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Abstract: In this paper we prove that for any m ≥ 1 there exists a generic extension of L ,
the constructible universe, in which it is true that the set of all constructible reals (here subsets
of ω ) is equal to the set D1m of all reals definable by a parameter free type-theoretic formula with
types bounded by m , and hence the Tarski ‘definability of definable’ sentence D1m ∈ D2m (even in
the form D1m ∈ D21 ) holds for this particular m . This solves an old problem of Alfred Tarski (1948).
Our methods, based on the almost-disjoint forcing of Jensen and Solovay, are significant modifications
and further development of the methods presented in our two previous papers in this Journal.
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1. Introduction

This paper continues our research project on the issues of definability in models of set theory,
that was started in [1–3] among other papers, and most recently in [4,5] in this Journal. Questions of
definability of mathematical objects were raised in the course of discussions on the foundations of
mathematics, set theory, and the axiom of choice in the early twentieth century, such as, for instance,
the famous discussion between Baire, Borel, Hadamard, and Lebesgue published in Sinq lettres [6].
Various aspects of definability in models of set theory have since remained the focus of work on the
foundations of mathematics, see, for example, [7–13] among many important recent studies.

The topic of this paper goes back to the profound research by Alfred Tarski, who demonstrated
in [14] that ‘being definable’ (in most general, unrestricted sense) is not a mathematically well-defined
notion (see Murawski [15] on the history of this discovery and the role of Gödel, and Addison [16]
on the modern perspective of the Tarski definability theory). More specificly, restricted notions of
definability, in particular, type-theoretic definability, were considered by Tarski in [17] and later work
in [18].

Definition 1 (Tarski). If m, k < ω then Dkm is the set of all elements of order k , definable by a parameter free
type-theoretic formula of order m.

Here elements of order 0 are just natural numbers (members of the set ω = {0, 1, 2, . . .} ),
elements of order 1 are sets of natural numbers (commonly called reals in modern set theory),
and generally, elements of order k + 1 (k < ω ) are arbitrary sets of elements of order k (see details in
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Section 2.1 below). The order of a type-theoretic formula is the largest order of all its quantified and
free variables. The notion of definability is taken in the form:

xk = {yk−1 of order k− 1 : ϕ(yk−1)} , (1)

where the upper index routinely denotes the order of a variable or element.

1.1. The Problem

Investigating the definability properties of sets Dkm , Tarski notes in [18] that Dkm ∈ Dk+1,m+1 .
To prove this result, one can exploit the fact that the truth of all formulas of order m can be suitably
expressed by a single formula of order m + 1. Using such a formula, one easily gets Dkm ∈ Dk+1,m+1 .
Then Tarski turns to the question whether a stronger sentence Dkm ∈ Dk+1,m holds. Tarski comes to
the following conclusion (verbatim):

the solution of the problem is (trivially) positive if k = 0 ; the solution is negative if k ≥ 2 ; in the
(perhaps most interesting) case k = 1 the problem remains open.

The negative result for k ≥ 2 (and m ≥ k− 1, to avoid trivialities) is obtained in [18] (page 110)
essentially by virtue of the fact that countable ordinals admit a definable embedding into the set of all
elements of order 2. This leaves:

D1m ∈ D2m (m ≥ 1) (2)

as a major open problem in [18].
Tarski notes in [18], with a reference to Gödel’s work on constructibility [19], that it seems:

very unlikely that an affirmative solution of the problem is possible.

Tarski does not elaborate on this point, but it is quite clear that the axiom of constructibility V = L
(and even a weaker hypothesis, see Lemma 2 below) implies D1m /∈ D2m for all m ≥ 1, and hence no
proof of D1m ∈ D2m for even one single m ≥ 1 (the “affirmative solution” in Tarski’s words), can be
maintained in ZFC . In other words, the hypothesis:

D1m /∈ D2m holds for all m ≥ 1

(the negative solution of (2) for all m ≥ 1 simultaneously) does not contradict the ZFC axioms.
The problem of consistency of the affirmative sentences D1m ∈ D2m was left open in [18].

This paper is devoted to this problem of Alfred Tarski.

