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ON NON-WELLFOUNDED ITERATIONS OF THE PERFECT SET 
FORCING 

VLADIMIR KANOVEI 

Abstract. We prove that if / is a partially ordered set in a countable transitive model 9Jt of ZFC then 
OT can be extended by a generic sequence of reals a,, i 6 /, such that Nf is preserved and every a, is 
Sacks generic over 9H[( ay : j < i)]. The structure of the degrees of OT-constructibility of reals in the 
extension is investigated. 

As applications of the methods involved, we define a cardinal invariant to distinguish product and 
iterated Sacks extensions, and give a short proof of a theorem (by Budinas) that in a>2-iterated Sacks 
extension of L the Burgess selection principle for analytic equivalence relations holds. 

Introduction. It is the usual practice in set theory that one is interested to consider 
a generic extension M\ of a given model M, then a generic extension Mi of Mi, and 
so on, including the case of infinite or transfinite number of steps. Iterated forcing 
of Solovay and Tennenbaum [8] converts this iterated construction in an ordinary 
one-step generic extension. 

In many cases, iterated forcing is used to define transfinite sequences of models 
such that every model is a generic extension of the preceding model. (We do not 
consider here sophisticated details at limit steps.) Identifying the steps of this 
construction with ordinals, and interpreting the set of the ordinals involved as the 
length of the iteration, we may say that the classical iterated forcing has wellordered 
length of iteration. 

In principle it does not require a principal improvement of the basic iterated 
forcing method to define iterations with wellfounded, but not wellordered, "length" 
of iteration. This version is much rarely used than the ordinary iterated forcing. 
(However see Groszek and Jech [6].) 

It is a much more challenging question (we refer to Groszek and Jech [6], p. 6) to 
carry out "ill"founded iterations. No general method is known, at least. 

For a few number of rather simple forcing notions, "uT'founded iterations can 
be obtained without any use of the idea of iteration at all. For example if a e 2m 

is a Cohen generic real over a model DJl, and am £ 2C0 is defined for any m by 
am(k) = a(2m3i), Vfc, then the sequence of reals a„ realizes iterated Cohen forcing 
with co* (the order of negative integers) as the length of iteration: every an is Cohen 
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generic over the model 97t[( am : m > «)] . This construction also applies to Solovay 
random reals. 

An idea how to define iterated forcing with a linear but not wellordered length of 
iteration / can be as follows. Consider first a usual iteration of a length X £ Ord as 
a pattern. The forcing conditions in this case are functions p defined on X = { a : 
a < X } and satisfying certain property P(p, a) for every a < X. Now, to proceed 
with the /-case, one may want to use functions p denned on / and satisfying P(p, i) 
for all i £ I. 

The principal problem in this argument is that the property P(p,a) is itself 
defined, in the wellordered setting, by induction on a in quite a sophisticated way. 
So we first have to eliminate the induction and extend the property P to "ill"ordered 
sets / taken as the length of iteration. 

We do not know how this can be realized at least for a more or less representative 
category of forcing notions. There is, however, a forcing which allows us to express 
the property P in simple "geometric" terms, so that "ill"founded iterations become 
available. This is the perfect set forcing of Sacks [7]. (See Baumgartner and Laver 
[1] as the basic reference on the iterated Sacks forcing, and Groszek [4] on some 
further applications.) 

THEOREM 1. Let Wbe a countable transitive model of ZFC, / a partially ordered 
set in 97L Then there exists a generic ^-preserving extension 9t = 97t[( a, : / € / ) ] of 
SDlsuch that for every i £ I, a, is a Sacks-generic real over the model 97t[( a j : j < z)], 
and in addition 

1. Ifi, j £ I and i < j then «, £ 97t[a;]. But if J £ 971 is an initial segment in I 
and i £ I \ J then a, does not belong to 97t[( aj : j £ J)]. 

2. If r, r' are reals in Vt then either r £ 9Jl[r'] or there exists i £ I such that 
at £ Tl[r] \ 9Jl[r']. In the "either" case there exists a continuous function 
F: r e a l s —> r ea l s , coded in 9JT, such that r = F{r'). 

3. Suppose that all initial segments J C I belong to £0t. Then for any real r £ 9T 
there is a countable in 971 set £, £ 971, £ C / such that 

m[r] = m[{ai:i£^)\. 

The set / is not necessarily wellfounded or linearly ordered in Tl. Items 1, 2, and 
31 say that the degrees of 9Jt-constructibility of reals in the extension 

m = £Dt[< a, : / € / ) ] 

are essentially determined by the order structure of / . For instance if all initial 
segments of I belong to 971 (this includes, in particular, the cases when / is an ordinal 
or an inverse ordinal), the structure of 97Z-degrees of reals in 9t is isomorphic, by 
the theorem, to the structure of all countably generated (that is of the form 

kea> 

in 971) initial segments of I. 

All of them are known for Sacks iterations of wellordered or even wellfounded length, although it is 
not easy to give a comprehensive reference. 



ON NON-WELLFOUNDED ITERATIONS OF THE PERFECT SET FORCING 553 

A construction of iterated Sacks generic extensions, having inverse ordinals as the 
"length" of iteration, was introduced by Groszek [5]. We make different technical 
arrangements to obtain "ill'Tounded Sacks iterations. 

Let / be a partially ordered set in 9Jt. Let 31 = 2ra, the Cantor space. A typical 
forcing condition is, in 971, a set X C 3f^, where £ C / is countable, of the form 
X = { H{x) : x e ® f } , where H: 9>l-' —> 3)** is a one-to-one continuous function 
such that 

x\Z = y\Z <*=• H{x)\Z = H{y)\Z 

for all x, y e 31 ̂  and any initial segment <!; of £. Section 1 contains the definition 
and several basic lemmas on the forcing conditions. 

Sections 2 and 3 show how the forcing conditions split and gather via a kind of 
fusion technique common for the Sacks forcing. Section 4 considers the behaviour 
of continuous real functions on forcing conditions. The results of this study are 
involved in the proof of additional items of Theorem 1. 

Section 5 formally defines the generic extension and proves the preservation of Ki 
and an important theorem saying that the reals in the extension can be presented 
by continuous functions coded in the ground model and applied to generic objects. 
This leads to the proof of Theorem 1 in Section 6. 

Two applications of the technique of Sacks iterations are presented in the final 
part of the paper. 

Iterated vs. product Sacks models. Section 7 is devoted to a cardinal invariant 
which distinguish "long" product and iterated Sacks extensions. J. Steprans gave 
some invariants in a talk on this matter at LC '95 (Haifa, August 1995). We present 
a simpler invariant. 

Every collection &~ of continuous functions / ' : JV —> JV determines a partial 
order <? on the reals as follows: x <& y if and only if 

x = A(f2(...fn(y)...)) 

for some functions f\, fi, • • •, fn 6 &• Let I (the linear order cardinal) denote the 
least cardinality of a family & such that < y linearly orders the reals. 

THEOREM 2. Let 9Jt be a countable transitive model of ZFC. Then we have I > 
card(cOT) in each countable support product Sacks extension of £D? with strictly more 
than tm-many factors but we have I < card(cOT) in each countable support iterated 
Sacks extension of DR. 

In particular, if c = Hi in Tt then I = c > Kf1 in countable support product Sacks 
extensions of 931, the ground model, provided we have at least K^-many factors, 
but [ = Nf1 < c in countable support iterated Sacks extensions of Wl, provided 
the length of the extension is an ordinal of cofinality > ttf1 in 9Jt. In the second 
case, the collection & of all continuous real functions coded in 971 witnesses that 
[ < card(cOT) in the extension. 

The selection principle is consistent with the negation of CH. Burgess [3] intro­
duced the following selection principle: 

SP: every Lj equivalence relation on the reals has a £ 2 selector. 

(A selector for an equivalence relation E is a subset of the domain of E which has 
exactly one element in common with each E-class.) 
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Clearly SP follows from the axiom of constructibility V = L, and, more generally, 
from V = L[a] for a real a. But actually a "good" £2 wellordering of the reals is 
applied. Burgess asked whether SP implies the existence of a 2^ wellordering of the 
reals. Budinas [2] answered the question negatively: 

THEOREM 3 (Budinas [2]). SP+ "there does not exist a real-ordinal definable well-
ordering of the reals" +2N° = K2 is consistent with ZFC. 

Sacks iterations of the constructible universe, of length a>2, were applied in [2] 
to prove the theorem. It is demonstrated in Section 8 how our general technique 
of exploration of iterated Sacks models produces another proof of Theorem 3, 
considerably shorter than the proof given by Budinas. 

