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This article contains a survey of modern investigations in descriptive set theory connected with 
the axiom of determinacy. 

I n t r o d u c t i o n  

Descriptive set theory, whose origins go back to the works of Borei, Baire, and Lebesgue at the turn 
of the century, developed into an independent subject during the twenties and thirties, occupying at that 
time a prominent place in mathematical research. Such world-famous scholars as P. S. Aleksandrov, L. V. 
Kantorovich, A. N. Kolmogorov, and M. A. Lavrent'ev spent time studying the descriptive theory (and 
achieved recognized results in it); and this field became one of the important areas in the mathematical 
activity of N. N. Luzin and P. S. Novikov. 

It was largely through the efforts of Soviet mathematicians that  such divisions of the descriptive theory 
as the theory of Borel sets, the theory of A-sets (also called analytic, or Suslin, sets), the theory of lattices, 
indices, and constituents, the theory of CA-sets and second-level projective sets, and the general theory of 
operations on sets (from which the theory of R-sets later evolved) were established and achieved, in the 
main, their finished form by the end of the 30's. 

All this research, now unified under the general name of classical descriptive set theory, is characterized 
from the modern point of view by the traditional concept, inherited from the theory of functions, of 
mathematical proofs as activity directed toward establishing the properties of objects having in some sense 
a real existence. One consequence of such an approach was the intuitive conviction of the researchers that 
every statement (or at least every "meaningful" statement) about "real" sets is either t rue- - in  which case 
it should be possible to prove it by a sufficiently great effort--or false, in which case it should be possible 
to refute it. The principal task of mathematicians is to find new teclmiques and methods of proof. 

Such conceptions, typical of the majority of fields of mathematics, also "worked" well for a time in 
descriptive set theory, as long as the theory limited itself to such relatively "simple" sets as Bore] sets or 
A-sets. However the situation changed completely when specialists in the descriptive theory turned to the 
study of the projective sets discovered by Luzin. While they had succeeded in establishing a theory rich in 
results about the first (lowest) level of projective sets formed by the Borel sets, A-sets, arid CA-sets, yet 
only isolated essential results were obtained for sets of the second projective level, and the higher projective 
levels remained, in general, terra incognita. Essentially all that was known about them was that in each 
level there appear sets not found on the preceding levels~ Moreover the reason why a definitive study 
was impossible lay not at all in deficiencies of technique. After the investigations of Novikov, R. Solovay, 
and others it became known (and Luzin had been convinced of this in the mid-20's) that many important 
questions on projective sets of higher levels--and in some cases also second- and even first-level sets--do not 
in principle admit of a definite positive or negative answer on the basis of accepted mathematical methods 
and ways of reasoning. 

Thus, Novikov [11] showed that no contradiction could be deduced from the assumption that there 
exists a Lebesgue nonmeasurable set of the second projective level. Later Solovay [69] established that it is 
also impossible to deduce a contradiction from the assumption that all projective sets of the real line are 
measurable. Thus the problem of the measurability of projective sets turns out to be undecidable. The 
same fate awaited the majority of the remaining open problems of the classical descriptive theory. 

Naturally, such a situation led mathematicians working in the descriptive theory to seek new axioms 
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not among the traditional postulates of classical mathematics, but admitting a more or less acceptable 
foundation and making it possible to obtain definite answers to the questions that  are undecidable within 
the framework of the traditional approach. The first such supplementary axiom to be considered was 
GSdel's axiom of constructivity, whose principal applications to the problems of the descriptive theory were 
obtained by Novikov [11]. Definite interest was also aroused by the measurable cardinal axiom and the 
"sharps hypothesis" which is equivalent to it as far as applications to the descriptive theory are concerned. 1 
But the greatest attention and recognition among specialists in the descriptive theory over the last 10 or 
15 years has been given to two axioms connected with infinite games: the axiom of determinacy (AD), and 
the axiom of projective determinacy (PD). It is to these axioms that the present article is devoted. 

The popularity of this topic in contemporary research is attested by the mere fact that, besides a mass 
of journal articles, four volumes of the series Lecture Notes in Mathemat ics  were devoted totally or to a 
significant degree to applications of determinacy. In chronological order, they were volumes 38, 37, 35, and 
36. However, research in determinacy is reflected very little in Soviet publications: only w of Chapter 8 
of the translated handbook [3] and Chapter 2 of the pamphlet [5] can be mentioned. This circumstance 
exerted a decisive influence on the choice of style for the present article. The author preferred to devote 
more space to the more important results, presenting them with proofs, rather than striving for a maximal 
coverage of all areas. The same method of exposition, we note, is adopted in the handbook mentioned 
above. 

Now a few words about the structure of this survey. In the first section we present some necessary 
definitions and facts relating to projective sets. The following section w is an introduction to game theory 
and determinate sets. Then in w167 we study the main applications of the axioms AD and PD to problems 
of the theory of projective sets connected with regularity properties, separability, uniformization, single- 
and countably-valued sets, and Borel and Suslin representations of projective sets. In the last section (w 
we present some results that  are based on Martin's theorem on the determinacy of the Borel sets. 

We close this introduction by pointing out the works from the bibliography which might be considered 
as an introductory course in the theory of determinacy. Article [59] (in particular, its first part) contains 
a survey of "early" research in determinacy. In the book [38] another field of applications of the axiom of 
determinacy is expounded--infinitary combinatorics. The fundamental monograph [58] included practically 
all the significant results of the descriptive theory connected with determinacy and obtained by the end of 
the 70's. The same could also be said of the articles [25, 34], except that here a narrower circle of questions 
is considered on a more popular level. To these we add the already-mentioned works [3, Ch. 8, w and 
[5]. In the works just enumerated, as in [23], certain philosophico-mathematical questions are also touched 
upon concerning the place of the hypothesis of determinacy among the accepted set-theoretical axioms. 

w P r o j e c t i v e  Sets  a n d  t h e  P r o j e c t i v e  H i e r a r c h y  

Descriptive set theory is concerned with sets located in certain definite spaces and consequently pos- 
sessing an inherited external structure. Originally the research was limited, as a rule, to subsets of the real 
line R and the Euclidean spaces R".  However, by the beginning of the 30's it was realized that for a variety 
of reasons it was more convenient to take as the basic space not the real line but a Baire space, leading to 
essential simplifications in certain important calculations. 

Striving for geometric clarity, Luzin, in his Lectures [48], used a realization of Baire space in the form of 
the set J of irrational points of the line R. In modern works a different realization is used more often--the 
product of a countable number of copies of the set of natural numbers w = {0, 1, 2 , . . .  }--which facilitates 
the use of logical methods in the reasoning. Thus Baire space is taken to be the set X / = w w of all w- 
sequences of natural numbers endowed with the product topology. (The topology on w is discrete.) Each 
point a �9 )r can be represented in the form a = (a0, al ,  a 2 , . . . ,  ak , . . .  ), where ak = a(k)  �9 w for all k. 

Together with Baire space, certain spaces derived from it of the form w t x )r are usually considered; 
here I and m are natural numbers, not simultaneously zero. We shall call such spaces point spaces or 

1Here is a list of articles presenting rather completely the trends mentioned: [4,w [14], I26], [34, par. 5.4], 

[501, [52], [671. 
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product spaces; sets located in them will be called point sets, and various families consisting of such sets 
will be called point classes. 

In the literature on the descriptive theory some useful conventions have been worked out in regard to 
the use of letters. Natural numbers are denoted by small Latin letters (i, a, k and the like); points of the 
space ~/ are denoted by the letters a, ~, q, 5, e, and points of an arbitrary point space X by the letters x, 
y, z. It is customary to denote point sets by capital Latin letters and point classes by the letters E, II, A, 
F (as a rule, with various indices). The letters ~, y, r x, )~ are reserved to denote ordinal numbers (both 
finite and transfinite). 

The simplest point class is formed by the open sets, with which the construction of the projective 
hierarchy begins. This hierarchy consists of the projective classes E l ,  HI ,  and AI ,  where n E w. The 
initial class E~ is the class of open sets of point spaces. For any n the class H~ includes the ,complements of 
El-sets , and the class A~- - the  intersection of the classes E~ and A~--includes all those sets that  belong 
simultaneously to the classes E I and H I .  Finally, the projections of sets of H I are assigned to the class 
El+ 1 . Here we have in mind the special method of projection whereby a set P _ X • Jr (where ~( is any 
point space) goes to its projection 

7rP = {x E X : There exists a E ~/such that  (x, ~} E P}, 

i.e., projection along the very last (=~right-hand") axis, when this axis is )r 
A point set is called projective when it belongs to one of the projective classes. Projective sets constitute 

the smallest class of point sets containing all open sets which is closed with respect to the operations of 
complementation and projection. 

The projective hierarchy and the concept of a projective set were introduced by Luzin in [46]. Luzin 
denoted the projective classes by A,, CA,, and B , ,  corresponding to E~, H~, and A I .  From the work of 
Suslin [71] it follows that the class E~ coincides with the class of all point A-sets (discovered by Suslin and 
intensively studied even before the publication of note [46]), and the class A~ coincides with the class of all 
Borel point sets. 2 As it happens the Borel sets themselves form a hierarchy of classes indexed by the finite 
and countable ordinals (cf. w below). 

In carrying out practically any reasoning involving projective sets it is necessary to "calculate" the 
class of a set obtained by some operation from the sets of known classes. Such calculations are easier, as a 
rule, to carry out not on the point sets themselves but on relations that are determined by these sets. 

The use of relations instead of sets can be illustrated by the example of subsets of the space ~: --- ~2 • jq. 
Suppose X C X. Writing X(i,j,a) instead of (i,j,a) E X, we identify the set X with the relation 
corresponding to it, denoting the latter by the same letter: X(i,j,a). In this notation the letter a - - a n  
argument of type ~/--denotes an arbitrary (i.e., "variable") point of ~/, and the letters i and j - -arguments  
of type w--denote arbitrary natural numbers. 

Operations on relations such as conjuction A, disjunction V, and negation -~, the quantifiers 3 and 
V, and also substitution have a logical rather than a geometrical character, but nevertheless also admit 
a natural geometric interpretation (negation = complement, 3 = projection, and the like). Dealing with 
projective relations calls for developing definite practical skills in such ~nterpretation, and, if you will, a 
certain psychological bent. However, all this justifies itself by making it possible to calculate quickly the 
class of projective relations and sets using a small number of quite simple rules. We now give these rules. 

1 1. THE EXPANSION RULE: ~ t2 H 1 C An+ 1 for any n. This rule reflects the fact that projective 
classes expand as the index n increases. We note that the expansion here is strict: to be precise, E~ ~ H~, 

,+1 ~ E ,  U 1-I, for all n. 
2. THE CONTINUOUS SUBSTITUTION RULE. A relation obtained from a relation on a given projective 

class F (here and below P = E~ or H I or AI)  by substituting continuous functions that are defined 
everywhere on the corresponding point spaces belongs to the same class F. For example, if the relation 
P(k,~) (i.e., the set P C w • ~/) has class F, and the functions F : jr • w --* w, G : w • Z --* ~/, 

2For early work on the descriptive theory see the surveys [2, 8, 10, 13]~ 
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H :  ~ • 02 ~ ~ are continuous, then the relation Q(i, j ,s ,  fl) ~ P(F(a( i , s ) ,~ , i ) ,H(s , j ) )  also has class 
r - - i n  other words, the subset 

Q = {(i , j ,s ,  fl): (F(G(i,s),fl, i ) ,H(s, j ))  E P} 

of the space w 2 x )/2 belongs to r .  
Geometrically the fact that every projective class is closed with respect to the operation of taking the 

complete inverse image under continuous everywhere-defined functions corresponds to this rule. 
3. THE SUBSTITUTION-OF-PARAMETERS RULE. If P ( . . . ,  s , . . . )  is a relation of the projective class 

F with the displayed argument s of type )4 (i.e., denoting a "variable" point of X/; naturally, instead of 
s here, there might be any other of the letters reserved above to denote points of Jr and s0 E )/ is a 
fixed point of )/ (i.e., a parameter}, then the relation P ( . . . ,  s 0 , . . .  ) also belongs to F and analogously for 
arguments of type w (they are of course replaced by natural numbers}. 

Thus, variable arguments of relations can be replaced by concrete parameters (points of X / or natural 
numbers} while preserving the projective class. Geometrically such a replacement corresponds to sectioning 
with a hyperplane. 

We note that  rule 3 is a particular case of rule 2: actually it is a matter  of substituting constant 
functions, each of which, of course, is continuous. 

4. THE NEGATION RULE. The negation - -P( . . .  ) of a relation P ( . . . )  of class E~ is a relation of class 
H 1. Symbolically -~Eln = ]-[1. Analogously ~II~ = E~ and ~A~ = Aln. From the geometric point of view 
this means that  the operation of complementation takes Eln into HI and vice versa, while the complements 
of A~-sets remain in A~. 

5. THE CONJUNCTION AND DISJUNCTION RULE. Any relation obtained from relations of a given 
projective class F using the conjunction sign A ("and") and the disjunction sign V (inclusive "or") is a 
relation of the same class F: AF = VF = r .  

Geometrically this corresponds to the proposition that every projective class is closed with respect to 
finite unions and intersections. Still the rule for relations has a wider field of action, for example, allowing 
the conclusion that  the conjunction P(i, s) A Q(s, 8) of two F-relations P and Q has class F, even though 
the corresponding set 

: PCi, s )  ^ 

is, of course, not the intersection of the sets P and Q. 
Before explaining the "quantifier" rules we recall that the notations 3 x . . .  and Vx. . .  denote respec- 

tively: "there exists x such that . . .  ," and "for every x . . .  holds." Moreover, in accordance with the 
convention adopted above on the use of definite letters, the notation, say, 3 s  will be understood as meaning 
3s  E X/, and Vk as Vk E 02 and the like. 

