
THE JOURNAL OF SYMBOLIC LOGIC 

Volume 62, Number 4, Dec. 1997 

AN ULM-TYPE CLASSIFICATION THEOREM FOR 
EQUIVALENCE RELATIONS IN SOLOVAY MODEL 

VLADIMIR KANOVEI 

Abstract. We prove that in the Solovay model, every OD equivalence relation, E, over the reals, either 

admits an OD reduction to the equality relation on the set of all countable (of length < coi) binary 

sequences, or continuously embeds Eg, the Vitali equivalence. 

If E is a Zj (resp. Z^) relation then the reduction above can be chosen in the class of all Ay (resp. A2) 

functions. 

The proofs are based on a topology generated by OD sets. 

Introduction. The solution of the continuum problem leaves open a variety of 
related questions. For instance, if one works in descriptive set theory then one may 
be interested to know how different uncountable cardinals can be presented in the 
real line. This research direction can be traced as far in the past as the beginning 
of the century; indeed Lebesgue [7] found such a presentation for Hi, the least 
uncountable cardinal. 

The construction given in [7] merits a brief review. One can associate, in an 
effective way, a set of rationals Qx, to each real x, so that every set Q of rationals 
has the form Qx for some (perhaps, not unique) x. Let, for a countable ordinal a, 

Xa = {x : Qx is wellordered as a set of rationals and has the order type a} . 

Then the sets Xa, a < a>\, are nonempty and pairwise disjoint; therefore we repre­
sent Hi in the reals, as the sequence of the sets Xa. 

This example is a particular case of a much more general construction. 
Let E be an equivalence relation on the reals. Let K be the cardinal of the set of 

all E-equivalence classes; then K < 2No. One may view the partition of the real line 
on E-equivalence classes as a presentation of K in the reals. 

For instance, in Lebesgue's example, the equivalence relation can be defined as 
follows: x 5C y iff either (1) both Qx and Qy are wellordered and have the same 
order type, or (2) both Qx and Qy are not wellordered. The ^-equivalence classes 
are the sets Xa, a < w\, plus one more "default" class of all reals x such that Qx is 
not wellordered. 

Of course, one can present every cardinal K < 2No in this way by a suitable 
equivalence relation on reals. But the problem becomes much more difficult when 

Received October 1, 1995; revised June 10, 1996. 
The author acknowledges the support of AMS. The author is in debt to several institutions and 

personalities who facilitated the work over this paper: M. J. A. Larijani (IPM, Tehran), P. Koepke (MPI 
and University of Bonn), M. van Lambalgen (University of Amsterdam), M. Reeken (University of 
Wuppertal). 

(£) 1997, Association for Symbolic Logic 
0022-4812/97/6204-0021/S2.90 

1333 



1334 VLADIMIR K.ANOVEI 

one intends to involve only those equivalence relations which belong to a certain 
type of pointsets, for instance are Borel, or analytic etc. relations. (The Lebesgue 
equivalence J? is analytic.) 

This leads us to the following question: let T be a class of pointsets; how many 
equivalence classes relations in r may have ? 

An associated question is how to "count" the classes. Generally speaking, count­
ing is a numbering of a given set of mathematical objects by mathematical objects 
of another type, usually more primitive in some sense. In particular, one could try 
to use ordinals (e.g., natural numbers) to count the classes. This works well as long 
as we are not interested in the "effectiveness" of the counting. Otherwise we face 
problems even with very simple relations. (Consider the equality as an equivalence 
relation. Then one cannot define in ZFC an "effective" in any reasonable sense 
counting of the equivalence classes, alias reals, by ordinals.) 

The other natural possibility is to use sets of ordinals (e.g., reals) to count the 
equivalence classes.1 Note that the next step, that is, counting by sets of sets of 
ordinals, would be silly because the classes themselves are of this type. 

DEFINITION (Informal). An equivalence relation is discrete iff it admits an "effec­
tive" enumeration of the equivalence classes by ordinals. An equivalence relation is 
smooth iff it admits an "effective" enumeration of the equivalence classes by sets of 
ordinals. H 

Of course the definition has a precise meaning only provided one makes clear the 
meaning of "effective". However in any reasonable case we have the following two 
counterexamples: 

EXAMPLE 1. The equality relation on a perfect set of reals is not discrete. 

EXAMPLE 2. The Vitali equivalence relation is not smooth. 

{Not here means that one cannot prove in ZFC the existence of the required 
enumerations among real-ordinal definable functions. However different additional 
axioms, for instance the axiom of constructibility, make all equivalence relations 
discrete in a certain sense.) 

At the first look, there should be plenty of other counterexamples. However, in 
certain particular but quite representative cases one can prove a dichotomy theorem 
which says that an equivalence relation is not discrete (resp. not smooth) iff it 
somehow includes Example 1 (resp. Example 2). 

To be more exact, let us review some basic notation. We refer to [2, 4, 6] for a 
more substantial review with details and explanations. 

Let E and E' be equivalence relations on resp. sets X, X'. 
A function U : X' —> X is a reduction of E' to E iff the equivalence x E' y <—• 

U(x) E U{y) holds for all x, y £ X'. 
For any set X, D(X) (the diagonal) will denote the equality relation on X. An 

enumeration of the E'-equivalence classes (by elements of X) is a reduction of 
E' to D(X). In other words U : X' —• X enumerates E'-classes iff we have 
x E' y <—• U(x) = U{y) for all x, y € X'. 

'There exist mathematical examples, in probability and the measure theory, based on this type of 
enumeration of the equivalence classes, see Harrington, Kechris, and Louveau [2]. 
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A 1-1 reduction is called an embedding. E continuously embeds E' iff there exists 
a continuous embedding of E' to E. In the case when X' is the Cantor set 91 = 20J 

(with the usual topology), E continuously embeds E' if and only if there exists a 
perfect set P C X such that (P; E\P) is homeomorphic to (X'; E'). In other words, 
embedding E continuously means in this case that E contains a homeomorphic copy 
ofE'. 

In particular E continuously embeds the equality relation on 31 iff there exists a 
perfect set of E-inequivalent points. 

Finally, Eo is the Vitali equivalence relation on 9! — 2W, defined as follows: x Eo y 
iff x(n) = y(n) for almost all (i.e., all but finitely many) n G co. 

The main theorem. This paper intends to complete the pattern suggested by the 
following three classical theorems on equivalence relations. 

"Borel-1". Each Borel equivalence relation on the reals, either has countably many 
equivalence classes or admits a perfect set ofpairwise inequivalent reals. (Silver [9], 
in fact for II|-relations.) 

"Borel-2". Each Borel equivalence relation on the reals, either admits a Borel 
enumeration of the equivalence classes by reals1, or continuously embeds the Vitali 
equivalence relation Eo. (Harrington, Kechris, and Louveau [2].) 

"Solovay-1". In the Solovay model3, each R-OD (real-ordinal definable) equiva­
lence relation on reals, either has < Ki equivalence classes and admits a R-OD enu­
meration of them, or admits a perfect set ofpairwise inequivalent reals. (Stern [11].) 
Thus, the results "Borel-1" and "Solovay-1" say (informally) that an equivalence 
relation either is discrete or contains a continuous copy of Example 1 above. Sim­
ilarly "Borel-2" says that an equivalence relation either is smooth or contains a 
continuous copy of Example 2 above. 

THEOREM 1 ("Solovay-2"). The following is true in the Solovay model. Let E be 
a R-OD equivalence relation on reals. Then one and only one of the following two 
statements holds: 

(I) E admits a R-OD enumeration of the equivalence classes by elements of 2<co'.4 

If moreover E is a £• (resp. E2) equivalence relation then the enumeration exists in the 
class A?c {resp. A ^ ) 5 ; 

(II) E continuously embeds Eo. 