§1. The forcing. Let CPO be the class of all countable (including finite) partially 
ordered sets £ = (£; <). Greek letters £, n, £, 1? will denote sets in CPO. Characters 
i, j are used for elements of sets in CPO. For any £ e CPO, ISf is the collection 
of all initial segments off. For instance 0 and £ itself belong to IS f . 

Usually a "basic" p.o. set £ e CPO will be fixed, so that the other p.o. sets 
involved in the reasoning are subsets of £ and even members of IS^. In this case, 
for any i e £ we shall consider special initial segments 

[<i] = {jeC:j<i} and £ i ] = {j e £ : j % i }, 

and [</], [j£i] defined similarly. 
As usual, JV = com is the Baire space; points of JV will be called reals. 
3! = 2m is the Cantor space. For any countable set £, 3 ^ is the product of 

£-many copies o f® with the product topology. Then every S^ is a compact space, 
homeomorphic to OS itself unless £ = 0. 

Assume that n C £. If x e 3ft then let x \n e 9)i denote the usual restriction. If 
X C 9f* then let 

X\n = {x\n:xeX}. 

But if Y C 3f then we set 

7 f - 1 £ = { x e S f < :x\ne Y}. 

To save space, let X \<t mesLU X \[<i], X\^i mean X\[^i], etc. 

DEFINITION (The forcing). For any set £ e CPO, Perf f is the collection of all 
sets A" C ®£ such that there exists a homeomorphism i / : 3f^ onto X satisfying 

x0f£ = x1r£ <=^ //(x0)r£ = i/u1)r£ 
for all xo, x\ e d o m i / and £ e IS^. Homeomorphisms / / satisfying this require­
ment will be called projection-keeping. To conclude, sets in Perf f are images of ® f 

via projection-keeping homeomorphisms. 

PROPOSITION 4. Every set X € Perf f is closed and satisfies the following-? 

P-l. Ifi&C, and z € X\<t then the set 

DXz(i) = {x(i) : x e X & x\Ki = z} 

is a perfect subset of2>. 

2This could be taken as the base for an independent definition of the forcing; however in fact the 
properties P-l, P-2, P-3 do not fully characterize Perff. 
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P-2. If £, e IS; and a set X' C X is open in X (in the relative topology) then the 
projection X' \£ is open in X \£? 

P-3. If ^, n e ISC> x £ X\£, y £ X\n, and x\(^ n n) = y\({ Dn), then 
xUyeXUZUn). 

PROOF. Obviously S^ satisfies P-l, P-2, and P-3. On the other hand, one easily 
sees that projection-keeping homeomorphisms preserve the properties. H 

The following lemma shows how P-3 works. 

LEMMA 5. Suppose that X £ Perff, ^,r\ £ ISj, and Y C X\n is any set. Let 

Z = Xn(Y\-lO- Then 

z\z = {x\$)n(Y\({nti)rlZ)-

PROOF. To prove the nontrivial direction D let x belong to the right-hand side. 
Then in particular x \(£, n n) = y ["(£ n n) for some y £ Y. On the other hand, 
x e l ^ a n d j e X\n. Property P-3 of X implies xU y £ X\(£,\Jn). Thus 
JCU y £ Z\(£\Jri) since y £ 7 C Xf^, so x G Z[£. H 

DEFINITION. If / / : Sr£ onto X is a projection-keeping homeomorphism then for 
any £ £ IS^ we define an associated projection-keeping homeomorphism H^: S^ 
onto Jf^ by # { ( x ^ ) = H(x) \£ for all x e &. 

LEMMA 6. IfX £ Perfc a/w/<f; e ISC thenX\£ £ Perf,*. 

PROOF. If i / witnesses that X e Perf{ then A'f̂  e Perf «j via J^j. H 

LEMMA 7. Suppose that H is a projection-keeping homeomorphism, defined on 
X £ Perf f . 7%en tf;e z'mage i / " X = { # ( x ) : x € Jf } belongs to Perfc. 

PROOF. A superposition of projection-keeping homeomorphisms is a projection-
keeping homeomorphism. H 

LEMMA 8. ,tewwe ?/ia? X £ Perf {, a set X' C X is open in X, and x0 £ X'. 
There exists a clopen in X set X" £ Perf ,̂ X" C X', containing x0. 

PROOF. By the previous lemma, it suffices to prove the result for X = OS1-. Note 
that if xo £ X' C sK and X' is open in 91^ then there exists a basic clopen set 
C C X' containing xo. (Basic clopen sets are sets of the form 

C = {x £ 9lc : ux c x(ix) &•••&.um C x(/m)}, 

where m £ co, i\, ..., im £ f are pairwise different, and u\, ..., um £ 2<co.) One 
easily proves that every set C of this type actually belongs to Perf f. H 

LEMMA 9. Suppose that X £ Perff, ^ € ISC, F e Perf7, and Y C X\n. Then 
the set Z = X n ( F p ' O belongs to Perf^. 

3 In other words, it is required that the projection from Jf to A" \S, is an open map. 
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PROOF. Let F : 9S^ onto X and G: 3sn onto Y witness that, respectively, X G 
Perf f and Y G Perf n. Define a map H: S^ —• Z by 

# ( z ) = F ( F ^ ' ( G ( z ^ ) ) U (zt(C \ tf))) for all z G ® c . 

Prove that H maps S^ onto Z. Let z G &. Then # ( z ) e l b y the choice of F . 
Furthermore 

H{z)\n = Fn(F~\G{z\ri))) = G{z\r,) G Y 

so H(z) G Z. Let conversely z' G Z, so that z' = F(x) for some x e 3)1-. We 
define z G S^ by: 

z = G-1CF„(*r>7)) U ( X K C N > / ) ) . 

(To be sure that G _ 1 is applicable note that F,(xf?/) = F{x)\n = z'\n G Zf^ = 7.) 
T h e n # ( z ) = F(x) = z'. 

Prove that H is projection-keeping. Let ZQ, Z\ G S^ and £, € ISf. Suppose that 
z0[£ = zi \£, and prove /f(z0) [£ = H{z\) \£. Let us define xe G ® c (e = 0, 1) by 

x e = F - 1 ( G ( z J ^ ) ) u ( z J ( C \ ^ ) ) . 

Then, first, / / (ze) = F{xe) and, second, since both F and G are projection-keeping, 
we have x0\£ = x\ \£ and then F(x0) [£ = F(*i) |"£, as required. The converse is 
proved similarly. H 

LEMMA 10. Assume that ( Ctf e CPOandX e Perff. Then the set X' = X\~l& 
belongs to Perf #. 

PROOF. If X e Perf f is witnessed by some H: S?c onto X then the homeomor-
phism H', defined on 31® by the equalities 

H'(x')\(#\C)=x'\(#\t;) and H'(x')\{ = H(x'\C) 

for all x' G S ^ , witnesses that X' G Perf,,. H 

Let ^perfect tree be any (nonempty) tree T C 2<1U such that the set of all splitting 
points of T, 

B(T) = {t G T : r 0 € F & / ~ 1 G T}, 

is cofinal in F . Suppose T is such a tree. Define the following: 

• [T] = { a G 2W : Vw (a |m G F) }, a perfect set in 3> = 2ro. 
• An order isomorphism y8r: 2<m onto 5 ( F ) . We define /?r(") € 5 ( F ) for every 

w G 2<m by induction on domw, putting pT{u~e) to be the least s G 5 ( F ) 
such that pT{u)~e C s, fore = 0, 1. 

• A homeomorphism Hj: 3! onto [F] by 

HT{a)= {jpT{a\m) 
m£co 

for all a G 3S. 
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LEMMA 11. Assume that i is the largest element in £ G CPO, n = £ \ {/}, 
Y G Perf,,, a function ZT continuously maps Y into3B(2<0') so that !T{y) is a perfect 
tree for ally G Y. Then 

X = {x e ^ :x\n e Y&x(i) e [F{x\n)] } 

belongs to Perff. 

PROOF. The set Z = Y\~l£ belongs to Perfj by Lemma 10, so it suffices by 
Lemma 7 to define a projection-keeping homeomorphismi/: Z o n t o X . Letz G Z. 
Then y = z \n G Y while a = z(i) G 3f is arbitrary. We define x = H(z) G 2?^ so 
that x\n = y and x(z') = H^^(a). Then / / maps Z onto X because every H:T^ 
maps S? onto 

[^ ( j ) ] = {x(i) :xeX&x\n = y}. 

