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Abstract. Earlier, I.V. Latkin and the author have shown the set par-
tition problem can be reduced to the problem of finding singular points
of a cubic hypersurface. The article focuses on the new link between
two different research areas as well as on methods to look for singular
points or to confirm the smoothness of the hypersurface. Our approach
is based on the description of tangent lines to the hypersurface. The exis-
tence of at least one singular point imposes a restriction on the algebraic
equation that determines the set of tangent lines passing through the
selected point of the space. This equation is based on the formula for the
discriminant of a univariate polynomial. We have proposed a probabilis-
tic algorithm for some set of inputs of the set partition problem. The
probabilistic algorithm is not proved to have polynomial complexity.
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1 Introduction

The set partition problem is NP -complete [1]. Let us recall its definition. Given a
multiset of positive integers {α0, . . . , αn}. Can it be partitioned into two subsets
with equal sums of elements? Points with coordinates ±1 are called (−1, 1)-
points. Obviously, this problem is to recognize whether a (−1, 1)-point belongs
to the hyperplane given by α0 + α1x1 + · · · + αnxn = 0. So, it is hard to find
a (−1, 1)-point belonging to the hyperplane in high dimensions. The problem is
to solve the system that consists of one linear equation and the set of quadratic
equations x2

1 = 1,. . . , x2
n = 1. If there is no solution, then a direct proof of

the unsolvability of the system by means of Hilbert’s Nullstellensatz requires to
produce polynomials of very high degree [2]. The informal explanation is that
many (−1, 1)-points can lie on a hyperplane. In case n = 2k, the number of
(−1, 1)-points belonging to the hyperplane given by x1 + · · ·+xn = 0 is equal to
n!/(k!)2. The full description of a large number of solutions requires polynomials
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of high degree. There are known randomized algorithms for solving some systems
of algebraic equations [3]. But their applicability in this case is doubtful.

There are other methods for solving integer linear programming prob-
lems [1,4]. One can find (−1, 1)-points belonging to the hyperplane given by
a linear function with integer coefficients near zero, using dynamic program-
ming [5,6]. There is also the related optimization problem. So, there are well
known both fully polynomial time approximation scheme and pseudo-polynomial
time algorithm for solving the problem. The obstacle for solving the optimiza-
tion problem is a large number of values of the linear functional at different
(−1, 1)-points.

In this paper, we focus on an algorithm for solving all but an exponentially
small fraction of inputs; these inputs are incorrectly accepted without any warn-
ing. In accordance with the Schwartz–Zippel lemma [7], if the stupid algorithm
rejects all inputs, then it works correctly on a strongly generic set of inputs [8,9].
But our algorithm can make errors of another type only.

Our method is based on the reduction of the set partition problem to the
recognition problem for hypersurface singularities [10,11]. Two viewpoints may
clarify each other. Other geometric formulations of related problems have already
appeared in the literature [12,13]. For example, maximization of cubic form over
the Euclidean ball is NP -hard too. Of course, we consider a very special type
of singularities. In general the problem is very hard [14]. Singular points on the
variety corresponds to roots of a system of algebraic equations. The best methods
for solving the system require at least exponential time in general case [3,15]. A
solution to n algebraic equations in n variables can be obtained by a series of
hypergeometric type [16]. Methods based on the computation of Gröbner bases
are widely used in small dimensions [17–19], but the computational complexity
quickly increases in high dimensions [20]. Some examples have been computed
by means of the cloud service MathPartner [21].

2 Preliminaries

The binary representation of a positive integer n has the length �log2(n + 1)�,
where �t� is the smallest integer not less than t. We denote by C and Q the fields
of complex and rational numbers, respectively.

The discriminant Δd of a univariate polynomial of degree d is a homoge-
neous function of its coefficients. The discriminant vanishes if and only if the
polynomial has a multiple root. For example, the discriminant Δ3 of the cubic
polynomial at3 + bt2 + pt + q is equal to b2p2 − 4ap3 − 4b3q − 27a2q2 + 18abpq.
Moreover, Δd(g0, g1, . . . , gd−1, gd) = Δd(gd, gd−1, . . . , g1, g0). If the leading coef-
ficient vanishes, then the value of the function Δd is equal to the discriminant
of another polynomial without the constant term. If the degree is equal to d−1,
then Δd vanishes if and only if the polynomial has a multiple root. If the degree
is less than d − 1, then Δd = 0.