6. RULES FOR QUANTIFIERS OF TYPE ~ .  (a) If P ( . . . ,  a , . . . )  is a relation of class E~ with displayed 
argument s ,  then the relation 3 s P ( . . . ,  s , . . . )  also belongs to E~. Geometrically this corresponds to the 
fact that  each of the classes E~ is closed under the operation of projection. 

The rule just stated can be written in symbolic form as the equality 3 ~ Eln = Eln, where 3 ~ denotes 
the application of the quantifier to one of the arguments of type ~ (i.e., denoting an arbitrary "variable" 
point of X/). Using this notation, we state several more points of rule 6 and the following rule 7. 

(h) ' 1. 3 ++ ' (d)V r4=n 1 V l'I n : l I n ,  (c)  l'In. : Er~+l  ; r*+l"  
7. THE RULE FOR QUANTIFIERS OF TYPE w. 

= r l; (b)V n  = h i ;  

(c) if n/> 1, then V~E~ -- E~ and 3= II,,1 = H,.1 

The content of rules 6 and 7 can also be expressed as follows. Each of the classes E~ is closed with 
respect to 3 ~/ and 3 ~ , and also with respect to V ~ provided n ~> 1. Each class II~ is closed with respect to 
k/~ and Y~, and also with respect to 3 ~ provided n/> 1. Hence, incidentally, it follows that the classes A~ 
for n ~> 1 are closed with respect to 3 ~ and V ~ . 
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We now give another ,  final rule~ which,  in contras t  to the  preceding ones, is more  na tura l ly  s ta ted  for 
sets t han  for relations.  

8. THE RULE FOR COUNTABLE UNIONS AND INTERSECTIONS. If n /> 1, t hen  the  classes ~ ,  H~, 
and At, are closed wi th  respect  to the  operat ions  of coun tab le  un ion  and countable  intersection (applied 
natura l ly  to  families of sets s i tua ted  in some point  space), In addi t ion,  the  class ~01 is closed wi th  respect 
to countable  union,  and  the  class II0 I wi th  respect  to countable  intersection. 

We shall not  dwell on the  just if icat ions of these rules (the corresponding proofs can be found in [3, 
Ch. 8, w167 [4, Sec. 9], and  [12, final two chapters]);  ra ther  we pass on to explain the  basic concepts 
connected wi th  determinacy.  It will be possible to see how rules 1-8 %york" in the  calculations of the 
following sections. 

w I n t r o d u c t i o n  t o  t h e  t h e o r y  o f  d e t e r m i n a c y  

Assume tha t  some set A of the  "Baire plane" ~(2 = )4 x )4 is fixed and is a game set, or G8 for short.  
By means  of this set a two-person game G(A) is defined, wi th  players denoted ,  as a rule, i and  II. The  
game proceeds as follows: 

player I writes a na tu ra l  number  a0; 
player II, knowing the  "move" a0, writes his own na tura l  number  50; 
again player I, knowing b0, writes a na tura l  n u m b e r  a l ;  
player II, knowing a l ,  writes a na tura l  n u m b e r  bl; 

and  so on ad inf ini tum. At  the  end there  is a pair  of points  

= ( b , :  i = 

of the  space Jr called a match .  If it tu rns  out  tha t  (a, 8) E A, the  m a t c h  is considered to have been won 
by player I; the  opposi te  case is defined as a win for player II. 

The  players may  make  their  moves by following strategies chosen in advance.  Any  funct ion defined on 
the set FC = w <~ of all finite sequences of na tura l  numbers  (with the  empty  sequence A) and  assuming 
values in the  set of na tura l  numbers  may  serve as a s t ra tegy in games of the  type  under  considerat ion.  If 
player I adheres to a s t ra tegy a : FC --~ w, t hen  he mus t  make each of his moves a~ in accordance wi th  the 
equat ion a, = a(bo,. . .  ,b,-1 ), or, more  briefly, a, -- a (~  I i), where  ~ l i = (bo,... ,b,-1 } is the  sequence of 
the first i moves of player II. In part icular ,  the initial move a0 is given by the  equat ion  a0 = a(A); further  
al = a(b0), a2 = a(bo, bl), etc. Thus  the  s t ra tegy a completely  determines  the  sequence a = (a0, a l ,  a 2 , . . .  } 
of moves of player I f rom the sequence ~ = (b0, bl, b2 , . . .  } of movers of player II. It is convent ional  to denote 
the sequence a so defined by a * 8- 

In a complete ly  analogous m a n n e r  if player II follows a s t ra tegy ~, then  he makes each of his moves bi 
according to the  equat ion  

b, = r C a 0 , . . . , a , )  = rCa ~ i +  1), 

where a I i + 1 = ( a 0 , . . . ,  a~ ) is the  sequence of the first (i § 1) moves of player I. The  sequence ~ given by 
these equat ions  is denoted  a �9 r. 

The  s t ra tegy a is said to be a winning s t ra tegy  (WS for short)  for player I in the  game G(A) (i.e., in 
the game wi th  game set A), if (a * fl, fl) E A, for any point  ~ E )/ .  In o ther  words, a winning  s trategy 
guarantees  a win,  no m a t t e r  how the opponen t  plays. 

Analogously r is a WS for player II when  (a,  a �9 r) ~ A for any point  a E )4. 
The  set A and the  game G(A) are called determinist ic  if one of the  players has a WS in the game G(A) 

(obviously they  canno t  bo th  have one). 
Various principles or de te rminacy  hypotheses  are considered which assert the  de te rminacy  of sets of 

one class or another .  The  following are the  mos t  interest ing f rom the  point  of view of applicat ions to 
descriptive set theory:  

the axiom of de te rminacy  (AD), which postulates  the de te rminacy  of every set A C__ ~/~; and  
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the axiom of projective determinacy (PD), which postulates the determinacy of all projective sets 
A C ) / 2 .  

In general, for each (say, projective) class I' there is a principle I'-Det asserting the determinacy of all 
sets A C )/2 of the class r .  

Now a few words about the relation between determinacy hypotheses and the Zermelo-Fraenkel axiom 
system accepted by the majority of specialists as the foundation of set-theoretic constructions. This system 
is denoted by the abbreviation ZFC or ZF, according as it includes the axiom of choice (AC) or not 
(thus ZFC = ZF + AC). The axiom AD contradicts the axiom of choice (among other reasons, because 
it implies that  every subset of the real line is Lebesgue-measurable, see below). At present the question 
of the consistency of the systems ZF + AD and ZFC + PD remains open. The only argument in favor of 
consistency is the actual absence of contradictions in those very rich tableaux of consequences which have 
been obtained for both  of these theories. 

The incompatibility of the axiom AD with the axiom of choice, of course, compels a certain skepticism 
in dealing with its possibilities. Fortunately axiom AD is compatible with the principle of dependent  choice 3 
(DC), which is weaker than AC, but  sufficient to prove such 'positive' consequences of AC as the theorem 
that  a countable union of countable sets is countable or the countable additivity of Lebesgue measure. To 
be specific Kechris showed in [33] that  if the system ZF + AD is consistent, then it remains so when DC 
is added to it. At the same time neither the principle DC [70] nor the axiom of choice AC~ for countable 
families of nonempty  sets [33] is a theorem of ZF + AD. 

However it is not  difficult to prove that  AD (plus the axioms of ZF) implies the axiom of choice for 
countable families of sets of Baire space (and hence also of any other of the spaces w ~ • )/ '~, as well as 
any Euclidean space R "~). We now give this simple reasoning. We need to construct  a choice function, 
assuming AD, for a family of nonempty  sets Xo,X1,X2,...,C_ )/. To do this consider the game G(A) 
defined by the set A = {(cx, fl) :/~ ~ A~(0) }. Player I cannot have a winning strategy in this game, since 
no mat ter  what  opening move a0 he makes, player II guarantees himself a win by making his moves bi so 
that  their sequence coincides with a point  ~ E Xa0 chosen by him in advance (after the move a0!). Thus 
player II has a WS r in the game G(A). This strategy provides the required choice function. Indeed, let 
k E w. Consider a match  in the game G(A) in which player I makes all his moves equal to k and player 
II responds with strategy r. The sequence/~ = (b~ : i E w) of moves of player II in this match (which is 
completely determined once r is fixed and k is prescribed) will be denoted f(k). Then f(k) E Xk for any 
k by the definition of A and the choice of r, i.e., f is a choice function for the family of sets Xk. 

If we now turn  from the question of consistency to the question of t ru th  (=provability in ZF or ZFC) 
of determinacy hypotheses, we may begin with the following theorem, which gives a simple result, yet one 
sufficient for many applications. 

THEOREM. (Gale-Stewart) [24] Every open set A C_ )/2 is determinate, i.e., ~ - D e t  holds. 

The proof of this theorem involves some devices that  are quite common in work with determinacy-- in  
particular the concept of a game beginning at a certain position. 

Suppose that ,  in addit ion to the set A C )12, two finite sequences u,v E FC are given. The game 
G(u; v; A)- - the  game G(A) from the position u; v--differs from the game G(A) only in that  player I is 
required to make his first i moves so that  they constitute u and player II is required to makes his first j 
moves so as to consti tute the sequence v. Here i and j are the lengths of u and v respectively. 

For example, if the finite sequences u = (a0, al) and v = (b0) are given, then the game G(ao, al;bo;A) 
(= the game G(A) from the position a0, al ; b0) presupposes that  player I makes initial move a0, then player 
II makes the move b0, and then player I makes the move ax-- in  these three moves the players have no 
choice, being obliged to take as these moves the corresponding terms of the finite sequences u and v - -and  
all subsequent moves bl, a2, b2, a3, bs , . . ,  can be arbitrarily chosen. The result of such a game is defined as 
in the game G(A), i.e., taking account of the first moves dictated by the finite sequences u and v. 

3The principle DC postulates the following. If a binary relation E on a set X is such that  Vx E X3y E 
X(xEy), then there ~exists a sequence x0, xl ,  x2 . . .  of elements xi of the set X such that  xiExi+l for all i. 
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The concept of strategy and winning strategy in games beginning at a certain position is illustrated 
by the example of the same game G(ao,al;bo;A). A strategy for player I in this game is any function 
a : FC ~ w satisfying the conditions: a(A) = a0 and a(bo) = al. Such a strategy is a winning strategy for 
player I if ( a ,  ti, ti) E A for any point ti E ~/ satisfying ti(0) = b0 (in the general case satisfying v C ti). 
The concepts of strategy and winning strategy for player II are introduced in exactly the same way: In 
the game under consideration it is required that r(a0) = b0 and in this case r will be a WS for player II if 
(a,a * r} ~ A for any point a e )r such that  a(0) = a0 and a(1) = a, (u c a in the general case). 

Finally, the position u; v is said to be winning for player I (or for player II) in the game G(A) when 
player I (resp. player II) has a WS in the game G(u; v; A). 

Having stated these definitions, we now turn directly to the proof of the Gale-Stewart theorem. Con- 
sider an arbitrary open set A __ ~/~. Assuming that  player I has no WS in the game G(A), we shall show 
how player II must proceed in order to win the game. 

Suppose player I makes some opening move a0. By hypothesis the initial position A;/[ is not winning 
for I; consequently the position a0;A is also not winning for this player. Therefore player II can make a 
move b0 in such a way that the position a0 ; b0 is again not winning for I. Player II will take such a move b0 
(for definiteness, say the smallest such move) as his response to the move a0 of his opponent. 

Next suppose player I carries out his next move al.  Analogous reasoning shows that  player II has a 
move bl such that  the position a0, al ; bo, bl is not winning for his opponent, and so forth. 

From this description of the moves of player II it is not difficult to extract a strategy r possessing the 
property that for any sequence a E ~/of  moves of player I, if we define ti = a * r (the sequence of responses 
of II according to the strategy r), then for any m the position a I m;t i  I m is not winning for I in the 
game G(A). In particular, for every m there exists a pair (am,tim) r A such that a ~ m = am ~ m and 
ti I m = tim I m (otherwise the position a I m; ti I m would already be won by player I independently of 

t a all succeeding choices of moves by both players). In other words, there exists a sequence of points ~ ,~, ti,~, ) 
of the closed complement of the set A converging to (a, ti). Consequently (a, ti) ~ A a~td this happens 
whenever fl = a * r. Hence the strategy r thus found is indeed a WS for player II in the game G(A), which 
was to be proved. [] 

COROLLARY. AH dosed sets are determinate, i.e., H01-Det holds. 

PROOF: For each point a = (ao,al ,a2, . . . )  E )r we set a -  = (a~ ,a~ , . . . ) .  Consider an arbitrary closed 
set A _C_ )r By the continuity of the mapping a ~-~ a -  the set B {(a, ti} : (ti, a -}  ~ A} is open and 
hence determinate. If now player I has a winning strategy in the game G(B), then the strategy r = a is 
a winning strategy for II in the game G(A). And if player II has a winning strategy r in the game G(B), 
then a winning strategy a for player I in the game G(A) can be defined by the equation o(u) = r (u -  ) for 
all u E FC (the finite sequence u -  is obtained by removing from u the leftmost term--compare  with the 
definition of a - ) .  [] 

The result of the Gale-Stewart theorem was later strengthened several times (see [34, w until Martin 
[53] proved the following theorem: 

THEOREM OF BOREL DETERMINACY. A11 Borel sets are determinate, i.e., A~-Det holds. 

This result is the strongest possible in ZFC (actually the proof uses only axioms of ZF + DC). The 
point is that the hypothesis E~-Det (and II~-Det, which is equivalent to it) is nondeducible even in ZFC 
(see the following section) although, as Martin showed [52], it can be deduced from the measurable cardinal 
axiom. The work of Harrington [26] and Steel [72] (see also [34]) showed that  the hypothesis E~-Det is 
equivalent to the assertion that  any two nonborel E~-sets are Borel isomorphic, and also to the "sharps 
hypothesis", which has been intensively studied in connection with measurable and Ramsey cardinals (see 
[34]; [hs, Ch. s]; [691). 