1.2. Further Reformulations and Harrington’s Statement

The problem emerged once again in the early years of forcing, especially in the case
m = 1 corresponding to analytic definability in second-order arithmetic. The early survey [20] by
A. R. D. Mathias (the original typescript has been known to set theorists since 1968) contains Problem
3112, that requires finding a model of ZFC in which it is true that:

the set of analytically definable reals is analytically definable

that is, D11 ∈ D21 . Recall that reals in this context mean subsets of ω . Another problem there, P 3110,
suggests a sharper form of this statement, namely; find a model in which it is true that

analytically definable reals are precisely the constructible reals

that is, D11 = P(ω) ∩ L . The set P(ω) ∩ L of all constructible reals is (lightface) Σ1
2 , and hence D21 ,

so that the equality D11 = P(ω) ∩ L implies D11 ∈ D21 , that is the case m = 1 of the sentence (2).
Somewhat later, Problem 87 in Harvey Friedman’s survey One hundred and two problems in

mathematical logic [21] requires to prove that for each n in the domain 2 < n ≤ ω there is a model of:
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ZFC + “the constructible reals are precisely the ∆1
n reals”. (3)

For n ≤ 2 this is definitely impossible by the Shoenfield absoluteness theorem. As ∆1
ω is the same as

D11 = all analytically definable reals, the case n = ω in (3) is just a reformulation of D11 = P(ω) ∩ L .
At the very end of [21], it is noted that Leo Harrington had solved problem (3) affirmatively.

A similar remark, see in [20] (p. 166), a comment to P 3110. And indeed, Harrington’s handwritten
notes [22] present the following major result quoted here verbatim:

Theorem 1 (Harrington [22] (p. 1)). There are models of ZFC in which the set of constructible reals is,
respectively, exactly the following set of reals :

∆1
3, ∆1

4, . . . , ∆1
ω = projective, ∆m

n , 1 ≤ n ≤ ω, 2 ≤ m ≤ ω .

We may note that ∆1
ω = D11 and generally ∆m

ω = D1m for any m ≥ 2 in the context of Theorem 1.
On the other hand the set P(ω) ∩ L of constructible reals is Σ1

2 , and hence D21 . Therefore Theorem 1
implies the consistency of the affirmative sentences D1 ∈ D2 and D1m ∈ D2m for any particular value
m ≥ 1, and hence shows that the Tarski problems considered are independent of ZFC .

Based on the almost-disjoint forcing tool of Jensen and Solovay [23], a sketch of a generic extension
of L , in which it is true that ωω ∩ L = ∆1

3 , follows in [22] (pp. 2–4). Then a few sentences are added
on page 5 of [22], which explain, without much going into details, as how Harrington planned to get
some other models claimed by the theorem, in particular, a model in which ωω ∩ L = ∆1

n holds for a
given (arbitrary) natural index n > 3, and a model in which ωω ∩ L = ∆1

ω , where ∆1
ω =

⋃
n ∆1

n = D11

(all analytically definable reals). This positively solves Problem 87 of [21], including the case n = ω ,
of course. Different cases of higher order definability are briefly observed in [22] (p. 5) as well.

Yet, for all we know, no detailed proofs have ever emerged in Harrington’s published works.
An article by Harrington, entitled “Consistency and independence results in descriptive set theory”,
which apparently might have contained these results among others, was announced in the References
list in Peter Hinman’s book [24] (p. 462) to appear in Ann. of Math., 1978, but in fact this or a similar
article has never been published in Annals of Mathematics or any other journal. Some methods sketched
in [22] were later used in [25], but with respect to different questions and only in relation to the
definability classes of the 2nd and 3rd projective level.

1.3. The Main Theorem

The goal of this paper is to present a complete proof of the following part of Harrington’s
statement in Theorem 1, related to the consistency of the Tarski sentence D1m ∈ D2m and the equality
D1m = P(ω) ∩ L , strengthened by extra claims (ii) and (iii). This is the main result of this paper.

Theorem 2. Let M ≥ 1. There is a generic extension of L in which it is true that

(i) D1M = P(ω) ∩ L , that is, constructible reals are precisely reals in D1M — in particular, D1M is a Σ1
2

set, hence, D1M ∈ D21 , and even moreso, D1M ∈ D2M ;

(ii) if n 6= M then D1n /∈ D2n ;

(iii) the general continuum hypothesis GCH holds.

Thus, for every particular M ≥ 1, there exists a generic extension of L in which the Tarski sentence
D1M ∈ D2M holds whereas D1n /∈ D2n for all other values n 6= M . We recall that D1M ∈ D2M fails in L
itself for all M , see above.

