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Abstract. In a broad sense, artificial intelligence is a service to find
a solution to complex intellectual problems. In this sense, the Math-
Partner service provides artificial intelligence that allows us to formulate
questions and receive answers to questions formulated in a mathematical
language. For mathematicians and physicists today, such a language is
LaTEX. The MathPartner service uses a dialect of LaTEX, which is called
Mathpar. The service is a cloud-based computer algebra system and pro-
vides users with the opportunity to solve many mathematical problems.
In this publication, we focus only on a small class of extremum prob-
lems, which are widely applied in economics, management, logistics, and
in many engineering fields. In particular, we consider the shortest path
problem and discuss an algorithm that is based on the tropical math-
ematics. The ability to work with many types of classical and tropical
algebras, which are freely available to users, is an important distinguish-
ing feature of this intelligent tool for symbolic-numerical calculations. We
also consider the use of the simplex algorithm for solving optimization
problems.

Keywords: Artificial intelligence · Tropical mathematics ·
Symbolic-numerical calculations · Cloud computing · Computer
algebra · Cloud service · Mathpar · MathPartner

1 Introduction

Intelligent systems and artificial intelligence should at least have two properties:
reflect the real world and interact with a person. If we talk about creating a
universal intellectual system in the future, then it must have natural science
knowledge, and primarily mathematical knowledge.

While humanity is still far from creating an artificial intelligence that would
have mathematical knowledge, but such a task should already be formulated as
one of the primary tasks. What is the traditional way of using mathematical
knowledge? First, the problem is formulated in a mathematical language, and
then the solution of the problem is found using known methods and algorithms.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Therefore, the first step should be the creation of an intelligent system that
is capable of solving traditional mathematical problems, if they are correctly
formulated in traditional mathematical language.

Here are some simple examples. A weighted graph is given, two of its vertices
are indicated, and it is required to find the shortest distance between these
two vertices. A system of linear algebraic equations is given, a linear form is
indicated, and it is required to find a solution to the system that maximizes
(or minimizes) this linear form. A system of algebraic equations is given and
it is required to find all its solutions in a specific numerical region. A system
of differential equations is given and it is required to find all its solutions in a
certain class of functions.

Of course, a program that can solve such problems is not artificial intelligence.
But such a program is the main component without which it is impossible to
create artificial intelligence with mathematical knowledge. Today, the most con-
venient form is the cloud form. The creation of such a cloud component is a very
important step towards the creation of artificial intelligence.

We propose to use MathPartner cloud mathematics for this purpose. It is
freely available [1]. To get acquainted with its capabilities, you can read the
user manual as well as journal articles [2–4]. However, the possibilities of solving
extreme problems were very little covered.

Therefore, the purpose of this article is to acquaint the reader with the capa-
bilities that this service provides for solving extreme problems.

To solve extremal problems, you can use both classical and tropical alge-
bras. Note that such algebras are freely available to users and this is one of the
important advantages of this service.

Calculations over max-plus as well as min-plus semirings play an important
role both in discrete optimization and for the study of systems of equations over
the field of complex numbers. These semirings are known as tropical semirings
and has been intensively studied in recent decades. In particular, they forms
the basis of tropical geometry [5–12]. A new branch of linear algebra was also
developed [13–19].

The shortest path problem has many applications in artificial intelligence
and operations research. Classical algorithms such as the Dijkstra algorithm are
known. This problem is effectively solvable over the min-plus semiring.

For both linear functional and polyhedron defined by linear functions with
integer coefficients, the optimization problem can be reformulated over max-
plus or min-plus semirings. Therefore, such problems about polyhedra provide
a large set of problems related to tropical mathematics. Although in the Math-
Partner system, the simplex algorithm is implemented over ordinary fields. The
average-case complexity of the algorithm is polynomial, but it is high in the
worst case [20,21]. The simplex algorithm is widely used, although other meth-
ods are more efficient in the worst case [22–24]. Note that the simplex algorithm
is sensitive to rounding off at intermediate computation steps [25]. For solving
feasibility in linear programs with up to two variables per inequality, n variables,
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and m inequalities, there is an O(mn2 log m) algorithm which is derived from
the Fourier–Motzkin elimination method [26,27].

This paper is structured as follows. Section 2 provides basic definitions
and theoretical background. Section 3 describes implementation of some trop-
ical algorithms. Section 4 describes implementation of the simplex algorithm.
Section 5 concludes the paper.