Now a brief historical sketch. Infinite games of a certain special type connected with the proof of the 
Baire property first appear in the work of Banach and Mazur at the end of the 20's and beginning of the 
30's. The general concept of games of the type considered here was introduced by Gale and Stewart [24]. 
Nevertheless the first serious study in connection with determinacy should be attr ibuted to the note of 
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Myeielski and Steinhaus [60] and the subsequent works [59], [61], [22], where it was shown that AD implies 
Lebesgue measurability, the Baire property, and the existence of a perfect subset under the hypothesis of 
uncountability--for all subsets of the real line. 

The next crucial step in the study of determinacy occurs in the second half of the 60's. In the 
note of Blackwell [161 it was shown how it is possible, using the Gale-Stewart theorem, to prove certain 
classical theorems on sets of the first projective level, in particular the separability theorem for the class E~. 
Immediately Moschovakis (see [15]) and Martin [51] discovered that by adopting the axiom of projective 
determinacy PD it was possible to ascertain the laws of separability and reduction on all levels of the 
projective hierarchy (by classical methods this could be done only for the zeroth, first, and second levels). 
In this way a period of intensive development of the applications of determinacy to descriptive set theory 
was opened, and has continued down to the present. 

In the course of this study the view of the nature of the axioms AD and PD also underwent certain 
changes. Whereas in the early stages of work on determinacy (the first half of the 60's) specialists were 
inclined to consider these axioms simply as interesting mathematical hypotheses with unusual consequences 
(approximately on the same level that topologists assign to Martin's axiom), by the 70's they had begun 
to look at AD and PD as postulates claiming to be true in the "world of real sets", or at least in certain 
natural parts of that  "world". More or less convincing grounds are presented in support of such a view (for 
this see [5, Ch. 2 and conclusion], [3, Ch. 8, w [23], [58, parts 7,8 and conclusion]). This approach was 
reflected in the terminology as well: Moschovakis [55] introduced the concept of a "playful universe," by 
which he understood a world of sets in which a definite determinacy hypothesis holds, preferring to talk 
about t ruth in this universe rather than deducibility from the corresponding hypothesis. 

In what follows we shall talk about t ruth in a completely determinate universe, in a projectively 
determinate universe, or, in general in a F-determinate universe, by which we understand, strictly speaking, 
deducibility from AD, PD or the hypothesis F-Det, respectively. (The "usual" mathematical universe of 
sets is E0~-determinate by the Gale-Stewart theorem, and even A~-determinate by Martin's theorem.) As 
the underlying set theory, (to which one determinacy hypothesis or another will be adjoined) we shall use 
the theory ZF + DC; any application of the "full" axiom of choice AC will be explicitly stipulated (actually, 
this affects only one proposition of w 

w R e g u l a r i t y  p r o p e r t i e s  of  p o i n t  sets  
in d e t e r m i n a t e  un iverses  

Under the  general heading of regularity properties we usually understand the following three properties 
of point sets: 

1) MEASURABILITY. In Euclidean spaces this property can be associated with Lebesgue measure. 
Spaces of the form w z • ~/'~ have no one measure that is in any way distinguished from all others, and 
therefore it is more natural in these cases to talk about the property of absolute measurability. A point 
set X is absolutely measurable if it is measurable (i.e., has a definite finite or +c~--measure  value) in the 
sense of any prescribed countably additive a-finite Borel measure on the space under consideration. (The 
phrase "a-finite" means that the whole space is a countable union of sets of finite measure, and a "Borel 
measure" is a measure such that every measurable set coincides up to a set of measure zero with a suitable 
Borel set.) 

2) THE BAIRE PROPERTY. A set X has this property when it coincides up to a set of first category 
with a suitable open set. In other words, there must exist an open set U in the space under consideration 
such that the symmetric difference X A U = (X - U) U (U - X) is a set of first category. Sets of first 
category, in turn, are defined as countable unions of sets that are nowhere dense in the given space. 

3) THE PERFECT KERNEL PROPERTY. This property amounts to the assertion that a given set 
must either be at most countable or contain a perfect subset. Perfect subsets of the spaces w I • Jr 
with m/>  1~ as is known, have cardinality of the continuum c, so that  a point set with the perfect kernel 
property has cardinality either ~< R0 or equal to r and in either case cannot serve as a counterexample to 
the continuum hypothesis. 

We have already mentioned in the preceding section the achievements of the early work on determinacy: 
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AD implies absolute measurability, the Baire property, and the perfect kernel property for all point sets. 
Elementary analysis of the proofs of this proposition showed that projective determinacy suffices to prove 
all three regularity properties for any projective set; and, more precisely, in a E~-determinate universe all 
E~-sets possess these properties. Then an even stronger result was obtained: 

1 absolutely measurable and possess the Baire THEOREM 1 (E~-DET) 4. All sets of the class E~+ 1 are 
property and the measurabIe kerneI property. 

(In the book [58], where apparently the proof of this theorem was first presented, it is credited to 
unpublished work of Martin and Kechris in the early 70's. The latter authors, however~ indicate in [34] 
that the main technical device was invented by Solovay.) 

We note one specific point in the theorem just stated (characteristic, as will be shown below, of many 
other theorems of the same type). For n = 0 the hypothesis Eol-Det is a theorem in ZF-- the  Gale--Stewart 
theorem of the preceding section. Consequently the conclusion on measurability, the Baire property, and 
the perfect kernel property for all E~-sets is also an ordinary mathematical fact, not depending on any 
determinacy hypotheses. However, this result, of course~ is not new: even in the earliest work on the 
descriptive theory (Aleksandrov, Suslin--see [13, w Luzin [45]) it was shown that each E~-set (i.e., A-set, 
in the terminology of the time) has all three regularity properties. Indeed what was noteworthy was that 
theorem 1 generalizes very naturally the classical results mentioned above~ becoming these results when 
r t = 0 .  

Here we shall give a proof only of that part of theorem 1 that concerns the perfect kernel property--it  
is especially important in applications to the theory of single- and countably-valued sets (see w As for 
the Baire property, at the end of this section we shall sketch the proof of an even stronger result than is 
contained in theorem 1. 

1 Thus, we shall prove that in a Eln-determinate universe each En+ 1 -point set X _C A/ has the perfect 
kernel property. The plan of the proof reduces to the following: for a specially constructed game G it will 
be shown that if player I has a WS, then the set X contains a perfect subset, and if player II has a WS, then 
X is at most countable. Then we shall deduce the determinacy of the game from the hypothesis E~-Det. 

Without loss of generality we may assume that X C_ P, where 

P = 2 ~ = {~ e )1: V k ( ~ ( k ) = 0  or 1)} 

is the Cantor discontinuum. (In fact, it is easy to arrange a homeomorphism between )1 and a suitable 
co-countable set in P, which allows us to carry out the reduction to the indicated special case.) There exists 
a Hi-set Q c p • )1 such that 

x =  = 

Fix an enumeration (l[b], v[b]}, b E w, of all pairs (l, v) E ~ • FCol,  where FCol is the set of all finite 
sequences of zeros and ones (including the empty sequence/t). To each pair of points a = lao, a~, a~,..= ) 
)1 and f~ = (b0, bi, b2, . . . ,  ) E )4 we assign the points 

D(a,  j3) = v[bo]'(a~i"v[b~]^(a~}'.., e P, 

where a~ = rain{l, ai}, {a* ) is the finite sequence with the single term a~, the sign ^ denotes the operation 
of concatenating finite sequences, and 

H(~) = (l[bo],l[bl],l[b~],... > e )1. 

The functions D and H, of course, are continuous, whence by rule 2 of w it is not difficult to deduce that 
the set 

A = {(a, fl) E )12 : (D(a,~6),H(fl)) q~ Q} 

belongs to E~, so that the corresponding game G(A) is determinate. 

4The notation, e.g., EX~-Det after the word ~theorem' indicates that the theorem in question is proved using 
ZF + DC + (E~-Det) .  
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A SMALL EXPLANATION. The  game G(A) essentially reduces to the  following: player I makes  moves 
a~ = 0 or 1, while the  moves of player II mus t  be pairs (ll,vil,  where l~ E w, and vl is a finite sequence 
of zeros and  ones. The  point  ff = (10, l l , . . .  ) E ~/ is cons t ruc ted  f rom the numbers  l~, and  the  point  
5 = VoA(a~)^Vl^(a~) A... E P is cons t ruc ted  f rom the finite sequences v, and  the  numbers  a~.. After this 
player I wins if and  only if (6,'7) ~ Q. It is useful to keep in m i n d  this actual  content  of the game G(A) 
when s tudy ing  the  following computa t ions .  

We note  also t ha t  the  opening  move a0 of player I has absolutely no influence on the  ou tcome of the 
match;  essentially I "loses" a move, effectively offering his opponen t  the  right to open the  match .  In works 
on the descriptive theory  in de te rmina te  universes proofs of perfect kernel theorems are usually const ructed  
by reversing the  funct ions of the  two players,  i.e., the moves of player I are pairs (l, v) E w • FCol,  
and player II responds  wi th  zeros and ones; in tha t  case there are no longer any "indifferent" moves. The  
variant adop ted  in our  exposi t ion was mot iva ted  by the need to prepare  for the  appl icat ion of a const ruct ion 
explained in the  proof  so as to prove (in w the  theo rem on the  par t i t ion  of countably-valued sets: it is 
necessary tha t  the  countabi l i ty  of X correspond to the  existence of a WS for player I. 

Due to the  de te rminacy  of the  game G(A) one of the  players has a winn ing  strategy.  
CASE 1: Player  I has a WS a in the  game G(A). We shall verify t ha t  then  X is at mos t  countable.  

We may suppose  t ha t  the  s t ra tegy a has as values only the numbers  0 and 1 (otherwise we simply replace 
each value of a greater  t h a n  1 by 1). 

We now make some definitions. We shall call a finite sequence t = (a0 ,b0 , . . .  ,ak-1 ,bk-1 ,ak) (of odd 
length) a a-compatibIe sequence (a a-CS for short) if a~ = a(bo , . . . ,  b~-i ) for all i ~< k. Fur ther  let 6 E P. 
We shall agree to call a pair  consist ing of a number  l E w and a a-CS t = (ao,bo, . . .  ,ak) b-maximal if, first, 
the  finite sequence 

wCt) = v[bo]^<al>^v[bl]^<a,>^...^v[bk_l ]^(ak> 

is the beginning of b (i.e., w(t) c b), and  second, there are no numbers  bk E w and ak+l = 0 or 1 such tha t  
l =  l[bk], ak+t = a(bo, . . .  ,bk-1 ,bk) and w(t)^v[b~]^(ak+~ ) C 6. 

We claim tha t  for each point  b E X there  is a b-maximal  pair.  Indeed,  since b E X,  it follows tha t  
(b,'7) E Q for some point  "7 = ( lo , l t ,12, . . . )  E 3r Set a0 = a(A). T h e n  to = (a0) will be a a-CS and in 
addi t ion w(to) = A C 6. If the  pair  (lo,to) is not  b-maximal ,  then  to can be extended,  yielding a a-CS 
tt = (ao,bo,at) such tha t  w(tt )  C b and l ib0] = 10. If again the pair  ( l t , t t )  is not  b-maximal ,  there exists 
a still longer a-CS t2 = (a0, b0, a t ,  bt, a2) such tha t  w(t2) c b and l[bt] = ll,  etc. 

But  this process cannot  cont inue  indefinitely, for then  we would obta in  a m a t c h  a = (a0, a t , . . .  ),/3 = 
(bo,b~,. . .)  in the  game G(A) corresponding to the  s t ra tegy a (or = a*/3) ,  and  such t ha t  (D(o~,/3), H(/3)) = 
(b,"7) E Q, which is impossible,  since a is a WS for player I. Hence the  cons t ruc t ion  terminates ,  and  at  the 
corresponding step k we arrive at a b-maximal  pair  (l, t). 

Thus ,  in fact,  for any point  b E X there  exists a b-maximal  pair  (l, t). Let us verify tha t  in such a 
s i tuat ion b is uniquely de te rmined  in I and  t via a.  This  will suffice to prove t ha t  X is countable,  since the 
total i ty  of all pairs (/, t) of the  type  under  considerat ion is countable.  

Let t = (ao,bo, . . .  ak-1,  bk-1 ,ak). Given tha t  w(t) C 6, there  exists m such t ha t  w(t) = b ~ m. All the 
values of b( j )  wi th  j < m are de te rmined  by this equation.  We shall show how to compu te  all the values 
b(m + i) by induct ion  on i. 

Set v' = ( b ( m ) , . . . , b ( m  + i -  1)) for each i (in par t icular  v ~ : A). For every i there  exists a unique 
na tura l  number  b ~ satisfying v[b~l = v ~ and l[b i] : I. Let us also set a ~ : a(bo, . . . ,bk-~,b~).  Then  
t i = F(b ~, a ~} is a a-CS and  l[b'] = I. Consequently,  in view of the  5-maximal i ty  of the  pair  (l, t), we obtain 
w(t i) q~ 6. However w(t i) = w(t)^vi^(a i) and it is clear tha t  w(t)^v i c 6. Thus,  a i # 6(m + i). 

In addi t ion  b(rn + i) = 0 or i since b E X _C P, and  a i = 0 or 1 by the  assumpt ion  made  about  the 
values of the  s t ra tegy  a.  Thus  for any i E w the  equat ion  

6(m + i) : 1 - o ( b o , b , , . . . , b k - t , b ' )  (*) 

holds,  making  it possible to find all the  numbers  b(rn + i) sequentially. 
CASE 2: Player  II has a WS T in the  game G(A). We shall verify t ha t  in this case our  set X contains 

a perfect subset .  The  funct ion  F ( a )  = D ( a , a  * ~) is cont inuous,  and  the  image C = {F (a )  : a E P} of 
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the discontinuum P is contained in X by the choice of r in accordance with the definition of A. It remains 
to verify tha t  F and D are in one-to-one correspondence; once that  is done we can conclude that  C is the 
desired perfect subset of the set X. 