Corollary 1. If M ≥ 1 then the sentence D1M ∈ D2M is undecidable in ZFC , even in the presence of
∀ n 6= M (D1n /∈ D2n) .
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This paper is dedicated to the proof of Theorem 2. This will be another application of the methods
sketched by Harrington and developed in detail in our previous papers [4,5] in this Journal, but here
modified and further developed for the purpose of a solution to the Tarski problem.

We may note that problems of construction of models of set theory in which this or another
effect is obtained at a certain prescribed definability level (not necessarily the least possible one) are
considered in modern set theory, see e.g., Problem 9 in [26] (Section 9) or Problem 11 in [27] (page 209).
Some results of this type have recently been obtained in set theory, namely:

(A) a model [3] in which, for a given n ≥ 3, there exists a countable non-empty Π1
n set of reals,

containing no OD element, while every countable Σ1
n set of reals contains only OD reals;

(B) a model [28] in which, for a given n ≥ 2, there is a Π1
n real singleton that effectively codes a

cofinal map ω → ωL
1 , minimal over L , while every Σ1

n real is constructible;
(C) a model [29] in which, for a given n ≥ 2, there exists a planar non-ROD-uniformizable lightface

Π1
n set, all of whose vertical cross-sections are countable, whereas all boldface Σ1

n sets with
countable cross-sections are ∆1

n+1 -uniformizable;
(D) a model [30] in which, for a given n ≥ 3, the Separation principle fails for Π1

n .

Theorem 2 of this paper naturally extends this research line.

1.4. Structure of the Proof

To define a model for Theorem 2, we employ the product of two forcing notions. The first forcing
C is a Cohen-style collapse forcing that adjoins a generic collapse map ζ : ω

onto−→ Ξ = P(ω) ∩ L ,
Section 2.7. The collapse is necessary since any model for Theorem 2 has to satisfy the inequality
ωL

1 < ω1 .
The second forcing notion has the form of the product P
 = ∏n,i<ω P
(n, i) ∈ L , where each

factor P
(n, i) is an almost-disjoint type forcing determined by a set:

U
(n, i) ∈ L , U
(n, i) ⊆ Fun
 = (

) ∩ L ,

dense in Fun
 , where 
 = ωL
M and M ≥ 1 is the number we are dealing with in Theorem 2.

This forcing P
 adjoins an according system of generic sets S(n, i) ⊆ Seq
 = (
<
) ∩ L , such that:

(∗) if f ∈ Fun
 in L then S(n, i) covers f (that is, f � ξ ∈ S(n, i) for unbounded-many ξ < 
 ) iff
f /∈ U
(n, i) (Lemma 15).

Basically any system U ∈ L of dense sets U(n, i) ⊆ Fun
 defines a similar product forcing
P[U] = ∏n,i<ω P[U(n, i)] ∈ L (see Section 3.2). Forcing notions of the form P[U] satisfy certain chain
and distributivity conditions in L (Lemma 14), that imply some general properties of related generic
extensions (Lemmas 15 and 16).

The key system U
 is defined in Section 4.4 (Definition 6, on the base of Theorem 6 in Section 4.2),
in the form of componentwise union U
 =

∨
α<
⊕ U



α , i.e., U
(n, i) =

⋃
α<
⊕ U



α (n, i) for all n, i < ω ,

where 
⊕ = ωL
M+1 is the L-cardinal next to 
 , and the systems U


α ∈ L are:

- Increasing, i.e., U

α (n, i) ⊆ U


γ (n, i) for all α < γ and n, i < ω ,
- Small, i.e., cardU


α (n, i) ≤ 
 in L for all n, i < ω , and,
- Disjoint, i.e., the components U


α (n, i) are pairwise disjoint.

We apply a diamond-based argument in Section 4 to ensure that the resulting system U
 ∈ L
has its different slices {U
(n, i)}i<ω (n < ω ) satisfying different definability and inner genericity
requirements (Theorem 6 in Section 4.2), so that the descriptive complexity and the level of inner
genericity (or completeness) of n th ‘slice’ tends to infinity with n → ∞ . This is a major novelty of
the construction.
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Then we consider the key product forcing notion P
 = P[U
] = ∏n,i<ω P
(n, i) . We extend

L by a collapse-generic map ζ : ω
onto−→ P(ω) ∩ L to L , as above, and define the partial product

P
 �w = ∏〈n,i〉∈w P
(n, i) ∈ L[ζ] as a forcing notion in L[ζ] , where:

w = w[ζ] = {〈n, i〉 : n ∈ ω ∧ i ∈ ζ(n)}.