This is the main result of this paper. 

REMARK 1. Hjorth [3] obtained a similar theorem in a strong determinacy hy­
pothesis (AD holds 11 in L[reals]), yet with a weaker part (I): an OD reduction to 
the equality relation on a set 2K, K G Ord. 

2That is, admits a Borel reduction to the equality relation on the reals. Relations of this kind are 
called smooth. 

3 By the Solovay model we mean a generic extension L[G] of L, the class of all constructible sets, by a 
generic over L subset of a certain notion of forcing 3Pa e L which provides the collapse of all cardinals 
in L, smaller than a fixed inaccessible cardinal Q, to co, see Solovay [10] or Section 1 below. In this 
model, all projective sets are Lebesgue measurable. 

42<tui = Ua<to, 2" is the set of all countable (of any length < co\) binary sequences. 
5 S^c denotes the class of all subsets of HC (the family of all hereditarily countable sets) which are 

A„ in HC by formulas which may contain arbitrary reals as parameters. 
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REMARK 2. The statements (I) and (II) are incompatible. Indeed otherwise there 
would exist a R-OD enumeration U : 3> —> 2<rai of Eo-equivalence classes by 
elements of 2<w>. Let U be OD[z], z e ® . Then for each p e P = ran U (note that 
P C 2<Wi), U~l(p) is an E0-equivalence class, a countable OD[p, z] subset o f®. 
In the Solovay model, this implies U~l(p) C L[z, p] for all p. We obtain an OD[z] 
choice function g : P —> 31 such that g(p) E U~l(p) for all p. Then rang is an 
R-OD selector for Eo, hence a nonmeasurable R-OD set, which is a contradiction 
with known properties of the model. 

REMARK 3. 2<0" cannot be replaced in Theorem 1 by an essentially smaller set. 
To see this let us consider the OD equivalence relation C on pairs of reals, defined 
as follows: (z, x) C (z', x') iff 

— either z and z' code the same countable ordinal and x and x' code, in the 
sense of z and z' respectively, the same subset of the ordinal, 

— or both z and z' do not code an ordinal while x and x' are arbitrary. 
Clearly C -equivalence classes can be put in a 1-1 OD correspondence with all 
elements of 2<rai. Therefore C does not embed Eo continuously in the Solovay model 
(see Remark 2). Moreover any set W such that C admits a R-OD enumeration 
of the classes by elements of W has a subset W C W which is in 1-1 R-OD 
correspondence with 2<CU1. In particular, the reals do not satisfy this condition in 
the Solovay model. (Indeed 2<<Ul has R-OD subsets of cardinality exactly Kt while 
the reals do not have those in the Solovay model.) 

REMARK 4. Even in the case of E{ equivalence relations, 2<M1 cannot be replaced 
by the reals in (I). Indeed the Z\ equivalence relation x Ey iff either the reals x, y 
code the same (countable) ordinal or both x and y do not code an ordinal (an 
example in [4]) neither admits a A2 enumeration of the classes by reals nor embeds 
Eo via a b\ function, in ZFC +V real x {co^x] < a>{). (In the Solovay model, A2 

can be strengthened to R-OD.) This shows that the "Glimm-Effros" dichotomy 
theorem of [2] (theorem "Borel-2" above) cannot be generalized from Borel to E[ 
equivalence relations in ZFC. 

REMARK 5. On the other hand, Ej equivalence relations tend to satisfy a looser 
"Ulm" dichotomy.6 In particular, Hjorth and Kechris [4] proved that every EJ 
equivalence relation with Borel classes either admits a A, enumeration of the classes 
by elements of 2<<Ul, or embeds E0 continuously; furthermore the requirement that 
the E-classes are Borel can be dropped in the assumption Vreal x (x# exists).7 

Thus, Theorem 1 proves that the "Ulm" dichotomy is available in the Solovay 
model. This yields a partial answer to a question of Hjorth and Kechris [4].8 It 

6The notion introduced in [4]. Hjorth and Kechris refer to the Ulm classification of countable abelian 
/^-groups. 

7The author proved in [5] the "furthermore" result assuming that each real belongs to a generic 
extension of L (which is incompatible with the "sharps" hypothesis). S. D. Friedman and B. Velickovic 
proved the result from the hypothesis of existence of a weakly compact cardinal in every class of the form 
h[x], x being a real, see [1] for an exposition of his idea with respect to another problem. 

8 "We do not know how to prove that at least one of (I) (with a Afc enumeration) or (II) must hold 
(forE, relations) without making use of the assumption of sharps." (The end of Section 5 in [4].) Since 
the sharps hypothesis fails in the Solovay model, we observe that the hypothesis is not necessary for the 
dichotomy. 
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would be very interesting to prove a dichotomy theorem of this type for E| relations 
in ZFC without any additional hypothesis. 

The remaining structure of this article is organized as follows. 
Section 1 outlines the proof of Theorem 1. A topology !T generated by OD 

sets in the Solovay model (a counterpart of the Gandy-Harrington topology) is 
introduced. Similarly to Harrington, Kechris, and Louveau [2], we have two cases: 
either the equivalence relation E of consideration is closed in the product topology 
ET1 or it is not closed. The plan of the proof of Theorem 1 is to demonstrate that 
the first case provides (I) while the second leads to (II). 

Section 2 reviews some important properties of the Solovay model. 
Section 3 proves that 5r"2-closed equivalence relations E satisfy the requirements 

of Item (I) of Theorem 1. The argument for the "moreover" part of Item (I) includes 
the idea of forcing the equivalence of mutually generic reals over countable models, 
due to Stern [11] and Hjorth and Kechris [4]. 

Section 4 begins consideration of the case when the given equivalence relation 
is not 5"2-closed. We define forcing notions X and P associated with & and ,!7"2 

respectively. In particular it is demonstrated that the intersection of an X-generic 
set is nonempty. The set H = {x : [X]E ^ [*]|=}, nonempty as soon as we assume 
E C E, is considered. (E is the ^ -c losu re of E.) 

We accomplish the case when the given relation E is not ^"2-closed in Section 5. 
It is demonstrated that in this case, E continuously embeds E0. The construction 
of the embedding is based on a technical idea of Harrington, Kechris, and Lou­
veau [2], but we shall proceed differently, making use of straightforward forcing 
arguments rather than Choquet games, which yields a little bit more elementary 
construction. 

Acknowledgments. The author thanks S. D. Friedman, G. Hjorth, A. S. Kechris, 
P. Koepke, M. van Lambalgen, and A. W. Miller for useful discussions and in­
teresting information on the Solovay model and the Glimm-Effros dichotomy, D. 
Ballard and T. Linton for useful suggestions, and the anonymous referee for some 
important remarks. 

Notation. We shall use the Cantor set 3! = 2W rather than the Baire space 
JV — co"J as the principal space in this paper. Elements of OS will be called reals 
below. In the rest we shall follow the ordinary notation. Sometimes the F-image 
{F(x) : x G X} of a set X will be denoted by F"X. 

V will denote the universe of all sets, L the constructible universe. 
We shall use sans serif characters like E to denote equivalence relations and other 

binary relations. 
By dense we shall always mean: open dense (for subsets of p.o. sets). 

§1. Approach to the main theorem. The proof of Theorem 1 resembles the proof 
of the "Borel" Glimm-Effros theorem in Harrington, Kechris, and Louveau [2]; in 
particular the dichotomy will be determined by an answer to the question whether 
the given relation E is closed in a certain topology on OS1. 

First of all, we review the definition and some properties of the Solovay model. 
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For an ordinal a, 3°a — a<co — \Jnem a" denotes the forcing to collapse a down 
to co. It is ordered as follows: u < v {u is stronger than v) iff v C u. 