I I Consider a pair of distinct points a = {ao ,a~ , . . . )  and a' = ( a 0 , a l , . . . )  of the discontinuum and 
I denote by rn the smallest index such that  a,~ # a,~. Set 

b, -- r ( a 0 , . . . , a i )  and b~ =T(a~ , . . . a~ )  

for all i. Then 
F(a) = v[bo]^(al>~v[b~]"(a2) " . . .  , 

F(a')  = ' "  ' ^ ' " ' ~ v[b0] <at> v[bl] (a2) . . .  

I g By the choice o f m  we shall obtain a i = ai and then also b~ = bi for all i < m, but  %, # a~ .  Thus 
f ( a )  # F(a') ,  as required. [] 

We now turn  to the proof of the Baire property. The result whose proof will be explained here is 
connected with the "game-operator" of Moschovakis [56]. Let X be one of the point spaces and B C X x )4 ~" . 
Each point x E Z determines a section B / x  = {(a ,~ ) :  B ( x , a ,  fl)} and thereby defines a game G ( B / x ) i n  
which one of the players may have a winning strategy. Moschovakis proposed the following definition: 

D B = {x E Z :  player I has a WS in the game a ( B / z ) }  

The action of the operator D can be symbolically pictured as an infinite string of alternating quantifiers 
over the natural  numbers: 

x E o B  B(x, 

but  any a t tempt  to give a precise sense to an infinite quantifying prefix leads inevitably back to strategies. 
For each class r of point sets, it is customary to denote by DF the collection of all sets of the form 

D B,  where B is a set from F si tuated in a space of the form Z x )42 . In a projectively determinate  universe 
the operator D acts on projective classes in such a way that  the equalities DII~ = ~In+1, DEn1 = H,+11 
hold (actually only the assumption ~ - D e t  is required)--see the following section. Therefore the result of 
theorem 1 for the Baire proper ty  follows from the following theorem of Kechris [31]: 

THEOREM 2. Let I" be a projective c/ass, and suppose the hypothesis F-Det holds. Then every set of D F 
has the Baire property. 

We shall carry out the proof only for sets of the space )4 and we shall limit ourselves to the exposition 
of only the main points. It suffices to show that  for any X _C )4 of the class D r  either X has first category, 
or there is a Baire interval )4~ -- {a E )4 : w c a} (where w E FC) in )4 such that  the difference )4V - X 
has first category. Thus,  let X = D B _C )4, where the set B _ )42 belongs to I'. 

Consider the game G in which both  players I and II make every move by choosing a pair of the 
form (a, u), where a E w and u E FC,  u ~ A. Thus player I (who, as usual, opens) makes moves 
(ao,uo),(al,Ul),  (a2 ,u2) , . . .  and player II makes moves (bo,vo),(bl ,vl) ,(bl ,v2),  . . . .  To determine the 
result the points 

a =  (ao ,a l ,a2 , . . . ) ,  ~=-(bo ,b l ,b2 , . . . ) ,  

UO UO Ul VI U2 ~)2 " 

of the space )4 are formed. Player I wins in the case when (% a, ~) E B; otherwise II wins. 
The game G is determinate.  To prove this proposition we must  fix an enumerat ion of all pairs (a, u) of 

the indicated type by natural  numbers (as was done above in the proof of par t  of theorem 1). After such a 
transformation we arrive at a game of the form G(A), where A C_ )4~ is a set of class r (it is obtained from 
B by a continuous substitution).  

In view of the determinacy one of the players has a WS in the game G. 
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CASE 1: Player II has a WS r in the game G. (We prefer to examine this case in more detail, since 
it is the more revealing case). We shall show that X is of first category. 

For what follows we shall agree that the letters u and v (with indices) denote only finite sequences 
from F C ,  not equal to A. The strategy r is defined on finite sequences of the form 

. . . ,  >> (1) 

and assumes values among the pairs <b, v) (b 6 w). We shall call a sequence of the form 

t = (ao, Uo, bo, vo , . . . ,  ak-1, U k - 1 ,  bk-x, vk-1 ) (2) 

a v-compatible sequence (a 7--CS for short), if we have (bi,vi) = r ( ( a o , u o , ) , . . . ,  <ai,u,)) for any i ~< k. If 
in this case a 6 w, ff 6 A/, the finite sequence 

W (t)  : U 0 ̂ ?J0 ̂ Ul ^?)1 ̂ ' ' "  ^~/'k- 1 ^•k- 1 

satisfies the relation w(t) c 7, and there is no r-CS t' of the form t ^ (ak ,uk ,bk ,vk)  such that  w(t')  C ff and 
ak = a, then we shall call the pair <a, t) "~-maximal. 

We claim that  for every point q 6 X there exists a -~-maximal pair <a, t). The idea is the same 
as in the proof of theorem 1, only each number ak (the analog of lk) is computed from the formula 
ak = a(bo , . . .  ,bk-1 ), where a is a WS for player I (fixed in advance) in the game G(B/ '~) ,  which exists in 
view of the fact that  "~ 6 DB.  We omit the details. 

Having accepted the assertion about the existence of maximal pairs, let us deduce that  X is of first 
category. Let "7 6 X, and let the pair (a, t) be "~-maximal; let t be a r-CS of the form (2). Let u E FC,  u # 
A be arbitrary, and 

<b, v> = r((ao, Uo>,.. . ,  (ak_l,  uk-~ >, <a, u)). 

The finite sequence v 6 F C  - {A} defined by this equation will be denoted v(u).  
The sequence t t = t^<a, u, b, v(u)l  will be a r-CS, and thus, in view of the ^/-maximality of the pair 

(a,t) we obtain: w(t')  -- w(t)^u^v(u) q~ % Thus the point ~/belongs to the set 

Wt =//~(~} - [3 ~/~(0"~(-) " 
uEFC,u#A 

In view of the arbitrariness of the point ~/6 X in this reasoning we can conclude that X C [J Wt. But 
t 

each of the sets Wt is nowhere dense. 
CASE 2: Player I has a WS a in the game G. Let (a,u> = a(A) be the opening move according to the 

strategy a. Calculations similar to those carried out in case 1 make it possible to deduce that  )/~ - X is a 
set of first category. An additional point here is that  each section B / q ,  ~l 6 ~[ of the set B belongs to the 
class F, as does B itself (rule 3 of w Consequently, by the assumption F-bet ,  if ff 6 ) / -  X, then player 
II has a WS in the game G ( B / ~ ) .  [] 

In concluding this section, we note one major consequence of theorem 1. Novikov has shown [11] that, 
using the axioms of ZFC, it is impossible to prove that even one of the three regularity properties we are 
considering holds for all sets of the class 21. Consequently the hypothesis ~ - D e t  is also not deducible in 
the system ZFC, for by theorem 1 it implies all three properties (actually it suffices to consider any one of 
them, say the perfect kernel property) for all sets of the class ~]I. 

w S e p a r a t i o n  a n d  r e d u c t i o n  t h e o r e m s  
in d e t e r m i n a t e  un iverses .  N o r m e d  c lasses  

The concept of separability was introduced into descriptive set theory by Luzin. Consider a pair of 
disjoint sets X, Y of some point space. How simple can a set Z separating X from Y be? (This means that 
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X C Z and Y N Z = 0.) Luzin [48] suggested taking as the index of simplicity of existing separating sets 
(among which is the set X) a special descriptive measure of the "distance" between the sets X and Y. 

The question that aroused the greatest interest in studies of separability in the projective hierarchy was 
the following. For which projective classes F does the following assert ion~the separation principleS--hoId? 

F-Sep: For each pair of disjoint F-sets X and Y there exists a set Z belonging to ~he class r along 
with its complement and separating X from Y. 

Separability played a very important role in the development of the descriptive theory in the 20's and 
30's. In current work the following more convenient reduction principle, which first appeared in an article 
[40] of Kuratowski, is more frequently considered: 

F-Red: For each pair of F-sets X and Y there exists a pair of disjoint F-sets X ~ _C X and Y~ _ Y 
whose union X t U Y' coincides with the union X U Y. 

(Such a pair X ~, Y~ is said to reduce the given pair X, Y.) 
The classes AI,, being closed under the operation of set difference, obviously satisfiy both Sep and 

Red. The situation is significantly more complicated with the classes E~ and 1-I~. The research of Luzin 
[48], Novikov [63], and Kuratowski [40] showed that for the classes ~ ,  H~, and E~ the reduction principle 
holds, but not the separation principle, while the classes H0 ~, E~, and H~, in contrast, satisfy Sep but not 
Red. And the higher projective levels absolutely defeated all attempts to ascertain their separation and 
reduction laws. In addition the separation and reduction problem--together with the problem of regularity 
properties--has traditionally been given the foremost place among the classical problems of the descriptive 
theory. It is precisely for this reason that the following theorem, proved independently by Martin [51] and 
Moschovakis [15], made a very strong impression on specialists in this area: 

SEPARATION AND REDUCTION THEOREM (EI , -DET) .  The classes 

~'~1, 1 1 II1,E2, E~, H 1 E I " " " ' ' 2 n + 1  ~ 2 n + 2  

satisfy the reduction principle, but not the separation principle. In contrast the classes 

" " " ~ 2 n  ' ~"~ '2n+l  , 2 n + 2  

satisfy the separation principle, but not the reduction principle. 

Thus in a projectively determinate universe (i.e., one with the axiom PD) there is a series of "reducible" 
but not "separable" classes 

1 1 ~1  I - [1  E0,H1,E~ ' 1 ~ 2 n ,  2 n + l  , �9 ' ' ,  ~ 2 n + 2  , ' ' "  

and a series of "separable" but not "reducible" classes 

n0 ,sl,nt, , n L  ' n 1 " ~  , ~ ' ~ 2 n + l  , 2 n + 2  , ' ' "  

The hypothesis E~,-Det turns out to be strong enough to extend both series to level 2n + 2. And for n = 0 
we arrive by means of the Gale-Stewart theorem of w at a new proof of the classical results noted above on 
separation and reduction, a proof based on games. (As a matter of fact, such a possibility of using games 
was demonstrated by Blackwell [16] even before [15] and [51] appeared.) 

The reason for the "alternation" of reduction and separation between E-classes and H-classes remained 
unexplained for some time. This question became answerable by use of the "game operator" of which we 
spoke in w The point is that the hypothesis E~-Det implies that the equations 

D II~' = E 1 H ! m + l  ' D ~ 1  ~ m §  , 

hold, so that in a projectively determinate universe the "reduced" classes are obtained from the initial class 
E01 and the "separated" classes from II~ by successive applications of the operator D. 

SMore precisely, the first principle. A second principle of separability has also been studied, for which see 
[2, w,  24, 6]. 
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We now give the proof of these equalities. It suffices to do the first one, since the second is easily 
obtained from the first ,ander the assumption E~-Det  by the same method  that  was used to deduce the 
corollary from the Gale-Stewart  theorem in w 

1 RIGHT-TO-LEFT INCLUSION. Suppose X _C ~" and X E E,~+~. Then X = {x : 3 a Q ( x , a ) }  for a 
suitable II~-set  Q c X • ~ .  then X = D B ,  where 

B = { ( x , a ,  fl) : Q(x ,a )  A ~ E )4} e H~ .  

LEFT-TO-RIGHT INCLUSION. Let X = D B ,  where B _ X • ~2 is a set of class II~.  Thus 

X = {x  : 3a : F C  ~ wVflB(a * fl, fl)}. 

To represent the quantifier 3a in terms of a quantifier on ~/, fix once and for all an enumeration by the 
natural  numbers of the finite sequences in FC.  Let [k] be the finite sequence corresponding to the number 
k e w; thus, F C  = {[k]: k e w}. Now each point 6 e ~/gives a strategy [e]: to be specific, [e]([k]) -- e(k) 
for all k. 

The mapping (e,]~) ~-* [e] * fl is of course continuous, and therefore our set 

x = { .  : e XVZB([ ], 

has class E 1 (here we are using rules 2 and 6 of w 1). m + l  

To begin our exposition of the proof of the separation and reduction theorem we note the following: if 
the reduction principle holds for a class F, then the separation principle holds for the class ~F of comple- 
mentary sets (simply pass to the complements).  The elegant reasoning discovered by Novikov [62] involving 
"doubly universal pairs" shows that  Sep and Red cannot both hold for the same class F = E~ or H~ (see 
the proof of theorem 3.2 in the book [3, p. 249]). Thus it suffices to verify only the reduction principle for 
the classes 1 1 i i  1 1 E~,-determinate  universe. E 0 , I I 1 , . . . ,  ~,+1,E2,+2 i n a  

The utilization (in one form or another) of the set of all at-most-countable ordinals was the crucial step 
in the classical proofs of separation and reduction theorems. The connection of the first and second levels 
of the projective hierarchy with the ordinals found its most natural  expression in the principles of index 
comparison discovered by Novikov (see [10], [63], [6, w In contemporary research two related concepts 
derived from these principles are used- - the  norm and the prewellordering. 

A norm on a set X is any function ta mapping X into the ordinals. To each norm ~ : X ~ Ord defined 
on a point  set X _ X there correspond binary relations ~<~ and <~, (on X) and ~<~ and <~ (on X): 

$ 

$ 

If the relations ~<~ and <~ (which are more important  than ~<~ and <~,) belong (as sets of ordered pairs) 
to a given class F, then ~ is called a F-norm. 

