′ = y0�B′),
and then clearly rη ⊂ sη = tη. It follows that the tree Uη = S(η)(→sη)
belongs to LT and satisfies Uη ⊆ S(η)(→rη) and [Uη] = X(η) = Y (η).
By Lemma 5.4, there is a tree Qη ∈ LT satisfying Qη ⊆νη S(η) and
Qη(→rη) = Uη.

Now consider the index η0 itself. Let H = S(η0). The strings sη0 and tη0
are different (of the same length), but still satisfy rη0

a0 = σ′ �� η0 ⊆ sη0 ,
rη0
a1 = τ ′ �� η0 ⊆ tη0 . Then the trees Uη0 = H(→sη0) ⊆ H(→rη0

a0),
Vη0 = H(→tη0) ⊆ H(→rη0

a1) belong to LT and satisfy [Uη0 ] = X(η0),
[Vη0 ] = Y (η0). And moreover [Uη0 ] ≡E0 [Vη0 ] holds by Lemma 5.3(ii).
Lemma 5.5 yields a tree H ′ ∈ LT such that H ′ ⊆νη0+1 H, and H ′(→sa0)

⊆ Uη0 , H ′(→sa1) ⊆ Vη0 .

Now define a multitree Q such that Q(η0) = H ′ and Q(η) = Qη for all
η 6= η0. Then by construction Q 6m+1 S, Q(⇒σ′) ⊆ X, and Q(⇒τ ′) ⊆ Y ,
as required.

Step 2. Iterating the construction at Step 1, we obtain a multitree Q ∈
MTB, Q 6m+1 S, satisfying (2)f for all pairs σ′ = σa0, τ ′ = σa1 ∈ 2m+1,
where σ ∈ 2m.

Step 3. We claim that Q satisfies (2)f for all pairs σ′, τ ′ ∈ 2m+1 of any
form. Indeed, let σ′ = σai, τ ′ = τ aj be any pair in 2m+1, where σ, τ ∈ 2m

and i, j ∈ {0, 1}. By (2)f for the pair σ, τ , either f is reduced to U = D[σ, τ ]
on [Q(⇒σ)] ∪ [Q(⇒τ)], or f ”[Q(⇒σ)] ∩ f ”[Q(⇒τ)] = ∅. In the second
case, f ”[Q(⇒σ′)] ∩ f ”[Q(⇒τ ′)] = ∅. Thus we can assume that (†) f is
reduced to U on [Q(⇒σ)] ∪ [Q(⇒τ)]. Let U ′ = D[σ′, τ ′]. If i = j or η0 /∈ U
then U = U ′, so that (2)f relative to σ′, τ ′ follows from (2)f relative to
σ, τ . Thus we can also assume that σ′ = σa0, τ ′ = τ a1, and η0 ∈ U . Then
U ′ = U r {η0} = U ∩B′.

Because of the result at Step 2, we have two cases.

Case 3.1: f is reduced to B′ on [Q(⇒σ′)]∪ [Q(⇒σ′1)], where σ′1 = σa1.
We prove that f is reduced to U ′ on [Q(⇒σ′)] ∪ [Q(⇒τ ′)], so that (2)f (i)
holds for σ′, τ ′. Indeed, assume that x ∈ [Q(⇒σ′)], y ∈ [Q(⇒τ ′)], x�U ′ =
y�U ′. Let x′ ∈ (2ω)ω be defined so that x′�B′ = x�B′ but x′(η0) = y(η0).
Thus if η 6= η0 then x′(η) = x(η) ∈ [Q(⇒σ′)(η)] = [Q(⇒σ′1)(η)] (because
Q(⇒σ′)�B′ = Q(⇒σ′1)�B

′). While for η0 itself we have x′(η0) = y(η0) ∈
[Q(⇒τ ′)] = [Q(⇒σ′1)] (because now we have η0 ∈ U = D[τ ′, σ′1]). It follows
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that x′ ∈ [Q(⇒σ′1)]. Therefore, by the Case 3.1 hypothesis, we have f(x) =
f(x′). On the other hand, x′�U = y�U , therefore f(y) = f(x′) by the
assumption (†) above. Thus f(x) = f(y), as required.

Case 3.2: f ”[Q(⇒σ′)]∩f ”[Q(⇒σ′1)] = ∅. However f is reduced to U =
D[σ, τ ] on [Q(⇒σ)] ∪ [Q(⇒τ)] by the assumption (†) above, hence on the
smaller set [Q(⇒σ′1)] ∪ [Q(⇒τ ′)] as well, while Q(⇒σ′1)�U = Q(⇒τ ′)�U
(since U = D[σ′1, τ

′] = D[σ, τ ]). Now we conclude that f ”[Q(⇒σ′1)] =
f ”[Q(⇒τ ′)]. It follows that f ”[Q(⇒σ′)] ∩ f ”[Q(⇒τ ′)] = ∅, hence Q sat-
isfies (2)f (ii) for σ′, τ ′.

Conclusion. Thus indeed we have got a multitree Q ∈ MTB satisfying
Q 6m+1 S and (2)f for all σ′, τ ′ ∈ 2m+1 (and still satisfying (1)f ).

It remains to repeat the same procedure for g. Lemma

We come back to the proof of Theorem 8.2. Lemma 8.3 yields an infinite
sequence · · · 63 S2 62 S1 61 S0 = T of multitrees Sm ∈ MTB, such that
each Sm is a m-good. The limit multitree S =

∧
m Sm ∈ MTB satisfies

S 6m+1 Sm for all m by Lemma 7.5. Therefore S is m-good for every m,
hence we can freely use (1)f,g and (2)f,g in the following final argument.

Case 1: if m < ω, σ, τ ∈ 2m, and f ”[S(⇒σ)] ∩ f ”[S(⇒τ)] = ∅, then
g”[S(⇒σ)]∩ g”[S(⇒τ)] = ∅. We prove that f is reduced to g on [S] in this
case, as required by (i) of the theorem. Let x, y ∈ [S] and f(x) 6= f(y); we
show that g(x) 6= g(y). Pick a, b ∈ 2ω satisfying {x} =

⋂
m[S(⇒a�m)] and

{y} =
⋂
m[S(⇒b�m)]. As x 6= y, we have f ”[S(⇒a�m)]∩ f ”[S(⇒b�m)] =

∅ for some m by continuity and compactness. Then by the Case 1 assump-
tion, g”[S(⇒a�m)] ∩ g”[S(⇒b�m)] = ∅ holds, hence g(x) 6= g(y).

Case 2: not Case 1. Then there is a number m < ω and a pair of
strings σ′ = σai, τ ′ = τ ak ∈ 2m+1 such that f ”[S(⇒σ′)]∩f ”[S(⇒τ ′)] = ∅
but g”[S(⇒σ′)] ∩ g”[S(⇒τ ′)] 6= ∅, hence g is reduced to U ′ = D[σ′, τ ′] on
Z ′ = [S(⇒σ′)]∪[S(⇒τ ′)] by (2)g. Assume thatm is the least possible for this
case. We shall prove that the multitree S(⇒σ) satisfies (ii) of Theorem 8.2,
with the ordinal η0 = φ(m), that is, (*) g is reduced to B′ = B r {η0} on
[S(⇒σ)], and (**) f captures η0 on [S(⇒σ)].

Lemma 8.4. The map f is:

(A) reduced to U = D[σ, τ ] on the set Z = [S(⇒σ)] ∪ [S(⇒τ)],
(B) not reduced to U ′ = D[σ′, τ ′] on Z ′ = [S(⇒σ′)] ∪ [S(⇒τ ′)],
(C) not reduced to B′ = B r {η0} on any multitree S′ ⊆ S(⇒σ).

In addition, (D) U 6= U ′, hence η0 ∈ U and U ′ = U r {η0}.

Proof. (A) Otherwise f ”[S(⇒σ)] ∩ f ”[S(⇒τ)] = ∅ by (2)f , hence,
by the minimality of m, g”[S(⇒σ)] ∩ g”[S(⇒τ)] = ∅, so g”[S(⇒σ′)] ∩
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g”[S(⇒τ ′)] = ∅ as well, contrary to the fact that g is reduced to U ′ on Z ′ =
[S(⇒σ′)] ∪ [S(⇒τ ′)], because S(⇒σ′)�U ′ = S(⇒τ ′)�U ′ by Lemma 7.4(ii).

(B) The otherwise assumption contradicts the equality f ”[S(⇒σ′)] ∩
f ”[S(⇒τ ′)] = ∅.

(D) follows from (A) and (B).
(C) Otherwise the map f is reduced to B′ on S(⇒σ) by (1)f . Then f

is reduced to U ′ on [S(⇒σ)] by Lemma 8.1 since U ′ = U r {η0} by (D). It
follows that f is reduced to U ′ on Z (5), hence on Z ′ ⊆ Z as well. But this
contradicts to (B). Lemma

Now, as U ′ = U r {η0} ⊆ B′ = B r {η0} by (D), the multitree S(⇒σ′)
witnesses that g is reduced to B′ on [S(⇒σ)] by (1)g. Thus we have (*).

To check (**), let x, y ∈ [S(⇒σ)] and f(x) = f(y); we prove x(η0) =
y(η0). Indeed, {x} =

⋂
n[S(⇒a�n)] and {y} =

⋂
n[S(⇒b�n)], where

a, b ∈ 2ω, σ ⊂ a, σ ⊂ b. Let U =
⋂
nD[a�n, b�n]. Then x�U = y�U , since

S(⇒a�n)�D[a�n, b�n] = S(⇒b�n)�D[a�n, b�n] for all n. Thus it suffices
to check η0 ∈ D[a�n, b�n] for all n.

Suppose towards the contrary that η0 = φ(m) /∈ D[a�n, b�n] for some n.
Then n > m because a�m = b�m = σ. However f is reduced to D[a�n, b�n]
on [S(⇒a�n)] by (2)f , since f(x) = f(y). Yet we have η0 /∈ D[a�n, b�n],
therefore D[a�n, b�n] ⊆ B′ = B r {η0}. It follows that f is reduced to B′

on [S(⇒a�n)]. But this contradicts Lemma 8.4(C) with S′ = S(⇒a�n).
To conclude Case 2, we have checked (*) and (**). Theorem 8.2

9. Multiforcings and submultiforcings. Let a multiforcing be any
function P such that |P| = domP ⊆ ω1 and every value P(ξ), ξ ∈ |P|, is
a LT-forcing. Thus a multiforcing is a partial ω1-sequence of LT-forcings.
A multiforcing P is small if the base |P| and each forcing P(ξ), ξ ∈ |P|, are
at most countable sets, and regular if 2<ω ∈ P(ξ) for all ξ ∈ |P|.

If P is a multiforcing then let MT(P) denote the set of all multitrees T
such that |T| ⊆ |P| and T(ξ) ∈ P(ξ) for all ξ ∈ |P|. The set MT(P) can be
identified with the countable base product

∏
ξ∈|P|P(ξ).

The next definition introduces a type of sets containing multitrees and
satisfying some minimal closure conditions.

Definition 9.1. Let P be a regular multiforcing. A set S ⊆MT(P) is
a submultiforcing if it satisfies the following:

(I) if T ∈ S, ξ ∈ |T|, and T ∈ P(ξ), then the multitree S defined by
|S| = |T|, S(ξ) = T , and S(η) = T(η) for η 6= ξ, also belongs to S;

(5) Let x, y ∈ Z = [S(⇒σ)] ∪ [S(⇒τ)] and x�U ′ = y�U ′. As S(⇒σ)�U = S(⇒τ)�U
by Lemma 7.4(ii), there are points x′, y′ ∈ [S(⇒σ)] with x�U = x′�U and y�U = y′�U .
We have f(x) = f(x′) and f(y) = f(y′) by (A), and f(x′) = f(y′) since f is reduced to U ′

on [S(⇒σ)]. We conclude that f(x) = f(y).
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(II) if T ∈ S, ξ ∈ |P| r |T|, and T ∈ P(ξ), then the multitree S defined
by |S| = |T| ∪ {ξ}, S(ξ) = T , and S� |T| = T, also belongs to S;

(III) if T,S ∈ S then the multitree T′ = T↑ (|T| ∪ |S|) defined by |T′| =
|T| ∪ |S|, T′(ξ) = T(ξ) for ξ ∈ |T|, and T′(ξ) = 2<ω for ξ ∈ |S|r |T|,
also belongs to S.

