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Abstract. Farah recently proved that many Borel P-ideals.'/ on N satisfy
the following requirement: any measurable homomorphism F:./'(N)/
—>./'(N)/,y has a continuous lifting/: ,/(N)^>,/(N) which is a homomor-
phism itself. Ideals having such a property were called Radon-Nikodym (RN)
ideals. Answering some Farah's questions, it is proved that many non-P ideals,
including, for instance, Fin<8>Fin, are Radon-Nikodym. To prove this
result, another property of ideals called the Fubini property, is introduced,
which implies RN and is stable under some important transformations of
ideals.

§1. Introduction. Below, homomorphism will mean a Boolean algebra
homomorphism/: ./\N)—>./ (N) or F: ./(N)—>./'(N)/.'/, where .'/' is an
ideal on IU (We shall also consider ,/{N) as a group, with the symmetric
difference as the group operation, and call the related homomorphisms A-
homomorphisms.)

We shall mainly deal with Lebesgue measurable (LM) (in the sense of the
uniform Lebesgue probability measure on ./(N)-2N) and Baire measurable
(BM) homomorphisms and other maps / : ,/'(N)->,/'(N). A map
F:. / ( N ) ->. /:(N)/.'/ will be called Lebesgue or Baire measurable if it admits a
resp. LM or BM lifting, i.e., a map/: ./ '(N)^V'(N) such that f(x)eF(x) for
any x. (Note that a lifting is not required to be necessarily a homomorphism.)

DEFINITION 1 (Farah [1,2,3]). An ideal.'/ on N is Radon-Nikodym (RN,
for brevity), if any BM or LM homomorphism F: ,/'{N)—*./'(N)/.'/' admits a
continuous lifting g:, /(l\l)—>. /(N) which is a homomorphism itself.

Note that the RN property is formulated in [1, 2,3] for Fin-invariant and
only BM maps F, which does not appear to reflect anything essential in the
problem. The requirement that g is a continuous Boolean algebra homomor-
phism is equivalent to the complete additivity of g, in Farah's definition of the
RN property.

Velickovic [10] proved that the ideal Fin of all finite sets i c N is RN.
The authors obtained a similar theorem in [5] for quotients U/G, G being a
countable subgroup of the additive group of R. The general problem of liftings
which are homomorphisms was first explicitly formulated in this context, per-
haps, by Todorcevic [9]. Studying Borel P-ideals .'/ (i.e., those satisfying the
property that, if x,,e.'/' for any n, then there is I G . ? with x,,\x finite for any
x), Farah [1,2,3] demonstrated that a big family of them, called non-pathologi-
cal, are RN. This family contains practically all interesting Borel P-ideals (like
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summable ideals, density ideals, EU ideals); however, there are rather weird
non-RN Borel P-ideals.

This note proves the RN property for another interesting, but quite differ-
ent family of Borel ideals (not P-ideals).

DEFINITION 2. Let 1 =s<f; < ft)t. Then Fin^ is the ideal of all sets x c ft)4

having the order type o t p x strictly smaller than ar".

Note that Fin^ are really ideals because the ordinals a= co^ are indecom-
posable, i.e., a is not a sum of two smaller ordinals. The notation Fin^ is
motivated by the fact that any Fin^ + i is isomorphic to the Fubina product
Fin<8>Fin^: for example, Fin2 = Fin<S>Fin. (Yet the recursion on limit
steps is not so easy.) The following theorem answers a question of Farah (see
Theorem 1.14.6 in [3]).

THEOREM 3 (The main theorem). All ideals Fin^ are Radon-Nikodym.

To prove this theorem, we show that all ideals Fin^ belong to a much
bigger family of ideals satisfying a kind of Fubini theorem for the product of
the submeasure associated with the ideal, and the uniform Lebesgue prob-
ability measure on ,/(N)—this is why we call them Fubini ideals. The family
of Borel Fubini ideals is closed under several important transformations of
ideals (like pointwise limits or Fubini products) and contains ideals very differ-
ent from Firi | , for instance, all non-pathological Borel P-ideals of Farah. The
other part of the proof demonstrates that every Borel Fubini ideal has the RN
property.

§2. Fubini ideals. Let A be the uniform Lebesgue probability measure on
./(N).

