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Abstract―An algorithm is described for group testing under the conditions when, in a specified set of cardi-
nality , there is an unknown amount of  of defective elements and it is necessary to identify them with
a sequence of tests. Each next test can take into account the results of the previous ones. The upper estimate
for the number of tests in our algorithm improves the known value. The algorithm runtime is the minimum
possible: it is of the order of the number of tests.
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1. INTRODUCTION

In group testing tasks, it is required to identify all
defective elements (in terms of medicine, infected
individuals) in specified set  of cardinality  using a
minimum number of tests, i.e., inqueries about the
presence of at least one defective element in a test sub-
set. These problems differ in two criteria: whether
number  of infected individuals (or its estimate) is a
priori known and whether it is allowed to conduct tests
sequentially (adaptive testing) or only in parallel. Par-
allel testing was discussed in studies [1–3], where fur-
ther references were given. Sequential testing was con-
sidered in study [4], where numerous references on the
history of the problem were given. We are going to
improve the result of this study.

Now, let us consider the case of adaptive testing,
when the number  is not known in advance and
the tests are carried out sequentially, one after another.

Under these conditions, in [4] the estimate  +

 +  was obtained (all logarithms
are hereinafter taken to base 2). The key issue of this
problem is to reduce the coefficient at the second
term. For this problem, we will describe an algorithm

with the best upper bound  +  +

. The general scheme of our algorithm is the
same as in [4] and the proof of the estimate is some-
what simpler. In the description of the algorithm, we
preserve, as far as possible, the terminology and nota-
tions from [4].

2. DESCRIPTION OF THE ALGORITHM
The algorithm uses two auxiliary procedures, DIG

and 4-Split, and the numerical sequence ,
, , , and  for .

Each procedure is fed with set , which is known to
contain at least one defective element.

DIG procedure. This procedure solves the problem
of identifying one defective element in . As long as

, we choose arbitrary subset  with cardinality

 (upper integer part) in , test it, and, if the result

is positive (i.e.,  contains a defective element),
assume ; otherwise, . If one remains
element in  (recall, ), we identify it as defec-
tive. It can be easily proven by induction on  that the
number of tests in DIG is , if  is the power of
two, and does not exceed  otherwise. Note
that, when DIG yields a negative result, we do not
consider elements of the corresponding set to be iden-
tified.

4-Split procedure. It gets at the input, along with
, the parameter: natural number v, such that

. If , DIG is applied to . If  or
, we choose arbitrary subset  with cardinality

 in and test it. If the result is positive, we assume
; otherwise, we identify all elements from  as

nondefective and assume . Then, we apply
the DIG procedure to . If , we randomly split

 into sets , , , and  (some of them may be
empty), where ,  = 

n > 0d
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, , and 

 (obviously, ). If  is
empty, we apply DIG to . Otherwise, we test the sets

, , , and  in this order until the first positive
result, identifying elements of the sets with a negative
result as nondefective (if the first three tests are nega-
tive, the fourth is not performed). Let us denote the
first defective set by .

If , , or , we apply DIG to
. If , we choose arbitrary subset  with the

cardinality  in  and test it. If the result
is positive, we assume ; otherwise, we identify
all elements from  as nondefective and, if  is
non-empty, assume . Then, we apply the
DIG procedure to . Note that the aim of the 4-Split
procedure is either to reduce the search area by more
than half or to obtain nondefective identified ele-
ments.

Basic algorithm. At each iteration, current set  is
formed to which certain natural rank  is assigned. At
the first iteration, we assume  to be equal to initial 
and its rank to be equal to the minimum  value, such
that . The iterations are performed until  is
non-empty.

Let us describe the content of the iteration. We are
given set  and its rank . Let us choose, if possible,
arbitrary subset  of cardinality  in  or, otherwise,
put it . We test . If the result is negative, we
identify all elements from  as nondefective, remove
them from , increase  by , and pass to the next iter-
ation. If the result is positive, we do the following. If

, we apply the 4-Split procedure with the param-
eter  to , remove the identified defective and
nondefective elements from , reduce  by , and pass
to the next iteration. If , then  contains exactly
one element. We identify it as defective, remove it
from , retain , and pass to the next iteration.

