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This paper contains three sections. In Section 1 the model of
intellectual svstem (IS) based on sheaves and generic models is
discussed. The author realizes all conditionality and scantiness of
this model. but probably., the very idea of this type of models is new
for the artificial intelligence. Sections 2 and 3 are purely mathe-~
matical. The material of these two sections can be used for the proof
of convergency of an iterative scheme mentioned in the end of Section
1. Also Sections 2 and 3 contain some results concerning well known

E

problems: in Section 2 we study the problem of "natural translation”
of <classical logic into intuitionistic one for various theories such
as arithmetic., algebra. analysis etc. {see [9,p.127. 71), and in
Section 3 we study Macintyre problem about the transfer of model
completeness of a theory from stalks of a sheave to the structure of
all global sections of the sheave ({1,p.88. 2,p.175]). It is interes-
ting to note that this method - the method of Heyting-valued analysis
{([38-5]) - can be successfully used in such different gquestions.

We assume the reader is rather familiar with the Heyting-valued
analysis [3]. but this is not necessary. The sign s means "is egual by

0

definition or "is equivalent by definition™.

The author is greatly thankful to G. Takeutli whose works often

inspired the author's works. and also is extremely thankful to A.
Macintyvre for the discussion of results of Section 3. The author is
indebted to vprof. A.V. Chernavskiy for useful discussions of the
article, specially Section 1. Finally, the author is sincerely thank-

ful to his colleague G.1. Syrkin for his great help in working on the

article. without which this article would not have appeared.
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Section 1. On one possible model of an intellectual system

In connection with forming the concept of the decision-making
intellectual system (abbreviation: IS} one can designate a number of
composing notions of this concept which we give below. First, the
motive (= the resulting goal of a compound action or gquest), second,
the goal {= intermediate. current goal in realization of the motive},
third, internal, "deeply structured" model of the external world. The
latter model, having leading part in the intelligence we shall call
the internal model (or, simplyv. the model}). Let us continue the list
of composing notions of this concept: first, the external world (= the
situation or the state of affair), the description of which the IS
sensomotorically receives at each given moment of time. Second, an
action {of I8}, changing the sensomotoric information on conditions of
own achieving of the external world. Functioning of IS takes place on
two scales of time: on the larger scale of time it has the form of
learning, development, which first of all consists of changing the
internal model of the world as well as the means of access to this
model, and on the lesser scale of time there are coping with problems
generated by the system of motivation. The role of the internal model
on the larger scale of time consists of maintaining the IS8's stability
{homeostasis), while the role of the model on the lesser scale of time
consists the possibility to agtivate the set of partial situations in
response to each sensomotoric input. A particular situation describes
such representations of objects of the extreme world and, in addition,
such relationships between these representations that correspond to
actual state of affairs.

In accordance with one of the known possible definitions ([13,
p.3)]) an intellectual system {(IS) can be defined as a system which
generates chains of goal-directed actions under general pressing of
some motives and on the basis of some internal model of external world
via constructing a situative model of the current state of affairs.

It would be desirable to study this concept of IS {(the
philosophical concept in its essency) in purely mathematical and
computationally realizable terms. This would permit on mathematical
and experimental levels to testify the validity of any given set of
properties being intuitively ascribed to an IS. We give below such
description of the above notions in purely mathematical terms
(certainly, preliminary}.

The time is understood descretely as steps enumerated by natural
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numbers. A motive is understood as an increasing sequence {Th } of
theories (= of lists of axioms): Th ¢Th . Intuitively, the seguence
{Th } describes one of such sequenges gglpictures of the external
wor?d that their realization will discharge the tension caused by
given motive (= the potentially realizable motive). The degree of this
discharging is characterized by the notion of "satisfiability" of 1IS.
The latter npotion is important mostly for the scale proper to the
process of learning. Now we consider the work of I8 in the lesser
scale of time.

We define the internal model as follows. Fix a Stone topological
space X. To each point p from X we correlate some mathematical
structure (= model K} thaving the same signature for all p. Let E be
disjoint wunion of all K where p ranges over X. In E we fix a
topology such that the gunction N:E~->X defined by the equivalence
N(s)=p<=>s€K is a continuous function and also is a local
homomorphism? Call by a secticn a function ¢f the form: k:@ ~>E, where
@ is open set in X and Il{k(p))=p for all p from w. Denote by <J(X)} the
topology in X, i.e. the lattice of all open sets in X. We also denote
by I'(E, X} the set of all sections. Intuitively, K is a particular
situation (a particular experience) at point p whilepone section ki{+¢)
is the representation of one fixed object in various situations {in
which this object is taken into account). Therefore, T(E.X)
intuitively corresponds to the reflection of objects of the external
world in the internal model of IS, Informally speaking, the set
{F{E,w )] @EEﬁTX}} corresponds to the reflection of situative aspects
of the external world within the internal model of TS,

For every list of axioms {= of theories} Tl,....T we denote

n

m
(T ,....T )sX{ U T }s{p€XIK |=T &...&T }. Intuitively, sensomotoric
1 m i=1 i P 1 ]
information (= the description of the external world) T excites
{= activizes) the domain X{T) of the internal model. If I$ has ©per-
formed (within the frame of reasonable chain of actions
P ,....P ....) the next action P {where P €...CP P ) and IS
n-2 n-1 1 n-2 n-1
has obtained the description T of the external world on n-th step,
n
then the domain X{T .P } of the internal model is activized. We do
n n-1
not make it precise whether the covering space <E.X> is the whole
internal model or only its part being actualizable by the motive {and

by other circumstances}.
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And S0, one-moment description of the external werld is
represented by some list of axiom (= by some theory) T. It is possible
that the language of description of the motive (i.e. the language in
which the theory Th is written) is more abstract in comparison with

n
the language of description of the external world (i.e. with the

language in which the theory T is written). The latter language we
denote by f. We also denote by HA(C) the extension of language R by
countable list of new constants. We call by an action a finite

consistent set of atomic formulas {in language £{(C)) and their
negations. We could call by an action alsc a finite consistent set of

quantifier free (= basic) formulas (in language f(C)) and would come

to some results. An action compatible with a theory T will be called
an action for theory T. Intuitively, an action means a finite number
of “"pushing and non-pushing some potentially infinite number of

buttons (= of constants from C}".