DEFINITION 4. An ideal / on a countable set / is a Fubini ideal if, when-
ever p > 0, B c /, Bi,'/, and, for any is B, W(i) c . /(N) is a LM set satisfying
X(W(i))^p, the set X of all points xs./(N), such that Wx= {i:xe W(i)} <£.?',
is LM and satisfies

To explain this definition, let us associate with the ideal .'/'& submeasure
(p, on / ( / ) defined so that <p, (x) = 0 whenever xs.? and <p,(x) = 1 otherwise.
In these terms, Definition 4 can be viewed as a form of the Fubini theorem
(which, generally speaking, fails for submeasures, of course). (After this note
was submitted, the authors learned from a preprint of S. Solecki that the prop-
erty, which defines Fubini ideals here, is equivalent to a form of Fatou's
lemma, so that the ideals may equally be called Fatou ideals.)

We shall show that the family of Borel Fubini ideals on countable and
finite sets is closed w.r.t. the following operations 1° through 5°:

1°. Bijections and extensions of underlying sets: for instance, if '/ is an ideal
on a set / c J, and / i s countable, then we consider the following ideals:
(a). 9 as an ideal on the set / , and (b) the ideal { Y c J: Yn / e.'/ }.
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2°. Convergent pointwise limit, applied to sequences of ideals on one and
the same set. In particular, both increasing unions and decreasing
intersections.

An ideal .'/ is a pointwise limit of a sequence of ideals .?'„ if any ye J:

belongs to all but finite . > „ and any yt.y satisfies y<£.'/„ for all but finite n.
3°. Finite and countable intersection of ideals on one and the same set.
4°. Fubini products: if .'/, / are ideals on countable sets /, / then we

consider the ideal .'/ ® / of all sets ZQIXJ such that {iel:
(Z) ,« / }e.y\

Here (Z), = {j: (i, j)eZ] is the cross-section. This can be generalized.
5°. If.'/ is an ideal on a countable set / and /,- is an ideal on a countable

set /, for any iel, then we consider the ideal / = .y'®i<E/ / , of all sets
Z Q J= {{i,j):iel Aj'sJj} s u c h t h a t {iel: (Z ) , -g /]}e.y'.
Clearly .'/ <8>,-e, /,• =.'/ <8> / provided that / , = J and /1 = / for all /.

Note that the operations preserve the Borelness.

THEOREM 5. The family of all Borel Fubini ideals on countable sets is
closed under operations 1 °-5°.

Proof. 1 ° is elementary.
2°. Let ^, an ideal on N, be a pointwise limit of a sequence of Borel Fubini

ideals .'/'„. To prove that y is Fubini, let B,p, W(i), X be as in Definition 4.
Define XU1) as X in Definition 4, but using the ideal /„ instead of.'/ . We may
assume that the sets W(i) are Borel. Then the sets X and X(n) are Borel, too.
Moreover, for any e > 0 there is an n such that A(ZAXM) «£ e. We can assume
that Bi.y „. Then X(X{n))^p because.'/ n is a Fubini ideal, hence, X(X)^p-e,
but £ > 0 is arbitrary.

3°. As 2° has been proved, it suffices to consider only intersections of two
ideals, where the result is obtained by a routine verification.

5°. Let /,.'/ , J,, /,-, J, / be as in 5°. Suppose that .'/•' and / , are Borel
Fubini ideals; we prove that the ideal /-.y <8>,-e/ / , is Fubini, too. Fix a
realO</>s;l and a family of LM sets W(i,j) c ./(N) satisfying k(W(i, j))^p
for all pairs {i,j)eB, where B<^J, Be / . We prove that the set X={xe
. /(N): Wx<t / } satisfies A(A")5=/?, where

Wx = {(i, j)eB: xe W(i, j)} for any xe. /'(N).

By definition U— {iel: (B),<£ /,-}g J , so that, as all ideals /] are Fubini, for
any ie U there is a set X(i) c / (N) such that X(X)i))^p and (Wx)i€ / , for
all xeX(i). Since .y itself is Fubini, there is a set J f ' c . / ( N ) such that
MX')^p and Wx£. y for all xe X', where W'x = {is U: xe X(i)}. It remains to
show that X' c X. Let xeX'. By definition W'x<£./. Moreover if ie W'x then
xeX(i) and (Wx)i£ /,-. It follows that the set

W = {{i,j):ieW'x*MWx)t} z Wx

does not belong to / , therefore xeX, as required.
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§3. Fubini property of the "indecomposability" ideals. We are going to
prove that all ideals Fin^ are Fubini ideals, using induction on £ and Theorem
5. Unfortunately, it is not so easy to pass limit steps. We have to consider a
bigger family of ideals.

• For all 1 =s T] =£ § < ft),, let / ^ be the ideal of all sets x c a>^ having the
order type o t p x strictly smaller than (O71. Thus, Fin^ = . / | .

THEOREM 6. All ideals •/"£, in particular all ideals Fin^, are Fubini.