Adjoining a (P
 �w)-generic set G to L[ζ] , we get a model L[ζ, G] for Theorem 2. In particular,
if x = ζ(n) ∈ P(ω) ∩ L , then x is definable in L[ζ, G] by means of the equivalence:

i ∈ x ⇐⇒ ∃S ⊆ Seq
 ∀ f ∈ Fun

(
S covers f iff f /∈ U
(n, i)

)
, (4)

in which the implication =⇒ follows from (∗) via S = S(n, i) (note that S(n, i) ∈ L[ζ, G] since
〈n, i〉 ∈ w in case i ∈ x = ζ(n) ), whereas the inverse implication ⇐= is based on the completeness
properties of the system U
 . It also takes some effort to check that the right-hand side of (4) really
defines a D1M relation in L[ζ, G] ; for that purpose Theorem 3 is proved beforehand in Section 2.3.

To prove that, conversely, every x ∈ D1M in L[ζ, G] belongs to L , we introduce forcing
approximations in Section 5, a forcing-like relation used to prove the elementary equivalence theorem.
Its key advantage is the invariance under some transformations, including the permutations of the
index set I , see Section 6.5. The actual forcing notion P
 = P[U
] is absolutely not invariant under
permutations of I , but the M -completeness property, maintained through the inductive construction of
U
 in L , allows us to prove that the auxiliary forcing is in the same relation to the truth in P
 -generic
extensions, as the true P
 -forcing relation (Theorem 10). We call this construction hidden invariance
(see Section 6.1), and this is the other major novelty of this paper.

Finally, Section 6 presents the proof of the invariance theorem (Theorem 11), with the help of
forcing approximations, and thereby completes the proof of Theorem 2.

The flowchart of the proof can be seen in Figure 1 on page 6.

DEFINABILITY AND FORCING
PRELIMINARIES, SECTION 2

ALMOST DISJOINT FORCING
SETUP, SECTION 3

FORCING CONSTRUCTION
SUBSECTIONS 4.1 TO 4.4

THE MODEL, DEFINABILITY OF
CONSTRUCTIBLE REALS
SUBSECTIONS 4.5, 4.6

FORCING APPROXIMATIONS
SECTION 5

TRUTH LEMMA FOR APPROXIMATIONS
SUBSECTION 5.4

INVARIANCE
SECTION 6

TRANSFORMATIONS
SUBSECTION 6.5

CONSTRUCTIBILITY OF DEFINABLE REALS
AND FINALIZATION, SUBSECTION 6.6

Figure 1. Flowchart of the proof of Theorem 2.
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2. Preliminaries

This Section contains several definitions and results that will be very instrumental in the proof of
Theorem 2.

2.1. Definability Issues

Beginning with the type-theoretic definability, we recall some details of Tarski’s constructions
from [18]. The type-theoretic language deals with variables xk, yk, . . . of orders k < ω , and includes the
Peano arithmetic language for order 0 and the atomic predicate ∈ of membership used as xk ∈ yk+1 .
The order of a formula ϕ is equal to the highest order of all variables in ϕ . Variables of each order k
can be substituted with elements of the corresponding iteration:

P k(ω) = P(P(. . . P(ω) . . . ))︸ ︷︷ ︸
k times the powerset operation P (·)

, the set of all elements of order k

of the powerset operation. In particular, P0(ω) = ω (natural numbers), P1(ω) = P(ω) (the reals),
P2(ω) = P(P(ω)) (sets of reals), and so on. Accordingly each quantifier ∃ xk , ∀ xk in a
type-theoretic formula is naturally relativized to P k(ω) , and the truth of a closed type-theoretic
formula (with or without parameters) is understood in the sense of such a relativization.

If k, m < ω , k ≥ 1, then, by Definition 1, Dkm is the set of all xk ∈ P k(ω) , definable in the form:

xk = {yk−1 ∈ P k−1(ω) : ϕ(yk−1)}

by a parameter free formula ϕ of order ≤ m ; thus Dkm ⊆ P k(ω) .

Remark 1. We will occasionally extend the definition of Dkm to binary relations, especially in the case k = 1 .
Namely a set X ⊆ P k−1(ω)×P k−1(ω) belongs to Dkm if it is definable by a parameter free formula of order
≤ m with two free variables.

