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On Hausdorff ordered structures

V. G. Kanovei

Abstract. We suggest a classification of problems on the existence of

structures such as limits, gaps, towers and scales in Hausdorff partially

ordered sets of infinite sequences, including sequences with real terms and

various partial order relations.
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Introduction

Suppose that 〈P ;6〉 is a partially ordered set whose domain P consists either
of real functions defined on the real half-line [0,+∞) or of infinite sequences of
real numbers, where f 6 g means that the function (or sequence) g grows faster
than f . Hausdorff regarded the use of any such partially ordered structure 〈P ;6〉 as
a method of classifying functions or sequences (Graduierungsmethod) in accordance
with their rate of growth. Some examples of such structures (here called Hausdorff
structures) are given in § 1.

The history of the study of such ordered structures goes back to the papers
of du Bois-Reymond (see [1] and elsewhere) and was extended by Hadamard [2],
Borel [3], Hardy [4] and others. Hausdorff proposed another approach to these
structures in [5], [6] based on the study of certain totally and even well ordered
substructures in a given partial order. These substructures are (usually transfinite)
increasing or decreasing sequences, or can be reduced to such sequences. In par-
ticular, he considered scales, towers, limits and gaps, which are widely studied in
modern set theory and set-theoretic topology (see, for example, [7]–[10]). We define
these substructures in § 2 below.

It turns out that, except for a few simple non-existence theorems based on the
diagonal construction and a rather complicated theorem of the existence of an
(ω1, ω

∗
1)-gap, questions of the existence of these substructures in Hausdorff ordered

structures lead to undecidable problems. For instance, it is impossible to either
prove or refute the assertion of the existence of (ω1, ω

∗)-gaps, ω1-limits and others
on the basis of the axioms of modern axiomatic set theory ZFC. We discuss this
in more detail in § 6.

Yet not all of these problems are independent of each other. Indeed, Roth-
berger [11], [12] proved, for the order 6∗ of eventual domination (see § 1), that
the existence of an ω1-tower in NN is equivalent to that of an (ω1, ω

∗)-gap in 2N,
and that either of these two existence assertions implies the existence of ω1-limits
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in 2N. (Each of these three existence assertions is undecidable in ZFC.) Since then,
other results on the mutual reducibility and equivalence of such problems have been
obtained (see, for instance, [10], [13]). However, these results did not exhaust the
multitude of possible problems of this sort even in the most elementary case of
the cardinal ω1. Indeed for ω1, almost any combination of one of the three domains
2N ⊆ NN ⊆ RN, one of the four Hausdorff order relations considered in § 1, and one
of the four types of substructures (that is, scales and so on) is non-trivial.

The goal of this paper is to classify these problems. Besides several well-studied
combinations of the domains 2N, NN and orders 4, 6∗, we consider some more
complicated problems connected with the domain RN of sequences of arbitrary
real numbers and the less-studied orders E, 6fro. Our main result is Theorem 5
in § 5 (proved in § 7). In the case of the cardinal ω1, it says that all the problems
considered, except for those few connected with gaps and limits for the order E, are
classified into the three types already known (scales, towers and gaps, and limits).
In the case of cardinals κ > ω1, Theorem 5 yields results that are somewhat less
complete.

In § 3 we study some questions related to the connection of the ordered structures
considered with their continual forms, that is, structures consisting of continuous
real functions defined on [0,+∞) rather than of infinite sequences.

§ 1. Hausdorff ordered structures

By a non-strict (partial) order we understand any transitive (that is, x 6 y
and y 6 z implies x 6 z) and reflexive (x 6 x for all x) binary relation 6 on a given
set X called the domain of 6. It is not assumed that x 6 y ∧ y 6 x necessarily
implies x = y. Nor do we assume linearity, that is, two elements x, y ∈ X are
not necessarily comparable under 6. (Relations of this sort are sometimes called
pre-orders or quasi-orders.) Given such an order 6, we can define an equivalence
relation (x ≡ y if and only if x 6 y and y 6 x) and a strict order (x < y if and
only if x 6 y but y 
 x) on the same domain. Conversely, given an equivalence
relation ≡ and an (≡)-invariant strict order <, we can define a non-strict order:
x 6 y if and only if x < y or x ≡ y.

The domain of the following partially ordered sets is the set RN of all infinite
sequences a = {a(n)}n∈N of real numbers a(n). We understand elements a ∈ RN

as functions (from N to R), reserving the word ‘sequence’ for transfinite sequences
of elements of RN. We also consider the subsets 2N ⊆ NN of RN. They consist of
infinite sequences whose terms are positive integers (for the domain NN) and num-
bers 0, 1 (for the dyadic domain 2N).

The rate of growth order on RN is defined in [5] by putting

a 4 b if and only if ∃ lim
n→∞

(
a(n)− b(n)

)
< +∞.

It is different from du Bois-Reymond’s original rate of growth order for real func-
tions:

f 4 g if and only if lim
x→+∞

f(x)
g(x)

< +∞.
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However, the logarithm of the last fraction is equal to a difference of logarithms, and
this induces an isomorphism between the version of the last definition for a ∈ RN

with positive terms and the first definition. On the other hand, the definition by
means of differences is technically somewhat more convenient, and that is why it is
more often used in modern studies.

Simple examples show that the limit in the definition of 4 does not necessarily
exist, and hence the domain RN contains (4)-incomparable elements. To circumvent
problems related to the non-existence of the limit, Hausdorff [5] suggested replacing
the limit by the upper limit (which always exists). This leads to the following
modified rate of growth order:

a E b if and only if lim sup
n→∞

(
a(n)− b(n)

)
< +∞.

However, incomparable elements still exist, such as the constant 1 and the function
a ∈ RN defined by a(n) = n for even n and a(n) = n−1 for odd n. In fact, no
reasonable order on RN can compare any pair of elements of RN and be minimally
compatible with 4 (see below).

The following ordering of RN was called the final Rangordnung in [5]:

a 6fro b if and only if ∃n0 : either a(n) < b(n) ∀n > n0,

or a(n) = b(n) ∀n > n0.

For a 4 b to hold, it is clearly necessary and sufficient that c + a 6fro b for every
constant c (here c + a denotes the function a′(n) = a(n) + c).

The eventual domination order 6∗ was introduced in [14]:

a 6∗ b if and only if ∃n0 : ∀n > n0 (a(n) 6 b(n)).

Definition 1. A Hausdorff ordered structure (HOS for brevity) is any partially
ordered set 〈D;6〉 whose domain D is one of the sets RN, NN, 2N and whose order
relation 6 belongs to the list 4, E, 6fro, 6∗, except for the uninteresting trivial
structures 〈2N;4〉, 〈2N;E〉 and 〈2N;6fro〉. Thus there are nine (non-trivial) HOS,
of which one is the dyadic structure 〈2N;6∗〉, four others can be characterized as
structures of N-type (that is, those with domain NN), and the last four are structures
of R-type (with domain RN).

For each of the four order relations 4, E, 6fro, 6∗ we naturally define (see above)
the equivalence relations

∼, ./, ≡fro, ≡∗

respectively and the strict order relations

≺, C, <fro, <∗

respectively. For instance, x ∼ y if and only if x 4 y and y 4 x, while x ≺ y if and
only if x 4 y but y 4/ x.

Note that the order relations 6fro and 6∗ are obviously different, yet they induce
the same equivalence relation ≡fro = ≡∗, that is,

a ≡fro b ⇔ a ≡∗ b ⇔ a(n) = b(n) for all but finitely many n.

But the corresponding strict relations are different: <fro  <∗.
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§ 2. Gaps, limits, towers and scales

Several important types of linearly ordered substructures of HOS are defined
here. We fix a partially ordered set P = 〈P ;6〉 and let < be the corresponding
strict order. Let κ, λ be a pair of arbitrary cardinals, each of which is assumed to
be either infinite and regular, or finite and then equal to 0 or 1. (The other finite
values are trivially reducible to these two in the context of this discussion.)