H is one-to-one since each HT is one-to-one, and H is continuous since so is the 
map 9~. It remains to prove that H is projection-keeping, i.e., the equivalence 

zof£ = z,f£ ^=> H(z0)\Z = H{zx)\i 

for all zo, zi e Z and £ G ISf. If I' £ £ then £ C 77 and zf£ = i /(z) f£ by definition. 
If i G £ then £ = £, so the result is obvious as well. -\ 

§2. Splitting. We shall use the construction of sets in Perf f as 

where all X„ belong to Perf j . This and the next sections introduce the technique. 
First of all let us specify requirements which imply an appropriate behaviour of 

the sets Xu e Perf f with respect to projections. We need to determine, for any 
pair of finite binary sequences u, v G 2m (m G to), the largest initial segment 
£ = £[w, V] of £ such that the projections Xu f£ and 1"„ f£ have to be equal, to run 
the construction in proper way. 

Let us fix £ G CPO and an arbitrary function cj>: co —> £. 
We define, for any pair of finite sequences u, v e 2m, an initial segment 

/<m. u{l)jtv(l) 

= {j G £ : - 3 / < m («(/) ^ «(/) &y > </>(/)) } 
GlSr 

DEFINITION. A ^-splitting system (rather (^fw)-splitting as the notion depends 
only on <f> \m) in Perf f is a family (Xu : u G 2m ) of sets Z„ G Perf ^ such that 

S-l Xu \C<i>[u, v] = Xv \Cplu, v] and 
S-2 if i G £ x £4«, v] then ZM f<, n Xv \<< = 0 

for all u, v G 2m. A splitting system (Av : w' G 2m + 1) is an expansion of a splitting 
system (Xu : u G 2m ) if and only if X ^ e C X„ for all u e 2m and e = 0, 1. 

We consider two ways how an existing splitting system can be transformed to 
another splitting system. One of them treats the case when one of the sets changes 
to a smaller set in Perf f, the other expands to the next level. 

file:///Cplu
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LEMMA 12. Assume that {Xu : u £ 2m ) is a <j>-splitting system in Perf j , Mo G 2m, 
and X € Perf f, X C X„0. Le? us re-define the sets Xu by 

x^ = xun(XK4u,u0]rlO 
for all u £ 2m. Then the re-defined family is again a cj>-splitting system. (Notice that 

K = *•) 

PROOF. Each set X'u belongs to Perf f by Lemmas 6 and 9. We have to check only 
requirement S-1. Thus let u, v € 2m and £ = ^[u, v]. We prove that X'u \£, = X'v [£. 
Let in addition fu = ^[w, UQ] and f„ = ^[u , wo]. Then 

xM = (xu\e)n(Xo\($nCu)r
1t), xM = (xv\z)n(x0\(tncv)r

lZ) 
by Lemma 5. Thus it remains to prove that £ n Cu = £ 0 £« (the "triangle" equality). 
Assume on the contrary that, e.g., i £ <j; n Cu but / ^ £„. The latter means that 
i > 4>{l) in C for some / < m such that«(/) ^ wo(0- But then either u{l) ^ «o(/)— 
so i £ £„, or «(/) ^ v(l)—so i fi £,, contradiction. H 

We are going to prove that each splitting system has an expansion. This needs to 
define first a special splitting construction. 

Let i e C, and X £ Perf^. Let us say that a pair of sets Xo, X\ £ Perfj is an 
i-splitting of X if and only if 

X0 U Xi C X, X0\zi = Xi r2,, and X0\<inX]\<i = 0. 

The splitting will be called complete if Ao U X\ = X—in this case we have 

^ofe = -^i te< = X\-£t. 
ASSERTION. Let i £ £. Every X e Perf f admits a complete /-splitting. 

PROOF. If X = 91^ then we define 

i ; = {x eX:x(i)(0) =e}, e = 0, 1. 

Lemma 7 extends the result on the general case. H 

LEMMA 13. Every ^-splitting system {Xu : u £ 2m ) in Perf f can Z>e expanded to a 
(^-splitting system (Xu* : u' £ 2m + 1) in Perf j . 

PROOF. As 0 is fixed, we shall write C[w, w] instead of ^[w, u]. Let i = <£(m). 
Let us consider, one by one in an arbitrary but fixed order, all sequences u £ 2m. 

At each step u, we shall i -split Xu in one of two different ways. 

CASE A. There does not exist w £ 2m, considered earlier than u, such that i £ 
([w, w]. Then let Xu-*0, Xu-X be an arbitrary complete i-splitting of Xu. 

CASE B. Otherwise, let w be the one encountered first among all sequences w of 
the mentioned type. We put 

fore = 0, 1. 
Let us prove that Xu~0, X^ is a complete /-splitting of Xu in this case. First of 

all, Xu \C[u, w] = Xw \C[u, w]by S-1; it follows that 
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so the sets X ~ belong to Perf { by Lemmas 6 and 9. 
By the choice of w, we had Case A at step w. (Indeed, if otherwise i G C,[w, w'] for 

some w' G 2m considered even earlier, then i e C[w, w'] by the "triangle" equality in 
the proof of Lemma 12, contradiction.) Therefore for sure Xw~Q, Xw~{ is a complete 
/-splitting of Xw. In particular, Xw-e \<t = Xw \<t. On the other hand, Lemma 5 
implies 

x~e\2i = Xu\lin(xw~e\<ir
l[m 

for e = 0, 1, since [£i] n [</] = [</]. This implies A ^ l ^ ; = Af^ |" î-
By definition, X - f<,> = X ~ |<,- for e = 0, 1, so 

J > u e ' — we' — 

since Af̂ ,,, Af^ is a splitting of Xw. Finally, since Xw-0, Xw~} is a complete 
/-splitting of Xw, and Af̂  |<,; = Xu |<,-, we have Af^ U Af^ = A',,. 

Thus A"M~0, A'^j is a complete /-splitting of Ar„ for all u G 2m. It remains to prove 
that (AV : u' G 2m+1) is a splitting system. To prove S-l and S-2, let u' = w~d 
and v' = v~e belong to 2m+1; d, e € {0,1}; £ = £[«,«], £' = C[«>'], and 
F = Ar„ I'd; = A'„ I'd;. Consider three cases. 

CASE 1. / g d;. Then by definition d; = <f C [^/]. We have Xu, \£ = Xu\£ = Y 
because Xu~0, Xu-X is a complete /-splitting of Xu, Similarly AV I'd; = Y. This 
proves S-l for the sets AV, Xv>, while S-2 is inherited from the pair Xu, Xv because 
d; = dj' and Xu. C Xu, AV C AV 

CASE 2. / G d; and d = e, say d = e = 0. Then again d; = d;' by definition, so S-2 
is clear, but / G dj'. To prove S-l, let w G 2m be the first (in the order fixed at the 
beginning of the proof) sequence in 2m such that / G {[M,w] U C[i>, H (e.g., u> can 
be one of w, U). Then, since i G d; = £[M, ^], we have / G C[w, w] n C[v,H by the 
"triangle" equality. Finally it follows from the construction (Case B) that 

x~0 K = (xu \^ n (A;~01<; \-
la x~0 \z = (xv \o n (z^0 r<; r1*)-

However A-„ f<* = Xv \£ = 7; this proves Xu~0|<f = Xv~0|<f. (Note that <f = f.) 

CASE 3. / G dj but d ^ e, say d = 0, e = 1. Now d;' = d; n [^/] is a proper subset 
of d;. Let w be introduced as in Case 2. Note that dj' n [</] = [</], so 

x~0\z' = (xu \0 n (x^u rl$'), xv^ r<S' = (xv \a n (A;- |<;- rlO 
by the construction and Lemma 5. However X ^Q1<; = A"^ |<, because the pair 
Xw~0, X ^ is an /-splitting of Xw. Furthermore, XU\SJ = XV\E,' = Y\£,' because 
£ | £ =XV\Z= Y. We conclude that X-J? = X~x \?. 

Let us prove S-2 for some /' G ( x d;'. If /' ^ d; then already Xu \<t> n A"„ f<,-/ = 0. 
If /' G d; \ d;' then /' > /, so that it suffices to prove S-2 only for /' = / = <j>{m). To 
prove S-2 in this case, note that X^ |<(- = Xw~0 \<t and Xv-X \<t = Xw~x \<t by the 
construction. But X ^ |<, n Xw~x \<t = 0 as the pair Xw~0, Xw~x is an /-splitting, 
soA-^o|<,nA'r ir<1 = 0. W " H 
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§3. Fusion lemma. 

DEFINITION. An indexed family of sets Xu G Perf^, u G 2<w, is a ^-fusion 
sequence in Perf f if, for every m e co, the subfamily (Xu : u G 2m ) is a (/"-splitting 
system, expanded by {X„ : u G 2m + 1) to the next level, and 

S-3 For any s > 0 there exists m e co such that diam A"„ < e for all u e 2m. (A 
Polish metric on S^ is assumed to be fixed.) 