Proof. To begin with note that the ideal 0 = {0} (on any countable
set) is Fubini. The ideal F in of all finite subsets of N = a> is Fubini, too:
this can be easily checked directly, but we can also use the equality
F i n = \Jn.y"([0,n)) which reduces the question to the entirely clear Fubini-
correctness of ideals of the form ./([0,«)), by Theorem 5. It follows that all
ideals .f\ (namely, all finite subsets of <£) are Fubini ideals.

To maintain the induction step, recall that two ideals > and / , on sets
resp. X and Y, are isomorphic, in symbols .'/ = / , if there is a bijection
b: X on °> Y which transforms •'/ onto / .

LEMMA 7. If \^r\<£,, then ./\X\ = (O® ,/~|? + l ) n ( F i n ® / ^ ) . In

addition, ,/\X\ =

Proof. We consider only the case J]<<^; the other case is similar. Note

that .f\X\ is an ideal on X = a)1+ 1 while both 0<g>./7 + 1 and Fin®. /~£ are
ideals on the cartesian product F=ft>xoA There is a natural bijection
b(a>^ • n + y) = («, 7): onto) Y, mapping, order preservingtly, each interval
[ft)1' • n, co^ • (n + 1)) in X onto the corresponding vertical cross-section {«} x co^
in Y. One easily proves that b transforms / ^ + ! onto ( 0 ® /£+1)n(Fin<8>
. /~f); the crucial fact is that a sum of the form a- Xne(1)

 a«, where a,, <co11+l

for any «, satisfies o~ = (on +' if and only if infinitely many of ordinals an satisfy
a,, 53 ft)77.

LEMMA 8. If X^^ is a limit ordinal then , i \ - U n <x •*~\ •

Unlike this obvious result, the case of a limit lower index needs some work.
Assume that T)<A<<a1 and that A is a limit ordinal. Fix an increasing
sequence of ordinals £,„ which converges to A and starts with <Sj0 = 0 and £{ —
77 + I.

LEMMA 9. In this case, / J + 1 s 0 ® n e 0 ) . / ^ 4 | nFin®, , e O ) , /^ , i + 1 .

Proof. Note that both 0 ® n e M ./~|?n
+

+! and Fin®nsco.•/£„.,, are ideals on
the set J- {(«, 7): «< ft)Ay< co^"*'}, while . / J + l is an ideal on X- mx. There
is a bijection b((o^n + y) = {n,y):X-^—^J, mapping, order preservingly, each
interval [a>^\ co^"+l) in X onto the cross-section {n}xco^"*[ in / . One easily
proves that b transforms ./~1 + i onto 0 ®ne0,.

1/~J?,,t!
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We now end the proof of Theorem 6. Lemmas 7, 8, 9 show that every ideal
of the form ./\ can be obtained from simple ideals like 0 and Fin, which
clearly are Fubini, by a suitable iteration of operations 1° - 5° of 2.

§4. Reduction to the group case. Theorem 6 just proved is the first part of
the proof of Theorem 3. To accomplish the latter, we now prove the following:

THEOREM 10. Any Borel Fubini ideal is Radon-Nikodym.

The scheme of the proof is as follows. We first prove the group version of
the theorem. To explain this point, note that ,/'(N) is a group with the sym-
metric difference A as the group operation, which is the same as Z^. The group
structure is weaker than the Boolean algebra one, of course. Clearly any
Boolean algebra homomorphism is a A-homomorphism, but not conversely.

DEFINITION 11. An ideal .'/ on N is group-Radon-Nikodym (GRN, for
brevity) if any BM of LM A-homomorphism F:. /'(N)—>,/'{f4)/. '/•' admits a
continuous lifting g: ,/:(N)—>./(H) which is a A-homomorphism itself.
(Farah [2] attributes to A. S. Kechris the idea of study of the RN property
for group homomorphisms. See Kechris [8] for some other properties of quo-
tients of the form . /(N)/. >.)

Note that continuous A-homomorphisms g: V ( N ) ^ . / ( N ) admit a com-
plete description by the following proposition (see, e.g., Farah [2]):

PROPOSITION 12. Let g: ./• (N)—>.f (N) be a continuous A-homomor-
phism. Then, for any xe./'(N) and for any n, there is a finite set un cz N such
that nsg(x) if and only if #(xnun) is an odd number.

THEOREM 13. Any Borel Fubini ideal is group-Radon-Nikodym.

