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Abstract⎯How can the projective invariant of the cubic curve approximating the river bed near its meander
be calculated? A well-known approach uses the Weierstrass normal form. However, it is important to find this
form by means of calculations tolerant to curve representation errors and, in particular, using calculations that
do not require computation of tangent lines or inflection points. A new algorithm is proposed for calculation
of the projective invariant of the cubic curve. This algorithm can be used to describe river meanders.
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1. INTRODUCTION

Detection of contours that are planar curves is
often used in image analysis [1, 2]. In this case, it is
important to recognize projectively equivalent curves,
since they correspond to different projections on the
plane of the same object in 3D space [3]. For example,
significant distortions occur in wide-angle photo
shooting and in the alignment of images taken from
different aspect angles [4–7]. Note that real objects
often have symmetry that can be difficult to recognize
in the image [8, 9]. On the other hand, artificial distor-
tion of image proportions is intentionally used to cre-
ate caricatures [10]. Below, we will consider smooth
curves on a real projective plane.

The problem of description of an oval with implicit
symmetry that is invariant with respect to projective
transformations of the plane provided that the oval
intersects each line at no more than two points was
considered in [11] and in earlier works cited therein.
Similar methods are used to describe some nonconvex
ovals [12]. These methods use only calculation of the
tangent line. Other methods for calculation of invari-
ants are based on computation of higher derivatives
[3, 13], which leads to significant computational diffi-
culties, because of the need in compensation for the
inaccuracies in sampling and quantization of the ini-
tial image. Calculations are also reduced to solution of
a system of algebraic equations. This can be done by
means of algorithms based on the computation of
Gröbner bases [14, 15]. A formula for solution in the
form of a hypergeometric series of coefficients is
known for the given systems of n algebraic equations in
n unknowns [16]. However, these algorithms do not

use the specific features of the problem and usually are
time and memory consuming and unstable to initial
data approximation errors.

2. PRELIMINARIES
Let us recall that the real projective plane is a non-

orientable surface. It can be intuitively represented as
a result of gluing of the disc and the Möbius band
along the edge. When the projective plane is immersed
in the 3D affine space, the surface self-intersection
inevitably occurs. Another model is obtained by iden-
tifying antipodal points on a two-dimensional sphere.
In this case, the path between antipodal points on the
sphere corresponds to the nonorientable closed curve
that is not a boundary. Coordinates on the sphere
determine the coordinates on the projective plane. In
particular, it becomes possible to define the concept of
a random point uniformly distributed on the projec-
tive curve (a closed curve in the projective plane is
assumed). On the other hand, a projective plane is
obtained by adding a projective line at infinity to the
affine plane. In turn, the projective line is obtained by
adding a point at infinity to the affine line.

The class of projectively equivalent curves corre-
sponds to a cone in the 3D space. The sections of this
cone by the planes not passing through its apex are
affine curves with equivalent projective closures. The
corresponding affine curves can have a different num-
ber of connected components and, at first sight, can be
completely different. For example, all smooth curves of
the second degree (conics) are projectively equivalent.
Cubic curves form a one-parameter family. A smooth
irreducible projective cubic curve over the field of real
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numbers can be reduced to the Weierstrass normal form
by a projective transformation [17, p. 29]. In the affine
space, it is given by the following equation:

(1)
where the polynomial on the right-hand side does not
have multiple roots, i.e., the following discriminant is
nonzero:

(2)
Two curves in the Weierstrass normal form are projec-
tively equivalent if and only if the following ratios are
equal [17, p. 143]

(3)

If discriminant (2) is negative, the curve is con-
nected. If it is positive, the curve consists of two con-
nected components, one of which is nonorientable
and the other is an oval without inflection points.

The projective transformation of the plane that
maps the considered curve onto itself will be called the
curve symmetry. The symmetry coinciding with the
reverse symmetry is called involution. Let us say that
points on the curve are located symmetrically, if they
change into each other in the case of the considered
symmetry of the curve. The curve in Weierstrass nor-
mal form (1) is symmetrical with respect to the change
of the sign of coordinate y.