A square-free polynomial is a polynomial that does not have as a factor any
square of a polynomial of positive degree. An affine hypersurface is the vanishing
locus of a square-free polynomial over the field of complex numbers.
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Let us consider an affine hypersurface given by a square-free polynomial f . A
straight line passing through the selected point U in n-dimensional affine space is
defined as the set of points with coordinates ((x1−u1)t+u1, . . . , (xn−un)t+un),
where (u1, . . . , un) are coordinates at U , and t is a parameter. Let us denote by
r(t) a univariate polynomial that is the restriction of the polynomial f to the
line, and by D[f, U ] the discriminant of r(t). If deg r(t) < d, then we use the
formula for Δd by means of substitution the zero as the leading coefficient. At the
general point U the degree of D[f, U ](x1, . . . , xn) is equal to d2 − d. If the line is
a tangent line to the hypersurface, then the discriminant of the polynomial r(t)
vanishes. If U is not a singular point of the hypersurface, then D[f, U ](x1, . . . , xn)
defines a cone. If U is a smooth point of the hypersurface, the cone is reducible
and contains a tangent hyperplane at the point U . If U is singular, then D[f, U ]
vanishes identically.

If the selected point U is a smooth point of the hypersurface, then let us
denote by B[f, U ] the discriminant of r(t)/t. Since r(0) = 0, r(t)/t is a poly-
nomial of degree at most d − 1, where d = deg f . If deg r(t) < d − 1, then we
use the formula for degree d − 1 by means of substitution the zero as the lead-
ing coefficient. Of course, the polynomial B[f, U ] is a divisor of the polynomial
D[f, U ].

To study generic-case complexity of an algorithm, let us recall the definition
of the generic set [8,9]. For every positive n, let Bn denote the set of all inputs
of length at most n. Let us define the asymptotic density ρ(S) for S as

ρ(S) = lim
n→∞ ρn(S),

where

ρn(S) =
|S ∩ Bn|

|Bn| .

If ρ(S) = 1, then the subset S is called generic. If in addition ρn(S) converges
to 1 exponentially fast, then S is called strongly generic.

For example, hard inputs are rare for the simplex algorithm for linear pro-
gramming [22,23].

3 Results

In this section let us denote

f = α0 + α1x
3
1 + · · · + αnx3

n

h = α0 + α1x1 + · · · + αnxn,

where all coefficients α0,. . . , αn are nonzero. Of course, the hypersurface f = 0
is smooth. The following theorem is a reformulation of the result from [11].

Theorem 1. Given a multiset of positive integers {α0, . . . , αn}, where n ≥ 2.
There exists a one-to-one correspondence between singular points of the affine
variety given by two equations f = h = 0 and (−1, 1)-points belonging to the
hyperplane given by the equation h = 0.
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Proof. If both polynomials f and h vanish simultaneously at a (−1, 1)-point,
then the hyperplane h = 0 is tangent to the hypersurface f = 0 at this point.
Thus, the hyperplane section is singular.

At a singular point of the section, the hyperplane h = 0 coincides with the
tangent hyperplane to the hypersurface f = 0. Since all the coefficients αk are
nonzero, both gradients ∇f and ∇h can be collinear only at the points whose
coordinates satisfy the system of the equations x2

k = x2
j for all indices k and j.

All the points are (−1, 1)-points. ��
The polynomial D[f, U ] is equal to the discriminant of a univariate polynomial
at3 + bt2 +pt+ q. That is, D[f, U ] = b2p2 −4ap3 −4b3q −27a2q2 +18abpq, where
the coefficients are sums of univariate polynomials a = a1(x1) + · · · + an(xn),
b = b1(x1) + · · · + bn(xn), p = p0 + p1x1 + · · · + pnxn, and the constant term q.
Each monomial from D[f, U ](x1, . . . , xn) is dependent on at most four variables.