For X £ Ord, we let9 &<}. be the "finite support" product of all sets @a, a < X. In 
other words, &<), is the set of all functions p such that dom p is a finite subset of X 
and p(a) £ &>a for each a < X,a £ domp, with the order: p < q iff dom q C dom/? 
and /?(a) < q(a) for all a 6 domq. 

DEFINITION. Let M (a set or a proper class) be a transitive model of ZFC, 
containing Q., an inaccessible cardinal in M. By Q-Solovay extension of M we shall 
understand a generic extension of the form M[G], where G C ^ < n is ^n-gener ic 
over M. H 

DEFINITION. fi-SM is the following hypothesis: 

£2-SM : Q is inaccessible in L, the class of all constructible sets, and the universe V of 
all sets is a &'^-generic extension of L. H 

The following definition introduces the OD topology. 

DEFINITION. !T will denote the topology generated on a given set X (typically 
X = 9! = 2"', the Cantor set) by all OD subsets of X. By 5"2 we shall denote the 
product of two copies of (OS; J~), a topology on 9S1. H 

Let us consider an OD equivalence relation E on 91. 
For any set X C Qjy we put [X]E — {y : 3x £ X (xEy)}, the ^.-saturation oiX. 

A set X is ^.-saturated iff [X]E = X. 
We define E to be the ^ -c losure of E in Sf2. Thus, x E y iff there exist OD sets 

X and Y containing resp. x and y and such that x' pi y' for all x' £ X, y' £ Y. 
Clearly X can be chosen as an E-invariant set (otherwise change X to [X]E), and 
then Y can be replaced by the complement of X, so that 

xEy <—> \/X[X is OD and E-invariant —• (x £ X <—> y£X)]. 

Therefore E is an equivalence relation, too. 
We now come to the splitting point of the dichotomy: either E = E or E C E. 

THEOREM 2. Assume Q-SM. Suppose that E is an OD equivalence relation on Q>. 
Then 

(I) If E = E then E admits an OD enumeration of the equivalence classes by 
elements of 2<Wi. If moreover E is a Z\ (resp. E\) equivalence relation then 
the enumeration exists in the class Jfc {resp. A^c); 

(II) If E ^ E then E continuously embeds Eo. 

PROOF OF THEOREM 1 FROM THEOREM 2. Theorem 2 is a re-formulation of the 
"lightface" case in Theorem 1. In the case when the relation E is OD[z] (resp. Z\[z] 
or E\[z] in the "moreover" part of (I)) for a real z, one simply introduces z as a 
parameter through the reasoning. In particular one considers 5"[z], the topology 
generated by OD[z] sets, rather than ST, etc. H (of Theorem 1) 

We prove part (I) of Theorem 2 in Section 3. Part (II) will be considered in the 
two following sections. 

9The forcing notion SP^ is equivalent to 9s"- in Solovay [10]. 
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§2. Reals and sets of reals in Solovay model. This section presents some properties 
of the Solovay model important for the proof of Theorem 2. They are mostly related 
to reals and sets of reals. 

DEFINITION. Let Q be an ordinal. A set x will be called Q-weak over M (M is a 
model of ZFC, possibly a proper class) iff x belongs to a ^-gener ic extension of 
M for some a < Q. (Recall that 9>a = a<m.) H 

PROPOSITION 3. Assume Q-SM. Then Q. — a>\. Furthermore, suppose that S C 
Ord is Q.-weak over L. Then 

1. Q is inaccessible in h[S] and V is an Cl-Solovay extension ofh[S]. 
2. If O is a sentence containing only sets in h[S] as parameters then A decides 

<I> in the sense of Ss
<n as a forcing notion over L[S]. 

3. If a set X C L[,S] is OD[S] then X G L[S]. 

(A is the empty function. ODfS1] means: S-ordinal-definable, that is, definable 
by an e-formula containing S and ordinals as parameters.) 

Thus, the Solovay model is seen from each subclass LfS] generated by an Q-weak 
set in one and the same regular way. The proof (essentially a copy of the proof of 
Theorem 4.1 in Solovay [10]) is based on several lemmas, including the following 
crucial lemma: 

LEMMA 4 (Lemma 4.4 in [10]). Let M be a transitive model of ZFC, X e Ord DM. 
Suppose that M' is a 3°x-generic extension of M and M" is a ^-generic extension 
of M'. Let S € M', S C Ord. Then M" is a 3Px-generic extension of M[S]. H 

PROOF OF THE PROPOSITION. In accordance with the assumption Q-SM, we have 
V = L[G] where G C £p<n is generic over L. 

Item 1. By definition, S belongs to a ^-gener ic extension of L where a < Q. 
Then S e L[x] for a real x. It follows (Corollary 3.4.1 in [10]) that there exists an 
ordinal X < Q such that S belongs to the model M' = L[G<i], for some X < Q., 
where G<x = G C\ &sx (<a means <A+i). 

Note that G<x is ^ i -gene r i c over L. Therefore by Lemma 4.3 in Solovay [10], 
M' is a ^-generic extension of L. 

Let us consider the next step X + 1. Obviously the model Mx+\ = L[G<2+i] is 
a &x+\ -generic extension of M'. Since &x+\ is order isomorphic to the product10 

3P\ x &x+\, we conclude that Mx+\ is a &>x+i -generic extension of a certain &>x-
generic extension M" of M'. 

Now M" is a ^-generic extension of L[5*] by Lemma 4, therefore a ^^-generic 
extension of h[S] as well by Lemma 4.3 in [10]. 

It follows that Mx+\ is a ^<x+\-generic extension of L[S]. 
Finally M = L[G] is a ^ ^ - g e n e r i c extension of Mx+\. This ends the proof of 

Item 1 of the proposition. 
Items 2 and 3. It suffices to refer to Item 1 and apply resp. Lemma 3.5 and 

Corollary 3.5 in [10] for h[S] as the initial model. H 
Coding of reals and sets of reals. If G C 3Pa = a<m is ̂ -gener ic over a transitive 

model M (M is a set or a class) then f = \JG maps a> onto a, so that a is countable 

i0&>x x &X+\ is understood here as the set of all pairs (p,q) such that p € 3°x> 1 S ^°l+\< a n d 
doap = dom</. 
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in M[G] = M[f]. Functions / : co —> a obtained this way will be called 9°a-
generic over M. 

We let ¥a{M) be the set of all ^ -gener ic over M functions / G a™, We put 
¥a[S] = FQ(L[S]) and F a = Fa(L) = Fa[0]. 

The following definitions introduce a useful coding system for reals (i.e., points 
of the Cantor space 9s = 2m in this paper) and sets of reals. 

Let a G Ord. By TQ we denote the set of all "terms"—indexed sets / = (a, (t„ : 
n G co)) such that t„ C &a for each n. 

We put T = \Ja<0Jl Ta. (Recall that a>i = Q assuming fi-SM.) 
"Terms" t G Ttt are used to code functions C : aw —• ^ = 2W; namely, for 

every / e a™ wc define x = Ct{f) € 9S by the condition: x(n) = 1 iff /|"w G f„ 
for some m. 

Suppose that a < co\, t = (a, (tn : n e co)) G TQ, u € @a, M an arbitrary 
model. We introduce the sets Srtu(M) = { C , ( / ) : « c / e FQ(M)} and T,(M) = 
^ A ( M ) = C,"FQ(M). As above, we define 3f,[S] = ^(L[S']) and IT, = JT,[0] = 
Sft(L); the same for #",„. 

PROPOSITION 5. Assume Q-SM. Let S C Ord 6e £2-wea& over L. Tftew 
1. If a < a>\ = Q, F C ¥a[S] is OD[S], and f G F, then there exists m e co 

such that each f G ¥a[S] satisfying f'\m = f \m belongs to F. 
2. For each x G 9S, there exist a < a>i, f G Fa[S], and t G 1a n L[S] M/C/J 

r tox = C,(/). 
3. Every OD[5"] s e ( I C ® is a union of sets of the form Sf,[S], where « 6 T n 

US]. 
4. Suppose that t G T a n LfS], a < co\, and u G &a. Then every OD[5*] set 

X C 8?tu[S] is a union of sets 8?,V[S], where u C v G ^ Q . 