In matters of ∈-definability, we refer to e.g., [31] (Part B, 5.4), or [32] (Chapter 13) on the Lévy
hierarchy of ∈ -formulas and definability classes ΣH

n , ΠH
n , ∆H

n for any transitive set H . In particular,

ΣH
n = all sets X ⊆ H , definable in H by a parameter-free Σn formula;

Σn(H) = all sets X ⊆ H definable in H by a Σn formula with any sets in H as parameters.

Something like ΣH
n (x) , x ∈ H , means that only x is admitted as a parameter, while ΣH

n (P) ,
where P ⊆ H , means that all x ∈ P can be parameters. Collections like ΠH

n , ΠH
n (x) , ΠH

n (P) are
defined similarly, and ∆H

n = ΣH
n ∩ΠH

n , etc. These definitions usually work with transitive sets of
the form:

H = Hκ = {x : card (TC (x)) < κ}, where κ is an infinite cardinal,

and TC is the transitive closure. In particular, HC = Hω1 , all heredidarily-countable sets.

2.2. Constructibility Issues

As usual, L is the constructible universe, and <L will denote the Gödel wellordering of L . Let κ
be an infinite regular cardinal. The following are well-known facts in the theory of constructibility,
see e.g., [33] and Lemma 6.3 ff in [31] (Section B.5):

1◦. The set Hκ ∩ L belongs to ΣHκ
1 and is equal to (Hκ)L = Lκ .

2◦. The restriction <L � (Hκ)L is a wellordering of (Hκ)L of length κ and a ∆
(Hκ)L

1 relation.

3◦. On the other hand, the set P(ω) ∩ L and relation <L � (P(ω) ∩ L) belong to Σ1
2 and to D21 .
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4◦. The map x 7−→ pr x = {y : y <L x} : (Hκ)L → (Hκ)L is ∆
(Hκ)L

1 as well.

The last statement implies the following useful definability estimation.

5◦. Assume that m ≥ 1 and P ⊆ (Hκ)L × (Hκ)L is ∆
(Hκ)L

m . If x ∈ D = {x ∈ (Hκ)L : ∃ y P(x, y)} ,

then let yx ∈ (Hκ)L be the <L-least witness. Then P′ = {〈x, yx〉 : x ∈ D} ⊆ P is ∆
(Hκ)L

m as well.

Indeed y = yx is equivalent to P(x, y) ∧ ∀ z ∈ pr y ¬ P(x, z) , where:

∀ z ∈ pr y ¬ P(x, z) ⇐⇒ ∃Z
(
Z = pr y ∧ ∀ z ∈ Z ¬ P(x, z)

)
⇐⇒ ∀Z

(
Z = pr y =⇒ ∀ z ∈ Z ¬ P(x, z)

)
,

and the bounded quantifiers ∀ z ∈ Z do not influence the definability class.
We proceed with several easy and rather known lemmas.

Lemma 1. Assume that x, y ∈ P(ω) ∩ L and y <L x . Then y ∈ ∆1
2(x) , and hence if y ∈ D1n , n ≥ 1 ,

or y ∈ D1 , then x ∈ D1n , resp., x ∈ D1 as well.

Proof. By the Shoenfield absoluteness, it suffices to prove that y ∈ ∆1
2(x) is true in L .

We argue in L. Let κ = ω1 , so that Hκ = (Hκ)L = HC (hereditarily countable). The set:

P = {〈z, f 〉 : z ⊆ ω ∧ f : ω → P(ω) ∧ ran f = pr z}

belongs to ∆HC
1 by 4◦ since:

ran f = pr z ⇐⇒ ∃u
(
u = pr z ∧ ∀n ( f (n) ∈ u) ∧ ∀ z′ ∈ u ∃n ( f (n) = z′)

)
⇐⇒ ∀u

(
u = pr z =⇒ ∀n ( f (n) ∈ u) ∧ ∀ z′ ∈ u ∃n ( f (n) = z′)

)
.

Let fz be the <L-least f such that 〈z, f 〉 ∈ P ; then P′ = {〈z, fz〉 : z ⊆ ω} is ∆HC
1 by 5◦. It follows

that fx is ∆HC
1 (x) (with x as the only parameter). Therefore, as y <L x , we have y ∈ ∆HC

1 (x) because
y = fx(n) for some n . It follows that y ∈ ∆1

2(x) . (See e.g., [34] (p. 281) on this translation result.)

Remark 2 (Essentially Tarski [18]). If n ≥ 1 and ωL
1 = ω1 then D1n /∈ D2n .