A function <f>: co —* C is called £ -complete if and only if it takes each value i G £ 
infinitely many times. 

THEOREM 14 (Fusion lemma). Let <j>bea (-completefunction. Suppose that (Xu : 
u G 2<co ) is a cf>-fusion sequence in Perf f. T/ien ffe ^e? 

belongs toVeri^. 

PROOF. The idea of the proof is to obtain a parallel presentation of the set 
D = 3^ as the "limit" of a (/"-fusion sequence, and associate the points in D and X 
generated by one and the same branch in 2<m. So let us define a fusion sequence of 
sets Du G Perf f such that 

&=£>= f l \J Du. 

Lemma 13 cannot be used: we would face problems with requirement S-3. We 
rather maintain a direct construction. For m G co, we put £m = {<t>{l) : I < m}. 
Let / G Cm, and 

{Km:<p(l) = i} = {l<,...,l'k{i)_l} 

in the increasing order. If u G 2™ then we define w, G 2*:(,') by u,{k) = u(l'k) for all 
k < k(i), and put 

Du = { y € Z> = & : Vi G £m («,- C j ( / ) ) }, 

so that Z)„ is a basic clopen set in 3*>. (Note that y{i) G 3 whenever y e 3** and 
/ G £.) One easily sees that the sets Z>„ form a (/"-fusion sequence (S-3 follows from 
the £ -completeness of </>) and 

U Du = ®C 

«G2m 

for all w. 
Now for each a G 2W = 3 the intersections 

P|Zfl rm and f]Dalm 
m m 

contain single points by S-3, say, respectively, xa e X and da e D, and the maps 
flHx„, a H-> Ja are continuous. We put 

£ 4 a , * ] = f~l C0[afw, ftfm]. 
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(In particular ^[a, b] = £ if and only if a = b.) It follows from S-l and S-2 that 

xa rC*[a,b] = *h K*[a, b] and \ 

*« t</ 7̂  *A T<; and da f<,- ^ rffc f<(- whenever / £ C4«> b]. 

This allows us to define a homeomorphism /f: D = 2^ onto X by F (da) = xu for 
all a e 2'". To see that H is projection-keeping let £, G IS; and, for instance, <fa, 
(i/, G 31 ̂  and Ja f£ = dh \£_. Then £ C ^[a,b] by the second part of (*), so we get 
xa \£, = xh \£ by the first part of (*), as required. H 

The classical theorem, that any uncountable Borel or E{ set includes a perfect 
subset, does not directly generalize on sets in Perf ;: if card £ > 2 then one easily 
defines an uncountable closed set W C & which does not include a subset in 
Perf^. However a more weak statement survives. 

COROLLARY 15. Assume that X G Perf;, and B C 9S^ is a Borel set. There exists 
a set Y G Perf ;, 7 C Jf st/c/z f/wtf eif/ier 7 C 5 o r 7 n 5 = 0. 

PROOF. Argue by induction on a, where 5 e E ° . If a = 1, so that B is open, 
apply Lemma 8. Otherwise B = |Jm Bm where Fm G 11°m for some am < a. If 
there is a set Y e Perf;, 7 C X n 2?m for some w, then K B . Otherwise, 
by the inductive hypothesis, we get, using Lemmas 12 and 13, a fusion sequence 
(Xu : u G 2<ru) of sets ZM G Perf ; such that ZA C X and I u f lB f f l = 0 for all 
m eco and u G 2m. The set 

ffl6(o WG2"1 

is as required. H 

The result can be strengthened! 

COROLLARY 16. Assume that X G Perf;, and A C Of1* is an analytic set. There 
exists a set Y G Perf ;, Y C X such that either YCAorYnA = 9. 

PROOF. Consider a Perf ^-generic extension V+ of the universe V. For a Borel or 
analytic set C in V, let C + denote the set defined in V+ by the same construction. 
There is a condition Y' G Perf; which decides x G A+, where x is the name for the 
Perf ^-generic element of 3>^. Suppose that, e.g., Y' forces x G A+. As we shall see 
in Section 5, Nj remains uncountable in V+. Therefore there is a Borel set B C A (a 
constituent of A) and a condition Y G Perf;, Y C Y', which forces x G B+. Now, 
by Corollary 15, we can assume that either YCB or YP\B = %. The "or" case 
is impossible by the Shoenfield absoluteness, because Y forces x G Y+. Therefore 
Y c B, as required. H 

§4. Continuous functions. This section studies the behaviour of continuous func­
tions on sets in Perf; from the point of view of a certain reducibility. 

DEFINITION. For each set £, Cont; is the set of all continuous functions F: 9)^ —> 
JV = a/°. Assume that F , G G Cont;, <J C (, i G C, X C @^. 

F reduces to % on X if and only if 
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for all x, y € X. 
F reduces to G on X if and only if 

G{x) = G(y)=>F(x)=F(y) 

for all x, y e X. 

F captures i on X if and only if 

F(x)=F{y)=>x(i)=y{i) 

for all x, y e X. 

It follows from the compactness of the spaces we consider that if F reduces to 
^ on a closed set X then there is a continuous function F' € Cont^ such that 
F(x) = F'(x\£) for all x £ X, while if F captures i e £ on a closed set X then 
there is a continuous H: JV —> Sf such that x(/) = H(F(x)) for all x £ j f . 

LEMMA 17. Let <J, 77 e IS^. TfF reduces to both E, and n on X & Perf^ ?/zen F 
reduces Wd = £ C\n on X'. 

PROOF. Let x, y e X and xftf = y\d. By Proposition 4 (P-3) there is z e X 
such that zf^ = x\£ and z\n = jf^. Now F(x) = F(z) = F ( j ) . H 

LEMMA 18. Suppose that% e ISf, the sets X\ andX2 belong to P'er'ff, and X\ f£ = 
X2 [£. Tften e/?/;er F reduces to £, on X\ UX2—and then obviously F"X\ = F"X2,—or 
there exist sets X[, X2' e Perf (, X[ C JJf] a«J X,' C X2, .SMC/; r/za? still X[ \£ = Xj f£, 
6w? F"X; n F"X2' = 0. 

(We recall that F"X = { F(x) : x e X } is the image of X via F.) 

PROOF. We assume that the function F does not reduce to £ on X\ U X2, and prove 
the "or" alternative. By the assumption, there are points x\, x2 € X] UX2 satisfying 
*i f<? = x2 \£ and F(xi) ^ F(x2). It may be supposed that x\ e X and x2 € X2, 
because X\ f£ = X2 \£. By the continuity of F there exist clopen neighbourhoods 
U\ and £/2 of, respectively, xi and X2 such that F"f/i n F"U2 = 0. By Lemma 8, 
there is a set X" e Perf f, X," C Xj n t/i containing x\. 

The set X2" = X2 n (X/ ' l ^ r 'C) belongs to Perfc by Lemma 9, and contains 
X2 since xi f£ = x2f£\ By Lemma 8 again, there is a set X2 € Perf^ satisfying 
X2' C X2" n £/2. It remains to define X[ = X," n (X2' r£ p ' O - H 

LEMMA 19. Assume that F e Contf reduces to £, £ ISf on X € Perf^. Le? 
r G C \ £,. Then F does not capture i on X. 

PROOF. Suppose on the contrary that F captures some i e C N £, on X. Then the 
co-ordinate function C,(x) = x(i) reduces to £ on X. Since / does not belong to £, 
and on the other hand C, reduces to [<i], we conclude that C, reduces to [<i] on X 
by Lemma 17. But this clearly contradicts property P-1 of X (see Proposition 4). H 

THEOREM 20. Assume that X e Perff and F, G € Cont^. Then there exists 
Y e Perf ,̂ Y C X, such that either F reduces to G on Y or there exists i e C, such 
that G reduces to [^i] but F captures i on Y. 
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PROOF. Let us fix a £-complete function <p and define the initial segments C[w, v] = 
C^[M, v] (as in Section 2) for every pair of finite sequences u, v e 2<OJ of equal length. 
The notions of splitting system and fusion sequence are understood in the sense of 

We define a fusion sequence (Xu : u e 2<m) satisfying X\ = X and: 

(t) If m e co, i = <p(m), and u G 2m then diam(F"X„) < w" 1 and either F 
reduces to [£i] on Xu or there does not exist X' G Perf ,̂ X' C Xu, such that 
F reduces to [^/] on X'. The same {independently) for G. 

(X) If m G co and u,ve2m then either 
(1) F reduces to £[M, V] on the set I „ U l t , or 
(2) F"XU n F ' X = 0. 
77ze same (independently) for G. 