We introduce the following definitions.
1) A (κ, λ∗)-pregap is a pair that consists of a (<)-increasing sequence X =

{xα}α<κ and a (<)-decreasing sequence Y = {yβ}β<λ of elements xα, yβ ∈ P such
that X < Y (that is, xα < yβ for all α < κ, β < λ).

2) Any element z ∈ P satisfying X < z < Y is said to fill the pregap 〈X, Y 〉. If
there are no such elements z, then the given (κ, λ∗)-pregap is called a (κ, λ∗)-gap.1

3) A κ-limit is any (κ, 1∗)-gap,2 that is, a pair consisting of a (<)-increasing
sequence {xα}α<κ and an element x ∈ P such that xα < x for all α and there is no
other element y satisfying xα < y < x for all α. In this case we write x = limα→κ xα.

4) A κ-tower is any (κ, 0∗)-gap, that is, a (<)-increasing κ-sequence that is
unbounded above.3

5) A κ-scale is any (<)-increasing sequence {xα}α<κ in P such that for every
x ∈ P we have x < xα for some α.

Towers and scales are particular types of the much wider categories of unbounded
and dominating sets (respectively).

An unbounded set is any set X ⊆ P such that there is no x ∈ P satisfying X 6 x
(that is, x′ 6 x for all x′ ∈ X).

A dominating set is any set X ⊆ P such that for every x′ ∈ P there is an x ∈ X
satisfying x′ 6 x.

In this terminology, a tower in the structure P = 〈P ;6〉 is any (<)-well-ordered
unbounded set, while a scale is any (<)-well-ordered dominating set. Every domi-
nating set is unbounded provided that there is no largest element.

§ 3. Continual structures

Each of the partially ordered structures defined in § 1 on the domain RN of all
infinite sequences of real numbers has an obvious continual modification defined
on the domain C of all continuous functions4 f : [0,+∞) → R. One may consider
even wider families of functions, for instance, those that are piecewise continuous
but bounded on every bounded interval in [0,+∞).

1And frequently a (κ, λ)-gap as well, where the second cardinal λ is understood as the order
type of a decreasing sequence.

2In most of the cases considered here, the partially ordered sets will be symmetric enough to
prove that the existence of (κ, 1∗)-gaps is equivalent to that of (1, κ∗)-gaps, and the latter type
will be called decreasing limits.

3We also consider decreasing towers, that is, decreasing κ-sequences that are unbounded below.
4Thus the word ‘continual’ here reflects the nature of the domain rather than that of the

functions considered. In fact, the continual versions of the orderings, say 4 and E, historically
precede the discrete forms (those defined on RN). The latter were first defined and systematically
studied by Hausdorff in his paper [5].



On Hausdorff ordered structures 943

The following theorem contains several assertions connecting discrete and
continual structures (ordered by the relations 4, E, 6fro, 6∗) regarding the exis-
tence of gaps and scales.

Theorem 2. Suppose that 6 is one of the order relations 4, E, 6fro, 6∗, and κ
is an infinite regular cardinal.

(i) Then the existence of a κ-scale in 〈RN;6〉 implies the existence of a κ-scale
in 〈C;6〉.

(ii) Conversely, the existence of a κ-scale in 〈C;6〉 implies the existence of a κ-
scale in 〈RN;6〉.

If, in addition, either λ is an infinite regular cardinal, or λ = 0, or λ = 1 and 6
is one of the relations 4, 6fro, then the following assertion holds.

(iii) The existence of a (κ, λ∗)-gap in 〈RN;6〉 implies that of a (κ, λ∗)-gap
in 〈C;6〉.

Recall that (κ, 0∗)-gaps are the same as κ-towers, while (κ, 1∗)-gaps are the same
as κ-limits.

Proof. For any function f : [0,+∞) → R, let f � N denote the sequence {f(n)}n∈N
of the values of f on positive integers. For the duration of the proof, 6 will be any
order relation in the list {4,E,6fro,6∗}.

(i) Suppose that {aξ}ξ<κ is a scale in 〈RN;6〉. For any index ξ, define a func-
tion fξ ∈ C in such a way that aξ = fξ � N and fξ is linear on every interval
[n, n + 1]. Clearly, the sequence of functions {fξ}ξ<κ is (<)-increasing when the
given sequence {aξ}ξ<κ is, where < is the strict order associated with the given
non-strict order 6. To see that {fξ} is a scale, consider any function f ∈ C. As
f is continuous, the expression a(n) = n max06x6n+1 f(x) is finite for any n, and
hence a = {a(n)}n∈N ∈ RN. Note that a 6 aξ for some ξ, and then f 6 fξ.

(ii) Now suppose that {fξ}ξ<κ is a scale in 〈C;6〉. Define aξ = fξ � N for all ξ.
Let a ∈ RN. There is a continuous function f ∈ C such that a = f � N. Then f 4 fξ

for some ξ < κ, and hence a 4 aξ, as required. Further, the sequence {aξ}ξ<κ is
obviously (6)-increasing, but not necessarily (<)-increasing in the case when 6
is E or 6∗ since in this case f < g does not necessarily imply f � N < g � N.
Therefore, removing appropriate terms, we can convert the sequence {aξ} into
a (<)-increasing sequence, that is, into a scale whose length does not exceed κ.
This length cannot be strictly less than κ since in that case we would get a shorter
scale in 〈C;6〉 by (i), and this is impossible since two scales of different (transfinite
regular) lengths cannot exist.

(iii) Suppose that 〈{aξ}ξ<κ, {bη}η<λ〉 is a (κ, λ∗)-gap in the structure 〈RN;6〉.
There are functions fξ, gη ∈ C that are linear on every interval [n, n+1] and satisfy
aξ = fξ � N and bη = gη � N. Then fξ < fξ′ < gη′ < gη for all ξ < ξ′ < κ and
η < η′ < λ. We claim that the pair 〈{fξ}ξ<κ, {gη}η<λ〉 is a gap. Indeed, otherwise
there is a function h ∈ C such that fξ < h < gη for all ξ, η. Then c = h � N satisfies
aξ 6 c 6 bη for all ξ, η. We consider several cases.

If κ and λ are limit ordinals, then aξ < aξ+1 6 c 6 bη+1 < bη and hence
aξ < c < bη holds strictly, a contradiction.
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When 6 is one of the relations 4, 6fro, it is clear that f <g implies f �N < g �N,
and hence the strict inequalities aξ < c < bη hold, a contradiction.

Finally, suppose that λ = 0, that is, {aξ}ξ<κ is a tower, and we wish to prove
that so is the sequence {fξ}. Then we have aξ 6 c (see above), a contradiction.

This completes the proof.

We do not know whether the converse of assertion (iii) of Theorem 2 is true.
To demonstrate the difficulties here, consider any (κ, λ∗)-gap 〈{fξ}ξ<κ, {gη}η<λ〉
in 〈C;4〉. Put aξ = fξ � N and bη = gη � N. Then aξ ≺ aξ′ ≺ bη′ ≺ bη for all
ξ < ξ′ < κ and η < η′ < λ. Now if c ∈ RN satisfies aξ 4 c 4 bη for all ξ, η, then
it is not clear how to define a function h ∈ C satisfying the equality c = h � N and
filling the gap 〈{fξ}, {gη}〉.