Proof. If ωL
1 = ω1 then the set Y = P(ω) ∩ L is uncountable. On the other hand X = D1n is

countable, hence Z = Y r X 6= ∅ . Note that Y ∈ D21 by 3◦ above. It follows that if X ∈ D2n then Z
belongs to D2n , too, and then the <L-least element z0 of the set Z belongs to D1n because <L is D21

on Y still by 3◦. However z0 /∈ X = D1n by construction. This is a contradiction.

Lemma 2. If 1 ≤ n < m < ω and D1m ⊆ L , then D1n /∈ D2n .

Proof. We have D1n $ D1m since n < m . Therefore D1n $ D1m ⊆ Y = P(ω) ∩ L . If, to the contrary,
D1n ∈ D2n , then the set Y r D1n belongs to D2n as well since Y ∈ D21 by 3◦ above. We conclude
that the <L-least element y0 ∈ Y r D1n belongs to D1n , because <L is D21 on Y by 3◦. This is a
contradiction since z0 /∈ D1n by construction.

2.3. Type-Theoretic Definability vs. ∈-Definability

It occurs that the definability classes in sets of the form Hκ correspond to the Tarski definability
classes, in the sense of the following theorem:

Theorem 3. Assume that the generalized continuum hypothesis 2ϑ = ϑ+ holds for all infinite cardinals
ϑ < ωm−1 . If m ≥ 1 and x ⊆ ω , then x is D1m if x is ∈-definable in Hωm .
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In case m = 1 (then Hωm = Hω1 = HC and the GCH premice is vacuous), this result was
explicitly mentioned, in [34] (p. 281), a detailed proof see e.g., [32] (Lemma 25.25).

Proof. The GCH premice of the theorem is equivalent to Pm(ω) ⊆ Hωm . This implies =⇒ : if
x ∈ D1m then x is surely ∈-definable in Hωm .

The inverse implication takes more effort. We have to somehow model the ∈-structure of Hωm

in D1m . For this purpose, if k < ω and x, y ∈ P k(ω) then define a quasi-pair 〈x, y〉k ∈ P k(ω) by
induction as follows. If k = 0, so that x, y ∈ ω , then put 〈x, y〉0 = 2x · 3y ∈ ω . If x, y ∈ P k+1(ω)

then put 〈x, y〉k+1 = {〈0, x′〉k : x′ ∈ x} ∪ {〈1, y′〉k : y′ ∈ y} ∈ P k+1(ω) . Note that elements 0 = ∅
and 1 = {∅} belong to every type-theoretic level P k(ω) . It can be easily established by induction
that if x, y, a, b ∈ P k(ω) and 〈x, y〉k = 〈a, b〉k then x = a and y = b .

Following [32] (25.13), we associate, with each r ∈ Pm(ω) , a binary relation Er defined so that:

x Er y iff x, y ∈ M = Pm−1(ω) and 〈x, y〉m−1 ∈ r .

on the set M = Pm−1(ω) . Let WFE0 contain all sets r ∈ Pm(ω) such that Er is an extensional
well-founded relation on |r| = {0} ∪ {x ∈ M : ∃ y ∈ M (x Er y ∨ y Er x)} , with the additional
property that 0 is the only top element of |r| , that is, 0 Er x holds for no x ∈ |r| . If r ∈WFE0 then let
πr be the unique 1-1 map defined on |r| and satisfying πr(x) = {πr(y) : y Er x} for all x ∈ |r| — the
transitive collapse. We put F(r) = πr(0) .

Under our assumptions, F is a map from WFE0 onto Hωm , ∈-definable in Hωm .
One easily proves that WFE0 belongs to Dmm , that is, it is type-theoretically definable with

quantifiers only over order levels ≤ m . Moreover the binary relations EQ , IN defined on WFE0 by:

r EQ q iff F(r) = F(q) , and r IN q iff F(r) ∈ F(q) ,

belong to Dmm as well. Namely, let a bisimulation for r, q ∈WFE0 be any binary relation B ⊆ |r| × |q|
satisfying 0 B 0 and, for all x ∈ |r| and y ∈ |q| ,

x B y iff ∀ x′ ∃ y′ (x′ Er x =⇒ y′ Eq y ∧ x′ B y′) ∧ ∀ y′ ∃ x′ (y′ Eq y =⇒ x′ Er x ∧ x′ B y′) .