We define inductively some iterative procedure to obtain the

satisfying of the mwmotive. Let the actions P C...CP have been
1 n-1

already chosen and performed. Then IS is {sensomotorically) given a

theory T being the next description of the external world. It can

happen tﬁat the theory T contradicts the descriptions which are
analogous to the previoug descriptions. Further, from the two
conditions below we simultaneously find the goal +n of n~th iteration
and the action P Dbeling performed at the n-th iteration. Now we
formulate the two agove mentioned conditions. The first condition says

that the maximum of the function of argument + of the form

max{m| F(X(*=>Th Y)-MEX{(T .P Y Yi<&}
m v n -1
is accessed at the value *’ for the argument *’. Here W(+) is a real-
n
valued measure on X and 2 1is a fixed real number (parameter}. The
second condition says that P C€P and P }- +/. where |- is the
n-1 n n T in T
finite forcing in theory T . n n
n
Here P |- means that in all generic models of theories T and P
n n n
{where P is an action for the theory T ) the formula ¥ is valid. In
n n tn
other words, the valuation of the formula'+ for the theory T (in A.
n n

Robinson's sense} is minored with P

We could give sufficient cond?ticns and close to them necessary
conditions of the convergence of iterative procedures of the type
described. One could attempt to realizc procedures of this type

algorithmically. Some additional considerations are given in [8].
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Section 2. The natural translation of a classical theory of algebras

with metrics into an intuitionistic theory of algebras with metrics.

An zalgebra with metgics is defined as <K,+,-, ,0.1,u.l>, where
+:K -->K, -:K-->K, ¢:K -->K: 0.1€K, |+||:K-->R: R is defined as the set
of all Dedekind sections A=<A. A > on Q, and *<+ is predicate on R,

defined by (ﬁ<r)%(8r)ég{reil&réyA. "Usual ZF-formulas describing Q,

g>0, R, € (as the set of all pairs of Dedekind sections) we denote by
X’i’zz'xs'x’q'
We call a formula X{°,..,+ ) {in thc language of ZF) a Dedekind
formula iff
1) HZF |-V .+, ~, ¢« 0,1 e B (R(f,+, =, * 0,1, 0«f) => <f,+,-, ¢, l¢ef> is an
algebra with metrics (here the formula X is used);
2) ZFCI-¥f,+.-,*.0, 1. f-J(X(f, ..., ])=>Vk.t€f(k=t=>fk-t]=0):
3) v(Ee(r,.., |- U)ﬂsz <
{fkRYy->[ikii~= UKk Y&{E{RI&T{tY > [k+nt=k+ Y 1&...1),
where ... mefzs‘%ieusi%zgconditions farI—}?.G,1$ ]g :

4) VRULA(L, .. f eI < EX(f,...,tM)]B},

where B is canonically constructed from_sz-. Namelv. B is the {(unique)
complete Boolean algebra such that can be injected (as a complete
Heyting algebra) into B. The evaluation [-B is computed in the
Boolean-valued universum V- and quais computed in the Hevting-valued
universum VSZ . Here HZF devotes the intuitionistic set theory
introduced by R. Greyson.

Example 1. 1) A set of Dedekind sections being closed under the
usual ring operations (defined in R} considered together with these
operations can be described by the formula which we denote by £ . Let
also ﬂ%“%]ﬂ}#max(ﬂ,—ﬁ}, i.e.

KUE, ..., ) 5 VYXEF(X (X)&¥X X E€f(x +Xx .-X ,X »x ,0,1€f)&. ..
3 12 1 2 1 1 2

(Here we again use the formula € ). It is easy to see that 9 is a
Dedekind formula. It describes in VS2 and V- the families of all
subrings of R. Let gg.be an object described in Vszby formula Q% and
R be an object described in V~ by the same formula. O0f course.

- R. #R , but [R~ is a subring of R J =1.
RO ) S B B
2} Let a set of complex numbers be closed under the usual ring opera-
tions {defined in C) considered together with these operations can be
described by the formula which we denote by X . We remind that complex

number is a pair of Dedekind sections. It is easy to see that X is a
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Dedekind formula. It describes in Vszand Vg the families of all
subrings of C.
3} The families of the subrings of the hypercomplex systems over ¢{,R
or ¢ can be described by Dedekind formulas in the same manner.
4) In all cases mentioned above we can add the formula
¥xEf (Ey)&€f(x=0vxey=1) to X and then we can obtain the corresponding
family of fields.
5) In all cases mentioned above we can add to formula % the formula
stating that the field is real closed {or algebraic closed).
6} Thus, all usuwal classcs of number rings and fields (groups and
algebras) can be described by Dedekind formulas. Because of this we
can apply Theorem 1 (below) to all these classes.
7) Each implication‘f=>f’of the type described in Theorem 1, which is
true in R (or C) will be a conscguence of the axioms of a real (or
algebraic) closed field (for the corresponding theories are complete}.
So., Theorem 1 can be applied to this implication, too.
Let ?, f be formulas in the language of the theory of rings. By
?* we denote the formula obtained from \e by substitution of k#t
instead of k#t. Here # denotes the apartness predicate. In the
simplest case (when metric is {|*|]:K-->R) the apartness predicate is
defined by (k#t)sfk-t] >0. Later we give other examples of ranges of
values of metrics in which the apartness predicate can also be
defined. Let k=t abbreviate Jk-t]=0. By y+' we denote the formula
obtained from + hy the two simultaneous substitutions: the
substitution of k#t instead of k#t and the substitution of k=t instead
of k=t. By <cHal= (x ,...x } we mean ng(ﬂﬁf(§ R )EQ =1), where
X o vren x €V and S r;nges nover the class Ufl all gemplete Heyting
algebras? The predicate cHal=(+¢) can be considered as a new intuitio-
nistic semantics for the set theory. In main features this predicate
was defined in [10]. and this translation was defined in [7,8].
Theorem 1. Let X be a Dedekind formula in the language of ZF,
@ and i/ are formulas in the language of the ring theory, * is a AE-

formula. if
zgcg—:;r.l..,g- f (20 .‘._'lia{g)=>vk1,....knef[‘ff{ﬁ) =>\}zf(i‘<)}}.
cHa§=Vf.....H']Q(JZ(f,.\...ig-i§)=>‘ék1,...,knef{?;(ﬁ)=>\1/;(‘ﬁ)]).

Proof. Assume that f..... §5ag‘ev9,kl ..... k ep(f),
uéi{‘ze(f,...,[{-I‘)]&f(kl)&...&f(xn)&[‘f’;(ﬁmﬂ. Then ugﬂ'.‘f";(l-()]g. The

formula ¥ is a Dedekind one. hence
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usfeie, .., 1)) &f(k )&...&f(k )&[f*(k)] . By our assumption
B 1 n f B

HSI%}(E}IB> therefore us[f:(ﬁ}lg {because ¥ is a Dedekind formula).

tet ¥t (k) be the formula vt ..... t EF&VE .....2 €0 (ELl ....,1 )EfX(k).
f 1 m i s >0 1 r
In this case ¥t ,...,t €D{L}VE R €0 (usf(t )&...&f{t }->
1 m 1 S >0 i m
CEL .....1 JEfX(E,T.5)] ).
1 r B

i.e. u&f(tl)&...&f(t )EE(ET)EfX(R.f,z)BB).