The polynomial B[f, U ] is equal to the discriminant of a univariate polyno-
mial at2 + bt + c. That is, B[f, U ] = b2 − 4ac, where the coefficients are sums of
univariate polynomials a = a1(x1) + · · · + an(xn), b = b1(x1) + · · · + bn(xn), and
c = c0+c1x1+ · · ·+cnxn. Each monomial from B[f, U ](x1, . . . , xn) is dependent
on at most two variables.

Let us consider the factor ring C[x1, . . . , xn]/〈x2
1−1, . . . , x2

n−1〉. It is referred
to as the set of multilinear polynomials. In this way, we have a surjective map
ϕ from the set of all polynomials onto the set of multilinear polynomials.

Let us denote by M [f, U ](x1, . . . , xn−1) a multilinear polynomial that is an
image of the restriction to the hyperplane h = 0 of the multilinear polynomial
ϕ(B[f, U ]). The restriction to the hyperplane h = 0 means that we substitute
xn = −(α0 +α1x1 + · · ·+αn−1xn−1)/αn. Unfortunately, it is hard to compute a
Gröbner basis of the ideal 〈h, x2

1 − 1, . . . , x2
n − 1〉. Instead, we use computations

over the set of multilinear polynomials.
Let us denote by L or Lα0,...,αn

a linear space spanned by all multilinear
polynomials M [f, U ](x1, . . . , xn−1), where U belongs to the section f = h = 0.

A polynomial vanishes at a (−1, 1)-point if and only if its multilinear image
vanishes at this point. Thus, if the hyperplane section given by f = h = 0 con-
tains a (−1, 1)-point, then all multilinear polynomials from L vanish at the point.
Contrariwise, if L coincides with the linear space of all multilinear polynomials
of degree at most two, then the section does not contain any (−1, 1)-point. Of
course, all such (−1, 1)-points are singular.

Lemma 1. If n = 2 and α0 = 1, then there exist infinitely many values of two
coefficients α1 and α2 such that the linear space L coincides with the linear space
of all multilinear polynomials of degree at most two. In particular, the same is
true for all algebraically independent numbers α1 and α2.

Proof. Let us consider a plane curve defined by f = 3x3
1 + 2x3

2 + 1. The inter-
section of the line 3x1 + 2x2 + 1 = 0 and the curve f = 0 consist of two
points U(−1, 1) and V (15 ,− 4

5 ). The union of all tangent lines passing through
the point U is defined by the polynomial B[f, U ] = −3x4

2 − 36x3
2x1 − 24x3

2 −



On Probabilistic Algorithm 289

54x2
2x

2
1 + 36x2

2 − 36x2x
3
1 − 24x2 − 27x4

1 − 72x3
1 − 108x2

1 − 72x1 − 12. Its multi-
linear image is ϕ(B[f, U ]) = −72x2x1 − 48x2 − 144x1 − 168. The substitution
x2 = − 3x1+1

2 yields a univariate polynomial 108x2
1 − 36x1 − 144. Its multilinear

image M [f, U ] = −36x1 −36. At the second point V the multilinear polynomial

M [f, V ] =
26172
3125

x1 +
428292
15625

.

Two polynomials M [f, U ] and M [f, V ] together span the whole linear space
of univariate linear polynomials. The same is true for almost all cubic curves
because the first-order theory of the field of complex numbers admits quantifier
elimination. ��
Remark 1. Let us consider an affine plane curve defined by f = x3

1 + x3
2 + 1.

The intersection of the curve and the line defined by h = x1 + x2 + 1 consists
of two points U(0,−1) and V (−1, 0). The third point does not belong to the
affine plane. So, B[f, U ] = −12x1x2 − 24x2 − 12x1 − 24; the multilinear polyno-
mial M [f, U ] = 24x1 + 12. On the other hand, at the point V the polynomial
B[f, V ] = −12x1x2 − 12x2 − 24x1 − 24; the multilinear polynomial M [f, V ] van-
ishes identically. Thus, L is a proper subspace in the two-dimensional space of
univariate linear polynomials.