Then, on the one hand, F(r) = F(q) iff there exists a bisimulation for r, q iff there exists b ∈ Pm(ω)

such that Eb is a bisimulation for r, q . On the other hand, we can express the property “Eb is a
bisimulation for r, q” by a type-theoretic formula with quantifiers only over orders ≤ m , by suitably
replacing pairs 〈·, ·〉 with quasipairs 〈·, ·〉m−1 .

To treat IN , we have to only change 0 B 0 above to ∃ y0 ∈ |q| (0 B y0 ∧ y0 Eq 0) .
Finally if n < ω then let rn = {〈i, j〉m−1 : 1 ≤ i < j ≤ n} ∪ {〈i, 0〉m−1 : 1 ≤ i ≤ n} , so that

rn ∈WFE0 and F(rn) = n .
And now let x = {n < ω : Hωm |= ϕ(n)} ⊆ ω be ∈-definable in Hωm by a parameter free

formula ϕ(·) . Then we have x = {n < ω : Φ(rn)} , where Φ is obtained from ϕ by substitution of
EQ for = and IN for ∈ and relativization of all quantifiers to WFE0 . This proves x ∈ D1m .

2.4. Reduction to the Powerset Definability

Let 4 be the wellordering of Ord×Ord defined so that 〈ξ, η〉 4 〈ξ ′, η′〉 iff:

〈max{ξ, η}, ξ, η〉 6lex 〈max{ξ ′, η′}, ξ ′, η′〉

lexicographically. Let p : Ord ×Ord onto−→ Ord be the order preserving map: 〈ξ, η〉 4 〈ξ ′, η′〉 iff
p(ξ, η) ≤ p(ξ ′, η′)—the canonical pairing function. Let p1 and p2 be the inverse functions, so that
α = p(p1(α),p2(α)) for all α .
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Lemma 3 (routine). If Ω is an infinite cardinal and κ = Ω+ , then p maps Ω ×Ω onto Ω bijectively,
and the restriction p� (Ω×Ω) is constructible and ∆Hκ

1 .

Now we prove another reduction-type definability theorem.

Theorem 4. If Ω is a regular cardinal, κ = Ω+ , X, Y ⊆ ω , and X is ∈-definable in Hκ with Y as the
only parameter, then X is ∈-definable in the structure 〈P(Ω) ; ∈,p〉 with Y as the only parameter.

Proof (sketch). If x ⊆ Ω then let E′x = {〈ξ, η〉 : ξ, η < Ω ∧ p(ξ, η) ∈ x} be a binary relation on its
domain |x| = domE′x ∪ ranE′x . Following the proof of Theorem 3, let WFE′0 contain all sets x ⊆ Ω
such that E′x is an extensional well-founded relation on |x| , with the additional property that 0 ∈ |x|
and 0 is the only top element of |x| , that is, 0 E′x ξ holds for no ξ ∈ |x| . If x ∈WFE′0 then let ϕx be the
unique 1-1 map defined on |x| and satisfying ϕx(ξ) = {ϕx(η) : η E′x ξ} for all ξ ∈ |x|—the transitive
collapse. We put F′(x) = ϕx(0) ; F′ is a map from WFE′0 onto Hκ , ∈-definable in Hκ .

Both WFE′0 and the binary relations EQ′ , IN′ defined on WFE′0 by:

x EQ′ y iff F′(x) = F′(y) , and x IN′ y iff F′(x) ∈ F′(y) ,

are ∈-definable in 〈P(Ω) ; ∈,p〉 by the same bisimulation argument as in the proof of Theorem 3.
Finally if n < ω then let xn = {p(i, j) : 1 ≤ i < j ≤ n} ∪ {p(i, 0) : 1 ≤ i ≤ n} , so that xn ∈WFE′0 and
F′(xn) = n .

Now let X = {n < ω : Hκ |= Φ(n, Y)} ⊆ ω be ∈-definable in Hκ by a formula ϕ(·, Y) . Then we
have X = {n < ω : Φ′(xn)} , where Φ′ is obtained from Φ by the substitution of EQ′ for = and IN′

for ∈ and relativization of all quantifiers to WFE′0 . This proves the theorem.