2 Basic Definitions and Theoretical Background

2.1 The Max-plus Semiring

As usual, tropical algebra refers to the max-plus semiring, i.e., the set R∪{−∞}
equipped with the addition x ⊕ y = max(x, y) as well as the multiplication
x � y = x + y. For all x, both identities max(−∞, x) = x and −∞ + x = −∞
hold. Every x �= −∞ has the multiplicative inverse −x. So, the algebra is known
as a semifield [13].

The matrix multiplication over the max-plus semiring is defined as usual.
The multiplication symbol between matrices is omitted. For example,

(
A11 A12

A21 A22

) (
x1

x2

)
=

(
max(A11 + x1, A12 + x2)
max(A21 + x1, A22 + x2)

)
.

The max() operation acts on matrices of the same size entry-wise, i.e.,

max(A,B)jk = max(Ajk, Bjk).

Definition 1. Given a n × n matrix A over the max-plus semiring. Its pseudo-
inverse matrix A− is a n × n matrix with entries

A−
jk =

{−Akj , Akj �= −∞
−∞, Akj = −∞

Of course, (A−)− = A. The pseudo-inverse matrix is defined for every square
matrix. It can be calculated easier than the inverse matrix over a field. Never-
theless, it allows to solve tropical equations.

Let diag(d1, . . . , dn) denote the matrix with entries

Djk =
{

dk, j = k
−∞, j �= k

and I = diag(0, . . . , 0).

Remark 1. If A = diag(d1, . . . , dn), where all dk �= −∞, then AA− = I, i.e.,
A− is the inverse matrix.

Proposition 1. For a n×n matrix A and a column b, every column x ≤ (b−A)−

is a particular solution to the inequality Ax ≤ b. Moreover, the upper bound on
the computation complexity equals O(n2) operations over the max-plus semiring.
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Proof. If x ≤ (b−A)−, then for every index k the inequality xk ≤ (maxj(b−
j +

Ajk))− holds. So, xk ≤ minj(bj + A−
jk). Next, for all k and j, xk ≤ bj + A−

jk and
Ajk + xk ≤ bj . So, for every index j, maxk(Ajk + xk) ≤ bj . Thus, Ax ≤ b.

Proposition 2. For a n×n matrix A and a column b, if there exists a solution
to the equation Ax = b, then a particular solution can be calculated as x =
(b−A)−. Moreover, the upper bound on the computation complexity equals O(n2)
operations over the max-plus semiring.

Remark 2. For a sparse matrix A, a particular solution to the equation Ax = b
can be calculated quicker.

There are many types of equations because the additive operation is not invert-
ible. An equation of the type Ax = x is known as the homogeneous Bell-
man equation. For a column b, an inhomogeneous equation is one of the type
max(Ax, b) = x.

Definition 2. A partial operation ()× is called the closure when both identities
hold:

1. If max(X,Y ) = Y and both X× and Y × exist, then max(X×, Y ×) = Y ×.
2. X× = max(I,XX×) = max(I,X×X).

Proposition 3. Given both n × n matrices A and B over max-plus semiring.
If the closure A× exists, then the matrix X = A×B is a solution to the matrix
Bellman equation max(AX,B) = X.

Proof. max(AX,B) = max(AA×B,B) = max(AA×, I)B = A×B = X.

The closure can be calculated as A× = max(I,A,A2, . . . ). For elements of the
max-plus semiring, the closure is

x× =
{

0, x ≤ 0
undefined, x > 0

Moreover, for n × n matrices, if the closure exists, then it is equal to finite
expression A× = max(I,A, . . . , An−1).

The next proposition provides a block-recursive algorithm to calculate the
closure of a matrix.

Proposition 4. Given a block matrix over the max-plus semiring

A =
(

E F
G H

)

If both E× and D× exist, where D = max(H,GE×F ), then the closure A× can
be found using closures of the blocks:

A× =
(

E× max(I, FD×GE×) E×FD×

D×GE× D×

)
.



186 G. Malaschonok and A. Seliverstov

Proof. Let −∞ denotes the matrix whose entries are equal to −∞. First of all, it
is easy to check that the block expression for A× has the following factorization:

(
E× max(I, FD×GE×) E×FD×

D×GE× D×

)
=

(
I E×F

−∞ I

) (
I −∞

−∞ D×

)(
I −∞
G I

)(
E× −∞
−∞ I

)
.