=]

Therefore u<[(EI)Ef(X(K.T.2}) i.e. ucfviervieg O(Ei)efx(ﬁ.%.i)jsr
>

I, -

Renark. An analogous theorem can also be stated for each particular

complete Heyting algebra S and the corresponding Boolean algebra B.

In this case we fix an arbitrary algebra with metric <f.+,-.«,0,1,|*>

in Vszand consider the same algebra in V . {Here "metric” mav also be

a mapping "‘ﬂ:f~—>§, where Y is a locally campact ring, and qﬁl is a
~

completion of the unifgrm space § in V52 by Cauchy filters, and ¥ is

B
the completion in V™ constructed in the same way. In this case
Eig’is a subring of ?BBB=1.) We can state that if

Pk )&...&f(k Y<Efi=(P(Ry=>¥kn] .
. LI SEEL=Af YOI,
then
- .+-—
£(k V&, ..&E(k V<If|=(PHKI=>¢T(F) T ~ .
1 n " =f i St
This construction can be successfully applied, for example, to an

arbitrary ring K in the following way. Let §2 be the topology of the
Stone space constructed for the Boolean algebra of all central
idemponents of ring K. It is possible to define mapping KI->K'. where
K' is an element from V% and also a translation'? }—>?" such that
([K‘l=‘f]§2:1)<=>(K1= f') for all formulas ‘f and for all rings K.
Therefore, if KI=((P*)'ai) and zrci-((Qai)=>Y), then Ki=(y¥)r.

For example one can take i="is an abelian regular ring" and i'="is a
~

skew field". Details see in [31. Even the simplest case K‘KYSZ is

interesting: in this case K=CI(X,Y). where X is Stone space for the

algebra k. If S is a topology of a topological space Z and, for

example, Y is equal to R, then C (X.Y)%C(Z,Y). We can substitute (in

Theorem 1} an arbitrary formula - instead of premise . where 3
fl fz P fl

is a B-decidable AE-formula and fa is in the weak A-normal form.
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Main results of this segtion were reported by the author to the

7th Congress of Logic (Salzburg, July 1983).

Section 3. Localizations and evaluations

The results of this section were reported by the author to 8th
Congress of Logic (Moscow, August 1987).

In the following K is an associative ring with 1 (however our
results are still valid for much wider class of algebras). This ring
is identified with the Pierce sheave. 1Its stalk coincides with K $K/¥
where p is a point in a Stone space ¥X{K} of the Boolean B(K) ofp all
central idemponents of K. Let us fix a theory T, having some T* as its
model companion. Let us also fix some class of rings K5{K|{K }{=T}. By
K* we denote {Kl({Kp}|=T*)&K!=¢1&¢2), where ({Kp}}=T)$VpEX%K)(Kp§=T)
and & is the property "to be normal” and ¢ is the property " to be
atomleés" for the ring K. Here & =¥k€&€K(Ee }Eg{K)VeGB(K)(e~k=0<=>e§e ¥,
In an ordinary way we define thé evaluat?on E.]q K) for the formu?as
{with parameters from K) in the language of the ring theory. Sometimes
we shall write T instead of J(K), where ST(K) is the topology of the
space X{(K).

Macintyre's problem is: when the class K has a model companion K!'
and what is an axiomatization of this K'. We will give sufficient
conditions for the fact that exactly the class K* (defined as above)
is the model companion for K and will give an explicit axiomatization
for this class K¥. This can be considered as a possible answer to the
Macintyre problem.

Proposition 1, Let K be a normal ring and {K }|=T*, where theory

T* is model complete. Then for each formula ? we have two properties:

E¥(k ,....k )I_.={peX(K)|K [=¥(k ( ,...,kK (p))} and kK ....k is
P, o= (PEX(R) K =Pk (p) (o))} Tf(k, I
a closed-open set. where kl,. ..k EXK.
n
Propf. For atomic formula (k=t) we have 1k=tﬂ=eo. where eo comes

owing to the definition of normality for the element k-t. For the case
of connectivness v.,&, 7] all is obvious. For the case (E)} note that

E(Ex)\f]=(p—X|K |=(Ex)f }. Using model completeness for the formula
P

{1(Ex}f)(x1,...,x } we come to reducing E-formula f(x ....,X } and by
n 1 n
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normality of the ring K we obtain that the set I(Ex)f} is open-closed.
In the case of V note that EVX?ﬁE{pGX{K F=vxPICO{EY(k )T | kEK} and take
b

into account that the set {p&XikK I=(Ex)7?} is open-closed.
P

Proposition 2. Let K be a normal ring, Y be an AE-formula. If
¥p€e(K |= (k (p),....k {p)}. then [V(ﬁ)ﬂ >e for esach e€B(K).

p 1 n T

Proposition 3. Let K be a normal ring, kF be a formula having no

guantifiers within the scope of implication. 1f pEE?(R}Bﬁ_, then
K !=\f(k {(p).....k (p)}.
p 1 n
Class K is called Boolean-regular, if B{K)CB{(L) for every K,LEK
such that KCL {this is true, for example, if (K,LEK)&{(XCL}=>Z{R)ICZ{L}.
where Z(K) is the centre of the ring K).

Proposition 4. a)} The A-model completeness of a class K implies

Boolean~regularity of XK.

b} Boolean-regularity of K is eguivalent +to the condition

RCL=>Vp €X(L)}{(p (IK)EX(K})) and also is eqguivalent to the condition
. ! KQL=>(Ep1)GX(L)((DlﬂK)éX(K)).

Proof. For each e€B(K) transfer the formula V¥x(e.x=x-e) from K
onto L.

b) Let wus verify successively three implications between the
above three conditicns on K. Certainly, q#p1 K=plnB(K)gB(K) and q
contains O but does not contain 1 and, moreover. g is closed w.r.p.
operation v. And, because of the Boolean-regularity of the class K we
have that the set g is transitive downward set and is a prime ideal.
1f e€B{K)\B(L)}, then (pfﬁK) can not be prime. [J

A class K is called Boolean-simple, iff

(K,LGK)&(KQL)=>V91€B(L)(91#0=>(Ep1)ée1(Ep)€X{K}
[pgp{)K&VkEK((Ee)épl(evk=k)=>(Ee)Ep(e»k=k)}.