PROOF OF ITEM 1. We observe that F = {/ ' G a™ : <1>(5', / ' ) } for an G-formula 
<&. Let *¥{S,f) denote the formula: "A ^n-forces Q>(S,f') over the universe", 
so that F = {f eam : ̂ (S, f) is true in L[S, / ' ] } by Proposition 3. Since / G 
T7 C Fa[5'], there exists m e co such that the restriction u = f\m e 3°a ^-forces 
^ S , f) over L[S], where f is the name of the a-collapsing function. The m is as 
required. 

Item 2. Since the universe is a Solovay extension of L[S] (Proposition 3), x 
belongs to a ^-gener ic extension of L[S], for some a < co\. Thus, x G L[5",/] 
where / G ¥a[S]. We put t„ = {u e &<* : u ^ - forces x(w) = 1 over h[S]}, 
where x is a name for x. 

Item 3. Consider x G X. We use Item 2 to obtain a < a>\, f G F^fS], 
and t € Tan L[S] such that x = C,( / ) . Then we apply Item 1 to the OD[S] 
set F = {/ ' G FQ[S] : C,(/ ' ) G Z } and the given function / . This results in a 
condition u - f\m G ^ « such that x G S",„[5] c X. Finally, the set ^,„[5] is 
equal to ^V[S*] for some other ( ' e T a n L[S]. 

Item 4. Similar to the previous item. H 

§3. The case of a closed relation. In this section, we prove Item (I) of Theorem 2. 
Thus, let us suppose Q-SM and consider an OD equivalence relation E on 9s 
satisfying E = E. 

First of all we obtain a useful characterization lemma for E. 



AN ULM-TYPE CLASSIFICATION THEOREM FOR ... 1341 

We recall that Q = a>\ in the assumption Q-SM, and T = \Ja<0} TQ. 
Let us fix an A^c enumeration T n L = {?(£) : <J < a>\} such that each "term" 

t G T n L has uncountably many numbers £, and /(£) G Ta for some a < £, 
whenever £, < a>\. 

LEMMA 6. Assume Q-SM and E = E. Let x, y G 9s. Then x E j is equivalent to 
the following condition: 

(*) x G [2"/tt)(L4)]E ^ J € [2" ,K)(L4)]E f o r a11 S < w i • 

PROOF. It is clear that x E y implies (*). 
To prove the opposite direction, assume that x^Ly. Then x E y as well, hence 

there exists an OD set X such that x G [T]E but y g- [Z]E. By Proposition 5, 
x €Sf,(L) C [X]E for a "term" t e T „ n L , a<co{. Theny 0 [,T,(L)]E. It remains 
to check that Sft (L) = %?t^ (L^) for some £ < co\. 

Let y = a++ in L, so that y < co\ = Q, and FQ(L) = FQ(Ly). Then Sft{L) = 
8?,{L{) whenever y < £, < a>\. Finally, t = t(£) for an ordinal £,y <£,< m\, and 

3.1. The OD subcase. We have to prove that the 5"2-closed relation E = E admits 
an OD enumeration of the equivalence classes by elements of 2< a", assuming Q-SM. 

For every x G 2>, we define the set 3(x) = {£ < a>\ : x G [^({)(L^)]E} and 
let <px G 2"" be the characteristic function of a(x). Then the OD map x \—> ipx 

enumerates the E-equivalence classes by sequences in 2M1 by Lemma 6. To get an 
enumeration by shorter sequences, we prove 

LEMMA 7. Assume Q-SM. If h G 2"'1 is R-OD then there exists k < a>\ such that 
h G h[h \k]. 

PROOF. By Q-SM, there exists a < co\ such that h G L[ / ] for a ^-gener ic over 
L function / G am. Let h be a ^ - n a m e for A in L[ / ] . 

IF<? argw<? in L. Let ^ = { J € ^ 0 : S ^- forces h(^) = 1} for all £ < Q. Since 
a < Q, there exist < Q different sets /f̂ . We have (in L) an ordinal k < Q and a 
function p : Q —> A such that /fj = i/^,*) for all £ < Q. 

In the universe, this implies A G L[n \k], as required. H 

To continue the proof of Theorem 2 (Item (I)), we let kx denote the least ordinal 
k < Q — co\ such that <px G L[</JX \kx], and put ^.v = ipx \kx—for each real x & 31. 
Obviously, x E j implies y/x = i//y, but we do not know whether conversely y/x = y/y 

implies x E y . We utilize a more sophisticated idea. 
Let x e § . Then y/x € 2X'. The set [x]E = {x' : <px — cpx>} is OD[VJX], therefore 

OD[y/x] because tpx G L[yx]. It follows from Proposition 5 that [x]E includes a 
nonempty subset of the form 3?,{\.[y/x]), where ( 6 f n L[^x] . 

Let tx be the least, in the Godel OD[y/x] wellordering of L[yx], among the 
"terms" ( £ T f 1 h[y/x] such that 0 ^ 8?,(L[y/x]) C [x]E. 

The map x i—> (^x, ?x) is OD, of course. Furthermore x E j implies y/x = i//y 

and /x = ^ since the definition is E-invariant. To prove the converse assume 
that i//x — yy and tx = ty. Then one and the same nonempty set %?,x(L[y/x]) = 
Sftv{h{[y/y\) is a subset of both [x]E and [j]E, so x E y. It follows that the map 
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x i—> (i//x,tx) enumerates E-classes by elements of the set 

{(y/, t) : y/ e 2<0Jl and t £ T n L[y/]} . 

This set admits an OD injection in 2<tu ' . Therefore we can obtain an OD enumer­
ation of the E-equivalence classes by elements of 2<a". This ends the proof of the 
principal assertion in Item (I) of Theorem 2. 

3.2. The Z\ a n ^ Z\ subcases. Let us consider the case when E is a Z\ (resp. S\) 
equivalence relation in Item (I) of Theorem 2. We have to engineer a A^c (resp. 
Afc) enumeration of the E-equivalence classes by elements of 2<co'. 

The most natural plan would be to prove that the OD enumeration x i—• (y/x,tx) 
defined above is e.g., A^c provided E is S\. However, there is no obvious method 
to convert the definition of y/x to A^c, or even to formalize it in HC. Fortunately 
we do not need in fact the minimality of Xx; all that we exploited is the existence of 
a term ( e T f l L [ ^ ] such that 0 ^ %?t(L[y/x]) C [x]E. 

We could now define y/x = <px\y, where y = yx is the least ordinal y < co\ such 
that T n L[ipx \y] contains the required "term". This can be formalized in HC, but 
hardly as a Afc definition: indeed, in particular the requirement S?,{L[y/x]) C [x]E 

does not look better than 772
HC because E is Z\. 

The actual plan includes one more idea, forcing of the equivalence over submod­
els, used earlier by Silver [9], Stern [11], and Hjorth and Kechris [4]. 

Let us consider the details. We recall that £2-SM is assumed. 

DEFINITION. We let TE be the set of all triples (x, y/, t) such that x e 3f, y/ e 2<CU|, 
( e T „ n Lyiy],11 where a < y = domy < co\, and the following conditions (a) 
through (d) are satisfied. 

(a) Ly[y/] models ZFC~ (minus power set) so that y/ can occur as an extra 
class parameter in the ZFC schemata. 

(b) The pair (A, A) (&>a x ^8
a)-forces Cr(f) E C,(g) in L?[^], where f and g are 

the names for the generic functions in am. (Recall that &a = a<w.) 
(c) y/ = ipx\y. 
(d) x belongs to [^(Ly[^])]E . 