Nor is it clear whether (iii) holds for λ = 1 (the case of limits) when the order 6
is E or 6∗. Indeed, suppose that 〈{aξ}ξ<κ, b0〉 is a κ-limit in, say, 〈RN;E〉 with the
following property. When ξ is an even ordinal, we have aξ(n) = b0(n) for even n,
aξ(n) < b0(n) for odd n, and b0(n) − aξ(n) → +∞, and when ξ is odd, the same
holds but with ‘even’ and ‘odd’ interchanged. Then the pair 〈{fξ}ξ<ω1 , g0〉, defined
as in the proof of assertion (iii) of Theorem 2, is not necessarily a κ-limit in 〈C;E〉.

§ 4. Hausdorff’s gap theorem

It is easy to prove (as Hausdorff does in [5]) that (ω, ω∗)-gaps and ω-limits do not
exist in structures of the type considered. The proof uses the diagonal construction
of du Bois-Reymond [1]. For instance, suppose that

a0 <∗ a1 <∗ a2 <∗ · · · <∗ b2 <∗ b1 <∗ b0, ai, bj ∈ NN.

There is a sequence of positive integers n0 < n1 < · · · such that ai(n) < bj(n) for
all k and i, j 6 k whenever nk 6 n < nk+1. Put c(n) = maxi6k ai(n) for all n
satisfying nk 6 n < nk+1. Then an <∗ c <∗ bn holds for all n.

The following theorem is much more difficult. We sketch its proof for the reader’s
convenience since it would be difficult to find a proof published in Russian.

Theorem 3 (Hausdorff’s gap theorem). (ω1, ω
∗
1)-gaps exist in every Hausdorff

ordered structure.

The result for the structure 〈RN;6fro〉 appeared in [6]. A version for the dyadic
structure 〈2N;6∗〉 appeared in [14], and this is a standard reference in modern
literature. The proofs in [6] and [14] follow the same scheme, which is also applicable
to any of the nine HOS with suitable modifications. On the other hand, such
a generalization can also be established as a formal consequence of some rather
transparent reductions established in § 7 below.

Proof of Theorem 3 (a sketch for the structure 〈2N;6∗〉). When a, b ∈ 2N and
a 6∗ b, let (a; b) denote the least number n0 satisfying n > n0 ⇒ a(n) 6 b(n).
We define a (<∗)-increasing sequence A = {aξ}ξ<ω1 and (<∗)-decreasing sequence
B = {bξ}ξ<ω1 of elements aξ, bξ ∈ 2N satisfying the inequality aη <∗ bξ for all ξ, η
(that is, 〈A,B〉 is a pre-gap) and the following key condition:

(∗) for all n ∈ N and ξ < ω1, the set {η < ξ : (aη; bξ) = n} is finite.
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We can understand (∗) in the sense that although bξ is strictly (<∗)-higher than
all the aη, there is still a certain degree of (<∗)-proximity of bξ to the set {aη : η < ξ}.

If such a construction is accomplished, then the pair 〈A,B〉 is the desired
(ω1, ω

∗
1)-gap. Indeed, assume the opposite and let c ∈ 2N be such that aξ <∗ c <∗ bξ

for all ξ. As ω1 is uncountable, there is an ordinal ξ and a number n such that
(aη; c) = n for infinitely many η < ξ. But this clearly contradicts (∗) as c <∗ bξ.

We now describe an inductive construction of terms of sequences satisfying (∗).
The successor steps are rather trivial: if terms aξ <∗ bξ have been defined, choose
aξ+1 and bξ+1 to be any pair a, b ∈ 2N satisfying aξ <∗ a <∗ b <∗ bξ. The limit
steps need more effort. Suppose that λ < ω1 is a limit ordinal and aξ, bξ have
been defined for ξ < λ in such a way that (∗) holds. The same argument as in the
above proof of the absence of (ω, ω∗)-gaps enables us to define a c ∈ 2N such that
aξ <∗ c <∗ bξ for all ξ < λ. It follows from the inductive assumption of (∗) that the
set {η < ξ : (aη; c) = n} is finite for any number n and any ordinal ξ < λ. In this
case, another version of the same argument enables us to define a b ∈ 2N such that
b <∗ c and again aξ <∗ b for all ξ < λ, and in addition the set {η < λ : (aη; b) = n}
is finite for any n. Put bλ = b and define aλ to be any a ∈ 2N such that aξ <∗ a <∗ b
for all ξ.

§ 5. The principal problem and the main theorem

This paper is largely devoted to the following general problem concerning the
partial orderings called HOS in § 1.

Problem 4 (the principal problem). What are the structure, properties and spec-
tra of the cardinals of the gaps, limits, towers and scales of any given partially
ordered set P = 〈P ;6〉? For instance, if κ, λ are regular cardinals, does the set P
have (κ, λ∗)-gaps or κ-scales?

This problem includes a variety of more special questions on the existence of
gaps (including limits and towers) and scales with certain cardinal characteristics.
In particular, in the simplest (but most interesting) case κ = ω1, problems on the
existence of ω1-limits, ω1-towers and (ω1, ω

∗)-gaps for various HOS were considered
in the earliest of Hausdorff’s studies, such as [6]. He regarded these problems as
relevant to the continuum hypothesis CH (that is, the equality c = ℵ1), which was
still open at that time. Besides Theorem 3, Hausdorff’s main results in his early
studies [5], [6] relating to these particular problems amount to the following.

(I) The problems of the existence of ω1-limits, ω1-towers and (ω1, ω
∗)-gaps in

the structure 〈RN;6fro〉 are equivalent to each other: the existence of any of them
implies that of the other two.

(II) The continuum hypothesis CH implies the existence of ω1-limits, ω1-towers
and (ω1, ω

∗)-gaps, as well as ω1-scales, in 〈RN;6fro〉.
Further studies of the relations between these problems were undertaken by

Rothberger in [11], [12], where it was established that, for the partially ordered
set 〈2N;6∗〉, the existence of an (ω1, ω

∗)-gap is equivalent to the existence of an
ω1-tower and implies the existence of an ω1-limit. To compare this with Hausdorff’s
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result (I), one has to bear in mind that limits in 〈RN;6fro〉 and in the dyadic
structure 〈2N;6∗〉 are of a somewhat different nature.

At around the same time, another field of applications of these ideas was
discovered by Luzin [15], [16]. Consider the set P(N) = {x : x ⊆ N} of all subsets
of the set N of all positive integers, ordered by the relation of almost-inclusion:
x ⊆∗ y if and only if the difference x \ y is finite. The structure 〈P(N);⊆∗〉 is
isomorphic to the structure 〈2N;6∗〉, of course. Luzin defined a pair of strictly
(⊂∗)-increasing sequences {xξ}ξ<ω1 and {yξ}ξ<ω1 of sets, xξ, yξ ⊆ N, that are
orthogonal (that is, all intersections xξ ∩ yξ are finite) but inseparable (that is,
there is no set z such that xξ ⊆∗ z but yξ ∩ z is finite for all ξ). This is equivalent
to the existence of an (ω1, ω

∗
1)-gap in 〈2N;6∗〉. He also posed problems on the

existence of ω1-limits and (ω1, ω
∗)-gaps in 〈P(N);⊆∗〉 (in terms of the existence of

a pair of orthogonal and unseparable sequences one of which has length ω1 and the
other has length ω, now called a Luzin pair). See [17] for more details.

Some other results in this direction, relating mainly to the orderings 6∗ and 4
and the domains 2N and NN, as well as their applications in set theory and topol-
ogy, are to be found in [8]–[10], [18]. See § 6 below for some metamathematical
independence results.

The following theorem (our main result) implies that for any given cardinal
κ > ω1, the problems of the existence of κ-scales, κ-towers, κ-limits and (κ, ω∗)-gaps
in Hausdorff structures (see Definition 1) are reducible to a much shorter list of
genuinely different problems, except for questions on the existence of gaps and
limits in the (E)-structures

〈RN;E〉, 〈NN;E〉, (1)

whose nature remains not fully clear. For all the other Hausdorff structures in
Definition 1, that is, for

〈RN;4〉, 〈RN;6fro〉, 〈RN;6∗〉, 〈NN;4〉, 〈NN;6fro〉, 〈NN;6∗〉, 〈2N;6∗〉,
(2)

all these questions are reducible to only three genuinely different problems in the
most interesting case κ = ω1 (see Remark 7 below).