If K is a Boolean-regular class and VKGB(KI=¢1), we can reduce this

condition to the simplier one:

(K.LEK)(KQL)=>V91€X(L)[(91-L)nKE(p{TK)’K]-

Proposition 5. Let K be a Boolean-regular class and VKEE{Kf=¢1),
Then
a}) If K is AE-model complete, then XK is Boolean-simple.

b) Boolean~-simplicity of XK is equivalent to following condition:
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ng=>VkeKVees(x)<{x1=+<k,e))=>(u=+(k,e))). where
2
*’%Ve (Et){e, =e &e *t=t*e &e + k=0=>e re=e ).
0 0 o0 o 0 0 0 0

Proof. Clause a) immediately follows from clause b}.

b) Let the respective condition on K holds good. And let

$fk=0 . Th Li= k, , i.e. k=0F <fk=0] . F thi it

esf BK en | +( e) i.e L ]L'[ ]K Tom is i

follows successively Ik#ojkg{k#OIL, VpIGX(L)VkEK[{(Ee)&pl(e'k=k))=>

Ik#0] <e , L[k#0] €p NK, [k#0F +k=k], i.e. (Ee)&(p NK)(e+k=k). The
K 1 K 1 K 1

latter proved condition is even much stronger than the Boolean-
simplicity of class K. On the contrary, assume eOEB{L) and e *k=0.
Suppose e fl}{1-e)#0. By the assumption we choose a point p in X(L)
such that p €e {1(1-e) and P {IKCP, where p is equal to p nxland alsc p
is a primé ?deal in B(K)% There exists e €p for whicg e +» k=k as
{1-e )ek=k. Hence, (1-e )€p , (1-e )rs k=0, (%—e )<e, eé&p . Bét, on the
otheg hand, e&p . Contraéict%cn~ Dl ! !

A class é is called Boolean-absolute iff it is Boolean-regular
and Boolean-simple.

Theory T is called autonomous {respectively, normally autononmus)
iff every model K of this theory can be embedded into a ring F such
that {F }|=T (respectively. into a normal ring F, such that {(F }|=T).

Leg XI(K) denote the set of all proper ideals of B?K). 1f
qéxl(K), then §%q+K is an ideal in XK. By {Kq} we denote {K/ﬁlqexl(K)}.
Theory T is called totally autonomus iff {F }|=T for each model F of
theory T. d

Let T be a theory in the disjunctive normal form. By T' we denote
{Y '|?€T} (f‘ was defined in the Remark in Section 2; details see in
[3]). Let us mention that ?' is a Horn formula.

Theorem 2. a) The <class K* 1is axiomatizable (and even Horn
axiomatizable). If 51 is defined as {K|({{K }§=T)&(K!=¢1)), where T is
an AE-theory f{or K "is defined as {K] {K }?=T}, where T is an AE-
positive theory), thén K 1is Horn axiomatizable. Namely,

' 51={KS(K!=T’)&(KI=¢1)}-
b) If K* is a Boolean absolute class then K* is modelly complete.
c) If T* is a normally autonomous theory, then K can be embedded into
K*.
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d) Let TCT*. If T* is a normally autonomus theory and K* is a Boolean-
absolute <class, then K* is a Horn model companion for K (it is true
that K*CModT'C K)}. Under the same conditions (T%}'+¢ +¢ is the model
companion for T!'. 12

e} If T* is a normally autonomus theory, T is a totally autonomus
theory, and K* is a Boolean-absolute class, then K* is the Horn model
companion for K (here we suppose that the possibility of embedding of

T* into T is provable in Z¥C).

Proof. a) The class K %{K}({K }I=T*,Ki=@l} is Horn axiomatizable,
P
namely §1={K1KI=(T*)', K|=¢1}. In fact, if K&K . then by Proposition 1
1
and the Remark from Section 1 we can obtain K|= ?'. where (feT*,

Conversely, by the same Remark and Proposition 3 we have (K }|= fT*.
All formulas QP' and the formula @1 are Horn formulas. The class K* is
designed within the class K by Horn axiom ¢ . The second proposition
of this clause generates the first proposition of that clause as any
modelly complete theory is AE-axiomatizable. If K&K then on the
basis of Proposition 2 and the Remark we can obtain K?=T’. if Kl=T'¢ ,
then with the help of the Proposition 3 and the Remark we can obtain
KeK

b} Let 4/ be a primitive formula with parameters from ring K, where
KEK* . Let in addition ring L be any extension of the ring K and LEeK*.
Let wus denote by \f} the statement expressing the existence of a
solution of a subsystem of the original system. This subsystem is
assumed to consist of all equalities and at most one ineguality of the
original system. An index 1 enumerates all such subsystems. It was
proved in f[2], that if a ring L is normal and atomless, then
(Li= )<=>[(v1((pexw)rnpz= \}zl}%m)&fg{puph ¥ JXIT. We  shall
demonstrate this fact, too. By Propoeosition 1 the set in figured
brackets coincides with the set E+&IT' and also is open-closed. From
the left~handside to the pright-handside the above equivalence is
obvious. Conversely, denote uléﬁfgﬁq,, where E*}} €B{L}. Let us form
the Boolean subalgebra in B(L) generated by the finite set {ul}. This

subalgebra is finite and therefore is atomic. In u1 we further choose
an atom v . If in u there is no other atom than v , then {otherwise
1 2 1
we choose an atom v in uz. different from vl} we split the atom v
2

into two disjoint parts v and v and after that we again obtain
1 2
v o<u o, v <u . v #v . Here is essentially used the atomlessness of the
- 2

ring L. Continuing this process over all e, we shall obtain the

disjunctive set {VI}EB(L), where 07V15U1. Finally, we accomplish this
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set by elements wleB(L), such that ngu and {...v_....... wl...} is a
decomposition of unit 1. Using the accessibility of the evaluation, we
get {k )} for which ulgmja(kl)j. Cluing all k on v and all k onw .
we obtain K€L. And so, % is a sollution of the original system * in L.

By the agency of this eguivalence we have (L§=)T+)<=>{(2(E%II=0)}
v{gE\Pl]<1)}, where in oplace of 0 and X{L) we write O and 1,
respectively.

We successively rewrite the first disjunctive member in the
following way: g([1?1]=1); using model completeness of the theory T*
we find an E-formula *‘l {having g%&s as the quantifiers part}), being
equivalent to WYI in all models for T¥*, i.e. g{{%ﬂlj=l); next, using

accessibility of the evaluation we further get X{EE)(UE%; T=1)., i.e.
- s

V(EK)(EZ )J€B(L)(e <[ Y Jan{i-e )=0. The latter can be written in

e is is is is

the form (EK)(EE )V¥ [II{1-e )=0&e +k =e¢ +t &...& {{e +k =e st })=>
ls e e s 1s 11 1 11 1 0 2 0 2

e <l-e }&...1, where k =t is one of the egualities, while k #t
0 11 1 1 2 2

is one of the inequalities from + . Here e1 . eo are special
s
variables ranging over B(L).