We first put AA = X, as indicated. 
Assume that sets Xu (u € 2m~l) are defined for some m > 0. We use Lemma 13 

to get a splitting system (Zu : u G 2m ) which expands the splitting system (X„ : 
H G 2 m _ l ) to the level m. We can suppose that diamZ„ < m~x for all u e 2m. 
(Otherwise apply Lemmas 8 and 12 consecutively 2™ times to shrink the sets.) We 
need this property to provide requirement S-3. 

We now consider consecutively all pairs u, v e 2m. For every such a pair we 
first apply Lemma 18, getting sets Su, Sv e Perf^ such that Su C Z„, 5„ C Z„, 
^ \([u, v] = Sv rC[". v], and either the function F reduces to £[w, u] on S1,, U S„ or 
F"SU n F"5„ = 0. 

We set S'w = Zw n (5„ fC[w, M] p ' O for all u> e 2m; ( s ; : u) e 2m ) is a splitting 
system by Lemma 12. Note that Sv c S1^ as Su \C[u, v] = Sv \£[u, v]. This allows us 
to repeat the operation: putting 

z'w = sin(sv\C[w,v]rlC) 

for all w e 2m, we obtain a new splitting system of sets Z'w C. S'w (w e 2m) such 
that Z'u = Su and Z'v — Sv. This ends the consideration of the particular pair of 
tuples u, v G 2m, and one comes to the next pair. 

Let Xu C Z„ (u e 2m) be the sets finally obtained after 2m + 1 steps of this 
construction (the number of pairs u, v to consider). One easily verifies that this is 
a splitting system in Perf j satisfying (J) for the function F. 

A simple application of Lemma 12 allows to consecutively shrink (2m times) sets 
Xu so that they also satisfy (f) for F. 

After this we repeat the same two-stage construction for G, the other function, 
getting finally the sets Xu (u G 2m) of mth level. 

Thus we obtain a fusion sequence of sets Xu (u e 2<co) satisfying (f) and (X). The 
set Y = f]m U„S2

m -*« belongs to Perf f by Theorem 14. 

CASE 1. for all m and w, u e 2m, the following holds: if F"XU n F"Z„ = 0 then 
G " ^ n G"Z„ = 0. We prove that F reduces to G on 7 in this case, so that Y 
satisfies the "either" requirement of the theorem. 

Let x, y G Y. Suppose that F(x) ^ F(y) and prove G(x) ^ G(y). 
Note that x = xa and y = x/, for some a, b £ 2m, i.e., {x} = flmea; ^ofm a n d 

{^} = flrneoj -^>rm's e e thePr o of0f Theorem 14. SinceF(x) ^ F(y), it follows from 
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(f) and (f) that for some m we have F"XU C\F"XV — 0 where u = a \m and v = b \m. 
Then G"XU n G"XV = 0 by the assumption, which implies G(x) ^ G(y). 

CASE 2. otherwise. There exist m e co and a pair of u, v e 2m+1 such that 
F"XU n F"Z„ = 0, but G reduces to <J = £["• v] on X„ U X„. It can be assumed 
that m is the least possible, so that by (J) T7 reduces to n = £[s, t] on Xs U A", where 
s = u\m and ? = v\m. 

Let <f = u{m), e = v(m), so that u = s~d, v = t"e. 
We observe that i = <j>(m) e n and d ^ e, as otherwise ^ = ^ which easily leads 

to contradiction with the assumptions on F. Let say d = 0 and e = 1, so that 
M = ,v~0 and v = t^1. We have £, = nf\ [£i]. Therefore G reduces to [^i] on Xs by 
an assumption above. 

Now the main part of (f) enters the play. We assert that there does not exist a set 
X' € Perf f, X' C Xs, such that F reduces to [^i] on X''. 

(Indeed otherwise F would reduce to [^i] already on Xs by (f). Then F reduces 
to £ = n n \£i\ on Xs by Lemma 17. It follows that F reduces to £ on a bigger set 
Xs U Xt simply because F reduces to n on Xs U X, and Xs \n = X, \t] by S-l. But 
this contradicts the assumption F"XU n F"XV = 0 since Xu C Âv and A",, C A", are 
nonempty sets satisfying Xu \£ = Xv \£.) 

Let us check that the set Y' = Y C\ Xs = f]keiu Uu,e2* %fw and the element 
/ = <l>(m) e C, chosen above satisfiy the "or" requirement of the theorem. 

First of all Y' e Perf^ by Theorem 14 (via the corresponding shift of the function 
(j>). Furthermore G reduces to [^z] on Y' by the above. It remains to verify that F 
captures i on Y'. 

Let x, y £ Y'. Suppose that F{x) = F(y) and prove x{i) = y{i). 
Note that x = xa and y = xh for some a, b £ 201 satisfying s c a, s c b, i.e., 

{ x } = f | X a r / t and M = n * * r * ' 

see the proof of Theorem 14. We put 

k 

then *r£[a, Z>] = y\([a,b] (see assertion (*) in the proof of Theorem 14), so it 
suffices to check i e ( [ a \k, b \k] for all k. 

Suppose on the contrary that i ^ i? = t,[a\k,b \k] for some k; necessarily k > m 
because a \m = b \m = s. Note that F reduces to i? on X' = Xa^k by (J) because 
F(x) = F(_y). It follows that F also reduces to [^/] on the set A" C A', as i £ d, 
which is a contradiction with the above. H 

COROLLARY 21. Assume that X € Perff. If i, j € £ am/ / < y /Aen r/iere 
is F G Perff, y C Ar, such that the co-ordinate function Cj defined on 31 *• by 
Cj(x) = x(j) captures i on Y. 

PROOF. Otherwise Theorem 20, applied to the co-ordinate functions C, and Cj 
leads to contradiction with Lemma 19. H 
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COROLLARY 22. Suppose that £ has only countably many initial segments, X e 
Perf^, and F G Contf. Then there exist Y G Perf^, Y C X, and an initial segment 
n ofC such that F one-to-one reduces to n on Y. (In the sense that 

x\ri = y\ri <̂ => F(x) = F(y) 

for all x, y G Y'.) 

PROOF. Let { r\m : m e co } enumerate all initial segments of £ so that each of 
them has infinitely many numbers. For each m let us fix once and for all a function 
Hm G & such that 

x\nm=y\nm <S=> Hm{x) = Hm{y) 

for all x, y G S^. Applying Theorem 20 consecutively for F and different functions 
# m we obtain a decreasing sequence 

X = X0 D Xi 2 X2 D . . . 

of sets A^ G Perf^ satisfying, for each m, one of the following three conditions: 

(A) there exists i $. nm such that F captures i on Xm; 
(B) F one-to-one reduces to nm on Xm; 
(C) there exists i G r\m such that F one-to-one reduces to [^z] n nm on Xm. 

Let ?/ be the intersection of all nm such that (B) or (C) holds at step m. Then n = rjmo 

for some wo- It remains to prove that we have (B) at step m$. 
Indeed if i £ nm then by definition i £ nm for some m such that F reduces to nm 

on Xm. Now F cannot capture i on Xm by Lemma 21. Therefore (A) cannot hold 
at step m0. 

As for (C), suppose on the contrary that i G nm and F one-to-one reduces to 
*!' — [¥'] n nm(j on Xmo. Since n' = tjm for some m > m0, we have (B) or (C) 
at step m by Lemma 19, so that n C n' by definition, which is a contradiction as 
i G tj \n'. H 

§5. Introduction to generic models. This section introduces generic models ob­
tained by forcing conditions in different sets Perff. This approach will then be 
detailized towards particular applications. 

We fix a countable transitive model Tt of ZFC, the ground model, and a partially 
ordered set / G DJl (generally speaking, uncountable in 371)—the intended "length" 
of the planned iterated Sacks generic extension of 271. 

We let S = CPOOT(/) G 97T be the collection of all finite and 9Jt-countable sets 
£, e an, £ C / , therefore S C CPO in OJl.4 

For any £ G S, let Pc = (Perf f )
m . The set 

p = p / = (Jp( 

will be the forcing notion. To define the order, we first put \\X\\ = £ whenever 
X G Pc. Now define X < Y {X is stronger than Y) if and only if £ = || F| | C \\X\\ 
andJTf£ C Y. 

4If all initial segments of/ except possibly for / itself are countable in OT it would be technically easier 
to define S to be the set of all 27!-countable initial segments of / in 9JI. 
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Notice that every set in P^ is then a countable subset of 9S1* in the universe. 
However it transforms to a perfect set in the universe by the closure operation: the 
topological closure X* of a set X e Fr belongs to Perf j from the point of view of 
the universe. 