Let us show how Theorem 13 implies Theorem 10.
Let .y be a Borel Fubini ideal on N. Consider a LM or BM Boolean

algebra homomorphism F:./ (N)-^ / (N)/> . Then Fis a A-homomorphism,
too. According to Theorem 13, F has a lifting/: ,/(N)-»./(M) which is a
continuous A-homomorphism, to that, by Proposition 12, for any n there is a
finite set «„ c N such that neg(x) if and only if #(xnun) is an odd number—
for any .XE./ '(N).

Note that the set Uo= {n:un = 0} belongs to ,'/: indeed, otherwise one
easily proves that /cannot lift the Boolean algebra homomorphism F, because
clearly Uor\f(x) = 0 for any x. Thus it can be assumed that Uo = 0, i.e., un^=0
for every n, as, if this is not the case, we simply re-define un- {«} for any
ne Uo.

Our second claim is that U= {«: #(M,,)5S2} also belongs to J . Indeed, for
any ne U the set Pn of all pairs (x,y)e.S(N) x ./(N) such that both #(xc~\un)
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and #(ynun) are odd while #((xuy)nun) is even, is non-empty, and, more-
over, has measure X2(Pn)> 1/20 (a rough estimate). It follows, by the Fubini
property of.'/', that, if Ue.r', then there is an (x, y)e./ (H)x /(N) such that
the set Uxy= {ne U: (x,y)ePn}<£.9 . In other words, x and y show that/can-
not lift F, which is a contradiction.

Thus Ue.r. It follows that we can assume that U=0: for if not just re-
define un = {«} for all «e U. Then any un is a singleton, say un - {/?(«)}, so that
f(x) = {n: h(n)ex}. Thus,/is a Boolean algebra homomorphism, as required.

§5. All Fubini ideals are RN: the group case. This section is devoted to
the proof of Theorem 13.

We first prove the result for LM Maps. Consider a Borel Fubini ideal '/
on N; we prove that any Lebesgue measurable A-homomorphism
F: ./(N)—>./!(N)/,9 admits a continuous lifting g: ./'(N)—>./ (N) which is a
A-homomorphism. By definition, for F to be LM means that F has an LM
lifting/: ./(N)—>/(N). This map/itself may be not a homomorphism, but,
as it lifts F, we have

(*) / i s an - 9 -approximate homomorphism, which means that the set D'v =
f{x)Af(y)Af(xAy) belongs to . / for all x,ys. / (N).

(Recall that A is the group operation on ./(N).)This is our starting point.
The goal is to find a continuous A-homomorphism g: / '\N)—>./ (M) which
. 9 -approximates/in the sense that/(x)Ag(x)e '/ for all x.

The proposed argument is a modification of the proof of Theorem 2.1 in
[4]-

Below, a, b, x, y will always denote elements of / (N).
We say that an index is N is "good" when
(i) A2{(x, j>:/;(x)A/;0/)*/(xAj)} < 1/6, where/-(r) =f(z)n{i}.

We claim that B= {i:i is "bad"}e.>'. Indeed, otherwise, by the Fubini
property, there is a pair (x,y)s- /'(N)x .f(N) (there is even a set of A2-measure
1/6 of such pairs) such that the set {i:fi(x)A/](y)'>tJ](xAy)} = D{v does not
belong to .9', which contradicts the choice of/ Thus Be.'/.

LEMMA 14. For any "good" i there is an LM A-homomorphism £,•:
./(N)->.v({i}) such that

(ii) X{x:fi(aAx)Afi(x) = g,(a)}>2/3 for any ae. / (N).

Proof. For any as./J(N) we have, by (i),

(iii) A2{(x, y):f(xAa)Af(xW,iyAa)Af(y)} < 1/3.

(Indeed, if (x, y) does not belong to that set, then either f(x)Af(y)*f(xAy)
or f(xAa)Af(yAa)^f(xAy). But any of the two corresponding sets of pairs
(x,y) has A-measure < 1/6 by (i); recall that / is "good".)

Now, if ae. /'(N), then we let gt(a) = s, where s c {/} satisfies

A{x:/(aAx)A/(x) = .v}>2/3.
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This is well-defined—in particular, we have (ii)—for if no such s exists then
X{x:fi(aAx)Afi(x)±fi(aAy)Afi(y)}^l/3 for any ye,/'(N), so that

X2{(x,y):f,(aAx)Afi(xWi(aAy)Afl(y)} 2* 1/3

by the Fubini theorem, which is a contradiction to (iii).
We prove that #, is a A-homomorphism. To show that gj(aAb) =

gi(a)Agj(b), note that each of the four following sets has A-measure greater
than 2/3:

X, = {x:g,(a) =/(xAa)A/(x)}, X, = {x:g,(aAb) =fi(xAaAb)Afl(x)},

X2 = {x: g,(b) =f,(xAb)Af,(x)}, X4 = {x: gi(aAb) =fi(xAa)Afi(xAb)}.