Example 9.2. Let P be a regular multiforcing, and B = |P|. Then
MT(P) is the largest submultiforcing in MT(P), while the smallest submul-
tiforcing in MT(P) is the countable set SB

coh of all multitrees T ∈ MT(P)
such that |T| ⊆ B is finite and T(ξ) ∈ Pcoh (Example 6.2) for all ξ ∈ |T|,
Cohen’s forcing in (2ω)B.

Multitrees T,S in a submultiforcing S ⊆ MT are compatible in S if
there is a multitree U ∈S satisfying U 6 T and U 6 S. A set D ⊆S is:

• dense in S when ∀T ∈S ∃S ∈ D (S 6 T);
• open dense in S if in addition ∀T,S ∈S (T 6 S ∈ D⇒ T ∈ D);
• pre-dense in S if the set D+ = {T ∈S : ∃S ∈ D (T 6 S)} is dense in S.

In the context of Definition 7.3, a multitree T (not necessarily T ∈S!)
is called an m-collage over S if T(⇒u) ∈ S for all strings u ∈ 2m. Thus
a 0-collage is any multitree in S, while every m-collage is an m+ 1-collage
as well by the closure properties in Definition 9.1.

Lemma 9.3. Let P be a multiforcing, S ⊆MT(P) be a submultiforcing,
and T ∈MTB. Then, in terms of Definition 7.3, the following holds:

(i) if σ ∈ 2<ω and T ∈S then T(⇒σ) ∈S;
(ii) if σ ∈ 2n and T(⇒σ) ∈S, then T is an n-collage over S;
(iii) if T is an m-collage over S, and D ⊆ S is clopen in S, then there

is a multitree S ∈ MTB which is an m-collage over S and satisfies
S 6m T and S(⇒σ) ∈ D for all σ ∈ 2m;

(iv) if U ⊆ [T] is a nbhd of x0 ∈ [T] in [T] then there is a multitree S ∈S
such that |S| = B, x0 ∈ [S] ⊆ U , and S 6 T.

Proof. (i) Use property 6.1(A) of LT-forcings with the closure properties
of Definition 9.1. Further, splitting the operation (⇒σ) to components as
in Definition 7.3 immediately reduces (ii) to Lemma 6.3.

(iii) If σ ∈ 2m then by Lemma 7.4(iv) there exists a multitree S ∈MTB,
S 6m T, satisfying S(⇒σ) ∈ D for this σ. And S is still an m-collage over S
by (ii). Iterate this procedure, going over all strings in σ ∈ 2m.

(iv) We refer to (i) and Lemma 7.4(iii).

10. On subsets with the Baire property. This and the next section
present two applications of Lemma 7.5 to the construction of multitrees with
certain properties. Compared to Theorem 8.2, where Lemma 7.5 was also
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used in the course of the proof, here of necessity we shall have to consider
intermediate multitrees related to some multiforcing.

Lemma 10.1. Let T ∈MT and B = |T|. If the set X ⊆ [T] has the Baire
property inside [T] then there is a multitree S ∈MTB such that [S] ⊆ X or
[S] ⊆ [T] rX.

Proof. Fix a B-complete function φ : ω
onto−−→ B. In our assumptions,

X or [T] r X is co-meager on a non-empty clopen U ⊆ [T]. The cases
are symmetric, hence we can assume that X is co-meager on U . Note that
[T(⇒σ)] ⊆ U for some σ ∈ 2<ω by Lemma 7.4(iii). Yet the set [T(⇒σ)]
itself is clopen in [T], and X ′ = X ∩ [T(⇒σ)] is co-meager in [T(⇒σ)].
Thus the task is reduced to the case when the set X is co-meager in [T],
and this will be assumed below. In this assumption, we can further suppose
that X =

⋂
n Un, where every set Un ⊆ [T] is topologically open and dense

in [T].

Case 1: there exists a multitree S ∈MTB such that S 6 T and [S]∩Un
= ∅ for some n. Then [S] ⊆ [T] rX, as required.

Case 2: if S ∈ MTB and S 6 T then [S] ∩ Un 6= ∅ for all n. Define a
regular multiforcing P such that |P| = B and if ξ ∈ B then

P(ξ) = {s·(T(ξ)(→t)) : s ∈ 2<ω ∧ t ∈ T(ξ)} ∪ Pcoh (see Definition 6.2).

Consider the submultiforcing S = {S ∈MT(P) : |S| = B}; then T ∈ S.
We claim that for every m the set

Dm = {S ∈S : [S] ∩ [T] = ∅ or S 6 T ∧ [S] ⊆ Um}

is open dense in S (in the sense of Section 9). The openness is obvious.
To prove the density let T′ ∈ S. If [T′] 6⊆ [T] then U = [T′] r [T] is
topologically open in [T′] and non-empty. By Lemma 7.4(iii), there exists a
multitree S ∈S such that [S] ⊆ U , i.e., S 6 T′ and S ∈ Dm. Thus assume
that T′ 6 T. Then [T′] ∩ Um 6= ∅ by the Case 2 assumption. Applying
Lemma 7.4(iii), we find a multitree S ∈ S satisfying [S] ⊆ Um, that is,
S ∈ Dm. The density is proved.

Now Lemma 9.3(iii) provides a sequence · · · 63 T2 62 T1 61 T0 6 T
of multitrees Tm ∈ MTB with Tm(⇒σ) ∈ Dm for all m and σ ∈ 2m. The
multitree S =

∧
m Tm (Lemma 7.5) then satisfies [S] ⊆ Um for all m, hence

[S] ⊆ X.

11. Separating image from preimage. If x0 ∈ X ⊆ 2ω, f : X → 2ω

is continuous, and f(x0) 6= x0, then there exists a nbhd U of x0 in X whose
f -image f ”U does not intersect U . The next theorem is a version of this
claim in the context of multitrees.
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Definition 11.1. Let T ∈ MTB and ξ ∈ B. A continuous map f :
[T]→ 2ω is called simple on [T] for ξ if there exists a string σ ∈ 2<ω such
that f(x) = σ ·x(ξ) holds for all x ∈ [T].

Theorem 11.2. Under the conditions of Definition 7.3, suppose ξ ∈
B = |P|, S ⊆ MT(P) is a submultiforcing, m,n < ω, T ∈ MTB is an
m-collage over S, and f : [T]→ 2ω is continuous. Then:

(i) if U ∈ LT is an n-collage over a LT-forcing P , then there exists a
multitree T′ ∈MTB and a tree U ′ ∈ LT such that T′ 6m T, U ′ ⊆n U ,
T′ is an m-collage over S, U ′ is a n-collage over P , and [U ′]∩ f ”[T′]
= ∅;

(ii) if ξ ∈ B = |P|, and, for all r ∈ 2<ω, f is not simple for ξ on T(⇒r),
then there is a multitree T′ ∈ MTB such that T′ 6m T, T′ is an
m-collage over S, and [T′(ξ)] ∩ f ”[T′] = ∅.

Proof. (i) To begin, consider a pair of strings u ∈ 2m, s ∈ 2n. Let
x0 ∈ [T(⇒u)]. Pick y0 ∈ [U(→s)], y0 6= f(x0). As f is continuous, there
exists an open nbhd G ⊆ [T] of x0 in T(⇒u) and a string t ∈ U(→s),
satisfying t ⊂ y0, and t 6⊂ x(ξ) for all x ∈ G. Put V = U � t. Then V ∈ P and
V ⊆ U(→s). By Lemma 5.4, there exists a tree U ′ ∈ LT such that U ′ ⊆n U
and U ′(→s) = V . Note that U ′ is an n-collage over P by Lemma 6.3.

On the other hand, by Lemma 9.3(iv), there is a multitree S ∈ S such
that |S| = B and [S] ⊆ G. By Lemma 7.4(iv), there is a multitree T′ ∈MTB
satisfying T′ 6m T and T′(⇒u) = S. Note that T′ is an m-collage over S
by Lemma 9.3(ii). Thus T′ and U ′ ensure that (i) holds at least partially:
[U ′(→s)]∩ f ”[T′(⇒u)] = ∅ holds, but not yet [U ′]∩ f ”[T′] = ∅. However,
this procedure can be iterated, by going over all pairs of strings u ∈ 2m,
s ∈ 2n. This leads to the result required.

(ii) As in the first part, it suffices, given a pair of strings r, s ∈ 2m (possi-
bly r = s), to find an m-collage T′ ∈MTB over S satisfying T′ 6m T and
[T′(⇒s)(ξ)] ∩ f ”[T′(⇒r)] = ∅. The tree T = T(ξ) belongs to P(ξ) ⊆ LT,
and T(⇒s)(ξ) = T (→s′), T(⇒r)(ξ) = T (→r′), where s′ = s�� ξ, t′ = t�� ξ
are strings of length n = νmξ (see Definition 7.3). Now T (→s′) = τ ·T (→r′)
by Lemma 5.3, where τ = u[s′, T ]·u[r′, T ]. But f is not simple on T(⇒r),
hence there exists a point x0 ∈ T(⇒r) such that f(x0) 6= τ ·x0(ξ). We have
two strings v 6= w in 2<ω of equal length lh(v) = lh(w) > lh(τ), satisfying
v ⊂ f(x0) and w ⊂ τ ·x0(ξ). We put w′ = τ ·w; then w′ ⊂ x0(ξ).

But f is continuous, hence using Lemma 9.3 as above, we find a multitree
S ∈ S such that |S| = B, S 6 T(⇒r), and if x ∈ [S] then v ⊂ f(x),
w ⊂ τ ·x(ξ), w′ ⊂ x(ξ). And further we find a multitree T′ ∈MTB satisfying
T′ 6m T and T′(⇒r) = S, and being an m-collage over S.

We claim that [T′(⇒s)(ξ)] ∩ f ”[T′(⇒r)] = ∅. Indeed, by construction
if x ∈ [S] = [T′(⇒r)] then v ⊂ f(x). Thus it remains to check that w ⊂ b
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for all b ∈ [T′(⇒s)(ξ)]. Note that T′(⇒s)(ξ) = T ′(→s′) and T′(⇒r)(ξ) =
T ′(→r′), where T ′ = T′(ξ) ∈ P(ξ). On the other hand, T ′ is a tree in
LT and T ′ ⊆n T , hence T ′(→s′) = τ ·T ′(→r′) by Lemma 5.4. Thus if
b ∈ [T′(⇒s)(ξ)] then a = τ ·b ∈ [T′(⇒r)(ξ)] = [T ′(→r′)]. It follows that
w′ ⊂ a by the choice of S = T′(⇒r). Then w ⊂ b = τ ·a (since w = τ ·w′),
as required.

12. Extension of multiforcings. The forcing notion for the proof of
Theorem 2.2 will be defined as an ω1-union of an increasing ω1-sequence of
multiforcings. Definition 12.3 below contains conditions which every step of
the construction will have to obey. We begin with the following definition.

Definition 12.1 (coding continuous maps). Let B ⊆ ω1 be at most
countable. A code of a continuous map (2ω)B → 2ω is an indexed family
c = 〈Uc

i (k)〉k<ω, i=0,1 of finite sets Uc
i (k) ⊆ SB

coh (see Example 9.2) such
that for all k:

(1) if T ∈ Uc
0 (k) and S ∈ Uc

0 (k) then [T↑B] ∩ [S↑B] = ∅, and
(2)

⋃
k<ω,i=0,1

⋃
T∈Uc

i (k)
[T↑B] = (2ω)B.

Let CCFB denote the set of all such codes.

We set CCF =
⋃
B⊆ω1, cardB≤ℵ0 CCFB, and if c ∈ CCFB then |c| = B.

The coded map f = fc : (2ω)B → 2ω itself is defined as follows in this
case: fc(x)(k) = i if there is a multitree T ∈ Uc

i (k) such that x ∈ [T↑B].
Make use of (1) to show that the definition is sound.

We skip a routine proof of the following lemma, based on the compactness
of the spaces considered.

Lemma 12.2. If B ⊆ ω1 is countable, X ⊆ (2ω)B closed, and a map
f : X → 2ω is continuous, then there is a code c ∈ CCFB such that
f = fc�X.

Definition 12.3 (in L). Let M be a countable transitive model of ZFC′,
which includes all ZFC axioms except for the power set axiom, but with the
axiom which claims the existence of P (ω). (This implies the existence of
the ordinal ω1 and sets like 2ω, PT, LT of cardinality c = 2ℵ0 .)

Recall that Lα is the αth level of the Gödel constructible hierarchy.