A non-strict partial ordering ~< on a set X is called a prewellordering of X if it satisfies the following 
two conditions: 

1) if x, y E X then x ~< y or y ~< x (but it is not  assumed that  x ~< y A y ~< x implies x = y); and 
2) there are no infinite chains x0 > xl > x2 > "-" of elements xd of the set X (x < y means that  x ~< y 

but  it is not  the case that  y ~< x). 
For example, if ~ is a no rm on X, then the relation ~<~ is a prewellordering of X. Conversely it is easy 

to see that  for any prewellordering ~ of the set X there is a norm ~ on X such that  ~ coincides with ~<~. 
Finally the key definition. The class F is called normed if every set of F supports  a F-norm. The 

application of these concepts to the proof of the separation and reduction theorem is obtained using the 
following proposition: 
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If a projective class r is normed, then it satisfies the reduction principle. 
The proof is very simple. Consider a pair of F-sets X, Y C I .  The set 

P =  {<x,i> : ( x e  X A i = O )  V ( x e  Y A i =  1)} 

also belongs to the class F, being obtained from the r-sets X,Y,{0}, {1} using A and V (rule 5 of w 
Therefore there exists a F-norm ~o : P -+ Ord. Now the pair of F-sets 

x' = {~: <~,o> <~ <~,~>}, Y' = {~: <~,1> % <~,o>) 

guarantees the reduction of the initial pair (the sets X' and Y~ belong to F, being obtained from the 
$ F-relations <,, and -<* by a continuous substitution--rule 2 of w "~'lo 

From all that  has been said, it now suffices for the proof of the separation and reduction theorem to 
prove the following theorem: 

FIRST PERIODICITY THEOREM. (E~-Det ) .  The classes E~ H~ , E~, , E~n ~ , " " " } ] " [ 2 n + l  , ~2nq-2 are normed. 

The known proofs of this first fundamental proposition of the descriptive theory of determinate uni- 
verses run according to the following scheme: First it is verified that the class E01 is normed, and then an 
induction E~ --+ H1,,+1 --+ E,~+ 2 1  holds�9 Having in mind the action of the operator D descri[bed above, we 
can express the essence of this scheme by saying that the property of being normed passes from the class 
r to the class D r .  A proof of such a general proposition has been obtained by Moschovakis [58~ Ch. 6]. 
However, it is ~oo complicated to be included in the present article. We shall present instead the original 
proof of the first periodicity theorem due to Martin [51] and Moschovakis [15]. It consists of three lemmas: 

LEMMA 4.1 .  The class E~ of open sets is normed. 

LEMMA 4.2 .  If the class H~ is normed, so is ~he class E 1 m - k  l " 

LEMMA 4.3 .  (E~-Det) .  If the class E~ is normed, then the class H ~.~+~ is also normed. 

We emphasize that  lemma 4.2 assumes no hypotheses of determinacy. 

PROOF OF LEMMA 4.1 : Every open point set X is the union X = [-Jke~ Xk of open-closed sets Xk (recall 
that we are considering only sets of spaces of the form w z x A/'~; for Euclidean spaces this assertion, of 
course, is false). If x E X, then we define the value of the norm ~(x) to be equal to the smallest number k 
for which x E Xk. It can be shown without difficulty that ~ is an "open" norm. [::] 

PROOF OF LEMMA 4.2:  The proof of lemma 4.2 is based on Novikov's idea of minimal index [63]. We 
1 construct a ~ + ~  -norm on a r ~ + ~  -set X = { .  ~ X : 3 ~ P ( ~ ,  ~ ) ) ,  where P C X x Z is a set of class n ~ ,  

supporting a H~-norm ~. We set 
r = min(,,~)e v ~(x, a) 

for each point x E X. The norm r : X -+ Ord so constructed is a E~+I-norm:  for example 

x ~<~ y *-+ x e X A (y e X --+ r ~< r +-~ 3aV3(P(x,a) A (P(y,fl) --+ 

i.e., the relation .~-<* has class E~+,I (rule 6 of w [] 

' -set x = {~ E z : v~P(x,~)},  PROOF OF LEMMA 4 3 :  We must construct a !Ira+ 1 -norm on the ]-[1 �9 m + l  

where P C X x ~ is a set of class E~ on which is defined a E~-norm ~. To each pair of points x, y E X 
there correspond games G** and G'~ with game sets 

A.~ = {< . ,#>  ~ s~ ~ : =((~,~) <~ <~,3>)}, 

and 
$ 

A'~v = {(a, fl) e 3r : (x, fl) <~ (y,a>} 
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of classes II~ and E~ (according to the choice of ~o). All these games are determinate,  since the hypothesis 
E~-Det  implies I I~-Det  (see the deduction of the corollary of the Gale-Stewart theorem in w 

We consider the following binary relations on X: 

x 6 '  y ~ player II has a WS in the game G~v; 

x <* y +-+ player I has a WS in the game Gt~v. 

1 We claim that  ~* and <* are relations of class II,~+l. Indeed, ~<*, say, is identical to the complement of 
the set DB, where 

B = <; 
is a set of class H~.  But  D B E E~+ 1 according to what  was said above about the action of the operator 
D on sets of the class H I .  The relation <* is handled in exactly the same way. 

It now remains to verify that  the relations ~* and <* coincide with ~<~, and <~, for a suitable norm ~o 
on X. To prove the existence of such a norm, it is quite sufficient to prove the following seven assertions: 
(1) I f x E X w h i l e y E X - X ,  t h e n x < *  y. 
(2) If x ~<* y, then x E X. 
(3) If x E X, then the relation x <~* x holds. 
(4) If x ~* y and y ~* z, then x ~* z. 
(5) If x <* y, then x ~* y. 
(6) If x ,y  E X, then x <* y ~-4 -~(y <* x) 
(7) There are no infinite chains of elements of the set X which are decreasing in the sense of <4. 

The  winning strategy a for player I, which provides a proof of assertion (1), consists of the following: 
Player I, independently of the moves of player II, makes his moves ai according to the equation a~ = a(i), 
where a is a point  of N fixed in advance and such that  (y, a / ~ P (a exists, since y ~ X). At the same 
time, no mat te r  how player II makes his sequence of moves/3,  player I obtains (x,/3} E P ,  since x E X. 
IIence, (x,/3} < ;  (y,a}. 

Assertion (2) is proved in exactly the same way. If x ~ X, then player I guarantees himself a win in 
the game Gzv by making his sequence of moves a so that  (x, a} ~ P .  

Assertion (3) is completely trivial: it suffices for player II to repeat the moves of player I, thus  guar- 
anteeing/3 = r and (x,a) <~ (x,/3} (it is important  that  x E X- - th i s  gives (x,a} E P for all a.) 

To prove (4) suppose player II has a WS T1 in the game Gxv and a WS T2 in the game G ~ .  A WS r 
in the game G ~  for player II is obtained by a special composition of the strategies rl and r2: 

= 

where b~ = r l ( a 0 , . . .  ,a~) for all i. This strategy satisfies the equation a * r = (a * rl) * r2 for all a E ~/. 
Let us now prove (5). Suppose player I has a WS a in the game G ~ .  Then a WS r for player II in 

the game Gzu can be defined by the equation 

= ). 

It is easy to see that  for any point a E A / if/3 = a * r, then a * ,* --/3 and (x, a) <,, (y,/3) by the choice of 
U .  

PROOF OF (6 ) .  LEFT-TO-RIGHT: Suppose to the contrary that  players I and II have winning strategies 
er and r in the games G~z and Gzv respectively. Consider the match Ca,/3} in which the players adhere to 
the indicated strategies: i.e., a = a */3 and/3 = a �9 r. We immediately arrive at a contradiction: 

(y,/3) <;,  and < ;  (y,/3).  

RIGHT-TO-LEFT: Since y <* x does not hold, it follows in view of the determinacy of the games G~v that  
! player II has a WS r in the game G ~ .  We shall show that  this strategy is also a WS in the game G~ v for 
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, / 

player II. Let a E ) / b e  arbitrary, and let fl = a * v. Then the relation (y,/3) <~ ix, a) does not hold. But 
(x,a)  and (y,/3) belong to P,  since x,y  E X.  Consequently (x,a)  ~<~ (y, fl). 

Finally, let us prove assertion (7). Suppose the contrary: there exists an infinite <*-decreasing sequence 
of points xl E X (where i E w). For any i player I has a WS ai in the game G ~ Let us prescribe a 
sequence of points a~ E ~ by the equations a~(l) = a~(a~+~ I l) by induction on l simultaneously for all 
i. Thus a/CO ) = ai(h) ,  (x,(1) = aiCa,+l (0)), cq(2) = (r,(ai+l (0), ai+x (1)), and so forth. We thereby obtain 
oq =cr ,  * a , + x ,  i . e .  (:gi+l , O i+1) (2;i,Oti)for all i .  In other words,  (x0,a0)> 
which is impossible, since the values of ~o are ordinals. [] 

A recent study of Steel [73] yielded the following result: if I, is a class of pointsets satisfying certain 
rather elementary conditions and not coinciding with the class -~F of complementary sets, then under the 
assumption of the full axiom of determinacy AD precisely one of the classes I, and -~F satisfies the separation 
principle. 

Norms and prewellorderings are now by no means used only to prove separation theorems. For various 
applications of these concepts in the theory of determinate universes, see the collection [35]. 

w U n i f o r m i z a t i o n  a n d  scales 
in d e t e r m i n a t e  un ive r ses  

Studies connected with the uniformization problem constitute one of the most important, areas of both 
classical and modern descriptive set theory. We shall now present some of the necessary definitions. Let Z 
and y be a pair of point spaces. 

A set P _ Z • y is called single-valued or uniform (in the sense of X • y )  when each of its sections 

P / x  = (y E y :  P(x,y)) ,  

where x E 25 contains at most one point. The projection ~rP of a set P C Z x y (on the space Z) is defined 
by the equation 

r P  = {x E Z :  e / x  # 0 }  = {x E Z :  3yP(x,y)},  

If P C Q c Z x y ,  the set P is single-valued, and r P  = rQ,  then the set P is said to uniformize Q. 
The uniformization problem in descriptive set theory consists of choosing for a given projective class 

I, the smallest class I, r such that  every I,-set admits uniformization by a set of class U. (In such a case U 
is said to be a uniformization basis of the class r . )  Usually the problem is to decide whether the following 
uniformization principle holds for some projective class F or other: 

I'-Unif: Every T-set can be uniformized by a set of the same class Y. 
The uniformization problem, like the name itself, was introduced into the descriptive theory by Luzin 

[47]. However, even before [47] appeared several interesting results on uniformization of Borel- and E~- 
sets had been obtained by Luzin and Novikov (see the next section). But the most important classical 
uniformization theorem, proved by Kond6 [39] using a uniformization method introduced by Novikov [49], 
asserts that  the unifarmization principle holds for the class H~. This result is known as the Novikov-Kond5 
Theorem. 

Uniformization in a class implies reduction for the same class. Indeed, to reduce a pair of T-sets 
X, Y _C Z we carry out a uniformization of the I,-set 

Q : : ( z  e x A { : 0) v e Y A i : 1)} 

by a set P _C_C Q of the same class r and take the sets 

X ' = { x : P ( x , O ) } ,  Y ' = { x : P ( x ,  1)}. 

They belong to I" and reduce the pair X, Y. In this argument it is assumed that  I" is a pr~ective class. 
Thus by what was said in the last section, the uniformization principle does not hold for the class ~ .  

In fact Novikov [69] constructed a Hi-set in ~ / •  )4 which does not admit uniformization by any set of the 

273 



class ~]~, so t ha t  even the  class II 1 of closed sets does not  satisfy Unif. F rom obvious considerat ions this 
holds also for the  class of open  sets E01. 

1 Uniformizat ion passes f rom the class II 1 to ~ and in general  f rom any II~ to ~ m + l .  Indeed,  consider 
an arbi t rary  Z1 -set Q c X x y .  T h e n  Q = { (x, y) : 2aQ '  (x, y, a)}  for a sui table I I~-se t  Q' c X • y • )4. m §  - -  
Using II 1-vnif ,  we uniformize the  set Q' in the  sense of X • (y  • )4) by means  of a II 1 - s e t  P' and  choose 
as P the set ( (x ,y):  3aP' (x, y, a) ). 

Thus,  E~-Unif  and  the  negat ion  of II~-Unif are corollaries of the  Novikov-Kond6 theorem.  
In the  light of the  results  of the  preceding section and wha t  has been said here, the  conjecture  natural ly  

arises tha t  in a ~ , - d e t e r m i n a t e  universe all classes of the  first series (see the  separa t ion  and reduct ion 
theorem in w satisfy the  uni formizat ion  principle,  except,  of course,  the  class ~1. Such is indeed the 
case; however,  the  concept  of n o r m  and the  first periodici ty theo rem tu rn  out  to be too weak to work with 
uniformizat ion.  It  is necessary to  use the  more  complicated concept  of a scale, der ived by Moschovakis [55] 
f rom the classical works [39,49] on uniformizat ion.  

A scale on a poin t  set X is a collection go = (~k : k �9 w) of norms ~ak : X --+ Ord,  satisfying the 
following condit ion:  

(A) If x0, Xl, x 2 , . . .  �9 X,  and l imxl  = x, while for each k there  is an ordinal  Ak such t ha t  for almost  
all i (i.e., except  for a finite n u m b e r  of indices i) the  ordinals  ~ok (xi) coincide wi th  Ak, then  x �9 X and 
~k (x) ~< ~k for each k. 

Like norms,  scales are classified f rom the point  of view of determinacy.  A scale ~ = (~k : k �9 w) on 
the set X _C X is called a F-scale when  bo th  of the  sets 

* $ 

in the  space w • X 2 have class r .  In the  case when  r is a projective class a necessary and sufficient condit ion 
for this to hold is t h a t  each of the  norms r be a F-norm.  