According to the  test result, the iteration is here-
inafter called positive or negative.

3. ESTIMATION OF THE NUMBER OF TESTS 
IN THE ALGORITHM

Theorem. The number of tests in the described algo-
rithm does not exceed

Proof.
Lemma 1. The number of tests in the 4-Split proce-

dure with parameter  is no more than . If, as a result of
the 4-Split procedure, all elements from  are identified,
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the number of tests in it does not exceed . The
number of tests in the last iteration of the algorithm is no
more than . The ranks of all iterations do not
exceed the rank  of the first iteration, which is no more
than .

Proof. Let  be the number of tests in 4-Split
on set  of cardinality . Obviously, 
( ),  ( ,  ( ),

 ( ), and  ( ) and, for
, the first statement is satisfied. If , let us

consider the cases.

Case 1. Subset  is defective. Since ,
 is valid.

Case 2. Subset  is nondefective and subset  is

defective. Since ,  +  = 
is valid.

Case 3. Subsets  and  are nondefective and sub-
set  is defective. Since  –

 – ,  + 
is valid.

Case 4. Subsets  and  are nondefective and  is
defective. Since ,  +  is
valid.

Case 5. Subsets , , and  are nondefective and
subset  is defective. Since  and  is not
tested,  +  is valid.

The second statement of the lemma at  is
obvious. In the case , note that the last non-
empty set of , , , , and  is single-element;
therefore, the number of tests in the procedure is no
more than . The third statement follows from the sec-
ond one. The first part of the last statement of the
lemma follows from the fact that the iteration of rank

 acts on the set  containing all unidentified ele-
ments from  and therefore is positive or is the last.
The inequality  is checked
directly at  and, at other , follows from the fact

. 

Let us designate iterations of the algorithm by ,
. As in [4], we divide the set of iterations into

three classes: , , and . Let  be the rank of iter-
ation ,  be the number of tests on it, and  be the
number of elements (defective and nondefective)
identified on it. The class  contains positive itera-
tions of rank  and iteration . The class  contains
iteration  and, for each natural number , ,
the first iteration of rank in the sequence , .
The class  contains all the rest iterations.

+2 log X

+3 log X
k

+ −log 5 log11n

( )N m
X m (1) = 0N

≥ 0v (2) = 1N ≥ 1)v (3) = (4) = 2N N ≥ 2v

≤(5) 3N ≥ 3v ≤(6) 3N ≥ 3v

≤ 6m ≥ 7m

Y −≤ 22Y v

≤ + − −( ) 1 ( 2) = 1N m v v

Y 'Z
−≤ 4' 2Z v ≤( ) 3N m −( 4)v − 1v

Y 'Z
\ 'Z Z ≤\ 'Z Z Z

− −≤ ×4 42 3 2v v − −4 32 = 2v v ≤( ) 3N m −( 3) =v v

Y Z U
−≤ 32U v ≤( ) 3N m −( 3) =v v

Y Z U
V −≤ 32V v V

≤( ) 3N m −( 3) =v v

= 1X
≥ 2X

Y 'Z \ 'Z Z U V

3

k 'S
S

≤ + −log 5 log11k n
≤ 11n n

−≥ 1kn a u

1I
…2, , qI I

1C 2C 3C ir
iI it in

1C
0 qI 2C

1I r 1< <qr r r
r 1I …2, , qI I

3C
CATIONS TECHNOLOGY AND ELECTRONICS  2025



ADAPTIVE GROUP TESTING ALGORITHM 3
Lemma 2. The number of iterations from  is even
and they can be divided into pairs such that the ranks of
the iterations from each pair differ by exactly 1 (we will
denote these ranks as  and ), the iteration of rank

 is positive, the iteration of rank  is negative, and
the subset  corresponding to it has the cardinality 
exactly.

Since Lemma 2 coincides with Lemma 3.5 from
[4], its proof is not given. 