Let us prove the identity A× = max(I,A×A). Consider the product of the first
two matrices and matrix A:(

I −∞
G I

)(
E× −∞
−∞ I

)(
E F
G H

)
=

(
E×E E×F
GE× D

)
.

It follows from here that

A×A =
(

I E×F
−∞ I

)(
I −∞

−∞ D×

)(
E×E E×F
GE× D

)

=
(

max(E×E,E×FD×GE×) E×FD×

D×GE× D×D

)
.

Therefor

max(I,A×A) = max
( (

I −∞
−∞ I

)
,

(
max(E×E,E×FD×GE×) E×FD×

D×GE× D×D

) )

=
(

E× max(I, FD×GE×) E×FD×

D×GE× D×

)
.

The identity A× = max(I,AA×) can also be proved similarly.

2.2 The Min-plus Semiring

In the same way one can consider the min-plus semiring R∪{+∞} with addition
x⊕y = min(x, y) as well as multiplication x�y = x+y. For all x, both identities
min(+∞, x) = x and +∞+x = +∞ hold. Every x �= +∞ has the multiplicative
inverse −x. Of course, in all definitions max() is replaced by min() as well as
−∞ is replaced by +∞. For example, the pseudo-inverse matrix A− over the
min-plus semiring is a matrix with entries

A−
jk =

{−Akj , Akj �= +∞
+∞, Akj = +∞

The diagonal matrix diag(d1, . . . , dn) has entries

Djk =
{

dk, j = k
+∞, j �= k
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The closure is defined as A× = min(I,A,A2, . . . ).
Note that the order over the min-plus semiring is reversed.
Both max-plus and min-plus semirings are tangled by the sister identities

(max(A,B))− = min(A−, B−) and (min(A,B))− = max(A−, B−).
The shortest path problem is the problem of finding a path between two

vertices in a graph such that the sum of the weights of its constituent edges
is minimized. Let the weights be entries of the matrix A. If all weights are
nonnegative, then the problem can be reduced to calculating the closure A×

over the min-plus semiring. In fact, it uses only finite sequence of matrices in
the equation A× = min(I,A,A2, . . . ) because the length of the shortest path
is bounded. Of course, if all weights are nonpositive, then one can find the
maximum using the max-plus semiring, but this formulation of the problem is
not usually used. For nonnegative weights, the travelling salesman problem can
also be expressed over the max-plus semiring, but its computational complexity
seems to be very high because closely related the Hamiltonian path problem is
NP-complete.

2.3 The Algorithm for Calculating the Matrix Closure

We formulate the algorithm for calculating the matrix closure. Let us designate:

– M is an input matrix whose size n is a power of 2;
– ring is an algebra type (one of the tropical semirings or classical fields);
– Split() is procedure for dividing a matrix into four equal blocks;
– Join() is a procedure for joining four blocks into one matrix;
– Inverse() is the matrix inversion procedure over a field;
– I is the identity matrix;
– both + and ∗ are basic operations over a (semi)ring.

closure(M, ring) {
if (ring is tropical)
then
if(M.size=1) AND (M=[[a]])
then{b=closure(a);return [[b]]}
else{

(E,F,G,H) = Split(M):
S = closure(E,ring);
B = G*S;
R4 = closure(H+B*F, ring);
R3 = R4+B;
V = S*F ;
R2 = V*R4;
R1 = S+V*R3;
return Join(R1, R2, R3, R4);

}
else return Inverse(I-M);

}
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In contrast to matrices over a field, there is not known fast algorithm for matrix
multiplication over tropical semirings similar to the Strassen algorithm [28,29]
because the additive operation is not invertible.

Let γ and β be constants, 3 ≥ β > 2, and let M(n) = γnβ + o(nβ) be the
number of arithmetic operations in one n × n matrix multiplication. We know
today algorithm with γ = 1 and β = 3.

Proposition 5. The closure algorithm has the complexity of matrix multiplica-
tion.

Proof. For calculating the closure of the n × n matrix we have to compute five
matrix multiplications and two matrix closure for the (n/2) × (n/2) blocks.

So, we get the following recurrent equality for complexity

t(n) = 2t(n/2) + 5M(n/2), t(1) = 1.

After summation from n = 2k to 21 we obtain

5γ
(
202β(k−1) + · · · + 2k−12β·0 + 2k

)
t(1)

= n +
5γn

2

k−1∑
i=0

2i(β−1) = 5γ
nβ − n

2β − 2
+ n.