Let G C IP be a P-generic ultrafilter over SDT. It easily follows from Lemma 8 that 
there exists unique indexed set x = (a,- : / G / ) G 9)1, all a, = x(z') being elements 
of 9, such that xfC e X* whenever X e G and \\X\\ = C G S. Then 

m[G] = 9tt[x] = 3Jt[( a, : i € / >] 

is a F-generic extension of Tt. 
Suppose that / G 9Jt is an initial segment of/. It often happens in similar cases 

that sentences relativized to 5Dt[x \ J] are decided by forcing conditions X satisfying 
||^T|| C J. Let us prove this fact for the forcing notion P. 

THEOREM 23. Suppose that J G Wl is an initial segment of I and O is a sentence 
relativized to DJl[x\J]. Assume that£ g S , (' = (P\J, and a condition X G P{ forces 
O. 77ze« JT = JSTfC'/orc^ $ too. 

PROOF. Assume that this is not the case. Then there is a condition Y, stronger 
than X', which forces ->$. Applying Lemmas 6, 9, and 10, we get P-generic over SD? 
sets Gx and Gy, containing, respectively, X and y and such that 

(*) {X' G GX : | | r | | C / } = { Y' G GY : | | r ' | | C / } . 

Let x, y G 9f! be obtained from Gx and GY as above. Then x\J = y fJ by (*), so 
that O(x) is true in 9JT[GA-] if and only if *(y) is true in M[GY]. But this contradicts 
the choice of X and Y. H 

In the remainder of this section, we prove a cardinal preservation theorem for the 
extension 9t = Wl[G] and an important technical theorem which will allow us to 
study reals in 9t using continuous functions in the ground model 9DT. The results 
will be applied in the next section for the proof of Theorem 1. 

THEOREM 24. Kp1 remains a cardinal in 9t.5 

PROOF. Let / be a name of a function mapping co to cof1. It would be enough, 
given Xo € P, find a condition l e f , stronger than XQ, and a countable in *H set 
W such that X forces r a n / C W. 

We argue in 9JT. Let £0 = H^oll- We define the following objects: 

(1) a sequence 

Co c c, c c2 c • • • 

of sets ( m g E swc/; Z/?aZ (0 C (0; 
(2) the set 

C = | J Cm G H, 

an^fl C-completefunction <$>: co —> £, swc/i r t o </>(m) G Cm/or a/7 w; 

5We are not going to investigate the behaviour of other cardinals in 91, which depends on the cardinal 
structure in 9Jt and some cardinal characteristics of/. 
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(3) for any m, a ^-splitting system (Xu : u e 2m) of sets Xu G Perf £m such that 
XAC Xol^Co and 
(a) Xu~e C Xu \~

]Cm+] for all u £ 2m and e = 0, 1; 
(b) every set Xu (u e 2m) has dmmXu < m~x\ 
(c) every condition Xu {u e 2m) forces f (m) = yufor an ordinal yu. 

This solves the problem. Indeed, the family of sets Yu = XU\'XC is a ^-fusion 
sequence6 in Perf f, therefore 

x = n u Y» e p e r f c 
m£co K € 2 ' " 

by Theorem 14, and X is stronger than Xo by the construction. Finally, X forces 
that the range of / is a subset of the countable in 9?t set W = { yu : u e 2<m }. 

To start the construction, we pick up a condition X\, stronger than the given Xo, 
which decides the value /(0), and put Co = \\X\\\. 

Suppose that <f> \m, Cm, and the sets Xu (w G 2m) have been defined. Let UQ G 2m, 
There is a condition Z G Perf f / for some C' G E, C' ̂  Cm, which is stronger than 
X^, decides the value / (w +1), and has diam Z < (m +1) ~'. (We use Lemma 8 to 
fulfill the last inequality.) Define Y'u = Xu p ' C for all u e 2m; then ( Y'u : u e 2m ) 
is a (<£rm)-splitting system in Perfj/ and Z C 7^o. Using Lemma 12, we obtain a 
($ |"w)-splitting system (X'u : u e 2m ) in Perf {/ such that 

Jr„'c Y: = XU\-1C 

for all u e2m and the condition A 0̂ = Z decides the value f(m + 1). 
Iterating this procedure 2m times, we get a set Cm+i G 3, Cm+i 2 Cm, and a 

(</>fm)-splitting system (X'u : u G 2m ) in Perf ?m+1 such that 

^ C ^r 'Cm+i . d i am^ < [m + l)~\ 

and X'u decides the value f(m + 1) for all u G 2m. 
At this moment, we define 0(m) G Cm appropriately, with the aim to provide the 

final C-completeness of <j>, and use Lemma 13 to get a (cj> \{m + l))-splitting system 
(Xu> : u' G 2m+1) in Perf Cm+1 such that 

-*V%, - ^ » - ^ f Cm+l 

for all u G 2m and e = 0, 1. This ends the recursive step. H 

Continuous functions. It is a principal property of several forcing notions (includ­
ing the Sacks forcing and for instance the Solovay-random forcing) that reals in the 
generic extensions can be obtained by application of continuous functions (having 
a code) in the ground model, to generic sequences of reals. As we shall prove, this 
is also a property of the generic models considered here. 

We put F{ = (Contf ) m for ( G S. Obviously every F G F^ is a countable subset 
of 31 *• x com in the universe, but since the domain of F in 9Jt is the compact set S^, 
the topological closure F* is a continuous function mapping 3f^ into the reals (i.e., 
elements of the set JV = of, as usual) in the universe. 

6We assume that diam(Zt~'C) < diamZ whenever Z C &Z and £, C {. This suffices to prove 
requirement S-3 for the sets Xu by diam Yu < diam A-!, < m~l for u 6 2m. 
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THEOREM 25. Let J &Wlbe an initial segment of I and r a real in 9Jl[x \J]. There 
exists ( e S , £ C / , and a function F G Fj iwcA ?to? r = F#(*r£). 

(Clearly the equality is absolute for any model containing r, x f£, and F.) 

PROOF. Let r be a name for r, containing an explicit absolute construction of r 
from xf/ and some parameter p eDJl. Let Xo e P, £0 = ||Ao||-

f̂ e argue in 971. 
By Theorem 23 the forcing of statements about r can be reduced to 7: if X e 

Perf^ forces r[m) = & then Xf(£ n J) also forces r(ra) = k. 
Having this in mind and arguing as in the proof of Theorem 24, one gets a 

system of objects satisfying (1), (2), and (3), with the following corrections: in (1), 
additionally, £m C /—hence £ C / , and in (3) (c), each condition Xu, u e 2m, 
forces r[m) = ku for some ku e co. We set Yu = Xu\~

l C, for all u e 2<w. 
Define a continuous function F' on the set 

X = f l U F" G P e r f f 
m ue2" 

as follows. Let x e X, m G co. There exists unique u e 2m such that x € Yu. We 
put F'(x)(m) = ku. The function F ' can be expanded to a function F e Cont^ 
(i.e., denned on &). Then JT forces r = F'#(x\C) = F*(x\C). H 

§6. Proof of the main theorem. We prove in this section that any P/ -generic model 

m = M[G] = 9Jt[x] = 3tt[( a, : i e / ) ] 

satisfies Theorem 1. This includes two parts: the "Sacksness" of the reals a, and 
the properties of 971-degrees of reals. 

We keep the notation of the previous section. 

6.1. The "Sacksness". Prove that a, is Sacks generic over 

aJt[xr<,] = 9JT[(a, : ; < ; } ] 

for any i £ I. 
Let x € 9Jt[xf<,] be, in 9Jt[x !"<,•], a dense subset in the set of all perfect trees in 

2<w; we have to prove that a, € [T] for some T G x. Suppose on the contrary that 
a condition Xo € G forces the opposite. As the forced statement is relativized to 
97t[x|"<,-], we may assume that ||Z0|| = [<i] by Theorem 23. 

We argue in SOT. The set 

D{y) = DXoy(i) = {x{i) : x e X0andxf</ = y} 

is a perfect subset of 3f = 2m for all y e YQ = Xo\Ki by Proposition 4 (P-l). 
We argue in 9Jt[jrf<,]. Note that y = x|"<, belongs to Y0

#. Therefore D#(y) = 
Dx#y(i) is a perfect set in the universe. Thus there exists a tree T e x satisfying 
[T] C D#(y). By the assumption, a, = x(z) £ [T]. 

By Theorem 25, there is, in 971, a continuous map J~: 9$^ —> 9!>{2<"J), satisfying 
T = ^ # ( x r < ; ) . Then T = F#(y), so [^#(y)] = [T] C D#(y). 