The content of the main theorem is illustrated by the diagrams displayed in
Figs. 1 and 2. In these diagrams, the relation X ⇒ Y (including the cases with
vertical arrows) means that the existence of a (κ, λ∗)-gap (or a κ-limit) in X implies
that of the same gap (resp. limit) in Y , and the relation⇔ is understood accordingly.
In Fig. 2, the relation X → Y means that the existence of a κ-limit in X implies

〈2N;6∗〉 ks +3 〈NN;6∗〉 ks +3

��

〈NN;6fro〉 ks +3

��

〈NN;4〉 +3
KS

��

〈NN;E〉
KS

��
〈RN;6∗〉 ks 〈RN;6fro〉 ks 〈RN;4〉 〈RN;E〉

Figure 1. Relations between HOS regarding the existence of a (κ, λ∗)-gap
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〈NN;6∗〉 ks +3 〈2N;6∗〉
〈RN;6∗〉 ks

towers ks +3

��

OO

��

OO

〈RN;6fro〉

〈NN;4〉 ks +3

��

KS

〈RN;4〉

〈NN;E〉 ks +3 〈RN;E〉

Figure 2. Relations between HOS regarding the existence of a κ-limit

the existence of a κ′-limit in Y for a regular cardinal κ′ 6 κ, the relation ⇐l is
understood in the sense of assertion 4), (vi) of Theorem 5, while the box towers
means the existence of κ-towers in the non-dyadic structures in the list (2).

Theorem 5 (the main theorem). Let κ > ω1 be a regular cardinal.
1) All the HOS in Definition 1, except for the dyadic structure 〈2N;6∗〉, are

equivalent to each other with respect to the existence of κ-scales.5

2) The following assertions hold.
(i) All the HOS in the list (2), except for the dyadic structure 〈2N;6∗〉, are

equivalent to each other with respect to the existence of κ-towers.
(ii) The existence of κ-towers in 〈NN;E〉 follows from the existence of κ-towers

in 〈NN;4〉 and implies the existence of κ′-towers in 〈NN;4〉 for some regular
uncountable cardinal κ′ 6 κ.

3) The following assertions hold.
(i) Let λ > ω be a regular cardinal. Then Fig. 1 displays the relations between

Hausdorff structures with respect to the existence of a (κ, λ∗)-gap.
(ii) When λ = ω, all occurrences of the implication sign ⇒ in Fig. 1, except

possibly for the implication 〈NN;4〉 ⇒ 〈NN;E〉, can be replaced by ⇔, and hence all
seven of the HOS in (2) are equivalent with respect to the existence of a (κ, ω∗)-gap.

(iii) The existence of a (κ, ω∗)-gap in any of the HOS in (2) is equivalent to
the existence of a κ-tower in any of the six non-dyadic HOS in (2).

4) Fig. 2 displays the relations between Hausdorff structures with respect to the
existence of a κ-limit. More precisely, the content of the diagram in Fig. 2 is as
follows.

(i) The structure 〈NN;6fro〉 has no κ-limits.
5The questions of the existence of scales and towers are vacuous for the dyadic structure

〈2N; 6∗〉 since it contains no scales or towers whose length is a limit ordinal and 2N contains
(6∗)-largest elements. For instance, any a ∈ 2N satisfying a(n) = 1 for almost all (except for
finitely many) n, is such an element. Let us call any such a an almost constant 1. Even if one
removes the almost-1 sequences from 2N, there will be no scales at all while any κ-towers, if they
exist, will be the same as κ-limits in the given structure 〈NN; 6∗〉. It follows that, without any
loss of generality, we can eliminate 〈2N; 6∗〉 whenever existence problems relating to towers and
scales are involved.
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(ii) The structure 〈NN;6∗〉 has κ-limits if and only if the structure 〈2N;6∗〉 does.
(iii) The structure 〈RN;6fro〉 has κ-limits if and only if the structure 〈NN;6fro〉

has κ-towers.
(iv) κ-limits exist in 〈NN;4〉 if and only if they exist in 〈RN;4〉. Either of these

two existence claims implies the existence of κ-towers in 〈NN;6fro〉.
(v) If the structure 〈NN;6fro〉 has κ-towers, then the structure 〈NN;4〉 has

κ′-limits for some cardinal κ′ 6 κ.
(vi) The structure 〈RN;6∗〉 has κ-limits if and only if either 〈2N;6∗〉 has κ-limits

or 〈NN;6fro〉 has κ-towers.
(vii) κ-limits exist in 〈NN;E〉 if and only if they exist in 〈RN;E〉. Each of these

two existence claims follows from the existence of κ-limits in 〈NN;4〉.
5) The following assertions hold.
(i) The existence of a κ-tower in any of the non-dyadic HOS in (2) follows

from the existence of a κ-scale, is equivalent to the existence of a (κ, ω∗)-gap, and
implies the existence of a κ′-limit in 〈2N;6∗〉 for some cardinal κ′ 6 κ.

(ii) If κ-towers exist (in non-dyadic HOS) but the structure 〈2N;6∗〉 has no
κ-limits, then κ-scales exist.

Remark 6. In the particular case λ = ω, Theorem 5 reduces the multitude of exis-
tence problems for κ-scales, κ-towers, κ-limits and (κ, ω∗)-gaps in the Hausdorff
structures in Definition 1 to the following groups of mutually equivalent (within
each group) problems.

A. The existence of a κ-limit in any (or, equivalently, in each) of the two struc-
tures 〈2N;6∗〉 and 〈NN;6∗〉.

B. The existence of a κ-tower in any non-dyadic HOS, the existence of a (κ, ω∗)-
gap in any HOS in (2), the existence of a κ-limit in 〈RN;6fro〉.

B′. The existence of a κ-limit in either of the structures 〈NN;4〉, 〈RN;4〉.
C. The existence of a κ-scale in any non-dyadic HOS.
Here is another version.
A′. The existence of a κ-limit in 〈RN;6∗〉, which is equivalent to A∨B.
The following problems are excluded from this scheme.
A/. The existence of κ-limits in the structures 〈RN;E〉 and 〈NN;E〉.
B/. The existence of (κ, ω∗)-gaps in the structures 〈RN;E〉 and 〈NN;E〉.
Also the existence of a κ-limit in 〈NN;6fro〉, which is impossible.
Note that for any of the three HOS of N-type in (2), the existence of a (κ, λ∗)-gap

implies the existence of a (λ, κ∗)-gap since this is true for the structure 〈2N;6∗〉
because of its obvious symmetry. (The existence of a suitable symmetry for HOS
of R-type is also fairly clear.)

Remark 7. The relations between the problems become even simpler in the most
interesting case κ = ω1. Indeed, then we necessarily have κ′ = κ in assertion 5), (i)
of Theorem 5 since there are no ω-limits. Therefore problem B′ joins B, and hence
B implies A. It follows that problem A′, that is, ω1-limits in 〈RN;6∗〉, also joins A.
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Finally, C implies B. Thus we have

A/ B/

⇑ ⇑
A ⇐ B ⇐ C
m m
A′ B′

: the case when κ = ω1 and λ = ω. (3)

Note that the problems in the list (I) belong to type B.
Except for problems A/ and B/, the diagram in Fig. 2 is complete in the sense

that nothing more can be proved on the mutual reducibility of the problems con-
sidered (see § 6).

The nature of problems A/ and B/ (κ-limits and (κ, ω∗)-gaps in E-structures)
remains not completely clear. This is one of the most interesting problems here.
For instance, one might want to prove the equivalences

A/ ⇔ A, B/ ⇔ B.