= + +2 3 ,y x px q
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It is important to select a convenient curve param-
eterization for successive scan of the points. In this
case, it is convenient to consider the projective plane
as a sphere with identified antipodal points. In partic-
ular, if the projective curve corresponds to the cubic
form of three variables f(x, y, z) that determines a cone,
then the corresponding curve on the sphere consists of
the points in which form f vanishes on three direction
cosines. All cosines simultaneously change sign in the
case of transition to the antipodal point. Therefore, at
the antipodal points, values of cubic form f differ only
in their signs. Hence, the resulting equation in the
direction cosines correctly defines the curve in the
projective plane.

A smooth projective cubic curve over the field of
reals numbers has exactly three real inflection points.
Moreover, if a straight line intersects this curve at
three points two of which are inflection points, then
the third intersection point is also the inflection point
[17, p. 31]. The other six complex inflection points do
not belong to the real plane. A smooth cubic curve in
the Weierstrass form over the field of real numbers
crosses the line placed at infinity at one point, which
is an inflection point. This curve in another normal
form crosses the line placed at infinity at three inflec-
tion points. Note that an iterative algorithm for reduc-
tion to this form was proposed in [18].

Any two triples of pairwise different points on the
projective line change into each other under a certain
projective transformation. However, this transforma-
tion does not always exist for four points. The double
ratio [T, U, V, W ], which is equal to the following
expression of the coordinates of points, remains
invariant under projective transformations for four
points on the affine line T, U, V, and W with coordi-
nates t, u, v, and w:

(4)

The proof is given in [19, pp. 64–65]. Triples of points
resulting from such coincidences are projectively
equivalent. For any finite set of points, it is possible to
select a system of affine coordinates such that the
abscissas of all points are different. In this case, double
ratios (4) of the quadruples of points on each line can
be calculated using the abscissas of the points as their
coordinates on the line.

Theorem (Pappus of Alexandria). Points U, V, and
W on line L and points U ', V ', and W ' on line L' are
given. Three intersection points of three pairs of lines UV '
and VU ', UW 'and WU ', and VW 'and WV' lie on
one line.

The proof is given in [17, p. 14] and [19, p. 71].
Figure 1 shows an example of location of points and
lines of the theorem.

If the position of the inflection point on the cubic
curve is known, then it is easy to reduce it to the Wei-
erstrass form. The point of the cubic curve fixed in the
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Fig. 1. Illustration for the Pappus theorem.
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case of involution is either an inflection point or a
point at which the tangent line transversally intersects
the curve at the inflection point. However, exact cal-
culation of the inflection point, i.e., the point of the
curve at which the Hessian of the corresponding cubic
form is zero, is associated with computational difficul-
ties. Indeed, in the case of the shift of the curve in the
vicinity of the inflection point, the position of the tan-
gent line remains almost the same.

Let us consider an easily verifiable condition of
location of points on the cubic curve symmetrical with
respect to the involution, which does not require exact
calculations of tangent lines and inflection points.
Note that, in the case of involution of the projective
plane, points of a line and another point that does not
lie on this line remain fixed. A similar construction
was considered in [20].

Theorem 1 (Necessary condition for symmetrical
location). Let a smooth cubic curve be given. Assume
that the points of the curve U, V, and W lie on a line inter-
secting straight line L, and the points U ', V ', and W ',
which are their images under the involution ϕ, lie on
other line intersecting straight line L'. Let the straight
lines L and L' intersect each other at point T. Then the val-
ues of the projective invariant coincide with each other for
two quadruples of points [T, U, V, W] and [T, U ', V ', W '].
Moreover, point T and three intersection points of three
pairs of lines UV ' and VU ', UW ' and WU ', and VW ' and
WV ' lie on one line fixed under the involution ϕ.