Lemma 2. For all n ≥ 2, if there exist nonzero numbers β0,. . . , βn such that the
linear space Lβ0,...,βn

coincides with the linear space of all multilinear polynomials
of degree at most two, then for almost all nonzero integers α0,. . . , αn, the linear
space Lα0,...,αn

coincides with the linear space of all multilinear polynomials of
degree at most two. Moreover, if for all indices k the numbers 1 ≤ αk ≤ S, then
the upper bound on the fraction of the exception set of (n+1)-tuples {α0, . . . , αn}
is equal to 2poly(n)/S.

Proof. All coefficients from M [f, U ] are continuous functions on the open set
α0 �= 0,. . . ,αn �= 0. The matrix determinant is continuous too. Let us consider
a set of points {U (k)} on the hypersurface f = 0 for a set {α0, . . . , αn}. If
all polynomials {M [f, U (k)]} are linearly independent, then under a sufficiently
small change of αk there exists a set of points {V (k)}, such that for all indices
V (k) belongs to a small polydisk near U (k), V (k) belongs to the new hypersurface
f̌ = 0, and all polynomials {M [f̌ , V (k)]} are linearly independent. This property
is satisfied on a nonempty open set of (n + 1)-tuples {α0, . . . , αn} because the
first-order theory of the field of complex numbers admits quantifier elimination.
Thus, dim L is a lower semi-continuous function.

In accordance with our premise, the fraction of the exception set is less than
one. In accordance with Lemma 1, in case n = 2, the premise holds.

There exists a nontrivial polynomial g(α0, . . . , αn) of degree at most 2poly(n)

such that if L does not coincide with the linear space of all multilinear poly-
nomials of degree at most two, then g vanishes. (The converse implication is
not necessary true.) Vanishing of the polynomial g is equivalent to inconsistency
of a system of O(n2) algebraic equations, where the degree of each algebraic
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equations is poly(n). In accordance with [15], the polynomial g can be chosen so
that its degree deg(g) ≤ 2poly(n). Thus, in accordance with the Schwartz–Zippel
lemma [7], the fraction is less than 2poly(n)/S. ��

Let us denote by π the projection of the hyperplane section f = h = 0 that
forgets two coordinates xn−1 and xn. Let us define

λ(n) =
n(n + 1)

2
+ 1

that is the upper bound on dimL for all n ≥ 3.

Lemma 3. Given a multiset of positive integers α0,. . . , αn, and a real ε > 0.
Let us consider the multilinear polynomials mk = M [f, U (k)] for random points
U (k) of the hyperplane section given by f = h = 0, where the index k runs the
segment 1 ≤ k ≤ λ(n). If all coordinates of their images π(U (k)) are independent
and uniformly distributed on the set of integers from one to �2180n4

/ε�, then the
probability of spanning the whole linear space L is at least 1 − ε.

Proof. All polynomials m1,. . . , mλ(n) belong to L. If the polynomials are lin-
early dependent, then the determinant of the matrix, whose entries are coeffi-
cients, vanishes. The order of the matrix is equal to λ(n). Each matrix entry is
a polynomial of degree at most six. The determinant of the matrix is a polyno-
mial of degree at most 6λ(n). Let us denote the polynomial by g. The resultant
resxn−1(g, f(x1, . . . , xn−1,− (α0+α1x1+· · ·+αn−1xn−1)/αn) vanishes with prob-
ability at most ε. Else it vanishes identically. The resultant degree is less than
(3 + deg g) deg g ≤ 9n4 + 18n3 + 54n2 + 45n + 54 < 180n4. The upper bound on
the probability of vanishing the resultant is calculated by the Schwartz–Zippel
lemma [7]. ��

Remark 2. The enormous integer �2180n4
/ε� has a binary representation of poly-

nomial length. But we assume it is only very rough upper bound. Another app-
roach to prove Lemma 3 is briefly discussed in the next section.

