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Abstract—A novel efficient algorithm for solution of the problem of equal partitioning of a set with pre-
defined weights of elements is proposed. The algorithm is based on calculation of a linear group preserving an
invariant: the set of zeros of a cubic form. Algorithms for solution of related problems, including the problem
of the search for the second solution if the first solution is known, are discussed.
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1. SET PARTITIONING PROBLEM
AND PRELIMINARY INFORMATION

It appears that many purely combinatory problems
are efficiently reduced to the search for singular points
on the projective hypersurface, and this is the new
approach of the authors to solution of these problems. As
an example of such combinatory problems, we consider
the well-known problem of partitioning of a given set
with weights. Below, we everywhere consider multidi-
mensional complex spaces, mainly the (# + 1)-dimen-
sional space C"* ! where C is the field of complex
numbers.

Set partitioning problem. Let us have aset of n + 1 ele-
ments in which weight o; (where o, is a positive inte-
ger) is assigned to the jth element. Does a partitioning
of this set into two parts with equal sum weights of the
parts exist? This problem has a natural parameter:
number k of its solutions. A problem with no more
than k solutions will be referred to as a k-problem. The
set together with fixed weights will be referred to as the
data of the original problem. This problem is equiva-
lent to the search for a cube vertex with coordinates —1 or
+1 lying in a hyperplane with equation ox, + ... +
a,x, = 0. Thus, it is required to find the cube vertex
lying in the hyperplane.

A widespread opinion is that this problem is algo-
rithmically difficult [1, 2]. The analysis of related
problems confirms its high computational complexity
[3—5]. On the other hand, an efficient algorithm can
be found for particular cases of algorithmically diffi-
cult problems that are close in their sense to the prob-
lem under study [6—8]. Relations between upper levels
of the polynomial hierarchy are still poorly investi-
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gated and one may think that its structure differs sub-
stantially from the structure of the arithmetical hierar-
chy or similarly defined hierarchies of the descriptive
theory of sets, while methods for the analysis of these
hierarchies are based on similar approaches [9—13].

It has been shown in [14] that the set partitioning
problem can be reduced to the analysis of hypersurface

ocoxg + ...+ oc,,xZ = 0 having not only cubic but also a
higher odd degree d. Namely, cube vertices in the
hyperplane oyx, + ... + a,x, =0 are its points of con-
tact with the hypersurface.

Another approach is to consider a hyperplane sec-
tion of the hypersurface that contains all vertices of the
cube and each of these vertices is singular. For exam-
ple, this is the hypersurface defined by quartic equa-
tion g((xé -1),..., (xf, —1)) =0, where g is any non-
degenerate quadratic form in #» + 1 variables. Arbi-
trariness in selection of form g allows us to avoid the
appearance of additional singular points in the hyper-
plane section. An estimate of the dimensionality of the
space of hypersurfaces of fixed dimensionality con-
taining of cube vertices was given in [15]. By consider-
ing forms of higher degrees, it is possible to investigate
belonging to the hyperplane of not only the cube ver-
tices but also vertices of other polytopes embedded
into the complex space.

Transition from discrete problems to the analysis of
hypersurfaces allows us to obtain information about
the original problem via the study of hypersurface
points with special analytic properties. Here, an anal-
ogy with error-correcting codes can be seen [16—18].
On the other hand, there are easily computable invari-
ants allowing efficient discrimination of hypersurfaces
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in applied object description and recognition prob-
lems [19].

By definition, the form gradient is zero at each
point of the singular straight line.

Lemma 1. Let us have cubic form fin n + 1 variables.
If the cone f = 0 is invariant with respect to the action of

the linear group G= { A, Az} in C"+ ' and the number of
singular straight lines on the cone f = 0 is odd, then
Cr+1is decomposed into a direct sum one-dimensional
and n-dimensional G-invariant subspaces, one of
which containing an odd number of singular straight
lines of this cone.

We can consider the restriction of the form
(xoxf) + ..+ ocnxfl to the hyperplane a,x, + ... + a,x, =
0 as the cubic form.

Proof. The set of singular straight lines that do not
remain fixed under involution A is separated into pairs
of straight lines that can be transformed into each other.
Since the total number of singular straight lines is odd,
the number of fixed singular straight lines is also odd.
The linear representation of Abelian group G over C is
decomposed into a direct sum of one-dimensional
G-invariant subspaces. Two cases are possible.

1. If action G is nontrivial, there is such a subspace
among one-dimensional G-invariant subspaces whose
points are not G-invariant. Let us denote it by M. If M
does not coincide with a singular straight line of the
cone f= 0, then all fixed singular straight lines lie in
the direct adjunct of M, which is also G-invariant.

2. If action G is trivial, then each singular straight
line is G-invariant.

The following lemma strengthens the result from
[14] in the case of cubic forms.

Lemma?2. Leth= ox, + ... + a,x, be alinear form

of no less than four variables with nonzero integer coeffi-
cients. Opposite pairs of cube vertices belonging to the
hyperplane h = 0 bijectively correspond to singular
straight lines along which this hyperplane fouches the

cone aoxé +..+ OL,,xf, = 0. Moreover, they are singular
straight lines of the hyperplane section of the cone.
The proof consists in direct calculation.

2. NEW HYPOTHESES

Below, we will discuss formulae in the language of
the theory of fields with additional constants for coef-
ficients of preset cubic form f. The equivalence of the
formulae is considered in the theory of algebraically
closed fields of zero characteristic.