Similarly, for the second disjunctive member we obtain the chain
of e i 1 : E EX(L)& , Ep)eX(L A% , v >0;
quivalences: (Ep)EX(L)&(pELY ). (Ep)€X(L)(pel +&]) g y,1
next, using model completeness of the theory T* we find E-formula

with the quantifierless part V+ such that Eq‘]>0; further, via
s
accessibility of the evaluation we get (Ek)(mg+/]>0), (Ek)(Ee)g((e#O)
s
&([Vﬁ/]ze)). The latter can be written in the form
s's

{Ek)}(Ee}VV¥e (e #0&e'k =e-t &...&{{e +k =e¢ +t }=>e <l-e)&...}, where
S 0 0© 1 i ¢ 2 0 2 0

k #t is one of the equalities, while k #t is one of the inegualities
from the\y . Here e,e are special varigblgs ranging over B{L)}.

By th: agency of the absoluteness of the class K* and Proposition
5b we obtain that 1ﬁ} can be transferred from K onto L, where
KCL,K,LEK*.

Finally, the class X* is model complete for the axiomatizable
class K* the criterion of A. Robinson holds good.

c}) If KEK*, then K is embeddable into gK ., where K |=T7. By the
p p
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definition of model companion a ring K is embeddible into Fp, where
Fp is a model for T*. By the conditiog of normal autonomous of the
theory T* we may consider Fp to be a normal ring whose all
localizations are models for T*, We define in Fp _the discrete
topology. Let X be the Cantor discontinum. Denote by Fp the algebra
C(XG, Fp} of gll continuous mappings of Xﬂ into Fp. The ring Fp

p
consists of locally constant F ~-valued mappings of XO‘ having finite

P P
set of wvalues. The ring F is embeddible into the ring F
P
Furthermore, we shall show that F €K*. The class K* is closed under

1
arbitrary products because it is a Horm class. Therefore, (IIF &K and,.

P p
hence, K>->IE >->[F >->[F €K*.
P

P -
Now, consider the ring F$C(X .K), where F is a normal ring such
0
that all its localizations are models for T* . It is true that
B(F)=c(x ,B(F)). The set <x ,p > by definition being egual to
o ¢} 0

{féB(F)}f(xO)on} is a prime ideal in B(?) for every xcex and

p €X{F}. Any point from X{F) has such a form {what symbolically can be
wgitten by equality X(F}=X0*X{F}, because for every péx{ﬁ) there
exists XOGXO for which p0={f(x0)]fép} does not contain the unit of
B{(F). Otherwise, {{xoéxolf(x0)=1}{fép} would be an open cover of X0

and its subcover would give us such fl..... f €p., that flv,A,vf €p and
n n

f v...vf =1, that is a contradiction. The above po ig a prime ideal in
1 n~

B(F). Therefore, pg<x0,po>» By maximality of p {all this takes place

in Boolean algebras) the latter is possible only if p=<x0,p0>.

Furthermore, <X ,p >={fé§}f{x j€p }, where p %p F and <x ,p >%
0 0 ] O g 4] 4] O

<x ,p >-F. Thus, () =F/<x .p >2F/p =F , where p ranges over
4] <X ,p > g 0 g p Q
o O 0
X{F}. By the assumption for all B it is true that F |[=T* . From this
P P
0 0

it follows {(F) }|=T*. Let us verify the normality of F. If fefr,
< >

X ,p
0 0

then we put e (x)%$e , where e is an element from F, corresponding
0 i i
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to the element f{x) from F uvnder the normality property of F. Such an

e satisfies the definition of normality for f in B.
4]

Assume that f is an atom in B(ﬁ). At least one "step" of the

function f, for example, f(x ) is different from 0. This step is a
0

constant function on an open-closed set, containing at least two

distinct points. Eliminating one of these two points together with
some its open-closed neighbourhood we could come to the conclusion
that f is not an atom. This would contradict to the assumption.
d) From clauses b) and ¢) it follows immediately the first proposi-
tion. If KEK*, then K{=(¢1&(T*)') and moreover K|=T'. If K|=T', then
by Remark in Section 1 and Proposition 3 we shall obtain KeK. From
this it follows the last proposition.
e} To clause d) one should add only the embeddability of the class K*
into K. Besides this in clause d) there is nowhere usage of the
condition which we want to eliminate now.

This follows from general Theorem 3 which will be proved below.

Theorem 3. Let a theory T be model embeddable into a theory T
{and this fact be provable in ZFC). If T is an AE-theory. T is ;
totally autonomous theory and K is a ring such that K{=¢& and {é }I=T,
then K can be embedded into the class 51=(L|{Lp)|=T1). ! P

To apply this theorem to the proof of Theorem 2, let T be eqgual
to T*#, T be equal to T. Theory T* can be modelly embedded into T by
the definition of the model companion of a theory. It is known that T¥

is an AE-theory and that each K belonging to K* is normal.

Remark. 1) We have used only the following two properties in the
proof of clause c) of Theorem 2: the closedness of K* with respect to

the products and the existence of model embedding of T into T*.
Therefore, Theorems 2c¢) and 3 can be considered as "embedding theorem
for locally axiomatizable classes”.
2} Actually, in Theorem 2d) we have proved the formula (T*)'=(T')*
(assuming that the term (T*)' contains axioms ¢1&¢2). d

Proof of Theorem 3. Let K satisfy the assumption of the theorem.
By Proposition 2 we shall get ETBT=1. From here we further get
ETIB(K =1, By Theorem 16e [3] the latter means [TBB K,=1, or
IK'T=T% =1, where B%B(K}). By the assumption the formula V¥Yx(Ef)
(x|=g=>§gf&f|=T } is deducible in ZFC. grom here by the accessibility
in V7 we get [K'Cf&f|=T ]B=1. where f&€V~. Denote (f)"B=L. Again by
Theorem 16e we have KCL (In the sense that k{->p ) and having verified
the inclusion LEK, we shall obtain the proof of the theorem.