The key obstacle is that the relation x E y (where x, y ∈ NN) is consistent, by
definition, with the assumption that in fact x(n) > y(n) for the vast majority of
indices n. Hence there seems to be no reasonable way to convert (E)-gaps and
(E)-limits into the corresponding structures in other Hausdorff orders.

Problem 8. Can one strengthen the implications in Fig. 1 to equivalences in the
general case (that is, without assuming that κ = ω1 and λ = ω)? It would be
interesting to prove that the existence of a (κ, λ∗)-gap in 〈RN;6∗〉 implies the
existence of the same gap in 〈NN;6∗〉. What are the relations between problems A′,
B′, B in the case when κ > ω1?

The proof of Theorem 5 follows in § 7.

§ 6. Some metamathematical questions

Returning to diagram (3), let us discuss the question of whether the classification
of the problems of the existence of ω1-scales, ω1-towers, ω1-limits and (ω1, ω

∗)-gaps
in the Hausdorff structures given in the diagram is best possible. For instance, can
some of the implications be strengthened to equivalences? As far as the implications
A⇒A/ and B⇒B/ are concerned, the question is still open. On the other hand, the
definitive nature of the rest diagram (3) has been established by a series of studies,
presented here in brief for the reader’s convenience.

Hausdorff himself demonstrated in [5], [6] that Cantor’s continuum hypothe-
sis CH, that is, 2ℵ0 =ω1, implies C, and then A and B as well, for κ =ω1. Yet, in
the absence of CH, the state and interrelations of these problems were finally under-
stood no earlier than the 1970s and 1980s, when the method of forcing had been
successfully applied to show that there are no connections (provable in ZFC+¬CH)
between these problems except for the double implication C⇒B⇒A and the equiv-
alences B⇔B′ and A⇔A′ mentioned in Remark 7. These results are summarized
in the next theorem.
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Theorem 9. Each of the following statements is consistent with ZFC + ¬CH.

(i) Problems C, B, A hold for κ = ω1.
(ii) Problem C fails, but problems B, A hold, for κ = ω1.
(iii) Problems C, B fail, but problem A holds, for κ = ω1.
(iv) Problems C, B, A fail for κ = ω1.

Thus problems A, B, C are undecidable in the theory ZFC + ¬CH for κ = ω1,
and the implications C⇒B⇒A are irreversible in that theory.

It has become rather common in modern set theory to associate a certain cardinal
invariant with each interesting type of transfinite object under consideration. This
can be the cardinal κ (usually in the interval ω1 6 κ 6 c = 2ℵ0) equal to the least
cardinality of a set of this type.

Among the multitude of cardinal invariants (see [7]), the following four are of
principal interest here:

1) t is the least cardinal κ such that κ-limits exist in 2N;
2) b is the least cardinality of a (6∗)-unbounded subset of NN or, equivalently,

the least length of a (6∗)-tower in NN;
3) b6 is the least cardinal κ such that (κ, ω∗)-gaps exist in 2N;
4) d is the least cardinal κ such that κ-scales exist in NN.

Then ω1 6 t 6 b = b6 6 d 6 c (see Remark 7 and also [7], §§ 3.1, 3.3). In these
terms, the hypotheses A, B, C (κ = ω1) can be compactly written as the equalities
t = ω1, b = ω1, d = ω1.

The theory of cardinal invariants involves a universal tool that enables one
to make all these cardinals equal to the cardinality c = 2ℵ0 of the continuum,
independently of the relations between c and ω1. This is Martin’s axiom or MA
(see [9], [19], [20]). It is known that MA is consistent with ZFC+¬CH (the nega-
tion of the continuum hypothesis), and hence any consequence of MA is consistent
with ¬CH. In particular, since MA implies6 that t = c, it implies the absence
of ω1-limits, (ω1, ω

∗)-gaps and ω1-scales. This proves assertion (iv) of Theorem 9.
The consistency of the combinations ω1 = t = b < d = c and ω1 = t = b =

d < c was established in [22], [23]. This proves assertions (i) and (ii) of Theorem 9
(for a more up-to-date proof, see [24]). Part (iii) of Theorem 9 was established
in [25] (see also Theorem 5.3 in [7], which proves the consistency of the stronger
combination ω1 = t < b = d = c).

We finish this section with an old but still unsolved problem in this field, first
formulated by Hausdorff [5] and recently re-introduced by Solovay [26].

Problem 10. Does there exist (in a given Hausdorff structure) a maximal totally
ordered subset that does not have (ω1, ω

∗
1)-gaps? (Compare with Theorem 3.)

There is little doubt that this problem has the same solution for all Hausdorff
structures.

6See, for instance, Corollary 8 in [20], first proved perhaps in [21].
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§ 7. Proof of Theorem 5

For the duration of the proof of the main theorem, κ will denote a regular cardinal
with κ > ω1.

7.1. Towers and scales. Here we prove assertions 1) and 2) of Theorem 5.
To begin with, let us eliminate RN-structures.

Lemma 11. If 6 is one of the Hausdorff orders 4, E, 6fro, 6∗, then the struc-
tures 〈NN;6〉 and 〈RN;6〉 are equivalent with respect to the existence of κ-scales.
The same is true for κ-towers.

Proof. First, any scale {aξ}ξ<κ in the structure 〈NN;6〉 remains a scale in 〈RN;6〉.
Indeed, consider, for instance, the order 6∗. Assume the opposite: there is an
x ∈ RN such that no ξ satisfies x 6∗ aξ. Define x′ ∈ NN by letting, for every n,
x′(n) be the least positive integer bigger than x(n). Clearly, x 6∗ a. Hence a 6∗ aξ

fails for every ξ, a contradiction.
Conversely, suppose that {xξ}ξ<κ is a scale in 〈RN;6〉. For each ξ, replacing

negative terms xξ(n) by zeros and positive terms by the integers nearest from above,
we get x′ξ ∈ NN. Then xξ 6 x′ξ holds by definition, and hence the new sequence
remains (6)-dominating. Finally, the sequence {aξ}ξ<κ is (6)-increasing (possibly
non-strictly) and, as κ is regular, it contains a strictly increasing subsequence.

With rather obvious changes, both parts of this argument also work for towers.

Thus it remains to consider towers and scales in the (NN)-structures

〈NN;4〉 , 〈NN;E〉 , 〈NN;6fro〉 , 〈NN;6∗〉.

Note that any (4)-tower {xξ}ξ<κ in NN (of any length) is also a (6fro)-tower.
Indeed, suppose that x ∈ NN and xξ 6fro x for all ξ. Then xξ 4 x for all ξ since
xξ 6fro xξ+1 4 x implies that xξ 4 x, a contradiction. The same argument shows
that any (6fro)-tower is a (6∗)-tower, and any (4)-tower is a (E)-tower. The proof
for scales is similar.

Conversely, the map that sends every x∈NN to x′(n) =
∑n

i=0 x(i) clearly trans-
forms any (6∗)-tower (resp. scale) {xξ}ξ<κ of elements of NN into a (4)-tower
(resp. scale) {x′ξ}ξ<κ. Indeed, in the case of towers, assume the opposite and let
x ∈ NN be such that x′ξ 4 x for all ξ. Then, by definition, xξ 4 x′ξ for all ξ.
Therefore, xξ 4 x and hence xξ 6∗ x for all ξ, a contradiction.

It remains to prove the converse for the order E. Suppose that {xα}α<κ is
a κ-scale in 〈NN;E〉. We claim that there is a κ-scale in 〈NN;4〉. Indeed, by
definition, for every set X ⊆ NN of cardinality cardX < κ, there is a function
y ∈ NN such that x 4 y for all x ∈ X. (As {xα} is a scale, there is an index
α < κ satisfying x E xα for all x ∈ X. Put y = xα.) This enables us to define
a (≺)-increasing κ-sequence {yα}α<κ of functions yα ∈ NN such that xα 4 yα for
each α. Then {yα} is obviously a κ-scale in 〈NN;4〉.