Let P ∈M be a regular (small) multiforcing. Then |P| = B ∈M and α =
supB =

⋃
B < ω1. We let S(P) denote the closure of MT(P)∩Lα in MT(P)

with respect to the three operations of Definition 9.1. Thus S(P) ∈ M,
S(P) ⊆MT(P), and S(P) is a countable submultiforcing.

Note that S(P) does not depend on M.
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A multiforcing Q (not necessarily in M) is an M-extension of P, in
symbols P <M Q, if the following holds:

(A) |Q| = |P| and Q is a small multiforcing;
(B) if ξ ∈ |P| then P(ξ) <M Q(ξ) in the sense of Definition 6.4;
(C) if T ∈ S(P) then there is a multitree S ∈ MT(Q) satisfying S 6 T

and S ⊆fd
∨

D for all open dense sets D ⊆S(P), D ∈M;
(D) if T ∈ S(P), ξ ∈ |T|, a map f : (2ω)|T| → 2ω is continuous and has

a code in CCF|T| ∩M, then there exists a multitree S ∈ MT(Q) such
that |S| = |T|, S 6 T, and either (i) there is a string σ ∈ 2<ω such
that f(x) = σ ·x(ξ) for all x ∈ [S], or (ii) f(x) /∈ [U ] for all x ∈ [S] and
U ∈ Q(ξ).

Theorem 12.4 (in L). Let M be a countable transitive model of ZFC′,
and P ∈ M be a regular (small) multiforcing. Then there is an M-exten-
sion Q of P.

The proof of the theorem is given in the next two sections. The construc-
tion of Q is presented in Section 13, and the proof of its properties follows
in Section 14.

13. Construction of extending multiforcing. The following defini-
tions formalize the construction of generic multitrees for the proof of Theo-
rem 12.4, by means of Lemma 7.5.

• Arguing under the assumptions of Theorem 12.4, we let B = |P| and
S = S(P), so that supB < ω1 and S ⊆MT(P) is a countable submul-
tiforcing.
• During the proof of Theorem 12.4, i.e., until the end of Section 14, we fix

a B-complete function φ : ω
onto−−→ B. This allows us to use the notation of

Definition 7.3.

To begin with, we reduce all multitrees T ∈S to the domain B, substituting
each of them by its copy T↑ = T↑B (see Definition 7.1). Thus, by the
regularity of P, we have T↑ ∈ MT(P) and |T↑| = B, and by definition
T↑(ξ) = T(ξ) for ξ ∈ |T|, but T↑(ξ) = 2<ω for ξ ∈ B r |T|. We put
S↑ = {T↑ : T ∈S}; this is a submultiforcing, too.

Definition 13.1. A system (over S↑) is any function ϕ : domϕ→MTB
where domϕ ⊆ ω × ω is finite, and if 〈k,m〉 ∈ domϕ then

(1) if n < m then 〈k, n〉 also belongs to domϕ;
(2) ϕ(k,m) is a tree in MTB and an m-collage over S↑, and |ϕ(k,m)| = B;
(3) if m > 0 then ϕ(k,m) 6m ϕ(k,m− 1).

In this case, let νϕk denote the largest number m satisfying 〈k,m〉 ∈ domϕ,
but νϕk = −1 if there is no such m. Let |ϕ| = {k : νϕk ≥ 0}, a finite set.
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Let Sys(S↑) denote the set of all systems.

A system ϕ extends a system ψ, in symbols ψ ⊆ ϕ, if domψ ⊆ domϕ and
ψ = ϕ�domψ; while ψ ⊂ ϕ will denote strict extension.

Lemma 13.2 (elementary). Suppose that ϕ ∈ Sys(S↑). Then

(i) if k ∈ |ϕ| and m = νϕk then the extension ϕ′ of the system ϕ by

νϕ
′

k = m+ 1 and ϕ′(k,m+ 1) = ϕ′(k,m) is a system extending ϕ;

(ii) if k /∈ |ϕ| and T ∈ S↑, then the extension ϕ′ of the system ϕ by
domϕ′ = domϕ ∪ {〈k, 0〉} and ϕ′(k, 0) = T is a system extending ϕ.

Definition 13.3. (A) Let DEF denote the set of all sets X ⊆ HC defin-
able in HC (= all hereditarily countable sets) by ∈-formulas with parameters
in M ∪ {M, φ}. As DEF is countable, Lemma 13.2 allows one to define an
infinite system Φ : ω × ω → MTB satisfying the requirements (2) and (3)
of Definition 13.1 on the whole domain k,m < ω, and also satisfying the
following genericity condition: every set ∆ ∈ DEF is blocked by one of the
systems ϕ ∈ Sys(S↑), ϕ ⊂ Φ, in the sense that either

(I) ϕ ∈ ∆, or
(II) there is no system ψ ∈ Sys(S↑) ∩∆ extending ϕ.

We let Tk
m = Φ(k,m) for all k,m < ω.

(B) The limit trees Lk =
∧
m Tk

m, defined by |Lk| = B and Lk(ξ) =⋂
m Tk

m(ξ) for all ξ ∈ B, belong to MTB and satisfy Lk 6m+1 Tk
m for all

k,m by Lemma 7.5. Accordingly if ξ ∈ B then Lk(ξ) ∈ LT and Lk(ξ) ⊆n
Tk
m(ξ) for all m, where n = νmξ (Definition 7.3). This means Lk(ξ)(→s) ⊆

Tk
m(ξ)(→s) for all s ∈ 2n.

(C) If ξ ∈ B then the set Qξ = {σ · Lk(ξ)(→s) : k < ω ∧ σ, s ∈ 2<ω} is a
countable LT-forcing (see Example 6.2). We define a small multiforcing Q
by |Q| = B and Q(ξ) = Qξ for all ξ ∈ B.

We shall check that the multiforcing Q satisfies all conditions of Defini-
tion 12.3. Note that 12.3(A) directly holds by construction. The following
lemma is obvious since option (II) of Definition 13.3(A) is impossible for
dense sets ∆. It will be a key ingredient in the verification of other condi-
tions below.

Lemma 13.4. Let a set ∆ ∈ DEF, ∆ ⊆ Sys(S↑), be dense in Sys(S↑),
that is, every system in Sys(S↑) is extendable to a system in ∆. Then there
exists a system ϕ ∈ ∆ satisfying ϕ ⊂ Φ.

Corollary 13.5. If T ∈ S↑ then there is an index k such that Lk 6
Tk

0 = T. If ξ ∈ B and T ∈ P(ξ) then there is an index k such that
Lk(ξ) ⊆ Tk

0(ξ) = T .
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Proof. Consider the set ∆ of all systems ϕ ∈ Sys(S↑) such that ϕ(k, 0)
= T holds for at least one k ∈ |ϕ|. As T ∈ S↑ ∈ M, the set ∆ belongs
to DEF. We claim that ∆ is dense in Sys(S↑). Indeed let ϕ ∈ Sys(S↑). Take
any k /∈ |ϕ|. By Lemma 13.2(ii) there is a system ψ ∈ Sys(S↑) extending ϕ
and satisfying 〈k, 0〉 ∈ domψ and ψ(k, 0) = T. Thus ψ ∈ ∆, and the density
is proved.

By Lemma 13.4, there is a system ϕ ∈ ∆, ϕ ⊂ Φ. Then Tk
0 = ϕ(k, 0) = T

for some k. But Lk satisfies Lk 6 Tk
0 by 13.3(B), as required.

To reduce the second claim to the first one, note that if ξ ∈ B and
T ∈ P(ξ) then by definition there is a multitree T ∈S↑ with T(ξ) = T .

14. Verification of requirements. We check the conditions of Defi-
nition 12.3 for Q in the context of Section 13.

Verification of 12.3(B). Fix ξ ∈ B. To check (1) of Definition 6.4 (the
density of Q(ξ) in Q(ξ) ∪P(ξ)), let T ∈ P(ξ). Then Lk(ξ) ⊆ T for some k
by Corollary 13.5. But the tree S = Lk(ξ) belongs to Qξ = Q(ξ) by 13.3(C),
as required.

Now assume that ξ ∈ B, a set D ∈ M, D ⊆ P(ξ) is pre-dense in P(ξ),
and U ∈ Q(ξ). We prove U ⊆fin

⋃
D. By definition, U = σ · Lk(ξ)(→s),

where k < ω, ξ ∈ B, and s, σ ∈ 2<ω. We can assume that σ = Λ, i.e., in fact
just U = Lk(ξ)(→s). (The general case is reduced to U = Lk(ξ)(→s) by the
substitution of σ ·D for D.) Furthermore, we can assume that s = Λ, i.e.,
U = Lk(ξ), because Lk(ξ)(→s) ⊆ Lk(ξ). Thus let U = Lk(ξ). The index k
will be fixed.

It follows from the pre-density of D and the property 9.1(I) of the sub-
multiforcing S↑ that the set D ∈ M of all multitrees T ∈ S↑ satisfying
T(ξ) ⊆ V for some V ∈ D, is itself open dense in S↑.

We claim that the set ∆ ∈ M of all systems ϕ ∈ Sys(S↑) such that
k ∈ |ϕ|, and for every string t ∈ 2n, where n = νϕk , the multitree ϕ(k, n)(⇒t)

belongs to D, is dense in Sys(S↑). Indeed, let ϕ ∈ Sys(S↑). By Lemma
13.2(ii), we assume that k ∈ |ϕ|, i.e., n′ = νϕk ≥ 0. By definition the multi-

tree T = ϕ(k, n′) is an n′-collage over S↑, and then, by Lemma 9.3(i), an
n-collage too, where n = n′ + 1. Then by Lemma 9.3(iii) there is a mul-
titree T′ ∈ MTB which is an n-collage over S↑ and satisfies T′ 6n T
and T′(⇒t) ∈ D for all t ∈ 2n. Extend ϕ to a system ψ by domψ =
domϕ ∪ {〈k, n〉} and ψ(k, n) = T′; we have ψ ∈ ∆.

Now by Lemma 13.4 there is a system ϕ ∈ ∆ satisfying ϕ ⊂ Φ. Then
ϕ(k, n)(⇒t) = Tk

n(⇒t) ∈ D for all t ∈ 2n, where n = νϕk , thus Tk
n ⊆fd

∨
D,

hence Lk ⊆fd
∨
D. Therefore U = Lk(ξ) ⊆fin

⋃
D by the definition

of D.
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Verification of 12.3(C). Assume that D ∈ M, D ⊆ S is open dense
in S. Accordingly the set D↑ = {T↑ : T ∈ D} ⊆S↑ is dense in S↑ (6). By
Corollary 13.5, it suffices to prove that Lk ⊆fd

∨
D↑ for all k < ω.

By the open-density of D↑, the set ∆k ∈M of all systems ϕ ∈ Sys(S↑)
such that k ∈ |ϕ|, and for every string t ∈ 2n, where n = νϕk , the multitree

ϕ(k, n)(⇒t) belongs to D↑, is dense in Sys(S↑). (See the verification of
12.3(B) above.) By Lemma 13.4 there exists a system ϕ ∈ ∆k satisfying
ϕ ⊂ Φ. Then ϕ(k, n)(⇒t) = Tk

n(⇒t) ∈ D for all t ∈ 2n, where n = νϕk , that

is, Tk
n ⊆fd

∨
D↑ holds, hence Lk ⊆fd

∨
D↑, as required.

Verification of 12.3(D). Let T ∈S, ξ ∈ C = |T|, c ∈ CCFC∩M, and
f = fc (a continuous map (2ω)C → 2ω). The multitree T↑ = T↑B belongs
to S↑, and the map f↑(x) = f(x�C) : (2ω)B → 2ω is continuous. In terms of
Section 11, we can assume that (∗) there is no multitree T′ ∈S↑, T′ 6 T↑,
such that f↑ is simple for ξ on T′. Indeed, otherwise using Corollary 13.5
we get a multitree S of the form Lk, satisfying Lk 6 T′, and hence (i)
of 12.3(D).

Now assuming (∗) we accordingly prove that any multitree S = Lk with
Lk 6 Tk

0 = T↑ satisfies (ii) of 12.3(D). Let U ∈ Q(ξ) = Qξ, and we have
to prove that f↑(x) /∈ [U ] for all x ∈ [Lk]. By definition, U = τ ·L`(ξ)(⇒s),
where τ, s ∈ 2<ω and ` < ω. Now, as L`(ξ)(⇒s) ⊆ L`(ξ), we can assume
that s = Λ, that is, U = τ ·L`(ξ). Moreover we can assume that τ = Λ, i.e.,
U = L`(ξ); otherwise consider the map f ′(x) = τ ·f↑(x) instead of f↑.