If there  exists a F-scale on each set of the  given class F, the  class r is said to have the  scale property. 
In this case at  least for project ive classes r ,  it is possible to define a F-scale ~o = (tok : k �9 w) on each F-set 
X satisfying two addi t ional  condit ions:  

(B) If x0, x l ,  x2 , . . "  �9 X and for any k the  ordinals  tok (x~) coincide wi th  some ),k �9 Ord  for almost  all 
i, then  there  exists a po in t  x �9 X such t ha t  l im xi = x; 

(C) If j < k and  ~ ( x )  ~< r then  r g)i(Y)" 
Scales satisfying (B) and (C) are called good. 
Let us prove this assertion. On the  F-set X C )4 (it suffices to consider  only subsets of this space) let 

there be defined a r -scale  r = (r : k �9 w). We mus t  cons t ruc t  a good F-scale on X.  Choose an ordinal ), 
such t ha t  Ck (a) < )~ for all k �9 w and a �9 )4. To each k we assign an order  i somorphism fk of the  set 

Ck = { ( ~ 0 , 1 0 , ~ l , l l , . . . , ~ k , l k )  : ~i < ~ A l i � 9  0)}, 

lexicographically ordered,  to a corresponding (unique) ordinal  gk. We set 

= 

for a E X and k E w. It is easily verified tha t  the norms tok form the desired good scale r on X.  
The  role of good scales is revealed by the  following 

PROPOSITION [55]. (Based on [39, 49].) Suppose m >/1.  / f  the class II~ has  the scale property, then it 
satisfies the uniformigation principle. 

PROOF: We shall uniformize a I I~-se t  Q __ X x y .  According to the  preceding there  is a good II~-scale 
to -- (tak : k E w) on the  set Q. We shall set 

s = e • x • y :  % k  

p = 
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and show that P uniformizes our set Q (that the set P belongs to the class II~ is guaranteed by rules 6 
and 7 of w and by the fact that 9~ is a IIlm-scale.) First of all 

e P (z,y) .<<;0 (z,y) e Q, 

i.e., P _ Q. It remains to verify that for each point x C Z if the section Q/x is nonempty, then P/x  
contains exactly one point. To this end we set Bo = Q/x and Ak = inf ~ ( x , y ' ) ,  and 

y~ EBo 

for all k. Each of the sets Bk of course, is nonempty, and P / x  coincides with the intersection of all B~. It 
remains to verify that this intersection contains exactly one point. 

We remark that  B1 C_ B0 by definition. For k t> 1 the inclusion Bk+1 _C Bk is given by the "goodness" 
of the scale q). Consequently for i >/k we have Bi _ Bk and, choosing an arbitrary point Yi in each Bi, we 
obtain tok (x, yi) = :~k whenever i > k. Again, in view of the "goodness" there exists a point y = lira y~ such 
that (x, y) E Q, i.e., y E Q/x and ~k (x, y) ~< Ak~in fact = Ak~for all k. But this means that  y E ~ Bk. 

k E w  

If yt is another point of the intersection of all Bk, we repeat the reasoning just  carried out for the 
sequence y, y~, y, y ' , . . . ,  and obtain the convergence of the latter, whence y~ -- y. [] 

Thus the scale property for the class II~ leads to a proof of the uniformization principle for the classes 
H~ and ~]1 i.e., scales play approximately the role with respect to uniformization that norms play with m + l  , 

respect to reduction. This analogy is extended by the two following theorems of Moschovakis [55]: 

UNIFORMIZATION THEOREM (:E~,-Det).  The c/asses 

" ' ' 2 n + l  , ~ 2 n + 2  

satisfy the uniformization principle, while the classes 

' " " ' ~ ' ~ ' 2 n + l  ' I I 2 n §  ' 

as well as E~ and H~ do not. 

SECOND PERIODICITY THEOREM (~]~,-Det).  The c/asses 

Z01 H 1 1 , 1 , ~  . . , ~ n ,  1 ' " ] - [ 2 n §  ' ~ 2 n §  

have the scale property. 

As has been shown, the second theorem impIies the first. The second periodicity theorem, in turn, is 
proved by the same method as the first periodicity theorem in w 

LEMMA 5.1.  The class E~ of open sets has the scale property. 

LEMMA 5.2. If the class IIlm, m >1 1 has the scale property, then the class ~1 also has this property. m + l  

LEMMA 5.3 (~1 -Det) If the class ~ has the scale property, then the class H I also has t.his property. �9 m + l  

PROOF OF LEMMA 5.1:  We shall construct a E0X-scale on the open set X -- U ~/~, where c c FC and 
u ~ c  

3/,, (for u E FC) is a Baire interval: )4, = {a E ) / :  u C a}. For each a E X we denote by ms the smallest 
number rn such that a I m E c. 

If k ~ w, there exists a unique order isomorphism fk of the set w k with lexicographic ordering onto a 
corresponding (also unique) ordinal. Set 
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for all ~ ~ X and k ~ w. The  norms  io~ form a ~ - s c a l e  on X.  [] 

PROOF OF LEMMA 5 . 2 :  We shall cons t ruc t  a ~.,~+~-scale on the  ~m+~-set  X = ~x ~ X : ~o~P(x,a)} ,  
where P _ X • 9l/ is a set of class I I~ .  By the  proposi t ion proved before the  uniformizat ion theorem we 
may  assume tha t  the  set P is single-valued, i.e., for every x ~ X there  exists a unique point  a~ E Jr such 
tha t  P ( x , a ~ ) .  Fur the r  there  exists a good II~-scale  ia = (~o~ : k e w) on Z .  Set r = to~(x ,a , )  for 
x E X and k E w. The  norms  r give the  desired E~+~-scale  on X.  [] 

PROOF OF LEMMA 5 . 3 :  Let P _ Z • )4, P ~ ~.~. We shall cons t ruc t  a H~+~-scale on the set 
X -- ( x :  V a P ( x , a ) } .  The  scale p roper ty  for the  class ~ provides a good P~-sca le  ~ = (ta~ : k E w) on 
the set P .  

Now we shall again need the  enumera t ion  of finite sequences of na tura l  numbers  in t roduced  in w in 
which to each k ~ w there  corresponds in a one-to-one m a n n e r  a finite sequence [k] ~ F C .  In what  follows 
we shall assume the  following holds: if [kl ] C [k~ ], then  k, < k~. 

Let x, y ~ X and k ~ w. Consider  the  game G ~  = G([k]; [k]; A ~  ) wi th  game set 

beginning at posi t ion [k]; [k] (see w As in the  proof  of l emma 4.3, for each k there  exists a H I.~+x -norm 
r on X satisfying for any x, y the  equivalence 

x . ~  y ~-, player II has a WS in the  game G ~ g .  

It remains to verify t ha t  these norms  form a scale on X.  
Suppose x0, xx, x 2 , ' "  E X,  x = l im x~, and  for any k the  ordinals  Ck (x~) coincide for a lmost  all i with 

an ordinal  Ak depending  on k. We mus t  verify tha t  x E X and Ck (x) ~ ;hA for all k. Wi thou t  loss of 
generali ty we may  assume tha t  Ck (xt) = ~k for any pair  i /> k (otherwise, we s imply  pass to  a suitable 
subsequence).  T h e n  for k ~< m we obta in  r (x,) = Cj, (x,n) = ~ ,  i.e., player II has some WS rk~ in the 
game Gkz~ ~k " 

To prove x E X we fix an arbi t rary  point  a E X [ and  verify t ha t  (x, a) E P .  If i E w, there  exists a 
unique na tura l  n u m b e r  k~ such t ha t  [ki] = a I i. Here ki < k~+l for all i in view of the  requirement  imposed 
on the enumera t ion  of finite sequences,  so t ha t  ri = r~k~+~ is a WS for II in the  game Gi = Gk~xk~+~ ~ �9 
There  exists a sequence of points  a~ E X / such tha t  ai = ai+l  * ri for all i: the  values (zi (l) are de te rmined  
by the equat ions  at(l)  -- a(l)  for 1 < i and  at(l)  = r,(at+l [ l § 1) for l /> i. (The game  Gi begins at 
posi t ion a [ i ; a  [ i and  hence the  equat ion  a~(l) = r~(a~+~ ~ l + 1) is au tomat ica l ly  fulfilled for 1 < i also.) 

Thus  (xk,+~ ,a~+~) -<* (x~, a~) for all i; and  since x~ ~ X ,  Vk, it follows t ha t  for any i we obtain 
~ - ~ k  i 

e P and , - t + , )  < 

In view of the  "goodness" of the  scale ~,  it follows f rom this tha t  

< (1) 

whenever  j ~ ki. Therefore  for each j there  is an ordinal /~j  such tha t  ~ (xk;, ai)  - - /z j  for a lmost  all i. 
Again by the  "goodness" we obta in  l im(xk,,  ai)  E P .  However, l imx~ = x and l i m a t  = a.  Thus  (x, a) E P ,  
and since a is a rb i t rary  in this reasoning,  it follows tha t  x E X. 

We remark  t ha t  by definit ion of a scale in the  s i tua t ion  under  considerat ion we have ~j  (x, a) ~< #j  for 
all j .  Combining  this wi th  inequali ty (1) and  taking account  of the  choice of ~ i ,  we obta in  

< i.e., (2) 

for any pair  i, k such t ha t  k = k~ (it is necessary to take j -- k). In addit ion,  analyzing the  const ruct ion 
of the  sequence of points  ~t,  it is not  difficult to notice tha t  each value ~t (1) requires for its de te rmina t ion  
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only a knowledge of the numbers a(/~), I t ~ l. Consequently we can write ai = a * 7 i , where r ~ is a strategy 
(for player H) depending only on i. 

We can now prove the inequality Ck (x) ~ Sk without difficulty, where k E w is arbitrary. Since 
r = ~k, it suffices to verify that  player II has a WS in the game Gkz~k �9 Denoting the length of the 
finite sequence [k] by i, we show that r ~ is the desired strategy. Let a E ~ be arbitrary~ If [/r ~ a, then 
player I loses no matter what response II gives, so that  we may assume that  [k] c a. Then, repeating 
the calculations of the first part of the proof of the lemma, we have k = ki, a * ri = ai,  and, finally, 
<x,a) -<* (x~,a*r~) ,  according to (2). But this is tantamount to a win for player H in the game G ~  k D 

The importance of scales in the descriptive theory of determinate universes is by no means exhausted by 
the second periodicity theorem and applications to uniformization. Together with norms and preorderings, 
the concept of a scale occupies a central place in descriptive investigations. In particular~ the majority of 
articles in the recently published collection [3fi] are devoted to scales in determinate unNerses (as pointed 
out in the foreword by the editors of the collection). We note the interesting article [74] in this collection, 
where the question of scales on sets of class ~ is considered. Naturally the aforementioned class does not 
have the scale property, i.e., it cannot be said that on any ~ - s e t  there is a ~ - s c a l e  (or even a ~ - n o r m ) .  
The second periodicity theorem (for n = 0) gives the following result: on any ~ - s e t  there exists a ~-sca le .  
As shown in [74], this result is by no means optimal: in fact every ~ - s e t  supports a scale of class B~, ( ~ ) ,  
where the symbol B~, denotes the closure of the class in parentheses with respect to the Borel operations 
of complementation and countable union. 

w P r o j e c t i v e  sets w i t h  spec ia l  
sec t ions  in d e t e r m i n a t e  un iverses  

Let X, y be two point spaces and P c 27 • y .  We recall that each point x E 2: defines a section 
P / x  = {y : P(x ,  y)) of the set P .  We may distinguish the sets P such that  each section P / x  contains 
at most one point - - the  single-valued, or uniform, sets. A weaker requirement-- that  each P / x  be at most 
countable--distinguishes the countably-valued sets. Single- and countably-valued sets form the simplest 
categories of sets with special sections; besides them, sets with compact and a-compact sections, sets with 
sections of positive measure, and others are also studied (see [20, 17, 43]). The classical studies of projective 
sets with special sections began in the second half of the 20's (a survey of the results obtained can be found 
in [2], [4, w and [6, w 

The limited scope of the present article permits us to examine in detail only one problem from this 
field. We shall study the problem of partitioning a countably-valued set of a given projective class into a 
countable number of single-valued sets of the same class. We shall say that  a projective class I" has the 
partition property if any planar countably-valued r-set  (in the sense of the given pair of point spaces Z, 
y )  is a countable union of single-valued F-sets. 

The investigations of Luzin [48] and Novikov [62] showed that the classes A t (of Borel sets) and Y~ 
possess the partition property. This result, like the separation, reduction, and uniformization theorems~ 
generalizes in determinate universes to higher odd levels: 

PARTITION THEOREM. [77] (~=-De t )  The classes A 1 and ~1 have the partition property. 2n+1 2n§  

The known proofs of the partition theorem all include in one form or another the use of one of the 
variants of a theorem [57, 58] on the choice of a winning strategy. We have preferred to use a variant that 
avoids having recourse to %ffective" classes, although it is not the most natural. 

THEOREM ON THE CHOICE OF A WINNING STRATEGY. ( ~ - D e t )  F B  _C X • ~/2 and B C E ~ ,  then 
1 there exists a function ~ : D B  --, )r of  class ~2~+1 on D B (i.e., the graph of ~ is the intersection of 

D B  • Jr with some subset of f • ~ of class ~1~+1 ), possessing the property that for any x ~ D B the 
strategy [r is a WS for player I in the game G(B/x ) .  ( for the definition of the strategy [el/or e E 
see w 

The proof of the theorem on the choice of a winning strategy begins by defining two families of games. 
Let x E X', and k E w, and let u and v belong to w ~ (i.e., they are finite sequences of length k consisting 
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of natural  numbers.)  and finally let a �9 w. The symbol G , t ~  (a) denotes the game with game set B / x  
starting at position u^(a); v. All these games are determinate  by the hypothesis ~]l ,-Det.  