Lemma 3. There is an algorithm of polynomial time
with respect to n constructing a closed E-formula that is
true in C if the cone f = 0 does not contain singular
straight lines and false if it contains an odd number of
singular straight lines.
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The existence of the A-formula, which expresses
smoothness of the hypersurface, is the definition of a
singular point. It is unknown whether an E-formula
equivalent to an arbitrary A-formula of this language
can be found in a polynomial time. If the computa-
tional complexity is not limited, the existence of such
a formula is evident. The computational complexity of
the check for the provability of closed formulae as a
function of the number of quantifier changes was con-
sidered in detail in [20].

Proof (outline). A cubic form defining a cone with-

out singular straight lines is reduced to form y2z +g,
where cubic form g is independent of variable y, by
means of a nondegenerate linear transformation. In
the case of three variables, this is a Weierstrass normal
form. This form is invariant under the involution
changing the sign of coordinate y. Applying Lemma 1,
we find the singular straight line or restrict the search
for the singular straight line by the plane section y = 0.
If the initial cone does not contain singular straight
lines, its section also does not contain them. There-
fore, each section has its own involution. This fact
allows us to reduce the dimensionality until three vari-
ables remain. The cubic form in three variables deter-
mining a cone without singular straight lines can be

reduced to the structure yzz =X+ pxz2 + qz3, where
polynomial X+ px + g does not have multiple roots,

i.e., its discriminant — 4p3 - 27(]2 is not equal to zero,
by means of a linear transformation of coordinates. It
can be readily checked that the transformation
reduces the cubic form to the required structure and is
nondegenerate. And these conditions are expressible
in the language of the field theory.

In the case of good approximations of correspond-
ing complex numbers, an algorithm appears that
allows one to discriminate a smooth cubic surface and
surface with odd number of singular points by per-
forming the number of operations over these approxi-
mations that is polynomially bounded by the record
length of the initial form.

Assumption 1. There is a nondeterministic algorithm
of polynomial time with respect to n that receives data for
each I-problem if and only if no one solution exists.

If we discard the constraint on the number of solu-
tions, this assumption is equivalent to the equality
NP = coNP, which is usually accepted to be false.

The outline of the proof. Let us consider subspace H
in C"* ! that is defined by the equation ox, + ... +
a,x, = 0 and form Fin this subspace that is obtained

by means of restriction of the form ocoxé +...+ (x,,xi .
According to Lemma 2, it is necessary to find out
whether or not the cone F'= 0 in H contains a singular
straight line. Using Lemma 3, we find involution A and
set G= {A, A%}. For this purpose, it is necessary to non-
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deterministically determine values of variables related
by the existential quantifier. As a result, numbers
allowing short writing and approximating correspond-
ing complex numbers must appear. While Lemma 1
says about a group of order 2, in order to reduce the
influence of errors of the above approximations, we
can consider a larger group G of linear transformations
with respect to which the cone F = 0 is invariant. Let
us build a G-invariant eigensubspace L in H that
includes the cube vertex in H, if it exists. If group G
includes a finite subgroup not generated by a small
number of elements, then the dimensionality of sub-
space L is small. Indeed, according to Lemma 1, such
an L exists for the subgroup of order 2. If G' contains
two involutions corresponding to subspaces L' and L",
we set L = L' M L". As the number of involutions in G
increases, the dimensionality of intersection L of these
subspaces decreases. Elements of a higher order can
also be used. As a result, the search for the cube vertex
from H is reduced to solution of a similar problem in
the subspace of lesser dimensionality. In this case, the
aforementioned process of descent runs faster. For the
dimensionality equal to three, this problem is solved
trivially.

For hypersurfaces of degrees higher than three,
there are upper bounds on the group order [21]. Thor-
ough analysis of the groups of linear transformations
with invariant cubic cones leads to Assumption 2,
which is a natural strengthening of Lemma 3. For

2 2 .
example, for the surface x” +y~ = 23, such a group is
infinite.

Assumption 2. Let fbe a cubic form. There is an algo-
rithm of polynomial time with respect to n constructing a
closed E-formula individual for each n that expresses
in C evenness of the number of singular straight lines of
the cubic cone if this set is finite.

In some cases, the cubic form is reduced by a non-
degenerate linear transformation of coordinates to the
form that allows determination of singular points of
the hypersurface, if they exist [22, 23]. Moreover,
there is an iterative algorithm for reduction to this
form under additional conditions [24].

Probably, the analysis of hypersurfaces will allow
one to refine the results on the complexity of finding
the second solution of the NP-complete problem [25].
Indeed, if one singular point and the automorphism of
the hypersurface are known, the image of a singular
point is also a singular point. Thus, the search for the
second singular point is reduced to the search for an
automorphism not leaving the first point stationary.

While the proposed algorithms are nondeterminis-
tic, the development of such algorithms will allow cer-
tification of the results of calculations on supercom-
puters [26]. An increase in the performance of com-
puters leads to difficulties in the tests of computations
that cannot be executed on commonly available com-
puters. The development of fast nondeterministic
algorithms that require small memory volumes and
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short computation times allows one to efficiently
check the results of operation of multiprocessor com-
puters in the case when they present a certificate con-
taining all nondeterministic computation steps in the
course of execution of the algorithm to the customer.
In particular, this may be of great importance for deci-
sion making in transport [27], medicine [28], and
image processing [29].
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