For towers, the converse holds in a weaker form, as in 2), (ii): if 〈NN;E〉 has
a κ-tower {xα}α<κ, then the structure 〈NN;4〉 has a κ′-tower for some κ′ 6 κ.
Indeed, {xα} remains an unbounded family in 〈NN;4〉, but it is not necessarily
(≺)-increasing. Consider an arbitrary maximal (≺)-increasing sequence {yα}α<κ′
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such that xα 4 yα for all α < κ′. Clearly, κ′ 6 κ (for otherwise the sequence {xα}
would not be a tower) while the maximality implies that the sequence {yα} is
unbounded and, therefore, is a tower in 〈NN;4〉.

7.2. Gaps. Here we prove assertion 3), (i) of Theorem 5. The proof involves
several lemmas of different levels of complexity. κ > ω1 is still an arbitrary regular
cardinal, as in the theorem. The second parameter λ may take any value λ > ω
as in Theorem 5, and we admit the value λ = 1 in some of the lemmas, just to
incorporate the case of limits. This is indicated in the preambles to Lemmas 12–16.

The following result belongs to Rothberger [11], [12].

Lemma 12 (λ > ω or λ = 1). The structures 〈2N;6∗〉 and 〈NN;6∗〉 are equivalent
with respect to the existence of (κ, λ∗)-gaps.

Proof. On the one hand, any gap in 〈2N;6∗〉 remains a gap in 〈NN;6∗〉. Indeed,
assume that x ∈ NN fills this gap in 〈2N;6∗〉. Then, changing every value x(n) 6= 0
to 1, we get an element x ∈ 2N filling the same gap, a contradiction.

Conversely, any gap in 〈NN;6∗〉 can be transformed into a gap in the structure
〈2N;6∗〉 with both sequences having the same length. Indeed, replace any element
a ∈ NN that occurs in a given gap, first by the set Xa = {〈i, n〉 : i < a(n)} ⊆ N2,
then by the image Ya = {f(i, n) : 〈i, n〉 ∈ Xa} of this set under any fixed bijection
f : N2 onto→ N, and finally by the characteristic function of Ya. This construction
yields the required gap in the structure 〈2N;6∗〉.

Lemma 13 (λ > ω or λ = 1). If 6 is any of the relations 6∗, 6fro, 4, E, then
every (κ, λ∗)-gap in 〈NN;6〉 remains a gap in 〈RN;6〉.

Proof. Indeed, consider for instance a κ-limit, that is, a (κ, 1∗)-gap 〈{aξ}ξ<κ, a〉,
in the structure 〈NN;6∗〉. Assume the opposite: an element x ∈ RN fills this gap,
that is, satisfies the strict inequalities aξ <∗ x <∗ a for all ξ. Without any loss of
generality, we can suppose that 0 6 x(n) < a(n) for all n. Given any n, let x′(n)
be the largest integer satisfying x′(n) 6 x(n). Then x′ ∈ NN, x′ <∗ a (since
x′(n) 6 x(n) for any n) and, obviously, aξ <∗ x′ for every ξ because all the aξ

belong to N.

The next lemma concerns two order relations.

Lemma 14 (λ > ω or λ = 1). If 6 is one of the relations 4, E, then the structures
〈NN;6〉 and 〈RN;6〉 are equivalent with respect to the existence of (κ, λ∗)-gaps.

Proof. To pass from 〈RN;4〉 to 〈NN;4〉, we simply replace all the terms of a given
gap in RN by the nearest integers from above. The orders 4 and E are obviously
preserved under such a change. (This argument does not work for the orders 6∗

and 6fro.)

The following lemma obtains ‘weaker’ gaps from ‘stronger’ ones.

Lemma 15 (λ > ω). If D is one of the sets NN, RN, then
(i) any (κ, λ∗)-gap in the structure 〈D;4〉 remains a gap in 〈D;E〉;
(ii) any (κ, λ∗)-gap in 〈D;6fro〉 remains a gap in 〈D;6∗〉;
(iii) any (κ, λ∗)-gap in the structure 〈D;4〉 remains a gap in 〈D;6fro〉.
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Proof. (i) Assume the opposite: the pair 〈{aξ}ξ<κ, {bη}η<λ〉 is a (4)-gap in NN but
x ∈ NN satisfies aξ C x C bη for all ξ < κ and η < λ. As κ and λ are limit ordinals,
it follows that aξ+1 C x C bη+1. But f C g ≺ h implies that f ≺ h, and hence
aξ C x C bη, a contradiction.7

Claims (ii) and (iii) are proved similarly.

The next lemma completes the cycle of structures of N-type with orders 4,
6fro, 6∗ with respect to the existence of gaps (except for limits and towers).

Lemma 16 (λ > ω). If the structure 〈2N;6∗〉 has a (κ, λ∗)-gap, then such a gap
exists in 〈NN;4〉 as well.

Proof. Consider a gap 〈{aξ}ξ<κ,{bη}η<λ〉 in the structure 〈2N;6∗〉. For any a ∈ 2N

we define ã ∈ NN by ã(n) =
∑n

i=0 2ia(i). Then the sequence {ãξ}ξ<κ is (≺)-
increasing, while the sequence {b̃η}η<λ is, accordingly, (≺)-decreasing, and we have
ãξ ≺ b̃η for all ξ, η. To prove that this is a (4)-gap, assume the opposite and let
c̃ ∈ NN be such that ãξ 4 c̃ 4 b̃η for all ξ, η. Define c ∈ 2N in such a way that
c(n) = 1 if and only if c̃(n) > 2n. Then we easily see that aξ 6∗ c 6∗ bη for all ξ, η,
a contradiction.

7.3. Gaps and towers. Here we prove assertions 3), (ii) (the case λ = ω)
and 3), (iii) of Theorem 5. According to assertion 3), (i) already established, to
prove 3), (ii) it suffices to check that the structures 〈RN;6∗〉 and 〈NN;6∗〉 are
equivalent with respect to the existence of (κ, ω∗)-gaps. We shall prove this exis-
tence claim in such a way that assertion 3), (iii) will be proved simultaneously. Our
strategy will be to obtain a κ-tower in 〈NN;6∗〉 from the ‘weakest’ gap and then
obtain the ‘strongest’ gap from such a tower. The plan is realized by the following
two lemmas, first established by Hausdorff [6] for gaps and towers in 〈RN;6fro〉 (see
the results (I) in § 5) and then by Rothberger [12] for gaps ant towers in 〈2N;6∗〉.
We consider this question here in a more general context.

Lemma 17. If the structure 〈RN;6∗〉 has a (κ, ω∗)-gap, then κ-gaps exist in
the structure 〈NN;6∗〉 and hence (see § 7.1) in any other non-dyadic HOS in the
list (2), in particular in 〈NN;6fro〉.

Proof. Let 〈{aξ}ξ<κ, {bn}n∈N〉 be a (κ, ω∗)-gap in 〈RN;6∗〉. We can assume that
bn+1(k) 6 bn(k) for all n, k. If a ∈ RN satisfies a 6∗ bn for all n, then, for any n,
let ã(n) be the least positive integer such that a(k) 6 bn(k) for all k > ã(n). The
sequence {ãξ}ξ<κ is obviously (6∗)-increasing. Thus it suffices to show that it is
unbounded in 〈NN;6∗〉 (for then it contains a strictly (<∗)-increasing cofinal sub-
sequence). Assume the opposite and let c ∈ NN be such that ãξ 6∗ c for all ξ < κ.