Before defining the second family of games we first associate a point -< af~ >-�9 )4 with each pair of 
points a,  ~ �9 )4 by the definitions 

-< a/? >- (2k) = a(k) ,  -4 af~ >- (2k + 1) --/~(k) 

for all k. According to the second periodicity theorem there is a Z~.-scale on our Z~.-set  B; and then, as 
was shown in w there is also a good Z~,-scale ~o = (~ot : k �9 w). Using this good scale we assign to each 
collection k �9 w, x �9 X; u ,v  �9 w ~, and a , s  �9 w, the game G~tu~ ( s  with game set 

{(< sZ' >, < s'Z > ) : - ( ( x ,  d,Z') % ,  

starting at the position -< uv >- ^(a); -< uv >-^(a'), where the concatenat ion -< uv >- of two finite sequences 
u, v of length k is defined in a way similar to the concatenation -< a/~ >- of the points s , /~  �9 )4, i.e., -< uv >- 
is a finite sequence of length 2k and 

-< uv )'- (2i) = u(i) -< uv >- (2i + 1) = v(i) 

for all i < k. The game sets of these games have class H ~  by the choice of the scale ta and are therefore 
determinate,  since I I~,-Det  follows from the hypothesis E~. -Det  (see w 

We give three more definitions: 

W ~  = { (u ,a , v )  : u ,v  �9 w ~ A a �9 w A player I has a WS in the game G~k,,~ (a)}; 

a' ~ ~k,~ a ~-~ II has a WS in the game G~u~ (a', a); 

Mzk = { (u ,a ' , v )  e W z k  :Vaeco(a '  < zkuv a)}. 

LEMMA 6 .1 .  Let x �9 Z ,  k �9 co, and 1at the points s ,  ~ �9 )4 be such that  (s  I k, a ( k ) , ~  [ k) �9 M~k for 
all k. Then ( s ,~ )  �9 S i x .  

PROOF: For k = 0 we have (A,a(0) ,A) �9 M~0, i.e., player I has a WS a in the game G~0AA (a(0)).  Further,  
if k �9 co, then s(k)  ~<~k(~ t~)(Z t~) a for any a �9 co by the definition of M~k, i.e., player II has a WS r ~  
in the game G k~ = G~(ark)(~rk) (a ( (k) ,a ) .  Using this system of strategies we shall define a sequence of 
points a~, ~t �9 )4 and strategies rk by means of the following system of equations: 
(1) ak(l)  = a(l) and /~(l)  =/~(l)  for l < k; 
(2) rk = rk~k (~) for all k; 
(3) so(l)  = a(flo(O), . . . , /~o(l  - 1)) for all l; 
(4) ak+l (l) = rk(ak (O),flk+t ( O ) , . . . , s k ( / -  1),/~k+x ( l -  1), sk(/)) and 

= (0) for l/> k. 
Relation (3) gives s0 = a * rio, i.e., (a0,/~0) �9 B / x  by the choice of a.  

that  equations (4) hold also for 
a I k, fl [ k >.-'(s(k)). Hence -< 
Combining this wi th  the proven 

Further ,  relation (1) shows 
l < k; for the games G k~ start  at the positions -< a [ k, ~ ~ k >- ^(a); -< 
ak+l f~k >'='< akf~k+l >" *rk, i.e., (x, ak+ l ,~k+ l  ) ~<;k (X, Sk,f~k) for all k. 
relation (a0,ri0) e B / x ,  we obtain: 

e B/x  < 

for all k. The "goodness" of the scale ~ allows us to deduce from this (see the proof of lemma 5.3) that  the 
sequence of points (x, a~, ilk) converges to some point of B.  But this point can only be the point (x, a,/~). [] 

278 



LEMMA 6 .2 .  Let  x E I .  I f  x E D B ,  then there exists a E w such that  (A,a,A) E M,~0. / f k  E w and 
<u,a,v) E M , ~ ,  b E ca, then there exists c E w such that  (u~(a),c,v^(b)) E M,,k+l . 

PROOF: For sets Wzk in place of M~k the lemma is obvious. Therefore the contrary  assumption provides 
us with a point  x E Z ,  a na tura l  number  k, a pair of finite sequences u, v E w k , and a sequence of natural  
numbers ai, i E ca, such tha t  (u, ao,v) E W~k and ~(a/ ~<zk,, a i+l )  for all i E w. Thus,  player I obtains 
a WS a in the game G ~ , ,  (a0) and a WS a~ in each game G~=~ (a~,a~+~), i ~ ca. Using this system of 
strategies we can construct  a sequence of points a i ,  fli ~ ~l/satisfying the relations: a~ [ k = u, fli ~ k = v 
for all i, 

a 0 = a * / 3 0 ,  and -<a i+~ , f l~=a~*-<a i f l~+~  >" f o r i E c a .  

By the choice of the strategies a and a~ we obtain (ao,/3o) E B / x  and 

-,(  , ) .<* 

for all i E ca, whence by induction on i it is not  difficult to deduce tha t  

and < 

for all i, which is impossible, since ~k is a norm. [] 
We now continue the proof of the theorem on the choice of a winning strategy. If" x E D B ,  then 

the s t ra tegy a ,  = [(I)(z)] must  operate on an arbi t rary  finite sequence v = (b0 , , . , ,  bk-~ ) E F C  in such a 
way tha t  (u,a~Cv),v) E M , k ,  where u = ( a 0 , . . . , a k _ x )  and ai = cz , (bo , . . . , b ,_ l )  for i < k. Lemma 6.2 
guarantees tha t  such a s t ra tegy is possible, and according to lemma 6.1 this s t ra tegy (or, more precisely, 
any of the strategies satisfying the indicated condition) is winning for player I in the game G ( B / x ) .  It now 
remains to guarantee the construct ion of q) as a ~12n+1 -function on the set D B.  

To this end consider the set 

M = ( ( x , k , l , j , a ) : x  E X A ([l],a,[j]) E M , k }  

(where, we recall, [i] is the finite sequence with index i). It belongs to the class H x 2n+1 : we use what  was 
said in w about  the  action of the operator  D (the existence of a WS for player II in the definition of ~<~k~, 
is expressed through the absence of a WS for player I). Thus according to the uniformization theorem of w 
the set M can be uniformized by a H 1 -set C C M.  In essence C is a function defined on some subset 2~+1 

of Z x ca 3 (containing all of D B x ca3) with values in ca, and ( x , k , l , j , C ( x , k , l , j ) )  E M for any quadruple 
(x, k, l, j )  in the domain of definition of C, and the graph of C is a set of class H2n+l.  

We can now give the construct ion of q~. Let x E D B ,  and j E ca be arbitrary.  The value a = ~(x ) ( j )  
is defined as follows. Let v = [j] = (b0 , . . . ,  bk-~ ). By induction on i ~< k we define a collection of numbers 
a i using the equations 

a, = C ( x , i ,  num  (no , . . .  ,a ,-1 ), hum  (bo, . . .  ,b,-1 )), 

where, for each finite sequence w, n u m w  denotes the index, i.e., w = [numw]. Finally set ~(x ) ( j )  = ak. 
To verify tha t  the function ~ completes the proof of the theorem on the  choice of a winning strategy, 

1 we need only verify tha t  it is a ~2,+~-funct ion on DB; the fact tha t  [q~(x)] is a WS for I in the game 
G ( B / x )  for any x E D B  is guaranteed,  as we have seen above, by lemma 6.1. Using the choice of the set 

1 C (in the class H2,+1 ) and various rules from w it is easy to show that  the set 

u = : �9 E A = a}  

1 also belongs to H2~+1. However, 

r  = x o B  ^ = a ) ,  

whence the required fact about  the function q~ follows immediately. [] 
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1 Let us now return to the proof of the part i t ion theorem. Consider the countably-valued E2,+l-set  
P C X • y .  We may assume that  the second axis is )4 and in addition (see the beginning of the proof of 
theorem 1 in w that  P C X • D (where P = 2 ~ is the Cantor  discontinuum). In this si tuation we shall 

1 show that  P is covered by the union of a countable number  of single-valued A2,+1 -sets. 
Let P = {(x,6) : 3~lQ(x,6,7)}, where Q c I x P x A t is a H2t,-set. Using the functions D and H from 

the proof of theorem 1 of w we define a set 

B = {(x,a,/~} E I x )4 2 : (x ,D(a, l~) ,H(~))  ~ Q}. 

It belongs to E~. (rule 2 of w and also, in accordance with the propositions of the abovementioned proof, 
we have: 

D B  = {x E X : the section P / x  is at most countable}, 

so that  D B = X in view of the countablevaluedness of P .  The theorem on the choice of a winning strategy 
1 provides a E2n+l-function @: I --* )4 such that  the strategy [O(x)] is winning for I in the game G(P/x)  

for any x E X. In addit ion we may assume that  �9 (x) E P for any x E X--see  the remark at the beginning 
of the analysis of case 1 in the proof of theorem 1 in w Thus @ is a function from X to P. 

Returning to the analysis of the current case, let us denote by T the set of all sequences of the form 
t = (ao,bo,. . .  ,ak-1 ,bk-1 ,akl of numbers ai = 0 or 1 and b~ E w, of arbitrary odd length 2k + 1. To each 
sequence t @ T we assign a function Ft : P --* P operating as follows. Let e E P. The strategy a = [e], 
together with t, determines via the relations w(t) C 6 and (*) from the analysis of the abovementioned case 
a unique point 6 E P which we denote by Ft (e). All the functions Ft : P --+ P are continuous. 

The key property of the family of functions Ft so defined resides in the fact that  for any point x E X, 
if e E /) and the strategy [e] is winning for player I in the game G(B/x) ,  then P / x  C_ {Ft (~) : t E T}. 
Consequently, defining 

P, = {(x, f , (@(x)))  : x E X},  

we obtain a family of single-valued sets Pc C X x P, whose union covers P .  In addit ion each Pt has class 
1 E 1 according to the choice of @ and the continuity of Ft and hence also class A2~+1 since 2n+ 1 ~ ~ ' 

e P, v6'(6' -r 6 it P,).D 

Having finished the proof of the parti t ion theorem, we now give several other consequences of the 
construction exhibited here which relate to single- and countably-valued sets in a E2t,-determinate universe 
(for a fixed natural  number n). 

1 -set, namely the union 1. A countably-valued E2n+l-set P is covered by a countably-valued A 1 2 n + l  
1 of all the sets Pt. Thus in a E~n-determinate universe every countably-valued set of class E~,+I can be 

1 covered by a countably-valued A2,+1-set.  When n = 0, as in similar cases above, we obtain a classical 
resul t - -a  theorem of Luzin in [481. 

1 It is interesting that  single-valued E1 -sets are covered by A~n+ 1 -sets that  are also single-valued. 2 n + l  
This fact can also be proved using the theorem on the choice of a winning strategy. 

2. Suppose tha t  our countably-valued set P belongs to the class AIn+I .  Then its projection ~rP = {x : 
1 1 36P(x, 6)} belongs to the same class A2~+~. In fact it is trivial that  7rP E E2~+l (apply rule 6 of w But 

the class 1 II2,+l is given by the equation 

z-P = U { x E  I :  V6((x,6) C Pt ~ (x,6) e P)}. 
tET 

1 Thus the projections of countably-valued A 1 -sets are (assuming El , -Det )  sets of class A 2 n + l  With 2n+l , 
1 n = 0 this result gives a classical theorem of Novikov [62]. It is interesting that  every A2n+I -set X _ I is 

the projection of a suitable single-valued set P C X x )4 of class H~, (for n = 0 this is a theorem of Luzin 
[45, 48]). This converse result is also proved using the theorem on the choice of a winning strategy. 

3. Uniformization. We again assume that  our countably-valued P has class A12,+1 �9 Then P uniformizes 
by a A I P '  1 2,+1-set C P .  Indeed, by the parti t ion theorem P is the union of single-vMued A 2 . + l - s e t s  
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Pk, k E w. and the projection rP~ of any of them also belongs to A I 2n+l  
the sets 

4 = e h U 
i < k  

(see above). Therefore each of 

1 has once again the class Az,,+ 1 . It remains only to take as P '  the union of all the Pk. 
For n = 0 the theorem that  each countably-valued set of class A~ (i.e,  each Boret set, :for the class 2~ 

is identical to the class of Borel sets by a theorem of Suslin [71]) uniformizes by a ~ - s e t  was proved by 
Novikov in [62]. 

We note the essential meaning of countable-valuedness of a uniformizable set: Under the assumption 
1 (and of course ~]~,,-Det there exists a II~,,-set that  does not admit uniformization by any set of class ]E2,~+ 1 

is not countably-valued) Such a set is not difficult to obtain starting from a pair of H t -sets of the 
�9 2n+ 1 

space ~ for which the reduction principle is violated (which exist according to the separation and reduction 
theorem of w With n = 0 the construction was carried out in the paper [62] of Novikov. 

The construction giving a uniformization of countably-valued A~,+I -sets can be used to uniformize 
1 countably-valued sets of class ~2,+1- The following result is obtained: In a Z~,,-determinate universe 

every countably-valued ~ , + 1 - s e t  can be uniformized by a set that is a countable union of differences of 
~ , + 1  -sets. 

As of the present it remains an open problem to unifornfize ~ , + 1  -sets of general form by sets r 
are essentially simpler than sets of class ~ , + 2  (which guarantees the uniformization even of ~]~n+2-sets 
by the uniformization theorem of w For n -- 0 there is an important result of Luzin-Yankov (see [48] or 
[2, w Countable intersections of countable unions of differences of ~ - s e t s  constitute a uniformization 
basis for the class ~ .  

For other interesting applications of the theorem on the choice of a winning strategy in the descriptive 
theory see [57] or [58, Ch. 6]. These works also contain more detailed information on the results given by 
us in sections 1, 2, and 3. We note that  the theorem on the choice of a winning strategy itself is proved 
in [58] for "effective" projective classes, where it can be formulated more simply and naturally: Under the 
assumption ~]l,-Det, if e E ),/, A is a set of class "-'~,~1'~, and player I has a WS in the game G(A), then player 
I has a WS in the indicated game determined by a point of the class AI'~ ~2n+l " 

w G e n e r a l i z e d  Bore l  a n d  Sus l in  r e p r e s e n t a t i o n s  
of  p r o j e c t i v e  sets in d e t e r m i n a t e  un iverses .  

