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A Plain Note on Binary Solutions to Large Systems
of Linear Equations

A.V. Seliverstov!
Ynstitute for Information Transmission Problems of RAS (Kharkevich Institute), Russia

e-mail: slvstv@iitp.ru

Abstract. A generic-case algorithm is proposed to recognize systems of linear
equations without any binary solution, when the number of equations is close
to the number of unknowns. This problem corresponds to a well-known opti-
mization problem, i.e., the multidimensional knapsack problem. In 1994 Nikolai
Kuzyurin discovered an average-case polynomial-time optimization algorithm.
His proof is based on binomial tail bounds. Contrariwise, our algebraic approach
allows to specify the structure of the set of inconvenient inputs. For any fixed di-
mension, this set is included in the set of zeros of an explicit nonzero multivariate
polynomial.

Keywords: binary solution, linear equation, generic-case complexity

Introduction

Let us consider the decision problem whether there exists a binary solution (also known as
a (0,1)-solution) to a system of inhomogeneous linear equations with integer coefficients.
The problem is NP-complete and can be reduced to its particular case containing only one
linear equation [1]. In some cases, the equation has small integer coefficients [2, 3]. Further-
more, a binary solution to one linear equation can be found using a pseudopolynomial-time
algorithm [1, 4-7]. Without any restriction on the coeflicients, Horowitz and Sahni [8] had
introduced the meet-in-the-middle approach and gave an exact O*(2"/2) time and space
algorithm. A few years later, Schroeppel and Shamir [9] improved the space complexity
to O*(2"/*). Recently a probabilistic O*(20%") time and polynomial-space algorithm was
found [10]. The O* notation suppresses a factor that is polynomial in the input size. There
is also known a polynomial upper bound on the average-case complexity of the multidimen-
sional knapsack problem [11].

By means of Gaussian elimination, searching for a binary solution to a system of m
linearly independent linear equations in n unknowns is reduced to a parallel check whether
a binary solution to a subsystem in n —m unknowns can be extended to a binary solution to
the whole system of equations in n unknowns. Hence, the initial problem is polynomial-time
solvable when the difference between the number of unknowns and the number of linearly
independent equations is bounded by a function of the type n —m = O(logn). Let us
consider the case when the difference between the number of unknowns n and the number
of equations m is bounded by a function of the type n — m = O(y/n). So, the previously
obtained estimate is improved, although the proposed method is generally useless for one
equation.

An easy generalization of this problem is searching for binary solutions to a system of
linear equations over an arbitrary field (K,0,1,+, —, X, ()™', =) of characteristic zero. Let
us define 0~! = 0. In contrast to previous works [11], we consider not only ordered fields but
also arbitrary fields of characteristic zero, including the field of complex numbers. Let us use
either generalized register machines [12] or BSS-machines over reals [13]. These machines
over an algebraic extension of the field of rational numbers naturally correspond to the idea
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of symbolic computations. Every register contains an element of K. The machine also has
index registers containing non-negative integers. The running time is polynomial when the
total number of operations performed by the machine is bounded by a polynomial in the
number of registers containing the input. Initially, this number is written in the zeroth index
register.

A predicate holds almost everywhere when it holds on every instance x satisfying an in-
equality of the type f(x) # 0, where f denotes a nonzero polynomial [14]. This restriction is
more rigorous than any upper bound on the measure. Let us consider so-called generic gen-
eralized register machines over K. The machine halts at every input and gives a meaningful
answer at almost every input, but it can abandon the calculation using explicit notification,
that is, there exists the vague halting state. More precisely, a generalized register machine
over K is called generic when two conditions hold: (1) the machine halts at every input and
(2) for every positive integer k and for almost all inputs, each of which occupies exactly k
registers, the machine accepts or rejects the input, but does not halt in the vague state.
Generic machines that compute non-trivial output in registers are defined similarly. If the
machine halts in the vague state, then the output recorded in the registers is considered
meaningless. Note that the machine does not make any error. For detailed description of
generic-case computation on classical computational models refer to [15-16].