Thus we fix an index ` < ω and prove that [L`(ξ)] ∩ f↑”[Lk] = ∅.

Case 1: ` 6= k. Consider the set ∆ of all systems ϕ ∈ Sys(S↑) such
that k, ` ∈ |ϕ|, that is, m = νϕk ≥ 0 and n = νϕ` ≥ 0, and [ϕ(`, n)(ξ)] ∩
f↑”[ϕ(k,m)] = ∅.

Lemma 14.1. The set ∆ is dense in Sys(S↑).

Proof of Lemma. Let ϕ ∈ Sys(S↑). By Lemma 13.2(ii), we can assume
that k, ` ∈ |ϕ|, that is, n′ = νϕ` ≥ 0 and m′ = νϕk ≥ 0. By definition, the

multitree R′ = ϕ(k,m′) is an m′-collage over S↑, and so an m-collage too,
by Lemma 9.3(i), where m = m′ + 1.

Further, we can assume that φ(n′) = ξ, for if not then take the least
number n′′ > n′ satisfying φ(n′′) = ξ, and trivially extend the system ϕ by
ϕ(`, j) = ϕ(`, n′) for all ` with n′ < ` ≤ n′′. As above, the multitree Z′ =
ϕ(`, n′) is an n′-collage over S↑, and hence an n-collage, where n = n′+1. It
follows that Z′(⇒σ) ∈S↑ for all σ ∈ 2n. In particular Z′(⇒σ)(ξ) ∈ P(ξ) for

(6) To prove the openness let T ∈ D. Then T↑ ∈ D↑, S ∈S, and S↑ 6 T↑. We cannot
assert directly that S 6 T. However, the multitree S′ = S↑ (|T| ∪ |S|) also belongs to S
by Definition 9.1(III). Note that S↑ 6 T↑ easily implies S′ 6 T. Therefore S′ ∈ D, since
D is open. We conclude that S↑ = S′↑ ∈ D↑.



24 V. Kanovei and V. Lyubetsky

σ ∈ 2n. Yet Z′(⇒σ)(ξ) = Z′(ξ)(→σ�� ξ) by Definition 7.3, where σ �� ξ ∈ 2ν

and ν = νmξ. Therefore the tree Z ′ = Z′(ξ) is a ν-collage over P(ξ).
By Theorem 11.2(i), there exist a multitree R ∈MTB and a tree Z ∈ LT

such that R 6m R′, Z ⊆ν Z ′, R is an m-collage over S↑, Z is an ν-collage
over S(ξ), and [Z] ∩ f↑”[R] = ∅. Define a multitree Z ∈ MTB so that
Z(ξ) = Z and Z(η) = Z′(η) for all η ∈ B, η 6= ξ.

Sublemma 14.2. Z is an n-collage over S↑ and Z 6n Z′.

Proof. Let σ = τ ai ∈ 2n, where τ ∈ 2n
′

and i = 0, 1. The strings
σ �� η ∈ 2νnη and τ �� η ∈ 2νn′η (Definition 7.3) are related: σ �� η = τ �� η for
η 6= ξ, but σ�� ξ = (τ �� ξ)ai, since φ(n′) = ξ and n = n′ + 1. It follows that

Z(⇒σ)(η) = Z(η)(→σ�� η) = Z′(η)(→σ�� η) = Z′(⇒σ)(η)

for η 6= ξ, that is, Z(⇒σ)� (B r {ξ}) = Z′(⇒σ)� (B r {ξ}). Further,
Z(⇒σ)(ξ) = Z(ξ)(→σ�� ξ) = Z(→σ�� ξ) = Z(→τ �� ξ)(→i) ∈ P(ξ), since
Z is a ν-collage over S(ξ). This implies Z(⇒σ) ∈ S↑ by the property
9.1(I) of submultiforcings. As σ ∈ 2n is arbitrary, Z is an n-collage over S↑.

To establish Z 6n Z′, we need (in the same notation) to prove Z(⇒σ) 6
Z′(⇒σ) for all σ ∈ 2n, that is, Z(⇒σ)(η) ⊆ Z′(⇒σ)(η) for all η ∈ B. If
η 6= ξ then simply Z(⇒σ)(η) ⊆ Z′(⇒σ)(η), as above. Further, we have
Z(⇒σ)(ξ) = Z(→s) and Z′(⇒σ)(ξ) = Z ′(→s), where s = σ �� ξ ∈ 2ν ,
ν = νmξ. But Z ⊆ν Z ′ by construction, hence Z(→s) ⊆ Z ′(→s), or equiva-
lently, Z(⇒σ)(ξ) ⊆ Z′(⇒σ)(ξ). Thus Z(⇒σ)(η) ⊆ Z′(⇒σ)(η) for all η ∈ B,
that is, Z(⇒σ) 6 Z′(⇒σ), as required. Sublemma

Coming back to the lemma, we extend ϕ to a system ψ with domψ =
domϕ, νϕk = m, νϕ` = n, ψ(k,m) = R, and ψ(`, n) = Z (just two new values).

Thus ψ is a system in Sys(S↑). Indeed, ψ(k,m) = R, one of the two new
terms relative to ϕ, is an m-collage over S↑, and R 6m R′ = ϕ(k,m′), where
m = m′+ 1, as required by 13.1(3). Similarly for ψ(`, n) = Z, the other new
term. Thus ψ ∈ Sys(S↑) and clearly ϕ 4 ψ. Finally, [Z] ∩ f↑”[R] = ∅ by
construction, hence ψ ∈ ∆. This ends the proof of the density of ∆. Lemma

Now Corollary 13.4 yields a system ϕ ∈ Sys(S↑), ϕ ⊂ Φ. Then k, ` ∈ |ϕ|,
hence m = νϕk ≥ 0 and n = νϕ` ≥ 0, and multitrees Tk

m = ϕ(k,m), T`
n =

ϕ(`, n) satisfy [T`
n(ξ)] ∩ f↑”[Tk

m] = ∅ by the definition of ∆, therefore
[Lk(ξ)] ∩ f↑”[Lk] = ∅, because Lk ⊆ Tk

m, as required.

Case 2: ` = k. Consider the set ∆ of all systems ϕ ∈ Sys(S↑) such that
k ∈ |ϕ| (and then m = νϕk ≥ 0) and [ϕ(k,m)(ξ)] ∩ f↑”[ϕ(k,m)] = ∅. We
do not claim that ∆ is dense. However, by Definition 13.3 there is a system
ϕ ∈ Sys(S↑), ϕ ⊂ Φ, blocking ∆ in the sense of 13.3(A), (I)∨(II).

We now assert that 13.3(A)(II) is impossible for ϕ. Indeed, let m′ = νϕk
and R′ = ϕ(k,m′) = Φ(k,m′) = Tk

m′ . Then R ⊆S↑ = Tk
0, and hence by (∗)
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(at the beginning of verification of 12.3(D)), if T′ ∈S↑, T′ 6 R′, then the
map f↑ is not simple for ξ on T′. Therefore by Theorem 11.2(ii) there is a
multitree R ∈ MT(P) which is an m-collage over S↑, where m = m′ + 1,
and satisfies R 6m R′ and [R(ξ)]∩f↑”[R] = ∅. As in Case 1, we can extend
ϕ to a system ψ ∈ Sys(S↑) with the only one new term ψ(k,m) = R, and
then ψ ∈ ∆ by the choice of R. This proves that 13.3(A)(II) cannot happen
for ϕ.

Thus 13.3(A)(I) takes place, that is, ϕ ∈ ∆. It follows that [ϕ(k,m)(ξ)]∩
f↑”[ϕ(k,m)] = ∅, hence [Tk

m(ξ)] ∩ f↑”[Tk
m] = ∅. This implies [Lk(ξ)] ∩

f↑”[Lk] = ∅, since Lk 6 Tk
m, as required. Theorem 12.4

15. The forcing. We argue in the constructible universe L in this sec-
tion.

We begin with some definitions related to sequences of multiforcings.
First of all, we somewhat generalize the definition of <M in 12.3. Given

small multiforcings P,Q and a model M, we write P <+
M Q when |P| ⊆ |Q|

and P <M (Q� |P|) in the sense of 12.3. If
#”

P = 〈Pα〉α<λ (λ < ω1) is a
sequence of small multiforcings Pα then:

(a) M(
#”

P) will denote the least transitive model of ZFC′ (see Definition 12.3)

of the form Lγ , containing
#”

P (and then all multiforcings Pν), in which
λ and all sets |Pν | and forcings Pν(ξ) (ξ ∈ |Pν |) are at most countable,

(b) a multiforcing P =
⋃cw #”

P =
⋃cw
ν<λ Pν (componentwise union) is defined

by |P| =
⋃
ν<λ |Pν | and P(ξ) =

⋃
ξ<ν<λ, ξ∈|Pν |Pν(ξ) for all ξ ∈ |P|.

Definition 15.1 (in L). Let λ ≤ ω1.
#    ”

MFλ is the set of all λ-sequences
#”

P = 〈Pν〉ν<λ of small multiforcings Pν such that for each ν < λ:

(1) |Pν | = ν + 1,
(2) Pν(ν) contains the tree 2<ω (regularity), and
(3)

⋃cw
µ<ν Pµ <+

M(
#”
P� ν)

Pν .

We put
#    ”

MF =
⋃
λ<ω1

#    ”

MFλ.

The set
#    ”

MF ∪ #    ”

MFω1 is ordered by the extension relations ⊂, ⊆.

Lemma 15.2 (in L). Assume that κ < λ < ω1, and
#”

P = 〈Pν〉ν<κ is a

sequence in
#    ”

MFκ. Then:

(i) P =
⋃cw #”

P is a small regular multiforcing and |P| = κ;

(ii) there is a sequence
#”

Q ∈ #    ”

MF such that dom
#”

Q = λ and
#”

P ⊂ #”

Q.

Proof. (i) By definition, P(ξ) =
⋃
ξ≤ν<κ Pν(ξ). The first term Pξ(ξ) in

the union contains 2<ω, so that the regularity follows.
(ii) We define multiforcings Pα, κ ≤ α < λ, by induction on α. Assume

that all terms Pν , κ ≤ ν < α, are defined, and the resulting sequence
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#”

Q = 〈Pµ〉µ<α belongs to
#    ”

MFα. Then P′ =
⋃cw #”

Q =
⋃cw
µ<α Pµ is a small

regular multiforcing with |P′| = α by (i), and P′ ∈ M = M(
#”

Q). Theorem
12.4 gives a small multiforcing Q satisfying |Q| = α and P′ <M Q. Define a
small multiforcing Pα so that |Pα| = α+1, Pα(ξ) = Q(ξ) for all ξ < α, and,
to fix the regularity, Pα(α) = Pcoh (see Example 6.2), hence 2<ω ∈ Pα(α).

Definition 15.3 (key definition). A sequence
#”

P ∈ #    ”

MF blocks a set

W ⊆ #    ”

MF if either
#”

P ∈ W (positive block) or there is no sequence
#”

Q ∈ W
with

#”

P ⊆ #”

Q (negative block).

Approaching the blocking sequence theorem, we recall that HC is the
set of all hereditarily countable sets, so that HC = Lω1 in L. See [4, Part 2,
Chapter 5.4] for the definability classes ΣX

n , Π
X
n , ∆

X
n for any set X, in

particular, ΣHC
n , ΠHC

n , ∆HC
n for X = HC in [14, Sections 8, 9] or elsewhere.

Theorem 15.4 (in L). If n ≥ 3 then there is a sequence
#”

P = 〈Pα〉α<ω1 ∈
#    ”

MFω1 satisfying the following two conditions:

(i)
#”

P itself, as a set of pairs 〈α,Pα〉, belongs to ∆HC
n−1;

(ii) (genericity of
#”

P with respect to ΣHC
n−2(HC) sets) if W ⊆ #    ”

MF is a

ΣHC
n−2(HC) set (i.e., parameters in HC are admitted in the defining for-

mula), then there is γ < ω1 such that the restricted sequence
#”

P �γ =

〈Pα〉α<γ ∈
#    ”

MF blocks W .

Proof. Let 6L denote a canonical well-ordering of L; its restriction to
HC = Lω1 is a ∆HC

1 relation. There exists a universal ΣHC
n−2 set U ⊆ ω1×HC.