In fact, B %s imbeddeble into B{(L) by the rule b}{->b+1+1b.0 {the
right handside is the result of glueing together 1 and ¢ in f). This
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imbedding will be denoted by h. Denote L( )éL/h(p y=L/{(h{(p )-L),
p 0 0
s}

where po is a point of Stone space S(B} of the Boolean algebra B,

while 5?3;3 is an ideal in L. We shall show that L, , coincides with
g
the "stalk" f in the point p. i.e. with the factorization of L by the
equivalence relation (k~p t)%({k=t]8$pg} {see [3]). We shall also show
o 8

that (Lf=Y(k ,...,k )} =1)<=>{L Yl =W(Ik ] s ealk ] )}, where
Y 1 n B {(p_) ? 1p n p
0 0 0
poranges over S{B) and kl,..,,k €L. The first statement means:
n

(Eb)épo(h[b)- (k-t)=k—t}<a>1k=th¢pO, From left to right we have
h{(7lb)=1-h(b}, {1~h{(b))+(k-t)=0 in L, and further TIbép and
0

f(1-h{b)) '{k-t}=OBB=1, 1b5{k—t=0§5. Conversely, let bs5k=t38¢po,

b< mh(b)-(k-t)=o]B and To<fh(b) (kwt)=0]B, h{b)s{k-t)=0 in L and

1b€p0, h(7Ib) » (k-t)=k-t. The second statement can be verified in the

form p €0f|=Y (k)] <=>L {=¥(Ix] ) for connectives &, T.(E) by
0 B {(p. } p
0 0
induction on the length of the formula ?. And so. (L{ )}!=T .
1
o
For any p€X(L) we fornm posh (p)eB. We have p €S(B). Denote the
ideal h(p ) in L by a. Then aCP and L =L/P={L/a)(B/a)=L /p/a. Note
Y p (pb)
that gsp/a has the properties: g€B{(L/a) and g is <closed w.r.p.
operation v and does not contain [1] . In fact, if {1} =Je} for
a a a
e€p, then 1—e=eo-r, eoeh(p ¥, 1=e+eofr={eve j«1, eve €p. So, we have
a contradiction. We add g those elements from (L/a), which can be

majored by some [e] from g. The g obtained in such a way will be a
a 1
proper ideal in B(L/a) and, in addition, 61=5, So, L =L /q . where

qlexl{L( )) and by the condition we finally obtain L [=T . []
B
0
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Let us now consider the converse problem: how to transfer model
completeness of K*¥ and K to their local theories. The following gene-
ralization of the notion of Boolean-simplicity of a class is conve-
nient for this purpose. Let K , K be two classes of rings. We call K

1
a Boolean-simple class for K iff VK&EVLGKI(KQL=>(Ep1)GX(L)(Ep)éx(K)

{pgplﬂK&Vk&K{{Ee)épl(e—k=k))s){{Ee)ép(e'k=k))].

The condition "a class X is a model companion for a class K and
1
K . K are mutually Boolean-simple” would serve as the assumption on

the classes K .K in Theorem 4 below. We denote the above condition by
1

{*}. But, in Theorem 4 we actually use the weaker assumption on the

classes K , K. This weaker assumption uses a special type of the

classes K ., K in Theorem 4. Let us remember that the ring L=C(X ,L})
0

was defined in the proof of Theorem 2. So, we call the class K a weak

model companion for the class K iff: !

1) for two rings L . T belonging to K , where L , L |=T , L €L and

for each Horn AéAE—fgrmuha?with cénstants fiam 2 L % séchzthat

513=f there must be true that £2§==Y; !

2) each K&K such that K|=T can be embedded into some L€K ; and each
L&‘g1 such that L[=T1 can be embedded into some KéK; !

3} for each K&K such that K|{=T and each Légl, such that KCL there

exists p€X(K} and p €X(L} such that pdp NL and Vké(Kr}E J(KED) ;

4) for each LEK s&ch that LI=T1 and e;ch K€K such tha% I¢Kk there

exists p€X(L) and pléX(K) such that pgplni and v1eL(1e§1=>1e§). 1t is

clear that condition (*) implies that K is a weak companion for X.
Theorem 4. Assume that '
(RIER 3i=T . K]=(T' +& +& )ICK C{K|{K }|=T }, Ks{K{{K }|{=T} and K
p 1 101 2 1 p 1 P 1
is a weak model companion for the class K. If T|-® and T !-¢ , then
the theory T1 is a model companion for T. (If TgT},sthen the condition
4 in the definition of a weak model companion can be omitted.}
Proof. Here we shall show the completeness of the theory T . Let
Fl and F2 {where F ng) be two models for T1 and + be_a formulalwhich
is primitive over Fl, FlisT*’. From the two rings Fléc(XG,FI) and

§2$C(X0,Fz), where F1§F2 {see proof of Theorem 2). The localizations

of Fl and ﬁa coincides with F and Fz, respectively. Since T |-¢ we
1 H 8
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have {(5 y =T , F |=d &b and moreover all localizations ¥ (and F )
1 p 101 1z 1 2

coincide with F {and F , resp.). In this situation by induction on
the length of an arbitrary formula ‘P we verify the following
generalization of Proposi%ion 2:
GF =M AN s PR L A3 - =1, where A ...,

1'p T 1 n \P 1 n]T(Fi} 1 An
are constants from F . The proof of Proposition 2 needs only te be
accomplished by observing that (Fl) is isomorphic to F by the

p -
formula [f]?|->f(x )}, where xo corresponds to p. And so, T , F €K .
1 2 71

For any A-formula 1*‘ (as well as for any formula with constant
parameters} there must be wvalid in a normal ring the condition

ET?B$T§E)=1. By the Remark §1§=(1*)'. Then by the assumption §2§=(1*)’

and by the Remark E1*D . =1, i.e. F =(F ) |=T.
T(Fz) 2 2 p *

Let K be a model for T. As TI—@S, then KEK. By the condition
KCLEK . By the condition of Boolean-simplicity there can be found such
pIGX(L) and p€X{(K) that pgpan, i.e. p:pﬂﬁK={0}. From here we get

K->L , k|->[kl_. is an imbedding and by the assumption of Theorem we
pl pl
also get Lp§=T1. If Tng, then the proof is done.
1
It rests to verify that Tl is model imbeddable idinto T. let

LI=T1. Form ieﬁl. By the assumption of Theorem we get LCKEK and
we also find pléx{K) and p€X{(L), for which pgq%(plni} and p has the
corresponding properties. As we saw in the proof of Theorem 2c this p
has the form <x ,po>. where poéX(L), i.e. pom{o}. Therefore
5={f&i|f(x0)=0}. Let us put L>->K/ﬁl, e{~>[e]ﬁ. By the assumption
1
this is really an imbedding. From here we obtain the required
imbedding of L into X , where X |[=T. []
pl pl
Corocllary. The <class K of all abelian regular rings has no weak

(ordinary) model <companion within classes having the form gl {from
Theorem 4), where TII—QS {Tl}— "is simple®).
Proof. If such a K is a model companion for K, then T1 must be a

model companion for the solid theory, that is impossible.[]
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Remark. The conditions TI—@S, T I—¢5 {Theorem 4 and its
Corollary) can be weakened. Formula & is defined on page 22. []

A primitive formula is called 1-primitive iff it contains no more
than one inequality. We shall say that "theory T decides a class of
formulas £ " iff T{-Y or Ti—'}? for each formula ‘F&Z.