A real x e 9) is ^-classifiable iff there exist y/ and t such that (x, t//, t) £ TE. 

LEMMA 8. Assume Q-SM. If E is a E\ equivalence relation and E — E then all 
reals x e Of are E-classifiable. 

PROOF. Let x e 2. Then <px is OD[x], so cpx e L[x] by Proposition 3. 
Lemma 6 implies that the set [X]E is OD[ipx]. It follows from Proposition 5 that 
x £ 3?t(L[ipx]) C [JC]E for some t £ TQ n L[<px], a<cox. 

The model L^fy*] has an elementary submodel Ly[^], where y < co\ and y/ = 
tpx\y, containing t and a. We prove that (x, y/,t) £ TE- Since L,,[y/] obviously 
satisfies (a) and (c), let us focus on requirements (b), (d). 

We check (b). Indeed otherwise there exist conditions u, v £ &a = a<w such 
that (u,v) forces C,(f) p?C,(g) in Ly[y/] in the sense of 3Pa x £Pa as the notion 
of forcing. Then (u,v) also forces C,(f) ^Q(g) in L<u,[y>x]. Let us consider a 
(&>a x 5a

a)-generic over ~L[cpx] pair (f,g) £ am x aw such that u c / and v C g. 

" By Lj, [y/] we understand the result of the Godel construction of length y arranged so that only if/ [S 
is available at each step<5 < y. Note that y/ 0 L,,[(c]. 
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Then both y — C, ( / ) and z — C,(g) belong to 3ft(L[ipx]), so y E z holds in the 
universe because %?,{L[tpx]) C [x]E. 

Note that (f,g) also is generic over Lro] [<px]. We observe that y E z is false in 
Lu>, [<£x,/,g], then in L[<px,/,g], by the choice of wand v. Buty EzisaZ"] formula, 
therefore absolute for transitive models containing all ordinals by Shoenfield, which 
is a contradiction. 

Wecheck (d). Take any ̂ -gener ic over ~L[(px] function/ G a ° \ Theny = C,( /) 
belongs to Sf,{\.[(px\), hence y Ex. On the other hand, / is generic over Ly[^] as 
well, so we have y G %?,{Ly[y/]) and x G [^(L),[^'])]E. 

Thus (x, y/, t) G TE- This means that x is E-classifiable, as required. H 

Let x G 3i. It follows from Lemma 8 that there exists the least ordinal y = yx < 
Q. = co\ such that 7E(JC, ¥>* l>, 0 for some t. 

We put y/x — ifix \yx and let tx denote the least, in the sense of the Godel OD[^x] 
wellordering of L,,[y/X], "term" ( e T n Lj,[^x] which satisfies T^(x, y/x,t). We 
finally set U(x) — (y/x, tx). 

LEMMA 9. Assume Q-SM. If E is a Z\ equivalence relation, and E = E then the 
map U enumerates the E-classes. 

PROOF. If x E y then U{x) = U(y) because the definitions are E-invariant. 
Let us prove the converse. Assume that U(x) = U(y), in particular, t//x = i//y — 

yi G 2<a" and tx = ty = t eTan Ly[y/], where a < y = dom y/ < <x>\. 
By (d) we have Q ( / ) Ex and Ct(g) Ey for some &>a -generic over L7 [y/] functions 

f,g£aC}. Let us consider a ̂ -gener ic over both Ly[y/,f] and hy[y/,g] function 
h G of". Then, by (b), Ct(h) E C,(f) holds in ~Ly[y/, f, h], therefore in the universe 
because E is Z\- Similarly, we have Ct(h) E C,{g). It follows that C,(/) E Ct{g), 
hence x E y, as required. H 

LEMMA 10. Suppose that E is Z\ (resp. Z\) and E = E. Then U is a function of 
class A^c {resp. A^c). 

PROOF. It suffices to check that the set 7E is A^c (resp. / f" c ) . 
Requirements (a) and (b) are A^ because they reflect truth within L7[y/]. 
Suppose that E is Z\, that is, Zfc. Then requirement (d) is obviously Z^c. 

Requirement (c) can be converted to A^c : indeed (c) is equivalent to 

(t) V£<yM£) = l — xe[2>t{i)(L()]B), 

and, we recall, the enumeration /(£) was chosen in Afc. 
The case when E belongs to Z\ is more difficult. 
Let us first consider condition (d). Immediately, it is Z\, therefore Z^c, so it 

remains to convert it also to a 77[HC form. Notice that the set X = Sft(Ly[y/]) 
consists of pairwise E-equivalent points in the assumption of (a) and (b): this was 
actually shown in the proof of Lemma 9. Therefore (d) is equivalent to the formula 
My G %?,(Ly[y/]) (x Ey) because obviously %?,(Ly[y/]) ̂  0. This is clearly 77,HC 

provided E is at least 77]. 
Let us consider (c). The right-hand side of the equivalence (f) is Z\ (recall that 

now E is Z\) with inserted A^c functions, therefore Afc. It follows that (f) itself is 
Afc, as required. -\ 
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This completes the proof of the additional part (27,1 and Z\ relations) in Item (I) 
of Theorem 2. 

§4. OD topology and the forcing. This section starts the proof of Item (II) of 
Theorem 2 for a given OD equivalence relation E in the assumption Q-SM. 

We have to embed Eo in E continuously, assuming that E ^ E , The embedding 
will be defined in the next section; here we obtain some preliminary results related 
to the topology fF, an associated forcing, and the relevant product forcing. At the 
end of the section, we introduce the set H of all points x e 9! whose E-classes are 
strictly bigger than E-classes. 

The reasoning is based on special properties of the topology ET, having a sem­
blance of the Gandy-Harrington topology (in a simplified form as some specific 
E\ details vanish). In particular, the topology is strongly Choquet (see [2] or [6]). 
However we shall not utilize this property (and shall not prove it). The reasoning 
will be organized as a sequence of forcing arguments. This manner of treating of 
equivalence relations is taken from Miller [8]. 

4.1. 1st countable sets and the forcing. The topology !T (see Section 1) obviously 
does not have a countable base; but it has one in a local sense, in the assumption 
Q-SM. 

DEFINITION. A set X is OD-\st-countable if the OD power set &>OD(X) = &{X) n 
OD is at most countable. (In this case, &>OD(X) has only countably many different 
OD subsets because it is a general property of the Solovay model that 3P0D{3?) is 
countable for any countable OD set 8? C OD.) H 

LEMMA 11. Assume Q-SM. Let t e T n L. Then the set X = Sf,(L) is OD-lst-
countable. 

PROOF. Let t £ Ta, a < a>\ = Cl. By Proposition 5 every OD subset of X is 
determined by an OD subset of 3Pa = a<w'. Let a+ be the next cardinal in L. 
Since all OD sets S C ^ t t are constructible (Proposition 3), X has < a+-many OD 
subsets. However a+ < co\ = Q because Q is inaccessible in L. H 

Let X = {X C Qs : X is OD and nonempty}. 
Let us consider X as a forcing notion (smaller sets are stronger conditions). We 

say that a set G C X is OD-generic iff it is pairwise compatible in X (that is for any 
pair of X, Y e G there exists Z e G, Z C X C] Y) and nonempty intersects every 
dense12 OD subset of X. 

COROLLARY 12. Assume Q-SM. If X e X then there exists an OD-generic set 
6 C X containing X. 

PROOF. We can suppose, by Proposition 5, that X = 3f,(V) where ( e T f l L . 
Now apply Lemma 11. H 

LEMMA 13. Assume Q-SM. Let O(-) be an ^.-formula containing only ordinals as 
parameters. Suppose that G C X is OD-generic and O(G) is true {in the universe). 
Then there exists a condition X e G such that O(G') is true for every OD-generic set 
G' C X containing X. 