Proof. Under the involution ϕ, straight line L is
mapped onto straight line L'. Therefore, the point of
intersection of these lines T remains fixed. Conse-
quently, double ratios are equal: [T, U, V, W ] = [T, U ',
V ', W ']. By virtue of the Pappus theorem, three points
of intersection of three pairs of lines UV 'and VU ', UW'
and WU', and VW 'and WV ' lie on one line. Because of
the uniqueness of such a line, it is fixed under the
involution ϕ. The theorem is proved.

Remark. If straight lines L and L' are located asym-
metrically, point T cannot belong to the line con-
structed by the Pappus theorem. However, if point T
belongs to it for some pair of secants, it is not sufficient
for the existence of involution. It is necessary to con-
sider the second pair of secants M and M '.

Theorem 2. Points U, V, and W on straight line L and
points U ', V ', and W ' on straight line L' are given. The
following three conditions are equivalent:

1. Point T and three intersection points of three pairs
of lines UV' and VU ', UW 'and WU ', and VW ' and WV '
lie on one straight line.

2. There is a projective transformation ϕ, for which
ϕ(T) = T, ϕ(U) = U ', ϕ(V) = V ', and ϕ(W) = W '.

3. In the coordinate system in which invariants are
defined, double ratios are equal: [T, U, V, W] = [T, U ',
V ', W '].

Proof. The second and third conditions are equiva-
lent [19, pp. 64–65]. In order to prove the equivalence

of the first two conditions, it can be assumed that
point T is at infinity and straight lines L and L' are par-
allel in the affine plane. In this case, the straight line
constructed in the Pappus theorem is parallel to them
if and only if the quadrangles VV 'U 'U and WW 'U 'U are
parallelograms. Then the corresponding points are
superimposed by means of parallel translation. The
theorem is proved.

Let us show that there is an efficiently verifiable
sufficient condition for location of points on a cubic
curve that are symmetric with respect to some involu-
tion (Fig. 2).

Theorem 3 (Sufficient condition for symmetric
location). Assume that we have a smooth cubic curve and
four pairwise different intersecting straight lines L, L', M,
and M', each intersecting the curve at three points.
Straight lines L and L' intersect each other at point T that
does not lie on the curve. Straight lines M and M' inter-
sect each other at the point S that does not lie on the curve
and is different from point T. Straight lines L and M'
intersect each other at point E that does not lie on the
curve. Straight lines M and L' intersect each other at
point F that does not lie on the curve. Let U, V, and W be
the intersection points of the curve with secant L; U ', V ',
and W ', with secant L'; A, B, and C, with secant M; and
A', B ', and C ', with secant M'. Suppose that six intersec-
tion points of six pairs of straight lines lie on straight line
ST: UV' and VU ', UW' and WU ', VW ' and WV', AB'
and BA', AC ' and CA', BC ' and CB'. Then there is an
involution ϕ that preserves the curve at which ϕ(S) = S,
ϕ(T) = T, ϕ(U) = U', ϕ(V) = V', ϕ(W) = W', ϕ(A) = A',
ϕ(B) = B', and ϕ(C) = C'.

Proof. By virtue of Theorem 2, for a given set of
points, there is an involution ϕ that leaves points S and
T fixed and rearranges 12 points U, V, W, U ', V ', W ', A,
B, C, A', B', and C ' in accordance with the require-
ment. Let us show that, in the case of this mapping,
points of the curve are changed into the points of the
same curve. At least eight different considered points

Fig. 2. Example of location of points and some lines in
Theorem 3.
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are on the curve. In fact, each two out of four straight
lines L, L', M, and M ' intersect each other at one
point. There is a total of six intersection points. By
condition, four of them, E, F, S, and T, do not lie on
the curve. Even if the other two lie on the curve,
12 points U, V, W, U ', V ', W ', A, B, C, A', B', and C '
include ten different points. However, only one cubic
curve (including the reducible one) passes through ten
different points of the plane, since the total cubic form
has ten monomials. Therefore, the initial curve coin-
cides with the symmetrical curve, which is completed
by half of the initial curve using involution ϕ. The the-
orem is proved.