Define k−1 = 0 and then, by induction, kn = max{c(n) + 1, kn−1}. Put a(k) =
bn(k) whenever k satisfies kn 6 k < kn+1. (We also put a(k) = b0(k) for k < k0.)
It follows from our assumptions that then a(k) 6 bn(k) for all k > kn, and hence

7We cannot prove (i) in the case of limits. Indeed, if a pair 〈{aξ}ξ<κ, b〉 is a limit in 〈NN; 4〉
and (assuming the opposite) aξ C x C b, then aξ ≺ x still holds for all ξ. However it is impossible
to deduce that x ≺ b.
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a 6∗ bn for every n. It now suffices to prove that aξ 6∗ a for all ξ. For then a fills
the given gap, a contradiction.

Recall that ãξ 6∗ c. Hence there is an index N such that ãξ(n) 6 c(n) 6 kn for
all n > N . Take any half-open interval of the form In = (kn, kn+1], n > N . Then
aξ(k) 6 bn(k) = a(k) for all k ∈ In because ãξ(n) 6 kn. Thus aξ(k) 6 a(k) for
all k > kN . Therefore aξ 6∗ a, as required.

Lemma 18. If a κ-tower exists in the structure 〈NN;6fro〉, then a (κ, ω∗)-gap
exists in 〈NN;6∗〉.

Proof. Let {cξ}ξ<κ be a (6fro)-tower in NN. We can assume that each cξ is a strictly
increasing sequence as an element of NN (otherwise put c′ξ(n) = n +

∑
k6n cξ(k)).

Thus cξ(n) > n. Define aξ ∈ NN for any ξ in such a way that aξ(k) = n whenever
cξ(n) 6 k < cξ(n + 1). Then aξ, as a map N → N, is in some sense an inverse
of cξ. Clearly aη 6∗ aξ for all ξ < η < κ. We claim that aη <∗ aξ strictly for all
ξ < η < κ. Indeed, if cξ(n) < cη(n) (and this happens for infinitely many n since
cξ 6∗ cη), then by definition n− 1 = aη(cη(n)− 1) < aξ(cη(n)− 1) = n.

Thus {aξ}ξ<κ is a strictly (<∗)-decreasing sequence in NN. Note that every aξ

is an increasing function (as a map N→N), possibly non-strictly increasing. It is
also unbounded, that is, 0 ≺ aξ, where 0 ∈ 2N is the constant 0, but aξ(k) 6 k for
all k. We claim that

(∗) there are no elements a ∈ NN such that 0 ≺ a and a 6∗ aξ for all ξ.
Indeed, assume the opposite and let a ∈ NN be a counterexample. Without any

loss of generality, we can assume that a is an increasing function (non-strictly), and
a(n + 1) 6 a(n) + 1 for all n. Then there is a unique strictly increasing function
c ∈ NN such that a(k) = n for all n and k satisfying c(n) 6 k < c(n + 1). Since
a 6∗ aξ, we have cξ 6∗ c for all ξ. But this contradicts the choice of a tower.

It follows that the pair of sequences 〈{bn}n∈N, {aξ}ξ<κ〉 is a (ω, ω∗1)-gap in
〈NN;6∗〉 if we put bn = ω×{n} (where n is a constant). Now to obtain a (ω1, ω

∗)-
gap, put a′ξ(k) = k − aξ(n) (recall that aξ(k) 6 k) and b′n(k) = max{0, k − n} for
all ξ, k, n.

This completes the proof of assertion 3) of Theorem 5.

7.4. Limits. We start with the proof of assertion 4) of Theorem 5. To prove 4), (i),
that is, the absence of κ-limits in 〈NN;6fro〉, note that every a ∈ NN has an exact
(6fro)-predecessor a− ∈ NN defined by a−(n) = max{a(n)− 1, 0} for all n.

Furthermore, assertion 4), (ii) follows from Lemma 12.
The remaining parts of assertion 4) need some effort.
4), (iii). Suppose that {aξ}ξ<κ is a tower in 〈NN;6fro〉. We get a limit 〈0, 0,

0, . . .〉 = limξ→κ cξ in 〈RN;6fro〉, where cξ(n) = 1
aξ(n) . (For any ξ, there may be

finitely many cases of division by 0 in this formula. The results of these can be set
equal to, say, 1.) The converse is proved similarly.

4), (iv). The equivalence follows from Lemma 14. The construction of a tower
resembles the construction in the final part of the proof of Lemma 18. Consider
a κ-limit a = limξ→κ aξ in the structure 〈NN;4〉, where aξ ≺ aη for all ξ < η < κ.
Put bn(k) = max{0, a(k) − n}. Then {bn}n∈N is a (6fro)-descending sequence,
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and the pair 〈{aξ}ξ<κ, {bn}n∈N〉 is a (κ, ω∗)-gap in 〈NN;6fro〉. To derive a κ-tower
in 〈NN;6fro〉, apply Lemma 17.

4), (v). We say that a tower {cξ}ξ<κ (in any Hausdorff structure) is regular if
and only if it satisfies the following condition.

(∗∗) For every ξ < κ there is an ordinal η, ξ < η < κ, and a number n0 such
that cη(n) > cξ(n+1) for all n > n0. In other words, it is required that for every ξ
there is an ordinal η > ξ satisfying c+

ξ 6∗ cη, where c+
ξ (n) = cξ(n + 1) for all n.

The regularity in this sense hardly follows from the definition of a tower. Accord-
ingly, it seems to us that the proof of 2 ⇒ 3 in [10], Theorem 14 (the existence
of κ-limits in 〈NN;4〉 follows from the existence of κ-towers for the same κ) contains
a gap in its key part, Claim 5 on p. 454. On the other hand, we know of no example
of a non-regular tower. Note also that the regularity holds in the case when {cξ}
is a scale. Hence κ-scales do indeed generate κ-limits in 〈NN;4〉.

Lemma 19. If the structure 〈NN;6fro〉 has a κ-tower, then there is a regular car-
dinal κ′ < κ such that the structure 〈NN;4〉 has κ′-limits.

Proof. It follows from assertion 2), (i) of Theorem 5 that there is a κ-tower {cξ}ξ<κ

in the structure 〈NN;4〉. Then there is a regular tower {c′ξ}ξ<κ′ of length κ′ 6 κ in
〈NN;4〉 satisfying cξ 4 c′ξ for all ξ < κ′. (One can even achieve a stronger condition:
c′ξ+1(n) > c′ξ(n+1) for all ξ and n. Define c′ξ ∈ NN by induction on ξ in such a way
that cξ+1 4 c′ξ+1 and c′ξ+1(n) > c′ξ(n + 1) for all n in the step ξ 7→ ξ + 1 and, in
the limit steps λ < κ, if {c′ξ}ξ<λ is not yet a tower in 〈NN;4〉, we take an element
c′λ ∈ NN such that cλ 4 c′λ and c′ξ 4 c′λ for every ξ < λ.)

Following the proof of Lemma 18, we define aξ ∈ NN for ξ < κ′ using the reg-
ular tower {c′ξ}ξ<κ′ already defined in 〈NN;4〉. Now, if ξ < η < κ′ and the
inequality c′η(n) > c′ξ(n + 1) holds for all n > n0, we obtain aη <fro aξ (not
just aη <∗ aξ) in Lemma 18 and hence {aξ} has a cofinal strictly (<fro)-decreasing
subsequence. Moreover, the limit terms of such a subsequence form a cofinal and
now (≺)-decreasing subsequence. Therefore, by (∗) there is a κ′-limit in 〈NN;4〉.