Theorem 2. There exists a function S(n) of the type 2poly(n) such that for
any real ε > 0 there exists a probabilistic algorithm for solving the set partition
problem in certain sense.

– The algorithm receives as the input a set of positive integers α0, . . . , αn from
one to S(n);

– The algorithm executes O(n6) arithmetic operations over algebraic numbers
as well as square root or cube root extraction operations;

– If a solution exists, then the probability of accepting is at least 1 − ε;
– Else if there exist nonzero numbers β0, . . . , βn such that the linear space

Lβ0,...,βn
coincides with the linear space of all multilinear polynomials of

degree at most two, then the probability of rejecting is at least 1 − ε except an
exponentially small fraction of inputs, i.e., on a strongly generic set of inputs.
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Proof. Let us consider the cubic hypersurface given by f = 0. In accordance
with Theorem 1, a singular point of its hyperplane section given by f = h = 0
corresponds to a solution to the set partition problem [10,11].

In case n ≤ 1, the algorithm simply checks all (−1, 1)-points.
In case n ≥ 2, the algorithm picks up λ(n) random points on the section.

In this way, it picks up a random point P from the coordinate subspace, whose
n − 2 coordinates are independently and uniformly distributed on the set of
integers from one to a large number as in Lemma 3. A preimage U ∈ π−1(P )
belongs to the section. Both points P and U have the same n − 2 coordinates.
Other two coordinates are calculated as a solution of the system of two equations
f = h = 0. They can be irrational.

If a (−1, 1)-point is picked up, then the input is accepted. Else the algorithm
calculates a spanning set of the linear space L in accordance with Lemma 3.
If L does not coincide with the linear space of all multilinear polynomials of
degree at most two, then the input is accepted because a solution gives a linear
dependence of polynomials. Else the input is rejected.

The total number of random bits used by the algorithm is bounded by a
polynomial in n and 1/ε; it does not depend on the values α0, . . . , αn. The total
number of the arithmetic operations over algebraic numbers is bounded by a
polynomial in n.

In accordance with Lemma 2, if there exist nonzero numbers α0, . . . , αn such
that the linear space L coincides with the linear space of all multilinear polyno-
mials of degree at most two, then the error probability is small for a generic set
of inputs. ��
Remark 3. Instead of computation dimL it is sufficient to check whether a
nonzero constant belongs to the linear space L. Moreover, if the linear space
L contains a linear polynomial, one can reduce the dimension of the initial task.

4 Discussion

In fact, the algorithm from Theorem 2 computes the determinant of a matrix
with irrational entries. Its value is an algebraic number that is result of poly(n)
arithmetic operations over roots of cubic polynomials. Unfortunately, there are
such algebraic numbers whose both length and degree can be large [24]. On the
other hand, if the determinant does not belong to a very small polydisk near
zero, then one can use Diophantine approximation to prove that it is nonzero.
Thus, we have a sufficient condition over Q for the absence of any solution for
the set partition problem.

In Lemma 3, we pick up a point from the preimage π−1(P ) containing three
points. But we need only one point. Instead, the point on the cubic hypersurface
can be computed in more deterministic way using a rational parameterization
of the variety. All cubic surfaces as well as hypersurfaces in higher dimensions
are unirational over C, although any smooth cubic curve is not unirational.
Moreover, such a cubic hypersurface defined over Q is unirational over Q if
and only if it has a Q-point [25]. Obviously, the same result is true for the
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hyperplane section f = h = 0 that is hypersurface inside the hyperplane. Thus,
if the section contain a Q-point, then we have not only a lot of rational points but
also a rational map from the set of points with integer coordinates to the variety
defined by both polynomials f and h. In this case, one can modify Lemma 3 as
well as Theorem 2 to eliminate irrational numbers.

The number of arithmetic operations in the algorithm depends on the com-
putational complexity of a method for solving systems of linear equations. We
adopt Gaussian elimination. Some upper bounds can be improved by means of
asymptotically more efficient methods [26].