Remark. According to the Pappus theorem, some
part of the conditions in Theorem 3 is redundant.
However, additional conditions can be useful in order
to improve the accuracy. For a more accurate determi-
nation of the position of the straight line, it is more
convenient to use the points located far from each
other in order to avoid errors of approximate calcula-
tions. On the other hand, Theorem 2 makes it possible
to replace some of the incidence tests for straight lines
and points with the equality tests of projective invari-
ants for points on secants, which can be more efficient
than auxiliary geometric constructions of the Pappus
theorem. Only if the numerical values coincide, it is
reasonable to test all conditions.

3. REDUCTION TO THE NORMAL FORM
Knowing the line the reflection with respect to

which leaves the cubic curve invariant, it is easy to cal-
culate a linear transformation of coordinates for
reduction to the Weierstrass normal form. Note that,
in the general case, this transformation is not orthog-
onal. In the new coordinate system, each point on the
x axis remains fixed under involution, and the y axis
passes through two different points that change into
each other under this involution.

Thus, reduction of a cubic curve to the Weierstrass
normal form is based on the search for two pairs of
symmetrically located secants. If the position of two
inflection points is approximately known, the secants
should be selected so as to intersect a curve at different
inflection points. Let us use the notation from Theo-
rem 3. In the case of fixed point V on the secant L we
will select point V ' of intersection by the second
secant L' with another curve near the inflection point.
Then, we will select point T of intersection of L and L',
in such a way that it is located either inside the ori-
ented component of the curve or inside the oval
formed by the arc of the curve and segment VV'. Points
T, V, and V' uniquely define secants L and L'. Note that
we assume only a rough localization of inflection
points that is insufficient for reduction to the normal
form without additional constructions. It is also possi-
ble to select the second pair of secants M and M ' that
cross this curve at points V and V ' but select point S
different from point T. After arbitrary fixing of point V,

it is necessary to vary three points: point V ' on the arc
of the curve and two points T and S in a bounded
region of the plane.

Let us vary points V ', S, and T until sufficient con-
ditions of Theorem 3 are met. The constructed straight
line ST becomes the x axis in the new coordinate sys-
tem on the affine plane. The y axis passes through two
symmetrically located points on the curve, for exam-
ple, through points U and U '. At new coordinates, the
affine curve is determined by the equation of the fol-
lowing type

Without loss of generality it can be assumed that
the higher coefficient a = 1. In order to calculate coef-
ficients b, c, and d, it is sufficient to know the images
under projective transformation of four arbitrary
points of the curve in the general position, i.e., not
passing into each other under involution. For exam-
ple, it is possible to use points U, V, and W and the
intersection point of straight line ST with the curve.
Further, the linear change of variable x with the differ-
ence (x–b/3) reduces it to form (1), which is conve-
nient for calculation of the projective invariant of the
curve equal to ratio (3). In particular, calculation of
this projective invariant of the curve does not require
calculation of the equation of the curve in initial coor-
dinates and does not use calculation of tangent lines or
the curvature radius of this curve.

On the other hand, the knowledge of the approxi-
mate position of the inflection points greatly simpli-
fies the calculations. Looking at the figure, it is usually
easy to specify approximate positions of symmetrically
located points mentioned in Theorem 3. The test on
the symmetry of positions of the guessed points and
subsequent calculation of the projective invariant of
the curve are carried out using only transversely inter-
secting straight lines and the curve.

Since the source data contain sampling errors, for
the calculation of the projective invariant, it is appro-
priate to use a greater number of points selecting the
average or the most probable of the calculated values.
Moreover, it is possible to correct errors not only in the
initial data but also in intermediate calculations [21].
The implementation of the described algorithms for
multiprocessor computing systems is of particular
interest [22]. Different versions of straight lines L', M,
and M' can be considered independently from each
other without the use of interprocessor exchange in
the case of parallel processing of versions.