P r o j e c t i v e  o rd ina l s  

The theorems of Suslin [71] on the coincidence of the projective classes E~ and A~ respectively with the 
classes of A-sets and Borel sets, mentioned in w 1 of this survey, have also been generalized in determinate 
universes to higher projective levels. But these generalizations~ unlike those considered in the preceding 
sections, presume a definite generalization of the concepts considered. Let g be an infinite ordinal, and 
supposed fixed some topological space (for example, one of the point sets in the sense of w 

We denote by B~ the smallest family of sets of the given space containing all open sets and closed 
under the operations of complementation and taking a union of fewer than g sets. It is customary to call 
sets of B~ g-Borel sets. The usual Borel sets are precisely the sets of B~I.  

The concept of a Suslin set generalizes as follows. Suppose that to each finite sequence u composed 
of ordinals less than g, there is associated a closed set X~ of the space under consideration (i.e, there is 
defined a u-branching system of sets). Form the set X = U N x f ~ ,  where the union is taken over all 

f m>/1 
w-sequences f ,  composed of ordinals less than ~, and let f F m denote the finite sequence formed by the 
first m terms of the infinite sequence f .  All sets X so constructed are called u-Suslin sets; the family of all 
~-Suslin sets is denoted S~ 6. It is obvious that for g -- w we obtain the definition of the usual Suslin sets 
(these are the A-sets), see [1]. 

6In the book [3, Ch. 8, w a different, but equivalent, definition of Y.-Suslin sets is given. The equivalence 
is proved, for example, in [58, Ch. 2] 
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The results of Suslin can now be formulated in the form of equalities: A~ = B ~ ,  and ~ = S~. 
Interesting results on the Borel and Suslin representations have been obtained also for the second 

projective level: E~ _ [.J All--i.e. , every E~-set is the union of R1 sets of class A~--Sierpinski [66], and 
w1 

~ C_ S~l--Schoenfield [65]. 
And now one more definition. To each natural number m we assign an ordinal ~i~--the upper bound 

of the lengths of the A 1-norms (the length of a norm ~ is taken as the order type of the set of all values 
assumed by ~). It is precisely these "projective ordinals" introduced by Moschovakis which constitute 
the collection of ordinals that  make possible a generalization of the theorems of Suslin, Sierpinski, and 
Schoenfield to higher projective levels. 

THEOREM (AD). Let  n E w. Then 
(a) and are cardinals, and = )§ (the symbol  denotes the cardinal followi  

the cardinal ),). Moreover there exists a (unique, of  course) cardinal g2~+1 such that  ~g,+1 = x+,+l �9 
(b) 1 1 h2n+ l  -~- B~].+ 1 and ~2,+1 =-- S~2.+~ �9 
(c) E2.+2 = (.J 2.+1 = S ~ + l  

The research that  resulted in this theorem was begun in the work of Moschovakis [54] and then continued 
by Kunen, Martin, and Kechris; the final result appeared in the article [29]. 

Some quite simple computations (see, for example, [29]) show that ~ = Wl and gl = w. Hence it 
is clear that for n = 0 assertion (b) of the theorem just stated reduces to the results of Suslin (and here 
the hypothesis AD is no longer needed), while assertion (c) even strengthens the results of Sierpinski and 
Schoenfield, turning the inclusions contained in them into exact equalities. 

In a projectively determinate universe (more precisely, using the hypothesis ~ , - D e t )  it is possible to 
prove only the left-to-right inclusion in (b) and (c). It is as yet unknown whether all the ordinals ~f~ are 
necessarily cardinals under the assumption PD, but it follows from ~ n - D e t  that  there exists a cardinal 
g2~+1 such that g 2 n + l  < ~ l n §  1 < g2§ �9 

The problem of the location of the cardinals/i~ in the series of cardinals in a completely determinate 
universe presents considerable interest. We have already pointed out that  ~fl 1 : Wl and gl : (M. Further it 
has been established that / f  I : w2, gs : w~, 61 : W~+l, and ~f I = w~+2 under the hypothesis AD [29, 58]. 
Quite recently the computation of the following "triad" was carried out: g5 : w~, where A : w (~)  , and 
consequently ~1 : w~+i and ~ : w~+2. This is all reported in [36, conclusion]. 

It is interesting that  if we take the axiom of projective determinacy PD and the full axiom of choice 
AC instead of AD, different relations are obtained for the initial projective ordinals: ~i21 <~ w2, g3 ~ w2, 
61 < ws, ~ < w4. Moreover it follows from PD § AC that E~ c C_ [.J A~ and ~ _ [.J A11. We note that the 

W 2 hJ3 

first of these inclusions also follows from the hypothesis E~-Det, and then (see w also from the axiom of 
the existence of a measurable cardinal. 

All these results (with proofs and references to the original works) are expounded in the survey [29] 
and the book [58]. 

Of the later works we note the investigations [32] and [27]. In the article [32] Suslin cardinals are 
s tudied--any infinite cardinal g such that S~ ~ [J S~ is called a Suslin cardinal. It is proved that 

~1 5~ . and the Suslin under the hypothesis AD the first w Suslin cardinals form the series g~, ~f~, g~, a, g~, , . .  , 
classes S~ corresponding to these cardinals form respectively the series of projective classes ~ ,  m ~> 1. 
The subsequent Suslin cardinals turn out to be connected with the classes of the so-called hyperprojective 
hierarchy. 

The article [27] contains some applications of games on ordinals, i.e., games in which the moves can be 
ordinals less than some infinite ordinal )~ fixed in advance (the games in w correspond to the case ~ = w). 
Even for ~ -- Wl it can be shown without using the axiom of choice that there exist indeterminate games, 
but some important types of games on the projective ordinals A - ~ turn out to be determinate. Hence 
arises a variety of interesting applications to "projective" subsets of projective ordinals. Projectivization is 
achieved here as follows. Let m t> 1. Assuming PD, we can construct a H~-norm r : Z onto ~f~ defined on 
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a suitable II~-set Z C de. Now to each set X G 6~ we assign its "code" {a E Z : 99(a) E X}, by whose 
membership in some projective class we define the membership of the set X in the same class. We can study 
the closure of the classes so obtained, consisting of sets of ordinals, with respect to various operations, and 
other questions. For details see [27]. 

w S o m e  app l i ca t ions  of  Bore l  games  

It is natural that the theorem on the determinacy of Borel games studied in w above should be applied 
primarily to study Borel sets themselves. By its use it became possible to clarify some important questions 
on the properties of these sets. 

We recall the construction of the Borel hierarchy. It is formed by the Borel classes E~, H ~ and A~ 
where 1 ~< ~ < wl. The initial class E ~ is formed by all open sets of the space under consideration. For 
any ~ the class II~ consists of the complements of E~-sets and A~ is the intersection of the classes E~ and 
II~. Finally if ~/> 2, the class E~ contains all countable sums of sets belonging to the classes H ~ where 
1 ~< y < ~1. Every Borel set belongs to one of the Borel classes, and hence to all classes with large indices, 
since a growth condition holds: E~ U II~ C A ~ for ~ < ~; as it happens the inclusion here is strict. 

The Borel hierarchy allows us to classify the Borel sets according to their complexity: The simpler sets 
are those occurring earlier. It is appropriate to make use of the following definitions. A set belonging to 
the class E~ but not to II~ is called a strictly E~-set. In exactly the same way we can introduce the concept 
of a strictly H~-set (it belongs to H~ but not to E~) and a strictly A~-set (it belongs to A~ but not to 
any class E ~ or II ~ with r/ < ~). Thus every Borel set is either a strictly E~-set or a strictly H~-set or a 
strictly A~-set for some (unique) ordinal ~ < wl. Now, for example, a strictly Eb~ can be regarded as 
more complicated than a strictly II~ and we shall say that two strictly E~-sets (with the same ~) are 
to be regarded as equally complicated. 

But here a natural question arises: Is there any internal relation between point sets corresponding to 
the "hierarchical" complexity just described? The most natural idea appears to be to study homeomorphy. 
From results of Lavrent'ev [41] it follows that for ~/> 3 (and for the class II~ also for ~ = 2) every point set 
homeomorphic to a strictly E~-set [resp. II~-set, A~-set] will itself be a set of the same type. Conversely, 
will any two, say, strictly E~-sets be homeomorphic to each other? For the classes E~ and H~ no definitive 
answer has yet been obtained; however, there are some very important partial results. Steel [72] has 
established that for ~/> 3 any two strictly E~-sets (and also any two strictly H~-sets) of first category are 
homeomorphic if they remain strictly E ~ [resp. II~-sets] under intersection with every Baire interval. 
At the same time, as noted in [34, w for ~ /> 3 there is an isomorphism of class 1 between any two 
strictly E~-se~s (or strictly H~-sets) X and Y, i.e., a one-to-one mapping preserving the class F~ (a weaker 
requirement than preserving openness, which occurs in the definition of a homeomorphism)~ Both these 
results use the theorem of Borel determinacy. 

As we can see, the "strict" classes E~ and II~ are at least close to being topologically homogeneous. 
On the other hand the "strict" A-classes are essentially nonhomogeneous~ at least for nonlimit indices. 
Lavrent'ev pointed out [42] that for ~/> 1 the strictly A~+~-sets decompose into Rz nonempty subclasses 
in such a way that sets of different subclasses are not mutually homeomorphic (and not isomorpl-dc in the 
sense of an isomorphism of class 1). 

Altogether the topological classification of the Borel sets remains an open problem. The situation is 
significantly better with another classification, introduced by Wadge. Let X and Y be sets located in the 
point spaces .~ and y.  We write X ~<w Y (the Wadge ordering) when there exists a continuous function 
F : Z -+ ~/such that X = F -1 (Y). We also introduce the corresponding equivalence relation: X "~w Y 
when X -<.w Y and Y ~<w X. With each point set X we associate its Wadge degree IX] = {Y : Y ~w X} 
and the modified degree [Z]* = IX] U [CX], where CX is the complement of the set X. The degrees and 
modified degrees are ordered in the following natural manner: 

[X]<[Y] ,  when [ X ] r  and X~Kw Y; 

IX]* < [Y]*, when IX] < [Y] or IX] < [CY]. 
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Using a very simple game (see [3, Ch. 8, w Wadge proved that in a completely determinate universe 
either X ~<w Y or Y <~w C X  holds for any pair of point sets X, Y. In other words from AD there follows 
a linear ordering, and--as was established by Martin--also a wellordering of the modified Wadge degrees 
of point sets (see [78]). The axiom PD is sufficient for a wellordering of the modified Wadge degrees of 
projective sets, and the theorem of Borel determinacy guarantees a wellordering of the modified degrees of 
the Borel sets. 

In this ordering all strictly ~ -se t s  and all strictly II~-sets fall into a single modified degree (depending 
on ~), consisting of two different Wadge degrees--the degrees of the strictly ~]~-sets and the degrees of 
the strictly II~-sets. In contrast the strictly A~-sets (for any fixed ~) form uncountably many Wadge 
degrees (for nonlimit ~ this is revealed already by the Lavrent'ev subclasses) whose structure and methods 
of construction were studied by van Wesep [78]. 

Every projective class (rule 2 of w and every Borel class F possesses the following Wadge closure 
property: If X E F and Y ~<w X, then Y E F. The structure of Wadge closed classes consisting of Borel 
sets only was studied in [44]. 

Borel games have found very interesting applications in the theory of C-sets and R-sets. These types 
of point sets have been intensively studied by Selivanovskii, Kantorovich, and Livenson [28], by Novikov 
and Lyapunov [9], and by others ~ using the methods of the theory of operations on sets developed by 
Kolmogorov [7]. It has been discovered [28, 9] that C-sets form a proper subset of the R-sets, and that the 
latter all belong to the projective class A~. Moreover Kolmogorov proved a theorem (see [9, Introduction]) 
to the effect that all R-sets are absolutely measurable and have the Baire property--the best classical result 
for these two regularity properties. 

Recently Burgess [19] has shown that C-sets and R-sets can be obtained by the action of a game- 
operator: 

{C-sets} - DA ~ {R-sets} -: DA ~ 

and DA ~ = A 1 is the class of Borel sets. Thus the Borel sets, the C-sets, and the R-sets form the first 
three steps in the hierarchy of classes DA~, 1 ~< ~ < wl. The union of all these classes gives the class 
DA~(C A~); and the classes expand with increasing ~: DA~ C D A~ for ~ < ~'. We note that all sets 
belonging to D ~ I  have the Baire property (theorem 2 of w plus the theorem of Borel determinacy) and 
are absolutely measurable (an assertion analogous to theorem 2 of w holds also for measurability). 

For applications of Borel games to the theory of operations on sets itself see the article [64]. 
The determinacy of Borel sets has found applications also in the study of the properties of equivalence 

relations. Silver showed in [68] that every IIl-equivalence relation (i.e., a relation whose graph {(x,y> : 
x equivalent to y} belongs to H I) on any point space either has an at most countable number of equivalence 
classes or admits a perfect set (which therefore has cardinality of the continuum) consisting of of pairwise 
inequivalent elements. Relations of the first form are appropriately called countable, those of the second 
form, continuous. Burgess [17] has established that for ~]-equivalence relations another possibility arises: a 
noncontinuous relation having exactly Rx equivalence classes. The rather complicated calculations of Silver 
and Burgess include the use of the theorem of Borel determinacy. 

Nonborel games also find interesting applications in the study of equivalence relations. For example, 
Stern has discovered (see [75]) that in a projectively determinate universe every projective equivalence 
relation all of whose equivalence classes are Borel sets of bounded rank (i.e., all belong to some one Borei 
class A~, ~ < wl) is either countable or continuous. In [76] games with game sets of class H~ are used to 
study ~l-equivalence relations (in particular, possessing the indicated property of boundedness in rank). 
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