In Lemma 2, we fix the partition into pairs called
zigzag pairs. We will denote a zigzag pair as ,
where the rank of iteration  is  and the rank of iter-
ation  is . The corresponding number  is called
the rank of a pair.

Lemma 3. For each zigzag pair , the
inequality

is valid.
Proof. Let  be the rank of pair . At , we

have  and , from which the state-
ment of the lemma follows. At , we have

 and  and the statement of the
lemma. At , we have  and 
or  and  and the statement of the
lemma. At , the procedure 4-Split is applied in

iteration  and splits the corresponding set  into four
parts , , , and . Let us consider the cases.

Case 1. Subset  is defective. Since ,

 +  is valid. Since  =

, we have  ≥ , from which we
have  ≤  +  and the statement
of the lemma.

Case 2. Subset  is nondefective and subset  is

defective. Since ,  +  = 

is valid. Then,  +  = ,
from which we have  ≤  + 
and the statement of the lemma.

Case 3. Subsets  and  are nondefective and sub-

set  is defective. Since  ≤  ≤
 – , we have  +  =

. Then,  +  +

, from which we have  ≤
 +  and the statement of the

lemma.
Case 4. Subsets  and  are nondefective and  is

defective. Since , we have  +  =
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. Then,  ≥  +  =

 is valid, from which we have  ≤
 +  and the statement of the

lemma.

Case 5. Subsets , , and  are nondefective and
subset  is defective. Since  and  are no
tested, we have  +  = . Then,

 ≥  +  is
valid, from which we have  ≤  +

 and the statement of the lemma. 

Let  ( ) be the number of tests executed
across all iterations of .

Lemma 4. Let  ( ) be the number of ele-
ments identified as defective on the interations from

. If , then . Otherwise,

 ≤  + .

Proof. If , the ranks of the iterations decrease
monotonically from  to  and all iterations, except
for the negative iteration , lie in , from which the
first statement follows. To prove the second statement,
let us consider the cases.

Case 1. Iteration  is negative. Denoting the zigzag
pair by , according to Lemma 3, we obtain

Note that  + . Let us add the zero

term to the resulting expression , so that
the number of logarithmic terms be equal to  and the
sum of the arguments of the logarithms be no more
than . Using the convexity of the logarithmic func-
tion and the inequality , we obtain
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Case 2. Iteration  is positive. According to Lem-
mas 1 and 3, we have

Note that . Let us add the zero term to

the resulting expression . As above,
obtain

Lemma 5. Let  ( ) be the number of ele-
ments identified as defective on the iterations from

 and  be the rank of iteration . Then, we

have .

Since Lemma 5 coincides with Lemma 3.10 from
[4], its proof is not given. 

Lemma 6. At , the inequality  ≥
 –  is valid.

Proof. Let us consider the function
 at  and differ-

entiate it twice:  =  – ,

. Since the second derivative is positive

everywhere, the approximation of the  function
tangent at the point  is no more than the 
value. Hence,  –  –  –

, from which the statement of
the lemma follows. 

Let us first check the theorem for . According
to Lemmas 1, 4, and 5, we obtain
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It is required to show that the last expression does
not exceed  –  + , i.е.,

 –  +  + .
Since  +  is valid, it is suffi-
cient to demonstrate that  –  –

. Let us check this by examining the func-
tion  –  for a minimum at
natural . We have  =  – ,

 = ; therefore,  increases at .

Thus, it is sufficient to calculate the minimum from
, , , and , which, as can be easily

seen, is .

Let . According to Lemmas 1, 4, and 5, we
have

According to Lemma 6, the last expression does not
exceed

The sum of the first two terms is the quadratic
function  =  +  +  of

. Let us estimate its value at the maximum
point:  =  + ,  =

 + ,

We obtain  ≤  +  +

, which completes the proof of the theorem.
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4. CONCLUSIONS

We decreased the constant  in the estimate  +

 of the number of tests in the adaptive
group testing algorithm to . At the same
time, the algorithm time is minimum possible: of the
order of the number of tests. The question of further
decreasing this constant, possibly by increasing the
algorithm runtime, is of interest. It would also be
interesting to obtain a lower bound on the number
of tests.
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