Therefore the complexity of the closure algorithm is ∼ 5γnβ

2β−2
. For γ = 1 and

β = 3, we get ∼ 5
6n3.

3 Tropical Mathematics in MathPartner

3.1 Algebras in MathPartner

Working in the MathPartner computer algebra system involves choosing the
algebra over which the calculations are performed. The default algebra is the
algebra R64[x, y, z, t] of polynomials in four variables with the monomial order,
where inequalities x < y < z < t hold. R64 is the set of floating-point 64-
bit numbers having 52 bits for mantissa, 11 bits for the exponent and one bit
for the sign. Instead of floating-point numbers R64, one can use integers Z,
rational numbers Q, floating-point numbers of arbitrary precision R, complex
floating-point numbers C64 and C, modulo prime residues Zp and Zp32, as
well as idempotent algebras, including ZMaxPlus, ZMinP lus, RMaxPlus,
RMinP lus, R64MaxPlus, and R64MinPlus. The algebra can be chosen with
a command like SPACE = ZMaxPlus[]. Many commands only work in the proper
algebra.

The additive operation is always denoted by +, and the multiplicative oper-
ation is denoted by ∗.

Example 1. Let us run SPACE = ZMaxPlus[]; 2 + 3; the output is 3 = max(2, 3).
On the other hand, let us run SPACE = ZMaxPlus[]; 2 ∗ 3; the output is 5.
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3.2 Simple Equations and Inequalities

For given both matrix A and vector b, to find a particular solution to the sys-
tem of linear algebraic equations Ax = b over a tropical semiring one can run
\solveLAETropic(A, b).

Example 2. Let us consider the matrix

A =
(

1 2
3 0

)

and the column

b =
(

5
7

)
.

Let us run
SPACE = ZMaxPlus[]; A = [[1, 2], [3, 0]]; b = [5, 7];

\solveLAETropic(A, b);
The output is equal to (

4
3

)
.

In the same way, to solve the system of linear algebraic inequalities one can run
\solveLAITropic(A, b).

Example 3. Let us run

SPACE = ZMaxPlus[]; A = [[2, 0], [3, 1]]; b = [1, 1];

\solveLAITropic(A, b);
The output is equal to [[−∞,−2], [−∞, 0]].

3.3 The Closure

The closure A× can be calculated by the \closure() operation. For numbers, if
the closure does not exists, then the output is ∞.

Example 4. Let us run SPACE = ZMaxPlus[]; \closure(1); the output is ∞. On
the other hand, let us run SPACE = ZMaxPlus[]; \closure(−1); the output is 0.

Example 5. Let us calculate the closure of the matrix

A =
(

0 1
2 0

)

over the min-plus semiring.

SPACE = ZMinPlus[]; A = [[0, 1], [2, 0]]; \closure(A);
The output is equal to

A× =
(

0 1
2 0

)
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Example 6. Let us calculate the closure of the matrix

A =
(−1 −2

−3 −4

)

over the max-plus semiring.

SPACE = ZMaxPlus[]; A = [[−1,−2], [−3,−4]]; \closure(A);
The output is equal to

A× =
(

0 −2
−3 0

)

3.4 The Bellman Equations and Inequalities

To find a solution to a homogeneous Bellman equation Ax = x one can run
\BellmanEquation(A). For a column b, to find a solution to an inhomogeneous
Bellman equation one can run \BellmanEquation(A, b).

Two commands \BellmanInequality(A) and \BellmanInequality(A, b)
allows to find a solution to Bellman inequalities Ax ≤ x and max(Ax, b) ≤ x,
respectively.

3.5 The Shortest Path

Let A be a matrix with nonnegative or infinite entries, where all entries at the
leading diagonal vanish, i.e., for all k, xkk = 0. Its entry can be interpreted as the
graph edge weight or length. However, the triangle inequality can be violated.
If there is no edge between two vertices k and j, then xkj = ∞. To find the
shortest path from k to j one can run \findTheShortestPath(A, k, j) over the
min-plus algebra. To calculate the smallest distances for all vertex pairs, one can
run \searchLeastDistances(A).