Thus U belongs to ΣHC
n−2 (parameter-free Σn−2 definability in HC), and

for any ΣHC
n−2(HC) set X ⊆ HC (definable in HC by a Σn−2 formula with

parameters in HC) there is an ordinal α < ω1 satisfying X = Uα, where
Uα = {x : 〈α, x〉 ∈ U}. The choice of ω1 as the domain of parameters is
validated by the hypothesis V = L, which is accepted in this section and

implies the existence of a ∆HC
1 surjection ω1

onto−−→ HC.

Coming back to Definition 15.3, note that if
#”

P ∈ #    ”

MF and W ⊆ #    ”

MF is any
set then there is a sequence

#”

Q ∈ #    ”

MF satisfying
#”

P ⊂ #”

Q and blocking W . We
define

#”

Qα ∈
#    ”

MF by induction on α < ω1 so that
#”

Q0 = ∅,
#”

Qλ =
⋃
α<λ

#”

Qα for

limit λ, and each
#”

Qα+1 is the 6L-least sequence
#”

Q ∈ #    ”

MF satisfying
#”

P ⊂ #”

Q
and blocking Uα. Then

#”

P =
⋃
α<ω1

#”

Qα ∈
#    ”

MFω1 .

Now (ii) holds by construction, while (i) admits a routine verification

based on the fact that
#    ”

MF ∈ ∆HC
1 .

Definition 15.5 (in L). Fix a number n ≥ 3 for which Theorem 2.2 is to

be proved. Fix a sequence
#”

P = 〈Pα〉α<ω1 ∈
#    ”

MFω1 provided by Theorem 15.4
for this n.
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We put P =
⋃cw
α<ω1

Pα. Thus P is a multiforcing, |P| = ω1, and P(ξ) =⋃
ξ≤α<ω1

Pα(ξ) for all ξ < ω1. By construction, each set Pα is a small mul-
tiforcing satisfying |Pα| = α+ 1, while each component Pα(ξ) (ξ ≤ α < ω1)
is a countable LT-forcing. It follows that if α < ω1 then the multiforcing
P<α =

⋃cw
ν<α Pν satisfies |P<α| = α. In addition, since

#”

P ∈ #    ”

MFω1 , we have

(∗) P<α <+
Mα

Pα, that is, P<α <Mα Pα�α, for all α,

where Mα = M(
#”

P �α). The submultiforcing Sα = S(P<α) in MT(P<α)
(see Definition 12.3) will also be considered.

The set � = MT(P) will be used in the proof of Theorem 2.2 as a
forcing notion. It is naturally identified with the countable-support product∏
ξ<ω1

P(ξ) (in L). The sets P and � belong to L by construction.
The next theorem shows that �-generic extensions of L are models for

Theorem 2.2. Therefore Theorem 15.6 implies Theorem 2.2 (and Theorem
2.1 as well).

Theorem 15.6. Under the conditions of Definition 15.5, let G ⊆ � be a
generic filter over L. Then the following holds in L[G]:

(i) condition (i) of Theorem 2.2;
(ii) condition (ii) of Theorem 2.2.

To prove Theorem 15.6, we explore properties of the forcing notion � and
related generic extensions in Sections 16–18, then establish (i) of Theorem
15.6 in Section 19, and finally (ii) in Section 22 with the aid of a special
approximating forcing relation forc.

16. Key forcing properties. Here we study � as the forcing notion.
We argue under the conditions and notation of Definition 15.5.

Definition 16.1 (in L). If C ⊆ ω1 then we define the subproduct ��C =
MT(P�C) = {T ∈ � : |T| ⊆ C} =

∏
ξ∈C P(ξ) with countable support. Then

� can be identified with (��C)× (�� (ωL
1 r C)).

If C ⊆ ω1 is at most countable (in L), then by the regularity of P the
set ��C can be identified with �C = {T ∈ � : |T| = C}.

If C = {ξ}, ξ < ωL
1 , then ��{ξ} is naturally identified with P(ξ), and

then � is identified with P(ξ)× ��C 6=ξ, where C 6=ξ = ωL
1 r {ξ}.

Lemma 16.2. If ξ ≤ α < γ < ω1 then Pα(ξ) < Pγ(ξ) in the sense of 6.4.
Therefore each Pα(ξ) is pre-dense in P(ξ) =

⋃
α≥ξ Pα(ξ) by Lemma 6.5(iii).

Proof. Arguing by induction, suppose that Pµ(ξ) < Pν(ξ) is established
for all ξ ≤ µ < ν < γ. Lemma 6.5(iii) implies that the set Pα(ξ) is pre-
dense in

⋃
ξ≤ν<γ Pν(ξ). The multiforcing Q = Pγ �γ satisfies P<γ <Mγ Q by

15.5(∗). By Definition 12.3, this includes the condition P<γ(ξ) <Mγ Q(ξ).
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Then clearly Q(ξ) is dense in P<γ(ξ) ∪Q(ξ). However, Q(ξ) = Pγ(ξ) while
P<γ(ξ) =

⋃
ξ≤ν<γ Pν(ξ). Therefore, first, Pγ(ξ) is dense in Pα(ξ) ∪ Pγ(ξ),

thus we have (1) of Definition 6.4. And second, as the set Pα(ξ) is dense in
P<γ(ξ) by the above, and clearly Pα(ξ) ∈Mγ , we obtain S ⊆fin

∨
Pα(ξ) for

each tree S ∈ Q(ξ) = Pγ(ξ), thus we have (2) of Definition 6.4.

Lemma 16.3 (in L). Assume that, for each n, Dn ⊆ � is open dense
in �, and let T ∈ �. There is a multitree S ∈ � satisfying S 6 T and
S ⊆fd

∨
Dn for all n. Therefore �-generic extensions of L preserve ωL

1 .

Proof. There is a countable elementary submodelM of 〈Lω2 ; ∈〉, contain-
ing T and all sets Dn. Then M also contains ω1, as it is a definable set, and
contains the sequence

#”

P along with the derived sets P =
⋃cw #”

P , � = MT(P),
for the same reason. The set M ∩ Lω1 is transitive. Indeed, if X ∈M ∩ Lω1

then X is at most countable, hence there exist functions f : ω
onto−−→ X. Let

fX be the least of them in the sense of the Gödel well-ordering 6L of L.
Then fX ∈M since X ∈M and the ordering 6L�Lω2 is definable in Lω2 . It
follows that each x ∈ X belongs to M because x = fX(k) for some k.

Let φ : M
onto−−→ Lλ be the Mostowski collapse function, and α = φ(ω1).

Then α < λ < ω1 and, by the transitivity, it holds (*) φ(x) = x for all
x ∈M∩Lω1 . Thus φ(ξ) = ξ, φ(T ) = T , φ(S) = S for each ordinal ξ ∈M∩ω1,
each tree T ∈M ∩ LT, and each multitree S ∈M ∩MT. We conclude that
φ(

#”

P) =
#”

P ∩ Lα =
#”

P �α, φ(P) = P<α =
⋃cw
γ<α Pα (a multiforcing with

|P<α| = α), and φ(�) = � ∩ Lα = MT(P<α) ∩ Lα.

We assert that moreover φ(�) = Sα, where, we recall, Sα = S(P<α).
Indeed, by Definition 12.3, S(P<α) is equal to the closure of MT(P<α)∩Lα
relative to the three operations of Definition 9.1. But ϕ(�) = MT(P<α)∩Lα,
thus MT(P<α) ∩ Lα is already closed under the operations, since so is � =
MT(P). We conclude that S(P<α) = MT(P<α) ∩ Lα.

Furthermore, a similar argument allows one to prove that if n < ω then
the set φ(Dn) = Dn ∩ Lα = Dn ∩ Sα ∈ Lλ is open dense in S(P<α).
In addition, φ(T) = T ∈ Sα. On the other hand, by elementarity, the
ordinal α is uncountable in Lλ. It follows that Lλ ⊆Mα. However, we have
P<α <Mα Pα�α by 15.5(∗), and also T ∈ Sα = S(P<α). Therefore, by
Definition 12.3(C), there exists a multitree S ∈ MT(Pα) satisfying S 6 T
and S ⊆fd

∨
φ(Dn) for all n. Finally, MT(Pα) ⊆ � and φ(Dn) ⊆ Dn. This

ends the proof of the first claim.

To prove the second claim of the lemma, suppose towards a contradiction

that
.
f is a name of a function from ω to ωL

1 , and some T ∈ � forces

ran
.
f = ωL

1 . Let Dnα be the set of all multitrees R ∈ � that either (1) are

incompatible with T in �, or (2) satisfy R 6 T and �-force
.
f(n) = α.

A simple argument shows that every set Dn =
⋃
αDnα is dense in �. By the
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first claim of the lemma, there exists a multitree S ∈ � satisfying S 6 T
and S ⊆fd

∨
Dn for all n. Let the relations S ⊆fd

∨
Dn be witnessed by

finite sets D′n ⊆ Dn. Accordingly, the sets An = {α : D′n ∩ Dnα 6= ∅} are
finite, hence the union A =

⋃
nAn is countable in L, i.e., ωL

1 6⊆ A. On the

other hand, we assert that S forces
.
f(n) ∈ An, for each n. This implies a

contradiction and accomplishes the proof.

To finally prove that S forces
.
f(n) ∈ An, suppose to the contrary that

R ∈ �, R 6 S, and R forces
.
f(n) = α, where α < ωL

1 , α /∈ An. Then R ⊆fd∨
Dn by means of the same finite set D′n ⊆ Dn. Lemma 7.4(v) provides a

string σ ∈ 2<ω and a multitree U ∈ D′n such that R′ = R(⇒σ) 6 U. Note
that R′ ∈ � by Lemma 9.3(i). Thus the multitrees R and U are compatible
in �. Finally, U ∈ D′n ⊆ Dn, therefore U ∈ Dnγ for some γ. Then by

definition U forces
.
f(n) = γ, where γ ∈ An, that is, γ 6= α. However,

R forces
.
f(n) = α, where α /∈ An, which is a contradiction.

Lemma 16.4 (in L). If a set Q ⊆MT of multitrees belongs to ΣHC
n−2(HC)

and Q− = {T ∈MT : ¬ ∃S ∈ Q (S 6 T )}, then the set � ∩ (Q ∪Q−) is
dense in �. In particular if Q is dense in MT then Q ∩ � is dense in �.

Proof. Consider a multitree T0 ∈ � = MT(P), thus T0 ∈MT(P<α0) for

some α0 < ω1. The set ∆ of all sequences
#”

P ∈ #    ”

MF, such that
#”

P �α0 ⊆
#”

P
and ∃T ∈ Q∩MT(

⋃cw #”

P) (T 6 T0) belongs to ΣHC
n−2(HC) as so does Q. We

conclude that there exists an ordinal α < ω1 such that the sequence
#”

P �α
blocks ∆.

Case 1:
#”

P �α ∈ ∆; let this be witnessed by T ∈ Q ∩MT(
⋃cw(

#”

P �α)).
Then α0 ≤ α and the multitree T belongs to Q ∩ � and satisfies T 6 T0.

Case 2: no sequence in ∆ extends
#”

P �α. Let γ = max{α, α0}. Then
P<γ <Mγ Pγ �γ by 15.5(∗). As α0 ≤ γ, there exists a multitree T ∈MT(Pγ),
T 6 T0. We can assume that |T| = |Pγ |, that is, = γ+1. Then T(ξ) ∈ Pγ(ξ)
for all ξ ≤ γ. It remains to prove that T ∈ Q−.

Suppose to the contrary that T /∈ Q−. By definition there is a multitree
S ∈ Q, S 6 T. Then γ + 1 = |T| ⊆ |S|. We can assume that |S| = λ <

ω1, λ ≥ γ + 1. We are going to define a sequence
#”

P = 〈Pα〉α<λ ∈
#    ”

MF

which extends
#”

P �γ, that is, Pα = Pα for all α < γ, and satisfies S ∈
MT(

⋃cw #”

P). This implies
#”

P ∈ ∆ by the choice of S, which contradicts the
Case 2 hypothesis and completes the proof of T ∈ Q− and the proof of the
lemma.