2 By dense we shall always understand open dense. 
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PROOF. Let us show that he X-genericity can be transformed to an ordinary 
forcing over L. Of course formally X g- L, but X is OD order isomorphic to a p.o. 
set X' e L by Proposition 3 because X itself, the order on X, and all elements of X 
are OD. Let n : X onto X' be the isomorphism. 

Then n sends each dense OD set D C X to a dense OD, therefore constructible 
by Proposition 3, set D' = n"D C X'. It follows that G C X is OD-generic iff 
G' — n"G is X'-generic over L in the ordinary sense. 

We assert that G' is Q-weak over L. Indeed by the genericity, Lemma 11, and 
Proposition 5 G contains an OD-lst-countable condition X e G. Then 

f = { I ' e X ' : X' is stronger than n{X) in X'} 

is a countable OD, therefore constructible, subset of X', "§ = G' n 3P is ^-generic 
over L, and G' e L[^]. Finally 3P has a cardinality a < Q in L, so that "§ is Q-weak 
over L because Q is inaccessible in L. 

Furthermore any OD property of G in the main £2-SM universe is an OD property 
of G' as well simply because n is OD. Therefore such a property admits an appro­
priate relativization to L[G'] by Proposition 3. We conclude that OD properties of 
G in the universe are X-forced, as required. H 

LEMMA 14. Assume Q-SM. If G C X is an OD-generic set then the intersection 
f)G is a singleton {x} — {xG}. 

PROOF. Otherwise by Lemma 13 there exists a condition X eX such that f] G is 
not a singleton for every OD-generic set G C X containing X. We can assume that 
X = 2?,(L), where / 6 T a f l L , a < ( U | . Then X is OD-lst-countable; let {Sfn : n <E 
co} be an enumeration of all OD dense subsets of 3s00 {X). Using Proposition 5 
(Item 1), we obtain an increasing ^-gener ic over L sequence UQ C U\ C «2 C ... of 
u„ e 3Pa = a<w such that X„ = #",„„(L) e Sf„. Obviously this yields an OD-generic 
set G C X containing X and all X„. 

Now let / = \Jneca un ; / e a."' and / is ^-gener ic over L. Then x = Ct(f) G 
Z„ for all n, so x £ f]G. Since P| G cannot contain more than one element, it is a 
singleton, which is a contradiction with the choice of X. -\ 

Reals of the form xG will be called OD-generic. 

4.2. The product forcing. The classical proof of the "Glimm-Effros" dichotomy 
for Borel sets in Harrington et al. [2] is based on interactions between E and its 
5^2-closure E. In the forcing setting, we have to fix a restriction by E directly in the 
definition of the product forcing. Thus, we consider 

P = p(E) = {P C E : P is OD and nonempty and P = (pr ,P x pr2P) n E} 

as a forcing notion (smaller sets are stronger conditions), where the projections 
are defined by p r , P = {x : 3y P(x,y)} and pr2i> = {y : 3x P(x,y)} for every 
P C 9S1. (Note that if P is OD then so are pi^P and pr2P.) 

We say that a set G C p is F-generic iff it is pairwise compatible in P and has 
nonempty intersection with every dense OD subset of P. 

We recall that a set P is OD-lst-countable if the OD power set ^aOD(P) has only 
countably many different OD subsets. Now we introduce a similar notion which 
reflects the product character of P. 
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DEFINITION. P G P is F-lst-countable iff the set Pep = {Q G P : Q C P} of all 
stronger conditions is at most countable. (Then FQP contains at most countably 
many OD subsets, assuming Q-SM.) H 

ASSERTION 15. Assume Q-SM. Then 
1. If P G P then pr! P and p r 2 P feefong to X. 
2. //• Jsr, r G x and p = (x x Y) n E ̂  0 jfen p e P. 
3. If X, Y are OD-lst-countable in Item 2 then P is F-lst-countable. 
4. 7 / ? e P , I e X , W J C pr,P, then there exists g G P, g C P, such that 

X = prj Q. Similarly for pr2. 

PROOF. Set Q = {(x,y) e P : x £ X} in Item 4. H 

LEMMA 16. Assume Q-SM. Let G C P be F-generic. Then the intersection f]Q 
contains a single point (a, b). In this pair, a and b are OD-generic reals and aEb. 

PROOF. Both Gx = {pr ,P : P G G} and G2 = {pr2P : P e G} are OD-generic 
sets by Assertion 15, so by Lemma 14 there exist unique OD-generic points a = xGl 

and b = xG2. It remains to show that aEb. 
Indeed, otherwise there exists an E-invariant OD set A such that x G A and 

y G B = 3l\A. Then^4 e G\ andP G G2 by the genericity. There exists a condition 
P G G such that p r , P C ^ and pr 2 P C B, therefore P C {A x 5 ) n E = 0, which 
is impossible. M 

Pairs (a, 6} as in Lemma 16 will be called F-generic. 
As further notation, we write X C Y, for sets X and Y and a binary relation C, 

to mean Vx € X 3y £ Y {x C y) and Vy e Y 3x € X {x C y). This is the same 
as [X]c = [ Y]c in the case when C is an equivalence relation. 

LEMMA 17. Assume Q-SM. Suppose that Po G P, reals a, a' G XQ = pr,Po are 
OD-generic, and a E a'. Then there exists a real b such that both {a, b) and (a1, b) 
belong to PQ and are F-generic pairs. 

PROOF. It follows from Proposition 5, Lemma 11, and Assertion 15 that there 
exists a P-lst-countable set P\ G P, Pi C P0 such_that a e X\ = pr^Pi. We define 
Yi = p r 2 P ( ; then X\ E Yx and P, = (Z, x F,) H E. 

We let P' = {(x,y) G P0 : y G 7i}. Then P ' G P a n d / i C P ' C P0. 
Furthermore a' G Jf' = prjP ' . (Indeed, since « e l i and Jfi E Y\, there exists 
j £ 7i such that aEy; then a' E y as well because a E a', hence (a', y) G P'.) As 
above, there exists a P-lst-countable set P[ G P, PJ C P' such that a' contains in 
X[ = prjPJ. Then 7/ = pr2Pj C y,. 

By definition, P admits only countably many different dense OD sets below Pi 
and below P[. Let {&„ : n e co} and {&'n : n G co) be enumerations of both 
families of dense sets. We define sets P„, P'n G P (n G co) satisfying: 

(i) a G X„ = prxPn and a' G X'n = prjP^; 
(ii) Y'n = pr2P^ C y„ = pr2P„ and 7„+, C Y'n; 

(iii) P„+1 C P„, P'n+X C p ; , P„ e &n, and P ; G ^„'. 
By (iii) both {Pn : n s co} and {P'n : n G co} are generic sequences in P, so by 
Lemma 16 they result in two P-generic pairs, (a,b) G Po and (a',b) 6 Po, having 
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the first terms equal to a and a' by (i) and second terms equal to each other by (ii). 
Thus it suffices to carry out the construction of Pn and P'n. 

The construction goes on by induction on n. 
Assume that P„ and P'n have been denned. We define Pn+\. By (ii) and Asser­

tion 15, the set P = {Xn x Y'„) n E C P„ belongs to P_and a eX = p r ,P . (Indeed, 
(a,y) G P, where y satisfies {a1 ,y) G P'„, because a E a'.) However &„+\ is dense 
in P below P C P0; therefore p r ^ + i = {prlP' : P' G &„+i} is dense in X below 
X — p r , P by Assertion 15. Since a is OD-generic, we have a G pr jP ' for some 
P' G &n+\, P' C P. It remains to put Pn+\ = P', and then Xn+\ = prxPn+\ and 

y«+i = pr2Pn+i- _ 
After this, to define P'n+l we let P = {X'n x 7„+1) n E, etc. H 

4.3. The key set. We recall that Q-SM is assumed, E is an OD equivalence relation 
on 91, and E is the ̂ "2-closure of E in 9)2. We also suppose that E C E, as in Item (II) 
of Theorem 2. Then there exist E-classes which include more than one E-class. We 
define the union of all those E-classes, 

H = {x £&> :3y £2f {xEy & xgy)}, 

the "key set" from the title. The role of this set in the reasoning below is entirely 
similar to the role of the corresponding set V in Harrington et al. [2]. 