Example 7. Let us consider the graph with the adjacency matrix

A =

⎛
⎝ 0 1 ∞

1 0 1
∞ 1 0

⎞
⎠ ,

i.e., the graph is a path. Let us run

SPACE = ZMinPlus[]; A = [[0, 1,∞], [1, 0, 1], [∞, 1, 0]];

\searchLeastDistances(A);
The output is equal to ⎛

⎝0 1 2
1 0 1
2 1 0

⎞
⎠

Next, let us run \findTheShortestPath(A, 2, 1). The output is equal to [2, 1],
that is, the shortest path from 2 to 1 consist of two vertices 2 and 1.
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4 Linear Programming in MathPartner

4.1 Systems of Algebraic Inequalities

To calculate the solution to a system of univariate algebraic inequalities one can
run \solve() over a ring of polynomials.

Example 8. To solve the system of two inequalities x − 6 > 0 and x − 7 < 0,
let us run

SPACE = Q[x]; b = \solve([x − 6 > 0, x − 7 < 0]);
The output is equal to the interval (6, 7). Note that parentheses denote open
interval boundaries, and square brackets denote closed interval boundaries.

4.2 The Simplex Algorithm

To solve a linear programming problem, one can execute either the
\SimplexMax() command or its counterpart that is the \SimplexMin() com-
mand. The result is a vector x. Calculations should be carried out over either
rational or floating-point numbers.

If the objective function cT x is to be maximized (cT x → max) under the
conditions Ax ≤ b and x ≥ 0, then one can run \SimplexMax(A, b, c).

Example 9. Let us maximize the 3x1 + x2 + 2x3 under the conditions x1 ≥ 0,
x2 ≥ 0, x3 ≥ 0, x1+x2+3x3 ≤ 30, 2x1+2x2+5x3 ≤ 24, and 4x1+x2+2x3 ≤ 36.
Let us run

SPACE = R64[];
A = [[1, 1, 3], [2, 2, 5], [4, 1, 2]];
b = [30, 24, 36];
c = [3, 1, 2];
x = \SimplexMax(A, b, c);

The output is [8, 4, 0]T .

Of course, only symbolic calculations over rational numbers without rounding
guarantee the answer according to well-known results [25].

If the objective function cT x is to be maximized (cT x → max) under the
conditions A1x ≤ b1, A2x = b2, and x ≥ 0, then one can run

\SimplexMax(A1, A2, b1, b2, c).

If the objective function cT x is to be maximized (cT x → max) under the
conditions A1x ≤ b1, A2x = b2, A3x ≥ b3, and x ≥ 0, then one can run

\SimplexMax(A1, A2, A3, b1, b2, b3, c).

Some matrices can be empty (). If the objective function cT x is to be minimized
(cT x → min), then one can run either \SimplexMin(A, b, c) or

\SimplexMin(A1, A2, b1, b2, c)

or
\SimplexMin(A1, A2, A3, b1, b2, b3, c),

respectively.
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5 Discussion

We do not give a detailed description of the MathPartner, referring the reader to
other sources and manuals, but we dwell in detail on the issue of solving extreme
problems.

But still, we note that MathPartner can solve a large class of classical sym-
bolic and numerical problems in mathematical analysis, algebra, graph theory,
the theory of differential equations and much more, including the construction
of graphics, the depiction of three-dimensional figures, the animation of images,
etc.

For example, MathPartner can solve many matrix problems for number fields
and polynomial rings. It allows you to factor matrices, find the Bruhat decom-
position, LSU, QR, SVD, Cholesky decomposition. The list of matrix functions
includes calculation of the inverse and adjoint matrix, calculation of the kernel
of a linear operator, Moore-Penrose inverse matrix and pseudo-inverse matrix,
calculation of the determinant and echelon form of the matrix, calculation of the
characteristic polynomial and others.

For detailed information, we recommend user manual http://mathpar.com/
downloads/MathparHandbook en.pdf.

6 Conclusion

Artificial intelligence, in the form in which it is already available for experimen-
tation today, makes it possible to solve a large class of problems related to text
and image processing. But it remains completely helpless when faced with even
the simplest problems in the field of mathematics or physics.

We formulate the problem of creating artificial intelligence that can solve
mathematical problems and propose to consider the MathPartner service as a
possible basis for its creation.

In fact, we can talk about AI, which will have three global levels. The first
level is text processing and isolating those fragments that formulate a mathemat-
ical problem. The second level is the reformulation of the problem into language
Mathpar. And the third level is the solution of the problem using Cloud Math-
ematics MathPartner. When the solution is obtained at the third level, its text
and appearance are already familiar to specialists. It will be enough to return it
to the first level and add the necessary text environment.1
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dation. Awards ID: 1030285 and 1290592. My deepest sympathies go to the family of
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