Thus we have to appropriately define multiforcings Pα, γ ≤ α < λ.
We begin with Pγ . This is based on the multiforcing Pγ . Note that S(ξ) ⊆
T(ξ) ∈ Pγ(ξ) for all ξ ≤ γ. We put Pγ(ξ) = Pγ(ξ) ∪ {σ · (S(ξ)(→t)) :
t, σ ∈ 2<ω} for all ξ ≤ γ. Every “new” tree S = σ ·(S(ξ)(→t)) satisfies
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S ⊆ σ ·T(ξ), where σ ·T(ξ) ∈ Pγ(ξ). However P<γ <+
Mγ

Pγ by Definition

15.5(∗). Therefore P<γ <+
Mγ

Pγ as well. Thus the term Pγ extends the

system
#”

P �γ = 〈Pα〉α<γ = 〈Pα〉α<γ ∈
#    ”

MFγ to a system in
#    ”

MFγ+1, and
we have S(ξ) ∈ Pγ(ξ) for all ξ ≤ γ. The extended system can be further

extended to a system in
#    ”

MFλ by terms Pα, γ < α < λ, by induction as in the
proof of 15.2(ii), with the amendment that Pα(α) = Pcoh∪{σ · (S(α)(→t)) :
t, σ ∈ 2<ω}, rather than just Pα(α) = Pcoh, for all α.

17. Generic extension. Here we study �-generic extensions L[G] of L
obtained by adjoining �-generic sets G ⊆ � to L. We will use the forcing
notion � = MT(P) ∈ L and other notation of Definition 15.5, with the
difference that the reasoning will not be relativized to L by default, and
accordingly the first uncountable cardinal in L will be denoted by ωL

1 instead
of ω1.

Definition 17.1 (generic reals). Let a set G ⊆ � be �-generic over L.

Note that ω
L[G]
1 = ωL

1 by Lemma 16.3.

If ξ < ωL
1 then G(ξ) = {T(ξ) : ξ ∈ |T| ∧ T ∈ G} is a set P(ξ)-generic

over L, the intersection Xξ =
⋂
T∈G(ξ)[T ] contains a single real xξ = xξ[G]

∈ 2ω, and this real is P(ξ)-generic over L. These reals are assembled into a

“multireal” x[G] = 〈xξ[G]〉ξ<ωL
1
∈ (2ω)ω

L
1 .

Corollary 17.2 (of 16.1 and the product forcing theorem). If B ∈ L,
B ⊆ ωL

1 is at most countable in L, and G ⊆ � is �-generic over L, then the
set GB = {T ∈ G : |T| = B} is �B-generic over L.

Recall that C 6=ξ = ωL
1 r {ξ}.

Proposition 17.3 (in terms of Definition 17.1). If ξ < ωL
1 then the

real xξ[G] is not ({G�C 6=ξ} ∪Ord)-definable in L[G], in particular, xξ[G]
/∈ L[G�C 6=ξ].

Proof. See the proof of Lemma 14.5 in [21], based on the product forc-
ing theorem and the E0 -invariance of each component P(ξ) in the sense
of 6.1(B).

The next theorem belongs to the type of “continuous reading of names”
theorems in the theory of forcing extensions. It involves the coding of con-
tinuous maps by Definition 12.1, and asserts that reals x ∈ 2ω in �-generic
extensions are obtained by applications of continuous maps coded in L to
suitable sequences of generic reals. To render the notation less cumbersome,
if c ∈ L and c ∈ CCF in L, and G ⊆ � is generic over L, then we put
fc[G] := fc(x[G]�B), where B = |c|.
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Lemma 17.4. If C ∈ L, C ⊆ ωL
1 , G ⊆ � is generic L, and x ∈ 2ω ∩

L[G�C], then there is a code c ∈ CCF∩L such that |c| ⊆ C and x = fc[G].

Proof. Let
.
x be a name for x in the forcing language related to the

forcing notion �. Thus the indexed family of sets

Aki = {T ∈ � : T forces that
.
x(k) = i}, k < ω, i = 0, 1,

belongs to L and we have (A) x(k) = i⇔ G∩Aki 6= ∅, (B) Ak0∩Ak1 = ∅,
and (C) each set Ak = Ak0 ∪ Ak1 is open dense in �. We can assume
that

.
x contains an explicit effective construction of x from G�C, and then

(*) if S ∈ Aki then S� (C ∩ |S|) ∈ Aki as well.
The set D = {T ∈ � : ∀ k (T ⊆fd

∨
Ak)} also is dense in � by Lem-

ma 16.3. Therefore, by genericity, there is a multitree T′ ∈ G such that
T′ ⊆fd

∨
Ak for all k. In addition, (*) implies that the multitree T =

T′� (C ∩ |T|) ∈ G also satisfies T ⊆fd
∨
Ak for all k, but now |T| ⊆ C.

This means (Definition 7.2) that, in L, there exists a sequence of finite
sets Fk ⊆ Ak which ensure T ⊆fd

∨
Ak in the sense that: (1) |U| ⊆ B = |T|

for all U ∈ Fk, (2) [T] ⊆
⋃

U∈Fk [U↑B], and (3) [U↑B] ∩ [V↑B] = ∅ for
all V 6= U in Fk. We put Fki = Fk ∩Aki, i = 0, 1.

Now arguing in L we define a continuous f : [T] → 2ω as follows:
f(y)(k) = i if there is a multitree S ∈ Fki with y� |S| ∈ [S]. Then f = fc� [S]
by Lemma 12.2, where c is a suitable code CCFB ∩ L. One easily verifies
that x = fc[G].

By the next theorem, the relation y /∈ L[x] between reals x, y ∈ 2ω

in L[G] is fully determined by a generic real xξ[G], so that xξ[G] belongs
to L[y] but x belongs to L[x[G]�C 6=ξ], while definitely xξ[G] /∈ L[x[G]�C 6=ξ]
by Proposition 17.3.

Theorem 17.5. If a set G ⊆ � is generic over L, x, y ∈ 2ω ∩ L[G],
and y /∈ L[x], then there is an ordinal ξ < ωL

1 such that x ∈ L[x[G]�C 6=ξ]
but xξ[G] ∈ L[y], and in addition xξ[G] = g(y), where g : 2ω → 2ω is a
continuous map coded in L.

Proof. By Lemma 17.4, there exist codes c,d ∈ CCF ∩ L such that
x = fc[G] and y = fd[G]. Let B = |c|∪|d|; we can assume that |c| = |d| = B.

We argue in L. The set D of all multitrees S ∈MTB such that either (i)
fd is reduced to fc on [S], or (ii) fd captures some ordinal ξ ∈ B on [S] and
fc is reduced to the set Br {ξ} on [S], is dense in MTB by Theorem 8.2. It
follows from Lemma 16.4 that the set D′ = D∩�B is dense in �B = {R ∈ � :
|R| = B}.

We argue in L[G]. We have G∩D 6= ∅ by Corollary 17.2. Let S ∈ G∩D;
then x[G]�B ∈ [S]. Note that (i) fails for this S, since (i) implies fd(z) =
g(fc(z)) for all z ∈ [S], where g : 2ω → 2ω is a continuous map coded in L,
thus (with z = x[G]�B) we get y = g(x), and further y ∈ L[x] (as g is coded
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in L), a contradiction to the assumption of the theorem. Thus (ii) holds,
i.e., still in L, fd captures an ordinal ξ ∈ B on [S], while fc is reduced to
B r {ξ} on [S].

By the compactness of the spaces considered, this implies the existence
of continuous maps f : (2ω)Br{ξ} → 2ω and g : 2ω → 2ω, both coded in L
and satisfying fc(z) = f(z� (B r {ξ})) and z(ξ) = g(fd(z)) for all z ∈ S.
In particular, for z = x[G]�B, we have x = fc(x[G]� (B r {ξ})), hence
x ∈ L[x[G]�C 6=ξ], and xξ[G] = g(y), hence xξ[G] ∈ L[y].

18. Definability of generic reals. We continue to argue in terms of
Definitions 15.5 and 17.1. Now the main goal will be to study P(ξ)-generic
reals x ∈ 2ω in �-extensions of L.

Theorem 18.1. In any �-generic extension L[G] of L, it is true that:
if ξ < ωL

1 then the set Xξ = [xξ[G]]E0 = {σ ·xξ[G] : σ ∈ 2<ω} is equal to the
set Yξ =

⋂
ξ≤α<ωL

1

⋃
U∈Pα(ξ)[U ].

Proof. The real x = xξ[G] ∈ 2ω is P(ξ)-generic, while every set of the
form Pα(ξ) is pre-dense in P(ξ) by Lemma 16.2. Therefore x ∈ Yξ. Moreover
all sets Pα(ξ) are LT-forcings by construction, hence they are E0 -invariant
in the sense of 6.1(B). It follows that Xξ ⊆ Yξ.

To establish the converse, assume that y0 ∈ Yξ in L[G]. By Lemma 17.4,
there is a code c ∈ CCF ∩ L such that y0 = fc[G] = fc(x[G]�B), where
B = |c|. Consider the set D of all multitrees S ∈ �B such that either
(i) there is a string σ ∈ 2<ω such that fc(x) = σ ·x(ξ) for all x ∈ [S], or
(ii) there exists an ordinal α, ξ ≤ α < ω1, such that fc(x) /∈

⋃
U∈Pα(ξ)[U ]

holds for all x ∈ [S].

Lemma 18.2.The set D is dense in �B.

Proof of Lemma. Let T ∈ �B; then |T| = B. There exists an ordinal
α < ωL

1 such that (1) B ⊆ α, hence ξ < α, (2) T ∈ Sα = S(P<α),
and (3) c ∈ Mα. Note that P<α <+

Mα
Pα holds by 15.5(∗). Therefore by

Definition 12.3(D) there is a multitree S ∈MT(Pα) such that |S| = |T| = B,
S 6 T, and either (i) there is a string σ ∈ 2<ω satisfying fc(x) = σ ·x(ξ) for
all x ∈ [S], or (ii) fc(x) /∈

⋃
U∈Pα(ξ)[U ] for all x ∈ [S]. Thus we have S ∈ D,

getting the density. Lemma

We return to the theorem. Corollary 17.2 implies G ∩ D 6= ∅ by the
lemma. Let S ∈ G ∩ D. In particular x0 = x[G]�B ∈ [S]. It follows that S
does not satisfy (ii) of the definition of D, since y0 = fc(x0) ∈ Yξ. Therefore
S satisfies (i) of the definition of D with some σ ∈ 2<ω. Then y0 = fc(x0) =
σ ·x0(ξ) = σ ·x[G](ξ) = σ ·xξ[G], that is, y0 ∈ X, as required.

One easily proves that, under the assumptions of the theorem, the set
Xξ = Yξ is equal to the set of all P(ξ)-generic reals y ∈ 2ω (see [18]).
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19. Non-uniformizable set. Here we prove claim (i) of Theorem 15.6.
To begin, we define a non-uniformizable set in the “rectangle” ωL

1 × 2ω.

Lemma 19.1. Under the assumptions of Theorem 15.6, the set K =
{〈ξ, x〉 : ξ < ωL

1 ∧ x ∈ [xξ[G]]E0 } belongs to L[G] and has the following
properties in L[G] :

(i) K belongs to the definability class ΠHC
n−1;

(ii) if ξ < ω1 then the cross-section Kξ = {x : 〈ξ, x〉 ∈ K} is an E0 -class;
(iii) the set K is not ROD-uniformizable.

Proof. (ii) is quite obvious: Kξ = [xξ[G]]E0 . To prove (i) we note that
Lemma 16.3 implies ω1 = ωL

1 in L[G]. Therefore by Theorem 18.1, the sen-
tence 〈ξ, x〉 ∈ K is equivalent to

ξ < ω1 ∧ ∀α
(
ξ ≤ α < ω1 =⇒ ∃T ∈ Pα(ξ) (x ∈ [T ])

)
.

Yet the formula in the outer brackets here expresses a ΠHC
n−1 relation by

condition (i) of Theorem 15.4. (The quantifier ∃T ∈ Pα(ξ) is bounded,
hence it does not affect the definability estimation.)

To prove (iii) suppose towards the contrary that it is true in L[G] that
R ⊆ K is a uniformizing ROD set. Let r ∈ 2ω ∩ L[G] be a real such that
R is {r} ∪ Ord-definable in L[G]. Lemma 16.3 (preservation of ωL

1 ) im-
plies the existence of an ordinal ξ < ωL

1 such that r ∈ L[G�{η : η < ξ}],
hence r ∈ L[G�C 6=ξ], where C 6=ξ = ωL

1 r {ξ}. Therefore the unique real
x ∈ 2ω, satisfying 〈ξ, x〉 ∈ R, is ({G�C 6=ξ} ∪Ord)-definable in L[G]. How-
ever, R ⊆ K, thus xE0 xξ[G]. It follows that the generic real xξ[G] itself is
({G�C 6=ξ} ∪Ord)-definable in the model L[G]. But this contradicts Propo-
sition 17.3.