LEMMA 18. Assume Q-SM. If a, b G H and {a, b) is f-generic then a^b. 

PROOF. Otherwise there exists a set P G P, P C H x H, such that a E b holds for 
all P-generic pairs (a,b) G P. (Lemma 13 is true for Pas well as for X.) Weconclude 
thatthenaEa' —• a Ea' for all OD-generic points a, a' G X = prlP; indeed, take 
b such that both (a,b) G P and (a',b) G P are P-generic, by Lemma 17. In other 
words the relations E and E coincide on the set Y = {x G X : x is OD-generic} G X. 

Note that Y ^ 0 by Corollary 12 and Lemma 14. Let y G Y. JThen y £ H 
because Y C X C H. By definition, there exists a real x such that x Ey but xtyy. 
Then x G [T]E because otherwise y and x would belong to the OD E-invariant 
disjoint sets [Y]E and_D \ [ 7 ] E , a contradiction with xEy. We have x E / for 
some y' G Y. Then y Ey', hence y Ey' because E and E coincide on Y, and finally 
x Ey, which is a contradiction. H 

Lemma 18 is a counterpart of a proposition in Harrington et al. [2] which says 
that E\H is meager in E\H. But in fact the main content of this argument in [2] 
was implicitly included in Lemma 17. 

LEMMA 19. Assume Q-SM. LetX, Y C H be nonempty OT> sets satisfying X E Y. 
Then there exist nonempty OD sets X' C X and Y' C Y such that still X' E Y' but 

x'nY' = 0. 
PROOF. There exist points XQ G X and yo G Y such that xo ^ y0 but x0Eyo. 

(Otherwise X = Y, and E is the equality relation on X, which is impossible, see the 
previous proof.) Let U and V be disjoint Baire intervals in 3f containing resp. XQ 
and y0. We put X' = X n U n [Y n F ] f and Y' = Y n V n [JT n £%. H 

§5. The embedding. In this section we accomplish the proof of Item (II) of 
Theorem 2, therefore Theorem 1 as well (see Section 1). Thus, we prove, assuming 
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Q-SM and E ^ E , that E, the given OD equivalence relation on 3, continuously 
embeds E0. 

5.1. The embedding. During the construction of the embedding, 2m will denote 
the set of all binary m-sequences, and 2< w = \Jmeoj 2

m. 0k will be the sequence ofk 
terms each equal to 0. By A we denote the concatenation of sequences and numbers 
0 ,1 . 

By the assumption of E C E, the set H of Subsection 4.3 is nonempty; obviously H 
is OD and E-invariant. It follows from Proposition 5 and Lemma 11 that there exists 
a nonempty OD-lst-countable OD set XQ C H. Then the set PQ — (X0 x Xo) n E 
belongs to P and is P-lst-countable by Assertion 15. 

We shall define a family of sets Xu (w e 2<m) satisfying 

(a) Xu C Xo, Xu is nonempty and OD, and Z„A, C XU, for all u and ;'. 

In addition to the sets Xu, we shall define binary relations Quv for some pairs 
(u, v), to provide important interconnections between different sets Xu. 

Let u, v G 2". We say that (u,v) is a crucial pair in 2" iff u = 0*A0Aw and 
v = 0*AlAiu where k < n and w G 2n~k~x (possibly k = n — 1, that is, w = A). 
Note that if (u, v) is crucial and /" = 0, 1 then {uAi, vAi) is crucial, but (uAi, vAj) is 
not crucial for / ^ j unless u = v = 0fc for some k. 

Thus, we define sets Q„„ Q XuxXv for all crucial pairs (u, v) so that the following 
requirements (b) and (c) are satisfied. 

(b) Quv is OD, p r ^ ^ = Xu, pr2Q„„ = Xv, and Q„A,,„A, C Q„„ for every 
crucial pair (u, v) and each / G {0,1}. 

(c) For any k, the set Q^ = Q ^ A O ^ M is OD-lst-countable, and Q^ C E. 

This implies Xu Quv Xv, therefore Xu EXV, for all crucial pairs (u, v).u 

REMARK 20. Every pair of u, v e 2" can be tied in 2" by a finite chain of crucial 
pairs. It follows that (b) + (c) implies Xu E Xv and Xu E Xv for all pairs (u, v) in 
2". H 

Three more requirements, (gl), (g2),and (g3), will concern genericity. 
In accordance with the lst-countability of Xo and P$, {3fn : n e co} will be 

a fixed (not necessarily OD) enumeration of all dense in X below Xo OD subsets 
of X while {&„ : n G co} will be a fixed enumeration of all dense in P below Po 
OD subsets of P. It is assumed that 3fn+l C Sf„ and 0>n+\ C &>„. Note that 
&' = {P G P : P C Po & pr jP n p r 2 P = 0} is dense in P below P0 by Lemma 19, 
so we can suppose in addition that 2?o = 3°'. 

In general, for any OD-lst-countable OD set Q let {8?„{Q) : n e co} be an 
enumeration of all dense OD subsets in the algebra ^O D(Q) \ {0}. It is assumed 
that ^„ + i (Q) C 8?„{Q). We now formulate: 

(gl) Xu e 3en whenever « s 2 " . 
(g2) If u, v G 2" and u[n - 1) = 0, v{n - 1) = 1, then Puv = (Xu x Xv) n E 

belongs to &n. 
(g3) If u = 0fcA0Au>, v = 04A1 Aw is a crucial pair in 2" and & < n - 1 (then w 

is not equal to A), then Q„„ G Sf„{Qk)- (Recall that Qk = QO*A0,O*AI.) 

13We recall that XQ Y means that Vx e X3y € Y (x Q j ) a n d V y e 7 3JC 6 X U Q >•). 
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In particular (gl) implies by Lemma 14 that for any a G 2OJ the intersection 
Dngco Xa\n contains a single point, denoted by <j>{a), which is OD-generic, and the 
map 0 is continuous in the sense of the usual (Polish) topology. 

ASSERTION21. If (a), (b), (c), and (gl), (g2), (g3) are satisfied then 0 is a 
continuous 1-1 embedding of Eo to E. 

PROOF. Let us prove that 0 is 1-1. Suppose that a ^ 6 e 2W. Then, for instance 
a{n — 1) — 0 and b(n — 1) = 1 for some n. Let u = a \n, v = b \n, so that we have 
x = 0(a) e Xu and y = 0(6) e Xv. The set P = (Xu x Z„) n E belongs to &>„ by 
(g2), therefore to &>Q. This implies Z„ n Xv = 0 by the assumption that &>0 = &', 
hence 0(a) ^ 0(6), as required. 

Furthermore if a fob (this means that a{k) ^ b{k) for infinitely many numbers 
k) then (0(a), 0(6)) is P-generic by (g2), so 0(a) £0(6) by Lemma 18. 

Let us finally verify that a Eo 6 implies 0(a) E 0(6). It is sufficient to prove that 
0(0* A0Ac) E 0(0*A1 Ac) holds for all k G co and c G 2C", simply because every pair 
ofw, t i e 2" is tied in 2" by a chain of crucial pairs, for any n. 