Now "5"#(y) is a perfect tree, 5"#(y) € T, and [5^#(y)] C Z)#(y)" is a statement 
formally relativized to 9JT[y] = 3Jt[x|"</]; therefore it is forced by a condition Y\ 
stronger than Y0 and satisfying || Y\ || C [</], by Theorem 23, hence || Y\ || = [</], 
so that 7i C y0. 
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We argue in 9JT. 
The set 

B = { y G Yx : T{y) is a perfect tree and [3~{y)] CD(y)} 

is a Borel subset of Y\ because the map 9~ is continuous. (The proof of this 
statement in fact involves Proposition A—item P-2.) By Corollary 15, there is a 
condition Y e Perf <,- such that either YCBorYnB = ®. 

Suppose that Y C\ B = $. Then by the Shoenfield absoluteness theorem Y forces 
that either ZT#(y) is not a perfect tree or [5"#(y)] <2 D*(y)—contradiction with the 
choice of Y\. We conclude that Y C B. 

In particular 3~{y) is a perfect tree for all y G Y. it follows that the set 

x = {xe 3>[~i]: x\<t € Y&x{i) e [̂ "(*r<.-)]} 
belongs to Perf <,- by Lemma 11. Furthermore 

[r(y)] QD(y) = DXoy(i) 

for all y € Y,so that X C X0. 
Since X is also stronger than Y\, X forces everything which is forced by X0 and/or 

Y\, and everything which logically follows from the mentioned. 
In particular, as X0 forces that a, does not belong to a set of the form [T] where 

T e T while Y\ forces that 5"#(y) G r, we observe that X forces a, ^ [5^#(y)]. It 
follows that X forces a, ^ Dx*y(i) because by definition D^-CO = [^(y)] . We 
conclude that X forces xf<, £ X* (indeed, clearly xf<, = y U {(/, a,)}), which is a 
contradiction. H 

A more careful7 reasoning leads to the following reduction of the models we 
consider to ordinary product and iterated Sacks extensions in some cases. 

PROPOSITION 26. If I = A is an ordinal in 971 then fj-generic extensions of DJl are 
equal to countable support iterated Sacks extensions of 9Jt of length X. 

If I is an unordered set of cardinality K in 9JI then P/ -generic extensions of 3Tt are 
equal to countable support K-product Sacks extensions of Wl. 

6.2. Degrees of constructibility of reals in the extension. Items 1, 2, 3 of Theo­
rem 1 follow from, respectively, Lemma 19 plus Corollary 21, Theorem 20, and 
Corollary 22, by essentially one and the same method based on Theorem 25. There­
fore we present proof of item 2 and, partially, item 1, leaving the remaining content 
for the reader. (A remark on item 3. It is a standard fact that if all initial segments 
of a countable in Wl p.o. set £ G 9Jt belong to 971 then C has only countably many 
initial segments in 9Jt.) 

PROOF OF A PART OF ITEM 1 OF THEOREM 1. We prove that if J e 971 is an initial 
segment in / and i G / \ J then a, does not belong to 97t[(a7 : j e J)]. Suppose 
on the contrary that a, G 97l[xr/]. Then by Theorem 25 there exist: a set £ G 3 , 
a function F G F^, where £ = £ n J, and a condition X G P{ which forces 
a,- = F#(x\£). 

We argue in 97t. We have x(i) = F{x\£) for all x G X. (Otherwise there 
exist m € oj and a condition Y C X, Ye Perff such that x{i){m) = 0 but 
F{x\£,)(m) = 1, or vice versa, for all x G Y, by Lemma 8. One easily gets a 

'Unfortunately more cumbersome as well, therefore we do not include the proof. 
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contradiction with the choice of X.) Thus the co-ordinate function C, reduces to £ 
on X, a contradiction with Lemma 19 because /' ^ £. H 

PROOF OF ITEM 2 OF THEOREM 1. Let & denote the set of all continuous functions 
H: JV —> JV coded in 9Jt. Then, for a pair of reals r, r', the relation r <gr r' 
means that there is a function H E & such that r = H(r'), see Introduction. This 
obviously implies r £ 9Jt[r']. 

We have to prove the following: for any two reals r, r' E % either r <? r' or there 
exists i £ / such that a, £ 9Jt[r] \ SDT[r']. 

Assume on the contrary that the opposite is forced by some X e f. We may 
suppose, by Lemma 10 and Theorem 25, that there exist functions F , F' £ Ff, 
where C = \\X\\, such that r = F#(x\() and r' = F'#{x\C). 

We argue in 9Jt. Applying Theorem 20, we find a condition Y £ Perf {, Y C X, 
such that either F reduces to F' on Y or there exists / € £ such that F' reduces to 
n = C n [^i] while F captures i on F. 

In the "either" case we have a continuous map H: JV —> JV such that F(x) = 
H{F'{x)) for all x £ Y. Then F forces 

F#(xrC) = tf#(F,#(xK)), 

which is a contradiction with the choice of X. 
To get a contradiction in the "or" case, it suffices to prove a, ^ 9Jt[xff/]. But this 

follows from the already proved part of item 1: for take 

J = {jel:3ien(j<i)}. H 

§7. Iterated vs. product Sacks forcing. We prove Theorem 2. Recall that the 
cardinal I was defined in Introduction. 

PART 1. Product Sacks extensions. Let K > cm be a cardinal in an arbitrary 
transitive model 9Jt. We prove that [ > card(cOT) in any countable support K-
product Sacks extension yi = ffl[(a.a : a < K )] of 9Jt. 

It is a standard fact that the /t-product Sacks forcing notion does not contain an 
antichain of cardinality bigger than cm in Wl in this case. 

This easily implies that for any set & £ *Xt of cOT-many continuous real functions 
in 91 there exists a set K C K, K E Wl of cardinality cardK = cm in ffl such that 
each F £ & is coded in 

Now take arbitrary ordinals fi j^ y in K \ K. It is also a standard fact that then 
up =fc F(ay) and ny ^ F(a^) for any continuous real function F coded in 9T', 
therefore the relation <^- cannot linearly order the reals in 9t. 

(Note that in the model we consider in fact c = K = [ provided the cardinal K has 
uncountable cofinality in 971. Even if cof K = No in 9JI then K remains a cardinal in 
0̂  by the above and we still have I > K > cardCc^) in 9t.) 

PART 2. Iterated Sacks extensions. Suppose that / is a linear order. (For instance 
/ can be an ordinal, to cover the case of "ordinary" Sacks iterations, or an inverse 
ordinal.) Let us prove that in this case the family & of all continuous functions 
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F: JV —• JV coded in 9Jt witnesses that [ < card(cOT) in any P/-generic extension 
9t = 2Jt[(a, : / € / ) ] of 9Jt. 

Consider a pair of reals r, r' e 9T. The sets 

/ = { / € / : a, € 9Jt[r] } and / = { / € / : a, e SK[r'] } 

are initial segments of/ by Theorem 1 (item 1). Therefore one of them is a part of 
the other one as / is a linear order. Let, e.g., / C / ' . Then r <? r' by Theorem 1 
(item 2), as required. 

(If, in this case, X = cof / > cOT in 9Jt then we have card(c3J!) < A < c, i.e., [ < c, 
in 9t. The hypothesis cof / > cm may possibly be weakened.) 

§8. Selectors for analytic equivalence relations. We prove Theorem 3 as a corol­
lary of the following theorem. 

THEOREM 27. Suppose that I is an ordinal in a countable model 9JI |= V = L. Then 
the selection principle SP holds in P/ -generic extensions of Tl. 

PROOF OF THEOREM 3. Take a model 9Jt |= V = L, set / = cof1, and let 9t = 
9tt[(a, : i e /}] be a P/-generic extension of 9JI. Then SP holds in 9t by Theorem 27. 
Note that 9t preserves tif1 by Theorem 24. It is a routine exercise to prove that (since 
971 |= V = L) 91 also preserves Hf (and any bigger cardinal, of course). Thus, 
as the reals a, are pairwise different, 91 (= 2H" = K2. Another standard argument 
proves that the reals do not admit a real-ordinal definable wellordering in 91. H 

PROOF OF THEOREM 27. Thus let 9Jt and / be as in the theorem. Consider a P/-
generic extension 91 = 9Jt[x], where x = (a, : r G / ) . Fix a Ej equivalence relation 
E on 91 = 2W in 9T. Prove that E has a £2 selector in 91. 

Fix a real r e 9t such that E is J7j(r). By Theorem 25, there is a set /? e S (that 
is, a finite or countable in ffl subset of / ) and a function G0 € Fp (i.e., in 9J1, a 
continuous function Go: ^ ^ —> ^ = tura) such that r = G*(x\p). We may assume, 
by Corollary 22, that, in 9JZ, Go is one-to-one on some i?o S Perf p which belongs 
to the generic set. Then 97T[r] = 9JT[x|>]. 