Theorem 5. a) Assume that local theory T decides all 1-primitive
statements and that all sets B(K) for each K belonging to the <class
K${K|{K }|=T} are infinite. Then the theory ThK decides all E-
statements.

b) if K* is a Boolean-absolute class and the model complete theory T*
decides all 1-primitive statements then the theory

(Thg*}<=>(¢b1+¢2+ +(T*) ")
is a model complete Horn theory.

Proof. a) Let K€K and ‘V be a primitive sentence. {The
satisfiability of the assumption of K is guaranteed, for example, by
the atomlessness of K). Then all yl’ 1<1<L, which are formed by Y as
in the proof of theorem 2b will be 1I1-primitive sentences. By the
assumption either T]—*& for all 1 or Ti~7w10 for some 10. In the first
case Vp(Kp§=& Y 1}. Let us choose in X{(X) exactly L distinct ©points
P ,...,p . By separability they will have neighbourhoods u ,...,u
béeing disjunctive to each other. In p1 there will be validlvl for
some kl(p },...k (pl), while the equalities from vl are valid also on
some open-closed neighbourhood u ' inside u . Therefore k ...,k on u
satisfies Y . In the same way we shall find tl""!t onlu ', nsatis~

n
fying YL' Further. let us glue all kl,.,.,tl and so on. Then we get

k .....,k onu 'Uu... Yu ', satisfying W . We extend these k ,...,k
1 L 1

1 n n

onto the complement to u 'U,.. U u ' in such a way that all equalities
from'vlo will be satis%ied. And so, Ki= W" In the second case
¥p(K [=?’e0). From here (even without normality and atomlessness) we
get };{’I=7‘*/ .

Now we easily obtain the decidability of all E-formulas.
b) We infere this clause from clause a) and Theorem 2a,b by taking
into account the fact that in modelly complete theory any formula is
equivalent to some E-formula.

Example 2. The part of our article up to Example 3 constitutes
the content of the current Example 2 which includes some propositions

and theorems. Here we restrict ourselves to the associative rings with
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unit (however, this restriction is not necessary: we can consider also
rings without unit and non-assoclative rings studied in {[11]). Let L
be the <class of all primary PI-rings A {over the commutative ring R
with unit), which have fixed degree 8. The centre Z(A) of the ring A
(which will be denoted later by F) is an integral ring (i.e. a commu-
tative ring without divisors of zero}. Let us remember that algebra A
is called a PI-ring iff there exists a noncommutative polynome over R
with at least one senior coefficient 1 such that this polynome is
equal to 0 for each element of A. The degree of such an algebra A
defined as the least degree of such polynomes. The algebra A {con-
sidered as a central algebra) can be embedded intec its {classical)
guotient ring S %M@ Fcl' where F el is the guotient field for ¥. The
field Fc can also be embedded Jnto SA. These embeddings can be defined

-1 -1
by the formulas a|->af and f-g |->1Ff.g {because modules A and
F

F ) are forsion-free). Each maximal linearly independent system {a }
F c i
in A over F generates a basis ha@@) in SA over P and each basis in
SA can be converted into such a basis {(details see in [121). Seo, sonme

properties of A are connected with the corresponding properties of SA
and vice versa. The algebra 8 is a m-dimensional algebra owver its
centre F and is simple by Pozner theorem, For each simple algebra A
having digensian m over its centre. we have m=n2 for some integer n.
We <call these algebras "n-algebras" [12]. In our case n=[g]. It is
possible to axiomatize within the class of primary rings the ©property
"ring A is a PI-algebra of s-degree” by the formula A|=S &TSz.n_z,
where S is a standard identity of the degree k ([12,p. 498] . Another
axiomatigation can be given by the formula "there exists a maximal
linearly independent (over F) system with n elements”. So the class L
can be axiomatized by these two axioms. We denote them by T

Let us consider the class L of all n-algebras A, such that their

TO
center F satisfies the fixed theory TO, We have LT ¢ L, because AF
0

satisfies the same identities as the matrix ring M (F) (f12,p.4971),
and, consequently, it satisfies the standard identigy S

Zen
Proposition 6. The class LT can be axiomatized {(by some theory T

formulated below). 0
Proof. Artin-Weddernburn theorem implies that AF;Hk(D)’ where D
is a solid and also a s-dimensional algebra cver its centre F$Z(D)
({12, p.283]). It is clear that n =k s. 8o, we can axiomatize QT by
0
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the theory T which contains tine following axiom

k k
.V (E{e.'} J¥x{Ey}{L e -1&e e =5. s e &
kS s=n ij i=1 ii ii pg Jp iq

[xe =e +x=>yre =e -y&(x=0vx:y=y-.x=1}])&

ij ij ij ij
{Ex ,...,x )[¥X(E)V ,...,¥y ¥u (xre  =e *x&...&y -u=u-y &...&
1 s 1 [} 1 ij ij 1 1
X=X oy +...4X 2y J&(x .. ..,Xx )}
1 1 s s 1 s

are linearly independent over the centre)l}. where éi is the Kroneker
ip
symbol and also axioms of To relativized to the centre F. Let A be the
model of T. It is aesy to check that AEMk(Z({e._))). where Z({e }) is
13 11
a centralizator of the system of “matrix units” {e }. This
. ij
centralizator is always a ring, in our case it is a s-dimensional

solid over the centre of the ring A. [J

Proposition 7 a) The class K 5{K|{K }|=T} is a Boolean-regular
TO D
class (as well as all its subclasses).
b} Moreover, RCL=>Z{(K)CZ(L) for all K,LégT
]

0 ¢

Proof. Let us mention that L € KT . It suffieces to verify only
T

clause b). We call by a marked polynome a multi-linear non-commutative
polynome with the only coefficients + 1 {containing at least one
variable and being not equal to zero) such that all values of the
polynome in every central algebra M (F) belong to its centre. Here F
is an arbitrary simple field (Q or residue field). There exists a
marked polynome (for example, polynome 4’constructed by Yu. Rozmyslov
is marked}. It is clear that every marked polynome has the same list
of properties for all n.n - matrix rings over all fields and even for
all n-algebras {(because each n-algebra A has the same identities as
M (F), where F$Z(A). The image Y (A) of ¥ on A coincides with the whole
centre F for each algebra A. Assume that f€Z(K) and KCL, where K,LEK
TO
For each point poeX{K) we have k{po)éz(xp}. So, there exists

0
-P - P,
t?,..,,t& <t %, sueh that kip }=?(t o(p }). This equality is also true
m 4} 0
in some closed-open neighbourhood ¢ of the point p ., i.e.
p 0