4. LOCAL DESCRIPTION 
OF THE CURVE SEGMENTS 

AND PRACTICAL APPLICATION
A natural source of initial data for the practical

application of our method are half-tone or multi-
spectral (including infrared) images of the river bed

= + + +2 3 2 .y ax bx cx d
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obtained by using wide-angle lens or obtained at dif-
ferent angles to the Earth’s surface. Using known
image processing methods (such as thresholding, edge
linking, obtaining the skeleton of the region, i.e.,
skeletonizing, etc.), they are converted into binary
images of the river central line. In the general case, it
is multiply connected. The method results in descrip-
tion of the river bed by the set of invariants indepen-
dent of projective transformations. Informally, if a
curve in the Weierstrass normal form describes a sym-
metric meander, the projective invariant of the curve
consisting of one connected component describes the
relative length of the channel needed to straighten the
river meander. Figure 2 shows an example of the con-
nected smooth cubic curve in the Weierstrass normal
form. The curve is symmetrical in the case of reflec-
tion with respect to the x axis.

Similarly, the invariant of a curve consisting of two
connected components indicates the relative remote-
ness of the oxbow from the main stem of the river.

Since there are three inflection points on a real
smooth cubic curve (inflection points can lie on the
line placed at infinity), it cannot approximate a curve
with a greater number of inflection points. In particu-
lar, if the curve corresponds to the riverbed, the cubic
curve usually describes the river meander well. Thus,
projective invariant (3) calculated by our method is the
characteristic of a small segment. Description of the
curve as a whole requires an implicit approximation by
cubic splines and attributing the invariants to each of
them separately. In this case, linear and quadratic
splines are not suitable for description independently
of projective transformations, since all of them are
projectively equivalent. On the contrary, the use of
cubic splines makes it possible to calculate such an
invariant [13].

Although calculation of the invariant does not
require explicit construction of the cubic spline in ini-
tial coordinates, it is necessary to select connected
segments of the curve that knowingly contain two
inflection points inside and quite long f lanks at the
edges. This requires rough localization of inflection
points. It is important that it is sufficient to locate
them with low accuracy that is insufficient for direct
calculation of the Weierstrass normal form as such.
Inflection points can be approximately localized by
the Hough transformation. Indeed, the tangent line at
the inflection point approximates the curve well, thus
making a relatively large contribution during the vot-
ing procedure. Note that a similar method was used to
recognize road signs in real time [23]. On the other
hand, the considered calculations make it possible to
test how well the curve is approximated by the cubic
curve.

As was noted in the beginning, we do not require
connectivity of the cubic curve. Conversely, the curves
consisting of an oval and nonorientable connected
component can be considered. The Weierstrass nor-

mal form of this curve has form (1), where the polyno-
mial on the right-hand side has three real roots. This is
equivalent to the positivity of discriminant (2).

When describing a river, this oval corresponds to
the oxbow. Therefore, the use of curves with two com-
ponents also appears to be natural for the application.

Note that, in [24], high sensitivity to errors in the
initial data of geometric constructions based on the
Pascal hexagon theorem, which is a special case of the
Pappus theorem, is discussed. Namely, the the Pascal
angle is highly sensitive to the deviation of the curve
from a conic.

5. CONCLUSIONS
Despite significant advances in the field of differ-

ential geometry in the investigation of smooth curves,
algorithms based on the methods of descriptive geom-
etry but tolerant to errors in initial data are more effi-
cient for the analysis of digital images. The image
analysis method proposed by us has exactly this prop-
erty. Application of our method involves combination
with previously developed skeletonizing methods and
linking of edges with discontinuities. However, the
errors arising during this procedure are not critical for
application of the method. Note also the apparent
similarity of our approach with error-correcting codes
and problems of discrete optimization.
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