On the other hand, there is a (lightface) S\ set P C a2 x JV such that 

a Eb <̂ =̂  P(a,b,r) 

in 91. Let us write aEx b instead of P(a, b, x). Thus we have E = Er in 91. It can 
be assumed that Ex is an equivalence relation on a for any x € / i n any model. 
(Otherwise P can be suitably changed.) 

LEMMA 28. In 91, every E-class intersects a closed, coded in 9Jl[r], set S C a which 
is a partial selector* for E. 

The lemma implies Theorem 27. Indeed, 9JI[r] is equal to L[r] in the sense of 91. 
Define a E\{r) selector S for E in 91 as follows. Consider a real a e a = 2°' in 9t. 
Consider all closed, coded in 9Jl[r], sets 5" c a which are partial selectors for E 
and intersect the E-class of a. Let Sa be that one of them which has the least code 
in the sense of the Godel E\{r) wellordering of 2Jt[r]. Put S = {a : a e Sa}. H 

That is, S intersects each E-class in < 1 element. 
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PROOF OF THE LEMMA. Let us fix an arbitrary real «o 6 91 fl 2ffl. As above there 
are: a set £ G S and a function F e F f such that o0 = F#(xf£). 

We argwe in 971. Thus F £ Contf, i.e., F continuously maps 31^ into 31. 
We may assume that / > C ( . Put 

Z = {j£(:3iep(j<i)}, 

an initial segment in £. The set i?' = i?oP'£ belongs to Perf^ by Lemma 10. 
Furthermore, as p C £ is cofinal in £, and G0 is one-to-one on RQ, there is a 
set R £ Perfj, 7? C R', such that the function G £ Cont^, defined on S^ by 
G(x) = G0(x\p), is one-to-one on i?. (This can be easily proved using different 
results in Section 4.) We may assume that R belongs to the generic set. 

Let us fix some XQ G Perf f such that X0 \£ C R. 
Define 

H = {n C £ : n isan initial segment and £ C n } . 

Since / is wellordered, there exist: an initial segment rjQ £ H and X\ £ Perff, 
Jfj C XQ, such that xfj/o = y\lo implies F(x) EG(X^) ^ ( j ) for all x, y € X\, and 
none of A" G Perff, A" C Xo, produces the same effect for some rj £ H, n^n^. 

STEP 1. We assert that, for any initial segment rj e H, n C rj0, if Y, Z £ Perf f 

satisfy 7 U Z C I , and Ffy = Z\n then there are Y', Z ' G Perfc satisfying 
Y'CY, Z'CZ, Y'\n = Z'\rj, and F ( j ) EG0,f{)F(z) for all j e F ' a n d z e Z ' 
such that jf77 = zf/7. 

STEP 2. Suppose this has been proved. Then we can define a fusion sequence ( Yu : 
u £ 2<m) of sets Yu £ Perff, satisfying YA Q X\ and the following requirement. 
Take m £ co and u, v £ 2m. Let r\ = ^[u, v]. (A £-complete function <j> is fixed.) 
Assume that £ C r\ c rj0, so that rj £ H. Finally take j G F„ and z e y „ satisfying 
y \n = z \n. The requirement for the fusion sequence is that in this case we always 
ge tF ( j ) EG(>,K)F(z). 

Let X2 = fl„ U«£2" Y"' t n u s ^2 e Perfj and X2 C Zj . Let us prove that 
^ 0 0 E G ( ^ ) F{z) implies j ^ 0 = z|>7o for all y, z £ X2 satisfying y\£ = z\£,. 
Indeed suppose that y \rjo ^ z \r]0. Since £ is wellordered, there is i £ tjo such that 
y\n = z \t], where rj = [<i], but y(i) ^ z{i). Note that £ C //, because y\£, = z [£, 
hence rj £ H. Furthermore there exist n £ co and w, v G 2" such that >> e y„, 
z G r„, and 77 = £</>[«, v]. Now F(j>) J Z ^ ^)F(z) by the construction, as required. 

Thus we have the equivalence 

y\no = z\t]o <=^ F{y) EG(>,k-)F(z) 

for all y, z £ X2 such that y\£, = z \£,. 

STEP 3. Let £' — £ \ >7o- Note that a typical element x G S"4" has the form z U z', 
where z G Sr'?0 while z' G S^4". Let 

X2(z) = {z' £3tc' :zDz' £ X2} 

for z £ X2 \rjo. Then Xi forces that ^ ( x ^ o ) is nonempty in the extension. Using 
Theorem 25, we easily get Xj, £ Perft% Xj, C X2, and a continuous function 
G: {X3 \r]o) -> 3fc' such that z U C ( z ) e I 3 for every z G X3 l̂ o-
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STEP4. Let Xj(y) = {x e X3 : x\£ = y } for any y e Xi\£. We observe that, 
for any y e XT, \£, the set 

S(y) = { F{z U G(z)) :zeXi\ri0&z\Z = y} 

is a closed subset of 

F"X3(y) = {F(x):xGX,(y)}. 

Moreover 5 (y) is a partial selector for Ec{y)- (Indeed suppose that z\ ^ z2 € A^fao, 
z{\£ = z2\£ = y. Then*! = F(ziUG(zt))andx2 = F(z2UG (z2)) belong to X3{y) 
and x\ \£, = x2\£, = y but x\ fao ^ x2\rj0, hence F(x\) ^.G^F(x2) by the above.) 
Finally S(y) is complete in F"Xi,{y): for any a e F"Xi,{y) there is b e S(y) 
satisfying a E.C(y) b- (Indeed, let a = F(x), where x e X^(y), so that x\S, = y. 
Take z = x\rjo and b = F(z U G(z)).) 

STEP 5. It follows that X-s forces that S#(x\£) is a closed set, a partial selector 
for EG(X^), and F(x\Q EG(xr<j) ft for some b e 5,#(x|"<J). We may assume that X3 
belongs to the generic set. Then S' = S*{x\£) is, in 9t, a closed partial selector 
for E = Er since r = G(xf^) = G0(x\p). Moreover, as ao = F#(x\£), there exists 
b e S' such that ao Eft, so that S' intersects the E-class of a0. Finally, as S' is coded 
in 9JT[x f £,] by definition and G is one-to-one on X3 \£, (recall that Xi\£ C R by the 
construction), we conclude that 5" is coded in 9Jt[r], as required. 

STEP 6. Thus it remains to prove the assertion of Step 1. 
Let C" = {j" '• J: £ C } be just another copy of C, chosen so that j " = j for any 

j e i ) but j " 7̂  j otherwise. Put •& = C, U C° with the obvious order (so that £ \ tj 
and C" \ >7 are not connected by the order). For x e 3f^ let O(x) = x° € S^" be 
defined by x"(j") = x(j) for a l l ; e £ (then x fa = 0(*) fa). 

Let Z" = 0 " Z (the 0-image of Z); then Z" G Perff». 
The set 

W = {w e PerU :w\t; e Y&w\C° €Z°} 

belongs to Perf 0 by Lemma 9 because 7 fa = Z fa. Now, by Corollary 16, there is 
a set W' € Perf ,>, W C W, such that e^/jer for any w 6 ff' we have 

F(wrc)EG(wraJF(o-'(wrr)), 
or for any w e W7' we have 

F(w\0 EG(wH)F(0-l(w\C))-

Thesets 7 ' = W\tandZ' = ^ - ' " ( ^ ' r C ^ b e l o n g t o P e r f f andsatisfy Y' C 7, 
Z ' C Z, and 7'fa = Z'fa. Moreover we have 

» " = { w e Perf ^ : w \C € Y' & w \C° € (Z')° } 

by assertion P-3. of Proposition 4. (Note that (Z')° = 0"(Z ' ) = W\C°.) The 
dichotomy takes the form: either for all j € Y' and z £ Z' satisfying y fa = z fa we 
have F(3;)EC(>,^)F(z), or for all y £ Y' and z £ Z' satisfying y fa = z fa, we have 
F(>0 EG ( >,mF(z). 

However the either case is impossible. (Indeed then, since Y' fa = Z ' fa, we have 
F(y)EC(J,^)F(>'') whenever y, y' e 7'satisfy.yfa = y' fa, which is a contradiction 
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with the choice of rjo and X\ because t] C 770-) Therefore we have the or case, so that 
the sets Y' and Z' prove the assertion of Step 1. H 

REMARK. We do not know whether Theorem 27 holds in the ease when / is a 
linear order but not a wellordering. Another interesting problem (typical for the 
Sacks iterations) is to prove the consistency of SP with 2H° > K2. 
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