Indeed, for Xx, X2, X3 this follows from (ii). In addition,
so A(2"4)>2/3, too. Hence, there is xeXlr\X2nX4. This ends the proof of
Lemma 14.

For any "good" /, let g,-: ./(l^l)—»./({/}) be a A-homomorphism given
by the lemma. For any "bad" /, let g,(x) = 0 for all xe.7'(N). Define a A-
homomorphism g by g(x) = U/ew£iM- We prove that/(x)Ag(x)e.9' for any
x&./'(N).

Assume on the contrary that there exists ae./(N) such that/(a)Ag(a)g .9 .
Then, by the above, A = (f(a)Ag(a))\Bi.9. Now, for any ieA we have

fi(a)*gi(a), hence, X{x: ieD{x} >2/3 by (ii). We conclude that, by the
Fubini property, there is an xe . / (N) such that D{xiJ, which contradicts the
choice of/ Thus g .'/ -approximates /.

By the construction g is A-measurable. Let us show that then g is in fact
continuous. Note that g is Borel on a Borel set I c ,/(f^J) of full A-measure.
It is clear that for any xe . / (N) there exist x',x"eX such that x = x'Ax".
Then #(x) = g(x')Ag(x") as g is a A-homomorphism. It follows that

g(x) = y^ 3x', x"e X (x = x'Ax" A y = g(x')Ag(x"))

<=> Vx', x"e X(x = x' Ax" =*y = g(x')Ag(x")),

so g is Borel, and hence continuous by the Pettis theorem [7, 9.10].
Let us finally prove Theorem 10 in its part related to BM maps. (The results

for measure and Baire category often admit similar proofs, but rarely imply
each other formally. In this case however the results for (BM) maps is a rather
elementary consequence. The essential point is that both LM and BM cases
are quite easily reducible to the Borel case.) It suffices to demonstrate that any
BM ^-approximate A-homomorphism/: .•/'(N)—>./'(N) is ./-approximable
by a Borel map g.

To prove this, fix a comeager Borel set D such that/fZ) is Borel. For any
x, the Borel set Dx- Dn(xAD) c D is still comeager, and yeDx=>xAyeDx.
Now, by a known uniformization theorem (see, e.g., Kechris [7, 18.7]), there
is a Borel map y: ./'(N)—>./(N) such that y(x)eDx for any x. The Borel map
g(x) =f(y(x))Af(xAy(x)) is an .'/ -approximation of/ This ends the proof of
Theorem 13.
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§6. Remarks and problems. The definition (*) of ^-approximate maps in
Section 4 can be weakened to

(t) For any xe,/'(N), the set {je./(M): D{y£.y } has A-measure 0.

But it cannot be weakened to the requirement that

to see this let/(x) = x for all x*0 and/(0) = rU Yet ($) implies the existence
of a continuous A-homomorphism g which . / -approximates / on a set of full
A-measure.

It is known (see e.g., Proposition 1.3 in [1]) that, if,'/' and / are Borel RN
ideals on countable sets / and /, then the quotients , /'(/)/. c and / ( / ) / / are
Baire BA-isomorphic (i.e., there exists a Boolean algebra isomorphism with a
Baire measurable lifting) if and only if.'/ and / are "almost" isomorphic
themselves, symbolically J'~ / , in the sense that there are sets A Q I and
5 c / such that I\Ae.?' and J\BE / and a bijection/: A -O1"° > B which trans-
forms .'/•' o A onto / o B. In view of this result, is it true that ./'%-./''%' if
and only if r\ = r\' and | = | '?

Are there Borel ideals .>", _/' on N such that there is a BM Boolean algebra
or group isomorphism F: ,/'(N)/.y' °nt°) ,/(N)// which does not admit a
continuous lifting g which is a homomorphism? (A problem of Farah.)Note
that all violations of the RN property known so far (e.g., those derived from
pathological submeasures, see [1, 2]) are related to homomorphisms F which
are not isomorphisms.

Finally it would be interesting to prove lifting theorems for quotients of
other algebraic structures, for instance, the additive group of the reals.
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Added to proof. After this note had been submitted to Mathematika, the
authors proved, using similar methods, that Weiss ideals // \ =
{X £ O)a)t': \X\ < co^}, where | X\ denotes the Cantor-Bendixson rank of a set of
ordinals X, are Radon-Nikodym. This answers another of Farah's questions
in [3] (close to the end of Section 1.14). The result appeared in [6].
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