0
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: B
¥p€e (k(p)zw(t o(p))). Choose a disjoint covering e ., € of the
p p P
0 1 e
. A By .
whole X{K}). Let us combine tl,...,tl on e ,...,e into a section
p p
1 e
€ pl -
t 55Xt , e and construct also t ....,t . Then k=*(t). Because of
1 i=1 i p 2 m

i
teL we have k=?(£) "in L" and k(p}=$(%(p)} for each p€&€X{(L). Therefore,
K{p)€Z(L ) and k€Z(L}.
Theorem 6. If T0 is a modelly complete theory then T is a modelly
complete theory.
Proof. Let A,B be in LT . AgB and F$Z(A), G$Z(B). By Proposition

0
7 we have FLG. It is easy to show that each basis (x ,....x } in A
1 n
over F is also a basis in B over 6. Indeed. let us construct a
subalgebra A¢ G in B over 6, generated by a subring A. Then

ZE,ZA G(A)QF,G: F,GCZ(A¢G) and A*G is an algebra over F. According to
{12, p.289], the mapping afcl->a-c is an isomorphism of F-algebras
A&%ZA 6 and A*G. This mapping is also an isomorphism of G-algebras.

Consequently, n=dim B>dim A<G=dim {(A® 2) =(dim_A)-{(dim Z}=n-[Z:G] and,
G G G F G F G
therefore, Z=G. So, dim A*G=n and A°G=B and, therefore, BGEMEEG)G' Now
G

each basis {a } in AF can be converted into a basis {a ®1} in (Aﬁ?e),
i i

and, consequently. to a basis in BG. Now the proof can be finished as
in [11). g.e.d.

For example, all following theories are model complete: the
theory of the solid guaternions, the theeory of n-algebras with real

(or algebraical) «c¢losed centre, the theory of the <class of rings
elementary equivalent to the solid of guaternions or the ring M (R),
etc. 2
Corollary. Let TO* be a model companion for TO. Then the theory
T * (corresponding to the class LT*) is a model companion for the
theory T. 0
Theorem 7. Let TO be a model complete theory. Then the class

K s{K|({K }I=T) & K|=0 } 1is model complete and has a Horn
T p 2
0

axiomatization. It is also a Boolean-absolute class.
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Proof. We shall establish that 5T is Boolean-absolute and apply
0
Theorem 6 using Theorem 2B). [J
For example, all following classes are model complete:
{K|¥p{(K = H) & (Ki{=0¢ )} and {K|(¥p(K = H v K =M (R})}&K|=0 }.
p 2 p p 2 2

Theorem 8. Let To* be a model companion for TO. Then the class

KT*%{KJ(Kl=¢2)&({Kp}!=T*)) has a Horn axiomatization and is a model
4]
companion for the class K
0

Thecrem 9. Let TO* be the theory of algebraical closed fields.

Then the class K * is Horn axiomatizable and is a model companion for
TO
the class K s{K|{K }{=T }.
L p L

Example 3. LLet us present Example 2 in the more simple situation
of matrix rings. Let T be the set of all statements {(in the language
of the ring theory) which are true in the matrix ring M (F), where F
is a fixed field, i.e. T%Th(Hn(F)). Similarly, T*?Th{Mn(gl)), where Fl
is an algebraically closed field. It is mentioned in [11] that the
theory T¥ is modelly complete. We assume also that Th{F) and Th(Fl)

can be mutually model embedded into each other. In this case theories
T and T* can be also mutually model embedded, i.e. T* is a model
companion for T. Theories T and T* are normal and total autononmus,
because thev contain the statement ¢ , where

2
¢ sVe(Et){e =e&ke-t=tve=>e=0ve=1).
5
Let us form the <classes
Ks{K|¥p(K =M (F))) and K*${K|(K|=6 )&Vp(K =M (F ))}.
P n 2 p n 1

They correspond to local theories T and T* as usual. The class K¥* is
Boolean-regular, moreover, (KCL)}=>Z(K)CZ(L) for all K,L € K*¥. Let us
check the latter fact. There exists a system {e_ }, 1<i,j<n of ele-

1]
ments of M (Fl) {("matrix units"), such that
n

n
Ze =1 and e e =Ji e {where 5: is the Kroneker symbol)}.
i=1 1ii ij pg Jjp ig Ip
This fact can be expressed by an E~-formula. (Here and later
we may substitute any commutative ring for F }. By Proposition 5 and
1

Remark in Section 2 this E-~formula is true in K; the corresponding
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system of "matrix units" we denote by {e }. It is a system of matrix
1]

units also for L. It is easy to see that LEMH(G), where G%ZL({eij}) is
a centralizator for the system {e.‘} (i.e. Z {X)s{1€LIV¥xE€X{1ox=x°1}}}
Here G is a ring and elements iJof G are aapped into 1 - E by this
isomorphism. The standard identity of the order 2+¢n holds for L by the
Amizur-Levisciy theorem and by Proposition 5 and Remark in Section 2.
Then Leron-Vopne theorem implies that G is a commutative ring. Now we
see that if k&Z(K). then k&G and kE«m=m.kE for matrix m corresponding
to each e€L. So, we have proved the mentioned fact.

All localizations of the ring K belonging to the class K¥ are
simple rings. Indeed, if K=M (F), where F is a ficld, then the formula

n

(E€ )vx,y( fﬁe =1&e ‘e :S' e &e +xXx=x+e )} holds for M (F). and

ij i=1 ii ij pg Jjp ig ij ij n
consequently, for K. As above, K=M (G). where G$Z({e }) and G is a
center of K. It is c¢lear that G=F ang, seguently, G %g a field. All
both-sided ideals of M (G) are equal to M {a) for some both-sided
ideals a in G. Therefore K is a simple rlng 80, the class K* is a
Boolean-regular and Boolean-simple. The elements of the class K* are
biregular rings. 80 VKEK*(K]=¢1), i.e. EK* has a required form.
Consequently. ThK* is a model complete Hornm theory and a model
companion for the class K. In a usual way we obtain the completeness
and decidability for the theory ThK*. For exanple, if the theory of
the field F is decidable, so is the theory of M (F ) ([11,p.361). By
Theorem 5 ;e see that the theory ThK* is also cgmp%ete and decidable
(if ThF 1is recursively axiomatizable).

Analogously. we get that if T is a theory of the ring of n»sn-
matrix over an arbitrary commutative regular ring, then the theory T¥*
of the ring of nxn-matrises over some commutative regular
algebraically closed atomless rings is a model companion for T. The
same is true for the corresponding classes g*%{K|(K|=@2)&{Kp}f=T*} and

Ke{K|{K }|=T}.
p
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