To convert the set K = K[G] into a similar non-uniformizable set in the
plane 2ω × 2ω, we make use of the following elementary transformation.

Let Q = {qn : n < ω} be a recursive enumeration of the rationals. If
z ∈ 2ω then let Qz = {qn : z(n) = 1} ⊆ Q, let Q′z ⊆ Qz be the largest
(perhaps, empty) well-ordered initial segment of Qz, and let |z| < ω1 be the
ordinal number of Q′z; thus obviously {|z| : z ∈ 2ω} = ω1.

Lemma 19.2. Under the assumptions of Theorem 15.6, the set

W = {〈z, x〉 ∈ 2ω × 2ω : 〈|z|, x〉 ∈ K}

belongs to L[G] and has the following properties in L[G]:

(i) W belongs to the definability class Π1
n;

(ii) if z ∈ 2ω then the cross-section Wz = {x : 〈z, x〉 ∈W } is an E0-class;
(iii) the set W is not ROD-uniformizable.
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Proof. The set W belongs to ΠHC
n−1 since so does K; indeed, the map

z 7→ |z| is ∆HC
1 . Thus by the transfer theorem (see e.g. [14, 9.1]), W is

a Π1
n set.

Further, each cross-section Wz coincides with the corresponding cross-
section Kξ of K, where ξ = |z|, thus Wz is an E0-class.

To prove (iii), suppose to the contrary that W is uniformized by a ROD
set S ⊆ W . As ωL

1 = ω1 holds, for every ordinal ξ < ω1 there is a real
z ∈ 2ω ∩ L satisfying |z| = ξ. Let z(ξ) be the 6L-least of such reals. Then

R = {〈ξ, x〉 ∈ K : 〈z(ξ), x〉 ∈ S}

is a ROD subset of K which uniformizes the set K, contrary to Lemma 19.1.
Thus W satisfies (i)–(iii).

Proof of Theorem 15.6(i). Obvious by Lemma 19.2.

20. Auxiliary forcing relation. Here we define a key instrumentar-
ium for the proof of (ii) of Theorem 15.6. This is a forcing-type relation
forc. It is not directly connected with the forcing notion P, but rather
related to the countable-support product LTω1 . But it happens to be com-
patible with the �-forcing relation for formulas of certain quantifier complex-
ity (Lemma 21.2). An important property of forc will be its permutation-
invariance (Lemma 21.3), a property which the P-forcing relation definitely
lacks. This will be the key argument in the proof of Theorem 22.1.

We argue in L. Let L be a language containing variables i, j, k, . . .
of type 0 with the domain ω, and variables x, y, z, . . . of type 1 with the
domain 2ω. Let terms be variables of type 0 and expressions of the form
x(k). Atomic formulas are those of the form R(t1, . . . , tn), where R ⊆ ωn is
any n-ary relation on ω in L. Formulas containing no quantifiers over type 1
variables are arithmetic. Formulas of the form

∃x1 ∀x2 ∃x3 . . . ∃ (∀ )xn Ψ and ∀x1 ∃x2 ∀x3 . . . ∀ (∃ )xn Ψ,

where Ψ is arithmetic, belong to types LΣ1
n and LΠ1

n respectively.

Additionally, we allow codes c ∈ CCF to substitute free variables of
type 1. We let |ϕ| =

⋃
c∈ϕ |c| for any L -formula, where c ∈ ϕ means that

a code c occurs in ϕ. The semantics is as follows. Let ϕ := ϕ(c1, . . . , ck) be
an L -formula, and suppose all codes in CCF occurring in ϕ are explicitly
indicated, and |ϕ| ⊆ B ⊆ ω1. If x ∈ (2ω)B then let ϕ[x] denote the formula
ϕ(fc1(x� |fc1 |), . . . , fck(x� |fck |)); all elements fci(x� |fci |) are reals in 2ω.

Arithmetic formulas and those in LΣ1
n ∪ LΠ1

n, n ≥ 1, will be called
normal . If ϕ is a formula in LΣ1

n or LΠ1
n then ϕ− is the result of canonical

transformation of ¬ ϕ to resp. LΠ1
n, LΣ1

n form. We let ϕ− := ¬ ϕ for
arithmetic formulas.



Non-uniformizable sets with countable cross-sections 35

Definition 20.1 (in L). We define a relation T forc ϕ between multi-
trees T ∈MT and closed normal L -formulas:

(I) if ϕ is a closed L -formula, arithmetic or in LΣ1
1 ∪LΠ1

1 , and |ϕ| ⊆
B = |T|, then T forc ϕ whenever ϕ[x] holds for all x ∈ [T];

(II) if ϕ := ∃xψ(x) is a closed LΣ1
n+1-formula, n ≥ 1 (ψ belongs to

LΠ1
n), then T forc ϕ whenever there is a code c ∈ CCF such that

T forc ψ(c);
(III) if ϕ is a closed LΠ1

n-formula, n ≥ 2, then T forc ϕ whenever there is
no multitree S ∈MT satisfying S 6 T and S forc ϕ−.

Let Forc(ϕ) = {T ∈ ST : T forc ϕ}, Des(ϕ) = Forc(ϕ) ∪ Forc(ϕ−).

Lemma 20.2 (in L). If m ≥ 2 and ϕ is a closed formula in LΣ1
m, resp.,

LΠ1
m, then Forc(ϕ) belongs to ΣHC

m−1(HC), resp. ΠHC
m−1(HC).

Proof. If ϕ is a LΠ1
1 formula then Forc(ϕ) ∈ Π1

1 by Definition 20.1(I),
and hence Forc(ϕ) belongs to ∆HC

1 (HC). Then argue by induction using
20.1(II, III).

21. Auxiliary forcing relation: two lemmas. We here prove two key
properties of the relation forc. They will be used in the proof of Theorem
15.6(ii). One of them (Lemma 21.2) says that forc is connected with the
truth in �-generic extensions similarly to the ordinary �-forcing, for formulas
of certain complexity. The other one (Lemma 21.3) claims the invariance of
forc relative to the permutations of ω1.

Recall that a number n ≥ 3 is fixed by Definition 15.5.

Lemma 21.1 (in L). Let ϕ be a closed normal L -formula. Then the set
Des(ϕ) is dense in MT. If ϕ is of type LΣ1

m, m < n, then Des(ϕ) ∩ � is
dense in �.

Proof. It suffices to prove the density of Des(ϕ) for formulas ϕ as in
20.1(I). If ϕ is such and T ∈ MT, |ϕ| ⊆ B = |T|, then the set X(ϕ) =
{x ∈ [T] : ϕ[x]} in (2ω)B belongs to Σ1

1 ∪Π1
1 and hence has the Baire prop-

erty inside the closed set [T] ⊆ (2ω)B. It remains to refer to Lemma 10.1.
The second claim follows by Lemmas 20.2 and 16.4.

Lemma 21.2. Assume that 1 ≤ n < n, ϕ ∈ L is a closed formula in
LΠ1

n ∪ LΣ1
n+1, and a set G ⊆ P is generic over L. Then ϕ[x[G]] holds

in L[G] if and only if ∃T ∈ G (T forc ϕ).

Proof. Base case: ϕ is arithmetic or LΣ1
1 ∪LΠ1

1 , as in 20.1(I). If T ∈ G
and T forc ϕ then ϕ[x[G]] holds in L[G] by the Shoenfield absoluteness
theorem, since x[G]� |T| ∈ [T]. In the opposite direction apply Lemma 21.1.

Step LΠ1
n ⇒ LΣ1

n+1: ϕ is ∃xψ(x), where ψ belongs to LΠ1
n. Let T ∈ G

and T forc ϕ. Then by Definition 20.1(II) there exists a code c ∈ CCF∩ L
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such that T forc ψ(c). By the inductive hypothesis, the formula ψ(c)[x[G]],
i.e., ψ[x[G]](fc(x[G]�B)), where B = |c|, holds in L[G]. Then ϕ[x[G]] is true
as well.

Conversely, assume that ϕ[x[G]] holds in L[G]. There is a real y ∈ L[G]∩2ω

such that ψ[x[G]](y) holds. By Lemma 17.4, y = fc[G] = fc(x[G]�B), where
c ∈ CCF ∩ L and B = |c|. Then ψ(c)[x[G]] holds in L[G]. By the inductive
hypothesis, there is T ∈ G such that T forc ψ(c), hence T forc ϕ.

Step LΣ1
n ⇒ LΠ1

n: ϕ is a LΠ1
n formula, n ≥ 2. Lemma 21.1 yields

a multitree T ∈ G such that either T forc ϕ or T forc ϕ−. If T forc ϕ−

then ϕ−[x[G]] holds in L[G] by the inductive hypothesis, hence ϕ[x[G]] fails.
Now assume that T forc ϕ. We have to prove ϕ[x[G]] in L[G]. Suppose to
the contrary that ϕ−[x[G]] holds. By the inductive hypothesis, there exists
a multitree S ∈ G such that S forc ϕ−. But the multitrees S,T belong to
the generic set G, hence they are compatible, which contradicts the assump-
tion T forc ϕ.

Invariance. The relation forc turns out to be invariant with respect
to the natural action of the group H of all self-inverse (i.e., h = h−1) per-

mutations of the set ωL
1 in L. Thus h ∈ H iff h ∈ L, h : ωL

1
onto−−→ ωL

1 is a
bijection, and h = h−1.

We argue in L. Let h ∈ H. If B ⊆ ω1 and F is a function defined on B
then a function hF = h·F is defined on h”B = {h(ξ) : ξ ∈ B} so that
(hF )(h(ξ)) = F (ξ) for all ξ ∈ B. Thus hF is equal to the superposition
F ◦ h−1, and even hF = F ◦ h by self-invertibility.

In particular, if x ∈ (2ω)B then hx ∈ (2ω)h”B, and if T ∈ MTB then
hT = h·T is a multitree in MTh”B. Further, if c ∈ CCFB then a code
hc = h·c ∈ CCFh”B can be canonically defined so that fhc(hx) = fc(x)
for all ξ ∈ B. Finally if ϕ := ϕ(c1, . . . , ck) is an L -formula then hϕ or h·ϕ
denotes the formula ϕ(hc1, . . . , hck). Then (hϕ)[hx] coincides with ϕ[x].

Lemma 21.3 (in L). Let h ∈ H, T ∈ MT, and ϕ is a closed normal
L -formula. Then T forc ϕ if and only if hT forc hϕ.

Proof. If ϕ is a formula of type 20.1(I) then [hT] = {hx : x ∈ [T]}, and
on the other hand, if x ∈ [T] then ϕ[x] coincides with (hϕ)[hx]. We skip
further routine inductive steps on the base of Definition 20.1(II, III).

22. Proof of the uniformization claim. To prove claim (i) of Theo-
rem 15.6 in the end of this section, we establish Theorem 22.1 saying that in
�-generic extensions any element of a countable Σ1

n set X is constructible
relative to the parameter of a Σ1

n definition of X. The relation forc and
Lemma 21.2 will play the key role.
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Theorem 22.1. If a set G ⊆ P is P-generic over L and p ∈ L[G] ∩ 2ω,
then it is true in L[G] that any countable Σ1

n(p) set Y ⊆ 2ω satisfies
Y ⊆ L[p].

In fact a stronger claim, Y ∈ L[p], holds. However, it requires more
complex transformations beyond H, so we skip this issue whatsoever.

Proof. We argue in terms of Definition 15.5. Suppose to the contrary that
Y 6⊆ L[p]. Then Y = {y ∈ 2ω : ϕ(p, y)}, where ϕ(p, y) := ∃ z ψ(p, y, z) is a Σ1

n
formula with p as the only parameter, and there is a real y0 ∈ Y , y0 /∈ L[p].
By Theorem 17.5, there is an ordinal η < ωL

1 such that p ∈ L[x[G]�C 6=η]
and xη[G] ∈ L[y0], and moreover xη[G] = g(y0), where g : 2ω → 2ω is a
continuous map coded in L. By Lemma 17.4, there exist codes c,d ∈ CCF
satisfying p = fd[G] = fd(x[G]�B) and y0 = fc[G] = fc(x[G]�B′), where
B = |d| ⊆ C 6=η and B′ = |c|. We can assume that B ⊆ B′ and η ∈ B′. Note
that definitely η /∈ B.