Results
Let us consider systems of linear equations of the type x; = ¢;(1, 21, - ,Zp_p), Where
j >mn—m and every {;(xg, Z1,- - ,Tn_p) denotes a linear form over K.

Theorem. There exists a polynomial-time generic generalized register machine over K such
that for all positive integers n and m satisfying the inequality 2n > (n —m+1)(n —m + 2),
and for almost every m-tuple of linear forms {;(xo,--- ,Tpn_m), where j > n — m, if the
machine accepts the input, then there exists no binary solution to the system of all equations
of the type x; = £;(1,21, - ,Tpn_p). Moreover, for every n, there exists a polynomial of
degree at most 2n in coefficients of all the linear forms {; such that if the machine halts in
the vague state, then the polynomial vanishes.

Proof. 1f 2n < (n—m+1)(n—m+2), then the machine rejects the input. Else, in accordance
with Theorem 1, some polynomial time generic machine calculates numbers Ay, ..., A\, such
that the equality

3

—m

)\kl’k<xk — (L’()) + Z )\jfj(gj — xo) = f(Q)

k=1 j=n—m+1

holds. On the other hand, if there exists a binary solution to the system of all the equations
r; = {;(1,21,--+ ,xy_p), then the left-hand polynomial vanishes at the binary solution.
Therefore, an affirmative answer confirms that there is no binary solution to the system.
Otherwise, the machine halts in the vague state.

The set {\x} is a solution to an inhomogeneous system of linear equations in n unknowns
A1, .., Ap. The system contains only one inhomogeneous equation. Let us denote by 7 the
number of all the equations, that is, r = 3(n —m + 1)(n — m + 2) < n. The sufficient
condition for the solvability is the full rank of a r x n matrix. If » = n, then it is sufficient
that the determinant does not vanish. If » < n, then it is sufficient that some r x r minor
does not vanish. For example, let us pick up the leading principal minor. In any case, it is a
polynomial of degree r in matrix entries. Every entry is a polynomial of degree at most two
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in coefficients of some ¢;. Thus, the minor is a polynomial of degree at most 2r < 2n. To
complete the proof, we need to show that this polynomial does not vanish identically. O

Remark 1. Over the field of rational numbers, not only the arithmetic complexity but also
the bit complexity is polynomial because the rank can be easily computed [1]. So, there is a
generic-case polynomial-time algorithm. Moreover, the rank can be computed in O(log®n)
operations over an arbitrary field using a polynomial number of processors [17-18|.

Remark 2. Our method can be generalized using higher degree forms. For example, let us
consider a general straight line L in the projective plane. There exist four (0, 1)-points with
homogeneous coordinates (1:0:0), (1:0:1),(1:1:0),and (1:1: 1), respectively. Our
goal is a sufficient condition such that no (0, 1)-point belongs to L. Every ternary quadratic
form vanishing at every (0, 1)-point is one of the type Ajxq(z1 — 29) + Aoz2 (22 — o). These
forms span a linear space of dimension two. Ternary cubic forms vanishing at every (0, 1)-
point span a linear space of dimension six [19]. All binary cubic forms span a linear space of
dimension four. The restriction of a ternary cubic form to the straight line L defines a linear
map from the linear space of ternary cubic forms to the linear space of binary cubic forms.
The kernel of the map is spanned by forms vanishing identically at whole L. Every such
form is reducible and has a linear factor corresponding to L. Consequently, the dimension
of the kernel equals the dimension of the space of some ternary quadratic forms.

Let the image of a ternary cubic form vanishing at every (0, 1)-point be its restriction
to the general straight line L. The dimension of the kernel of the linear map equals two.
The dimension of the image of the linear map equals four and coincides with the dimension
of the space of all binary cubic forms. Consequently, the map is surjective. Obviously, its
surjectivity is a sufficient condition for the absence of any (0, 1)-point belonging to L.

Conclusion

We have considered a decision problem. The binary search allows to find binary solutions
to sufficiently large systems of linear equations when such a solution exists and some gener-
ality assumption holds. So, the proposed method can be used to solve some combinatorial
optimization problems that can be reduced to Boolean programming. In particular, such
problems arise in bioinformatics.
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