The algorithm works correctly on a strongly generic set of inputs. Maybe
the exception set is empty, but this hypothesis is not obvious. Although two
smooth hypersurfaces are diffeomorphic each other, their algebraic properties
can differ. For example, there exists an exotic smooth complex affine variety
which is diffeomorphic to an affine space, but is not algebraically isomorphic to
it [27]. In case n = 2, see also Remark 1. But in accordance with Lemma 1, the
method can be used for smoothness recognition of almost all cubic curves.

In Theorem 2, all α0, . . . , αn are integers with binary representations of
length poly(n). One can consider the continuous version, where all α0, . . . , αn

are nonzero complex numbers (or algebraic numbers having finite descriptions).
In this case, the exception set has measure zero.

The same method can be applied to find additional algebraic equation that
vanishes at all singular points of an arbitrary algebraic variety of degree d. In
the case, a polynomial of the type D[f, U ] can be computed using finitely many
tangent lines passing through the selected point U . The approach based on the
description of tangent lines to the surface can be useful for solving some problems
of machine vision and image recognition.
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17. Bokut, L.A., Chen, Y.: Gröbner-Shirshov bases and their calculation. Bull. Math.
Sci. 4(3), 325–395 (2014). doi:10.1007/s13373-014-0054-6

18. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the F5 Gröbner basis
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nomial ideals. J. Symbolic Comput. 49, 78–94 (2013). doi:10.1016/j.jsc.2011.12.018

21. Malaschonok, G., Scherbinin, A.: Triangular decomposition of matrices in a
domain. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.)
CASC 2015. LNCS, vol. 9301, pp. 292–306. Springer, Cham (2015). doi:10.1007/
978-3-319-24021-3 22

22. Vershik, A.M., Sporyshev, P.V.: An estimate of the average number of steps in the
simplex method, and problems in asymptotic integral geometry. Sov. Math. Dokl.
28, 195–199 (1983)

23. Smale, S.: On the average number of steps of the simplex method of linear pro-
gramming. Math. Program. 27(3), 241–262 (1983). doi:10.1007/BF02591902

24. Dubickas, A., Smyth, C.J.: Length of the sum and product of algebraic numbers.
Math. Notes. 77, 787–793 (2005). doi:10.1007/s11006-005-0079-y

25. Kollár, J.: Unirationality of cubic hypersurfaces. J. Inst. Math. Jussieu. 1(3), 467–
476 (2002). doi:10.1017/S1474748002000117

26. Cenk, M., Hasan, M.A.: On the arithmetic complexity of Strassen-like matrix mul-
tiplications. J. Symbolic Comput. 80(2), 484–501 (2017). doi:10.1016/j.jsc.2016.
07.004

27. Hedén, I.: Russell’s hypersurface from a geometric point of view. Osaka J. Math.
53(3), 637–644 (2016)

http://dx.doi.org/10.1016/S0021-8693(03)00167-4
http://dx.doi.org/10.1007/s10469-016-9410-9
http://dx.doi.org/10.1145/2512329
http://dx.doi.org/10.1007/s10958-012-0724-4
http://dx.doi.org/10.1007/s10958-012-0724-4
http://dx.doi.org/10.1090/spmj/1361
http://dx.doi.org/10.1007/s13373-014-0054-6
http://dx.doi.org/10.1016/j.jsc.2014.09.025
http://dx.doi.org/10.1016/j.jsc.2016.07.031
http://dx.doi.org/10.1016/j.jsc.2016.07.031
http://dx.doi.org/10.1016/j.jsc.2011.12.018
http://dx.doi.org/10.1007/978-3-319-24021-3_22
http://dx.doi.org/10.1007/978-3-319-24021-3_22
http://dx.doi.org/10.1007/BF02591902
http://dx.doi.org/10.1007/s11006-005-0079-y
http://dx.doi.org/10.1017/S1474748002000117
http://dx.doi.org/10.1016/j.jsc.2016.07.004
http://dx.doi.org/10.1016/j.jsc.2016.07.004

	On Probabilistic Algorithm for Solving Almost All Instances of the Set Partition Problem
	1 Introduction
	2 Preliminaries
	3 Results
	4 Discussion
	References