The goal is to get a contradiction.

Consider the LΣ1
n formula ϕ(d, c). Then ϕ(d, c)[x[G]] coincides with

ϕ(fd[G], fc[G]) by the choice of the codes, therefore ϕ(d, c)[x[G]] holds
in L[G]. By Lemma 21.2, there is a multitree S ∈ G satisfying S forc ϕ(d, c).

Further, the equality xη[G] = g(y0) (see above) can be rewritten as
fe(x[G]�B′) = g(fc(x[G]�B′)), where e ∈ CCFB′ ∩L is a canonical code of
the map fe(x) = x(η). We render this formula as

∃ z
(
z = fc(x[G]�B′) ∧ fe(x[G]�B′) = g(z)

)
.

As above, Lemma 21.2 implies the existence of a multitree S′ ∈ G satisfying
S′ forc ∃ z (z = c ∧ e = g(z)). We can assume that S′ = S. (Otherwise
replace both multitrees by a stronger multitree in G). Thus we have

(∗) S forc ϕ(d, c) and S forc ∃ z (z = c ∧ e = g(z)).

We can assume that |S| = B′, as otherwise we just replace B′ by B′ ∪ |S|
and S by S↑ (B′ ∪ |S|).

If ϑ < ωL
1 then let Hϑ denote the set of all permutations h ∈ H such

that h(ξ) = ξ for all ξ ∈ B and h(ξ) > ϑ for all ξ ∈ B′ rB.

Lemma 22.2. If ϑ < ωL
1 then there is a permutation h ∈ Hϑ and a

multitree S′ ∈ G such that S′ 6 h·S. (It is not assumed that h·S ∈ �.)

Proof of Lemma. Arguing in L, consider the set Dϑ of all multitrees
S′ ∈ MT such that S′ 6 S and there exists a permutation h ∈ Hϑ such
that the multitree h·S satisfies S′ 6 h·S. A routine estimation shows that
D is a ΣHC

1 (S, ϑ) set. Therefore by Lemma 16.4 there is a multitree S′ ∈ G
such that either (1) S′ ∈ Dϑ, or (2) there is no multitree R ∈ Dϑ satisfying
R 6 S′. And as S also belongs to G, we can assume that S′ 6 S.
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We claim that (2) is impossible. Indeed, let γ < ωL
1 satisfy |S′| ⊆ γ and

γ ≥ ϑ. Define a permutation h by h(ξ) = ξ for ξ ∈ B, h(ξ) = h−1(ξ) = γ+ ξ
for ξ < γ, ξ /∈ B, and still h(ξ) = ξ for all other ξ < ωL

1 . The multitrees S′

and U = h·S′ coincide on the common domain |S′| ∩ |U| = B, hence are
compatible. It follows that the union R = S′ ∪U belongs to MT and R 6
S′,U. And further we have R 6 U = h·S′ 6 h·S by construction, hence
R ∈ D, as required. Thus (2) fails. Therefore (1) holds, that is, S′ ∈ Dϑ, as
required. Lemma

Coming back to Theorem 22.1, recall that ωL
1 remains a cardinal in �-

generic extensions by Lemma 16.3. Therefore Lemma 22.2 allows one to
define by induction an increasing sequence 〈ϑν〉ν<ωL

1
of ordinals ϑν < ωL

1 and

a sequence of multitrees Sν ∈ G and a sequence of permutations hν ∈ Hϑν

satisfying B′ ⊆ ϑ0 and Sν 6 hν ·S for all ν, and |Sµ| ⊆ ϑν for µ < ν.
Let Tν = hν ·S, cν = hν ·c, dν = hν ·d, eν = hν ·e for all ν. Then we

have Tν forc ϕ(dν , cν) and Tν forc ∃ z (z = cν ∧ eν = g(z)) by (∗) and
Lemma 21.3. It follows that

(†) Sν forc ϕ(d, cν) and Sν forc ∃ z (z = cν and eν = g(z)),

since Sν 6 Tν , and, with respect to the code d: dν = hν ·d = d. (Indeed,
hν(ξ) = ξ whenever ξ ∈ B = |d|.)

Recall that fd(x[G]�B) = p. Let B′ν = h”B′, zν = fcν (x[G]�B′ν), and
qν = feν (x[G]�B′ν). If ν < ωL

1 then, by (†) and Lemma 21.2, ϕ(p, zν) holds
in L[G]—hence zν ∈ Y , and we have qν = g(zν) as well. Further,

qν = feν (x[G]�B′ν) = (hν ·fe)(x[G]�B′ν) = fe(h−1ν (x[G]�B′ν))

= fe((h−1ν (x[G])�B′) = (h−1ν (x[G]))(η) = (x[G])(ην) = xην [G],

where ην = hν(η). Thus an uncountable sequence of the reals zν ∈ Y in
L[G] (ν < ωL

1 ) is defined, and it satisfies g(zν) = xην [G] for all ν. The
ordinals ην = hν(η) satisfy ην ≥ ϑν by the choice of hν , since η ∈ B′ r B.
Therefore there exist uncountably many pairwise different ordinals ην in
L[G]. It follows that there exist uncountably many pairwise different generic
reals xην [G]. On the other hand, all reals zν belong to the countable set Y ,
and xην [G] = g(zν), where g does not depend on ν. This is a contradiction
required, and the theorem is proved.

Proof of Theorem 15.6(ii). Arguing under the requirements of Theorem
15.6, assume that, in L[G], p ∈ 2ω and W ⊆ 2ω × 2ω is a Σ1

n(p) set whose
cross-sections Wx = {y : 〈x, y〉 ∈ W } are at most countable. Every set Wx

is Σ1
n(p, x), whence Wx ⊆ L[p, x] by Theorem 22.1. If Wx 6= ∅ then let qx

be the <px-least real in Wx, where <px is the Gödel well-ordering of L[p, x].
The set Q = {〈x, qx〉 : x ∈ 2ω ∧Wx 6= ∅} then uniformizes W . Moreover

〈x, y〉 ∈ Q ⇐⇒ 〈x, y〉 ∈W ∧ ∀ z (z <px y =⇒ 〈x, y〉 /∈W ).
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Therefore the set Q belongs to ∆1
n+1(p), or more exactly is the intersection

of a Σ1
n(p) set and a Π1

n(p) set, because the Gödel well-orderings <px are
well-known to be Σ1

2(p, x)-definable uniformly in p, x. Theorems 2.2 and 2.1

23. Open questions. Surely there are open questions, concerning other
problems in descriptive set theory, where one wants to control the least
projective level of a counterexample. Of those, we mention the following
two problems.

Problem 1. Prove results similar to our Theorems 2.1 and 2.2, but
without the restriction to sets with countable cross-sections, in items (ii) of
both theorems.

Problem 2. Uri Abraham [1] defined a generic extension L[a] of L by
a real a ∈ 2ω such that a codes a collapse of ℵL1 and a is a Π1

2 singleton
in L[a]. Given n ≥ 3, one may look for a model L[a], a ∈ 2ω, such that
it holds in L[a] that a is a Π1

n singleton that still collapses ℵL1 , but no Σ1
n

real collapses ℵL1 . We solved this in the positive (to appear elsewhere), but a
similar problem for Namba-collapse functions (yielding the cofinality of ℵL2
to ω without collapsing ℵ1) remains open.

In this context, we mention a similar result, recently obtained in [22].
There is a generic extension L[a] of L, by a real a ∈ 2ω, such that the fol-
lowing is true in L[a]: the E0-equivalence class of a is a (countable) lightface
Π1
n set containing no ordinal-definable elements, but every countable Σ1

n set
belongs to L, hence consists of ordinal-definable elements.
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ensembles, Bull. Soc. Math. France 33 (1905), 261–273.

[11] K. Hauser and R.-D. Schindler, Projective uniformization revisited, Ann. Pure Appl.
Logic 103 (2000), 109–153.

[12] T. Jech, Set Theory. The third millennium edition revised and expanded, Springer,
Berlin, 2003.

[13] R. B. Jensen, Definable sets of minimal degree, in: Y. Bar-Hillel (ed.), Mathematical
Logicic Foundations of Set Theory (Jerusalem, 1968), North-Holland, Amsterdam,
1970, 122–128.

[14] V. G. Kanovei, The projective hierarchy of N. N. Luzin: The current state-of-the-art
in the theory, in: Handbook of Mathematical Logic, Part II: Set Theory, supplement
to the Russian translation, Nauka, Moscow, 273–364, 1982 (in Russian).

[15] V. Kanovei, Non-Glimm–Effros equivalence relations at second projective level, Fund.
Math. 154 (1997), 1–35.

[16] V. Kanovei, On non-wellfounded iterations of the perfect set forcing, J. Symbolic
Logic 64 (1999), 551–574.

[17] V. Kanovei, Borel Equivalence Relations. Structure and Classification, Amer. Math.
Soc., Providence, RI, 2008.

[18] V. Kanovei and V. Lyubetsky, A definable E0-class containing no definable elements,
Arch. Math. Logic 54 (2015), 711–723.

[19] V. Kanovei and V. Lyubetsky, Counterexamples to countable-section Π1
2 uniformiza-

tion and Π1
3 separation, Ann. Pure Appl. Logic 167 (2016), 262–283.

[20] V. Kanovei and V. Lyubetsky, Countable OD sets of reals belong to the ground model,
Arch. Math. Logic 57 (2018), 285–298.

[21] V. Kanovei and V. Lyubetsky, Non-uniformizable sets of second projective level with
countable cross-sections in the form of Vitali classes, Izv. Math. 82 (2018), 65–96.

[22] V. Kanovei and V. Lyubetsky, Definable E0 classes at arbitrary projective levels,
Ann. Pure Appl. Logic 169 (2018), 851–871.

[23] V. G. Kanovei and V. A. Lyubetsky, On some classical problems in descriptive set
theory, Russian Math. Surveys 58 (2003), 839–927.

[24] V. G. Kanovei and V. A. Lyubetsky, Modern Set Theory: Basics of Descriptive Dy-
namics, Nauka, Moscow, 2007 (in Russian).

[25] V. G. Kanovei and V. A. Lyubetsky, Modern Set Theory: Borel and Projective Sets,
MTsNMO, Moscow, 2010 (in Russian).

[26] V. G. Kanovei and V. A. Lyubetsky, Modern Set Theory: Absolutely Unsolvable Clas-
sical Problems, MTsNMO, Moscow, 2013 (in Russian).

[27] V. G. Kanovei and V. A. Lyubetsky, A countable definable set containing no definable
elements, Math. Notes 102 (2017), 338–349.

[28] V. Kanovei, M. Sabok, and J. Zapletal, Canonical Ramsey Theory on Polish Spaces,
Cambridge Univ. Press, Cambridge 2013.

[29] M. Kondô, L’uniformisation des complémentaires analytiques, Proc. Imp. Acad.
Tokyo 13 (1937), 287–291.

http://dx.doi.org/10.2178/jsl.7801070
http://dx.doi.org/10.1016/j.apal.2012.12.001
http://dx.doi.org/10.1002/malq.201500020
http://dx.doi.org/10.24033/bsmf.761
http://dx.doi.org/10.1016/S0168-0072(99)00038-X
http://dx.doi.org/10.2307/2586484
http://dx.doi.org/10.1007/s00153-015-0436-9
http://dx.doi.org/10.1016/j.apal.2015.12.002
http://dx.doi.org/10.1007/s00153-017-0569-0
http://dx.doi.org/10.1070/IM8521
http://dx.doi.org/10.1016/j.apal.2018.04.006
http://dx.doi.org/10.1070/RM2003v058n05ABEH000666
http://dx.doi.org/10.1134/S0001434617090048
http://dx.doi.org/10.1017/CBO9781139208666
http://dx.doi.org/10.3792/pia/1195579858


Non-uniformizable sets with countable cross-sections 41

[30] A. Lev, Definability in axiomatic set theory II, in: Y. Bar-Hillel (ed.), Math. Logic
Found. Set Theory (Jerusalem, 1968), North-Holland, Amsterdam, 1970, 129–145.

[31] N. Lusin, Sur le problème de M. J. Hadamard d’uniformisation des ensembles, C. R.
Acad. Sci. Paris 190 (1930), 349–351.

[32] N. Lusin, Sur le problème de M. Jacques Hadamard d’uniformisation des ensembles,
Mathematica (Cluj) 4 (1930), 54–66.

[33] N. Lusin et P. Novikoff, Choix effectif d’un point dans un complémentaire analytique
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