4), (vi). Any κ-limit in 〈2N;6∗〉 remains a κ-limit in 〈RN;6∗〉 by Lemma 13,
while any κ-tower in 〈NN;6fro〉 can be transformed into a κ-limit in 〈RN;6∗〉 as
follows. First we convert the tower into a κ-tower {aξ}ξ<κ in 〈NN;4〉 that consists
only of increasing elements (sequences) aξ ∈ NN. Then, following the proof of asser-
tion 4), (iv), we put cξ(n) = 1

aξ(n) . We claim that {cξ}ξ<κ is a κ-limit in 〈RN;6∗〉
(not only in 〈RN;6fro〉, as in 4), (iv)) with the limit value limξ→κ cξ = 0. Indeed,
assume the opposite and let x ∈ RN be such that 0 <∗ x 6∗ cξ for all ξ. The set
D = {k : x(k) 6= 0} is infinite as 0 <∗ x strictly. We write D = j0 < j1 < j2 < · · ·
and put a(k) = 1

x(k) for k ∈ D. Clearly, x � D 6∗ cξ � D and hence aξ � D 6∗ a

for all ξ. Now take any strictly increasing element b ∈ NN satisfying b(k) > a(jn+1)
whenever jn 6 k < jn+1. Then aξ 6∗ b because aξ is also increasing. Therefore
the transfinite sequence {aξ}ξ<κ is bounded. But this sequence is a tower. This is
a contradiction.

Let us prove the converse. Consider an arbitrary (6∗)-limit {cξ}ξ<κ in RN. To
simplify the argument, we assume that the sequence {cξ}ξ<κ is (6∗)-decreasing, the
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limit value limξ→κ cξ is 0 (the constant 0), and all the values cξ(n) are non-negative.
Put Dξ = {n : cξ(n) = 0} and let hξ be the characteristic function of Dξ. The
sequence of functions hξ is (6∗)-increasing. Hence the proof will be complete if
we can show that limξ→ω1 hξ = 1 (the constant 1) in 〈2N;6∗〉.

Suppose that this is not the case: there is an h ∈ 2N such that hξ 6∗ h <∗ 1 for
all ξ. Then the set D = {n : h(n) = 1} is co-infinite in N and we have Dξ ⊆∗ D
for all ξ since hξ 6∗ h. It follows that the infinite set Z = N \D has finite inter-
section with each of the Dξ. This enables us to define aξ(k) = 1

cξ(k) for all k ∈ Z

and all ξ. (For each ξ, finitely many divisions by 0 can be treated as above.)
The sequence of functions aξ : Z → N is (6∗)-increasing (at least non-strictly)
because the sequence {cξ} is (6∗)-decreasing. Moreover, the sequence {aξ} is
(6∗)-unbounded in the family NZ of all functions a : Z → N because the given
sequence {cξ} is a limit (and remains a limit if we restrict all its terms to Z). It
follows that {aξ} has a strictly (<∗)-increasing subsequence. Thus we have a tower
in 〈Z;6∗〉. To transform it into a tower in NN, just use any bijection of D onto N.

Note that by 4), (vi), (6∗)-limits in RN are of at least two different types: those
homological to towers in NN, and those homological to (6∗)-limits in 2N (or, equiv-
alently, in NN).

4), (vii). The equivalence of the structures 〈NN;E〉 and 〈RN;E〉 with respect
to the existence of κ-limits follows from Lemma 14. Furthermore, any κ-limit in
〈NN;4〉 can easily be transformed into a decreasing limit {xξ}ξ<κ with limit value 0
(the constant 0). Thus we have 0 ≺ xη ≺ xξ whenever ξ < η < κ, and there is
no x ∈ NN such that 0 ≺ x ≺ xξ for all ξ. We can assume that every element xξ

is increasing, that is, xξ(n) < xξ(n + 1) for all n, as otherwise each xξ can be
replaced by x′ξ, where x′ξ(n) = n +

∑
k6n xξ(k) for all n. We claim that the

sequence {xξ}ξ<κ is a limit in 〈NN;E〉.
Indeed, assume the opposite and let x ∈ NN be such that 0CxCxξ for all ξ < κ.

Then x ≺ xξ for all ξ (see the proof of Lemma 15). Put y(n) = max{x(k) : k 6 n},
so that y ∈ NN is an increasing function (possibly non-strict), and hence we have
not only 0Cy but also 0 ≺ y. It remains to check that we still have y ≺ xξ for all ξ:
this yields the desired contradiction. Basically, it is enough to prove that y 6∗ xξ

for all ξ.
We claim that y 6∗ xξ. Since x ≺ xξ, there is a number n0 such that x(n) <

xξ(n) for all n > n0. Furthermore, as xξ is an increasing function, there is an
n1 > n0 such that maxk<n0 x(k) < xξ(n) for all n > n1. Thus, we have x(k) < xξ(n)
whenever n > n1 and k 6 n. It follows from the construction that y(n) < xξ(n) for
all n > n1, as required.

7.5. Gaps and limits. The proof of the last part of Theorem 5 is based on the
following lemma (see [12] for the case κ = ω1).

Lemma 20. If the structure 〈NN;6∗〉 has a κ-tower, then 〈2N;6∗〉 has a κ′-limit
for some uncountable cardinal κ′ 6 κ. In particular, since ω-limits do not exist, the
existence of an ω1-tower in 〈NN;6∗〉 implies the existence of a ω1-limit in 〈2N;6∗〉.
In addition, if there are no κ-limits in 〈2N;6∗〉, then every κ-tower in the structure
〈NN;6∗〉 is a κ-scale.



On Hausdorff ordered structures 957

Proof. Given an infinite set x ⊆ N, we write ϕx for the unique increasing bijection
N onto→ x. Suppose that {fα}α<κ is a κ-tower in 〈NN;6∗〉. We can assume that
all the fα are strictly increasing functions (otherwise replace fα by gα(k) = k +∑k

n=0 fα(n)). We shall define a (⊂∗)-decreasing sequence {xα}α<κ′ of infinite sets
xα ⊆ N such that fα 6∗ ϕxα

for all α < κ′. The ordinal κ′ 6 κ will be determined
in the course of the construction.

Suppose that λ 6 κ and all the xα, α < λ, have been defined.
Case 1. There is an infinite set x ⊆ N such that x ⊆∗ xα for all α < λ. Then
fα 6∗ ϕxα

6∗ ϕx for all α. Therefore λ < κ. Clearly, there is an infinite set y ⊂∗ x
satisfying fα 6∗ ϕy. Put xλ = y.
Case 2. There is no such set x. Then the sequence {xα}α<λ can easily be converted
into a λ-limit in the structure 〈2N;6∗〉, and hence we can take κ′ = λ.

We now prove the additional claim in the lemma. Consider an arbitrary function
f ∈ NN and suppose on the contrary that f 
∗ fα for some α < κ. It can
be assumed that f is strictly increasing, and so are all the fn. Then every set
xα = {n : fα(n) < f(n)} is infinite, and we have xβ ⊆∗ xα whenever α < β < κ
since fα 6∗ fβ . We claim that there is an infinite set x ⊆ N satisfying x ⊆∗ xα

for all α. Indeed, if the sequence {xα}α<κ contains a cofinal strictly decreasing
subsequence, then such a set x does exist since otherwise the subsequence would
give us a κ-limit in 〈2N;6∗〉. If cofinal strictly decreasing subsequences do not exist,
we have ∀ ξ > γ(xξ ≡∗ xγ) for some γ < κ, and hence x = xγ is the required set.

Thus let x be a set as indicated. Then fα � x 6∗ f � x (in the sense that the set
{n ∈ x : f(n) < fα(n)} is finite) for all α. Let

x = {0 = i0 < i1 < · · · < in < · · · }.

We define g(k) = f(in+1) whenever in 6 k < in+1. Since f and all the fα are
increasing functions, we have fα 6∗ g for all α. But this contradicts the assumption
that the sequence of all fα is a tower.

The proof of Theorem 5 is complete.
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