The sequence of sets Wm = Qo**o*(c\m),ol,*i*{ctm) (m <= « ) is OD-generic by (g3) 
in the sense of the forcing &>0D{Qk) \ {0} (we recall that Qk = Q ^ A O ^ A ] C E), 

which is simply a copy of X, so that by Corollary 14 the intersection of all sets Wm 

is a singleton, which obviously can be equal only to (0(O*AOAc), 0(O*AlAc)). This 
yields 0(O*AOAc) E 0(O*AlAc), as required. H 

5.2. Restriction lemma. Thus, part (II) of Theorem 2 is reduced to the construc­
tion of sets Xu and relations Q„„ satisfying (a), (b), (c), and (gl), (g2), (g3) (in 
the assumption Q-SM). The following combinatorial lemma will be used in the 
construction. 

LEMMA 22. Let n 6 co and Xu be a nonempty OD set for each u & 2". Assume 
that an OD binary relation Suv C 3t2 is given for every crucial pair {u, v) in 2" so that 
Y s. v 

•^•u -Juv A t ) -

1. If UQ G 2" and X' C XUo is an OD and nonempty set then there exists a system 
of OD nonempty sets Yu C Xu (w € 2") such that still Yu S„„ Yv holds for all crucial 
pairs (u, v), and in addition YUQ = X'. 

2. Suppose that (wo,«o) is a crucial pair in 2" and nonempty OD sets X' C XUo 

and X" C XVo satisfy X' SUoVo X". Then there exists a system of OD nonempty sets 
Yu C Xu (u € 2") such that still Yu Suv Yv holds for all crucial pairs {u, v), and in 
addition YU(I = X', YVf) = X". 

PROOF. Note that 1 follows from 2. Indeed take an arbitrary v0 such that either 
{uo,vo) or (VO,UQ) is crucial, and put X" = {y G Xv„ : 3 x G l ' (x S„0„0 y)},orresp. 
X" = {y€XVlt:3xeX'(ySV0U(,x)}. 

To prove Item 2, we use induction on n. 
If n = 1 then simply take 7„0 = Y' and YVo = Y". 
The step. We prove the lemma for n + 1 provided it has been proved for n; n > 1. 

The principal idea is to split 2"+1 in two copies of 2", namely [/o = { J A 0 : s e 2"} 
and U\ — {s^\ : s € 2"}, and handle them more or less separately, using the 
induction hypothesis and the fact that the only crucial pair that connects U0 and 
U\ is the pair of u = 0"A0 and v = 0"A1. 
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If now uo — u and VQ = v then we apply the induction hypothesis (Item 1) 
independently for the families of sets { ! „ : « £ C/j} and {Xu : u £ U\} and the 
given sets X' C XU(t and X" C A^. Assembling the results, we get nonempty OD 
sets Yu C Xu (u £ 2"+1) such that Yu Suv Yv for all crucial pairs (u,v). 

Suppose that w0 and VQ belong to one and the same domain, say to C0. Then 
we first apply the induction hypothesis (Item 2) to the family {Xu : u £ C0} and 
the sets X' C XUo and JST" C XVo. This results in a system of nonempty OD 
sets Yu C Xu (u £ Co), in particular an OD nonempty set Fa C A^. We put 
Yi = {y G Xu : 3x e Yu (x San y), so that Ŷ  Sm Yt, and apply the induction 
hypothesis (Item 1) to the family {Xu : u e C } and the set Yo C A^. H 

5.3. The construction. We put X\ = XQ. 
Now assume that the sets Xs (s £ 2"~l) and relations Qst for all crucial pairs 

(s, t) in 2<n have been denned, and expand the construction at level n. 
We first put ASA( = Xs for all s e 2""1 and i e {0,1}. We also define Sa„ = Q,, 

for any crucial pair of u = sAi, v = tAi in 2" other than the pair of u = 0"_1 A0 
and v = 0"" l Al . For the latter one (note that Au = A{, — X®,-\) we put S^ = E, 
so that Au S„„ Av holds for all crucial pairs (u, v) in 2" including the pair (u, v). 

The sets Au and relations Suv will be reduced in several steps to satisfy require­
ments (a), (b), (c) and (gl), (g2), (g3) of Subsection 5.1. 

Part 1. After 2" steps of the procedure of Lemma 22 (Item 1), we obtain a system 
of nonempty OD sets Bu C Au (« £ 2") such that still Bu Suv Bv for all crucial pairs 
(u,v) in 2", and Bu e 2P„ for all u. Thus, (gl) is guaranteed. 

Part 2. To fix (g2), consider an arbitrary pair of UQ = soA0, vo = t0
Al, where 

SQ, to € 2"_ 1. By Remark 20 and the density of the set &>„ there exist nonempty 
OD sets B' C BU0 and B" C B^ s. t. P = (B' x B") DE e &„ and p r , P = B', 
pr2P = B", so in particular 5 ' E B". Now we apply Lemma 22 (Item 1) for the 
two systems of sets, {BSA0 ; s € 2"~1} and {S,AI : ( e 2 " - 1 } , separately (compare 
with the proof of Lemma 22 !), and the sets B' C BSI)A0, B" C B,0A) respectively. 
This results in a system of nonempty OD sets B'u c iJ„ (where M e 2") satisfying 
B^0 = B' and fi^ = B", so that we have (B'Uo x 5^) n E = P £ 9°n, and still 
i?£ S„„ 5^ for all crucial pairs (u, v) in 2", perhaps with the exception of the pair of 
u = 0n~l A0, v = 0"_1 A 1 , which is the only one that connects the two domains. To 
handle this pair, note that B'a E B'Ufj and B~ E B'V(j (Remark 20 is applied to each of 
the two domains), so that B'a E B'~ since B' E B". However Sm is so far equal to E. 

After 4""1 steps (the number of pairs (uo,v0) to be considered here) we get a 
system of nonempty OD sets Cu C Bu (w £ 2") such that (C„ x Cv) n E belongs to 
^n whenever u{n) ^ v(n), and still Cu Suv Cv for all crucial pairs (w, u) in 2". Thus, 
(g2) is fixed. 

Part 3. We fix (c) for the special crucial pair of u = 0"~l A0, v = 0"~'A1. As E 
is ^"2-dense in E and Ca E Q , the set R = ( Q x Q ) n E is nonempty. Then some 
nonempty OD set S C R is OD-lst-countable by Lemma 11. Consider the OD sets 
C = p r i S (C Co) and C" = pr2S (g Q ) ; obviously C S C", so that C SM C". 
(We recall that at the moment SM = E.) Using Lemma 22 (Item 2) again, we obtain 
a system of nonempty OD sets Yu C Cu (a e 2") such that still Yu Suv Yv for all 
crucial pairs (u, v) in 2", and Yu = C, Yy = C". We redefine S^ by S^ = S, but 
this keeps Yu Su{, Ya. 
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Part 4. We fix (g3). Consider a crucial pair of UQ = 0* A0Aw and vo = 0fcA 1 Aw in 
2" such that k < n - 1. The relation R = SM0„0 n (F„0 x 7„0) is a nonempty (since 
F„0 S„oUo F„0) OD subset of Q^ = Q ^ A O ^ A ! by the construction. Let S C R be a 
nonempty OD set in Sf„(Qk). Now put Y' = prjS and Y" = pr2S (then 7 ' S Y" 
and y ' SMo„0 Y") and apply Lemma 22 to the system of sets Yu (where u G 2") and 
the sets 7 ' C 7„0, 7 " C YVo. After this define the "new" relation SUoUo byS„0„0 = S. 

Do this consecutively for all crucial pairs; the finally obtained sets—let us denote 
them by Xu (u G 2")—are as required. The final relations Q„„ {{u, v) being crucial 
pairs in 2") can be obtained as the restrictions of the relations S„„ to Xu x Xv. 

This ends the construction. 
H (Theorem 2 and Theorem 1, see Section 1.) 
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