2.5. A Useful Result in Forcing Theory

We remind that, by [32] (Chapter 15), if κ is an infinite ordinal, then a forcing notion P = 〈P ;≤〉 :

• Is κ-closed, if any ≤-decreasing sequence {pα}α<λ in P , of length λ ≤ κ , has a lower bound
in P ;

• Is κ-distributive, if the intersection of κ -many open dense sets is open dense, and a set D ⊆ P is
open, iff q 6 p ∈ D =⇒ q ∈ D , and dense, iff for any p ∈ P there is q ∈ D , q 6 p .

• Satisfies κ-chain condition, or κ-CC, if every antichain A ⊆ P has cardinality strictly less than κ.

We will make use of the following general result in forcing theory.

Lemma 4. Assume that, in L , ϑ < 
 = ϑ+ are regular infinite cardinals, and Q, P ∈ L are forcing notions,
Q satisfies 
 -CC in L , and P is ϑ -closed in L . Assume that 〈F, G〉 is a pair (Q× P) -generic over L . Then,

(i) P remains ϑ -distributive in L[F] ,

(ii) 
 is still a cardinal in L[F, G] ,

(iii) Every set X ∈ L[F, G] , X ⊆ 
 , bounded in 
 , belongs to L[F] .

Proof. (i) Consider any sequence {Dα}α<ϑ in L[F] of open dense sets Dα ⊆ P . Prove that their
intersection is dense. Let p̂ ∈ P . Then D = {〈α, p〉 : α < ϑ ∧ p ∈ Dα} belongs to L[F] . Therefore there
is a name t ∈ L , t ⊆ Q× (ϑ× P) , satisfying D = t[F] . Then Dα = tα[F] for all α , where tα = {〈q, p〉 :
〈q, 〈α, p〉〉 ∈ t} . There exists a condition q0 ∈ F which Q-forces

(A) “ tα[F] is open dense in P”

over L for every α < ϑ . We can w. l.o.g. assume that 1Q forces (A), otherwise replace Q by Q′ =
{q ∈ Q : q 6 q0} . Under this assumption, we have the following:
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(B) If α < ϑ , p ∈ P , and q ∈ Q then there exist q′ ∈ Q and p′ ∈ P such that q′ 6 q , p′ 6 p , and q′

Q-forces p′ ∈ tα[F] over L .

Now we prove a stronger fact:

(C) If γ < ϑ and p ∈ P , then there is p′ ∈ P , p′ 6 p , such that 1Q forces p′ ∈ tγ[F] over L .

Indeed, arguing in L , and using (B) and the assumption that P is ϑ-closed, we can define a decreasing
sequence {pα}α<η of conditions in P , where η < 
 , and a sequence {qα}α<η of conditions in Q ,
such that q0 = q , qα is incompatible with qβ whenever α 6= β , and each qα Q-forces pα+1 ∈ tγ[F] .
Note that the construction really has to stop at some η < 
 otherwise we have an antichain in Q of
cardinality 
 . Thus A = {qα : α < η} is a maximal antichain, and on the other hand, as P is ϑ-closed
and η < 
 = ϑ+ , there is a condition p ∈ P satisfying p 6 pα for all α < η . Then every q ∈ A Q-
forces p ∈ tγ[F] by construction, therefore, as A is a maximal antichain, q witnesses (C).

To accomplish the proof of (i), we define, using (C), a decreasing sequence {pγ}γ<ϑ ∈ L of
conditions in P , such that p0 6 p̂ and, for any γ < ϑ , 1Q forces pγ+1 ∈ tγ[F] over L . Once again,
there is a condition p ∈ P , p 6 pγ for all γ . Then 1Q forces p ∈ tγ[F] for all γ , hence p ∈ ⋂γ Dγ ,
as required.

Finally, as Q is 
-CC in L , 
 remains a cardinal in L[F] . Then, as P is ϑ -distributive in L[F] ,
we obtain (ii) and (iii) by standard arguments.

2.6. Definable Names

Let Q ∈ L be any forcing notion. It is well known (see, e.g., Lemma 2.5 in Chapter B.4 of [31])
that if F ⊆ Q is a Q-generic filter over L , X ∈ L , and Y ∈ L[F] , Y ⊆ X , then there is a set t ∈ L ,
t ⊆ Q× X , such that:

Y = t[Q] := {x ∈ X : ∃ q ∈ F (〈q, x〉 ∈ t)} ;

such a t is called a Q -name (for Y ), whereas t[G] is the G-valuation, or G-interpretation of t . There is a
more comprehensive system of names and valuations, which involves all sets Y in generic extensions,
not only those included in the groung model, see e.g., Chapter IV in [35], but it will not be used in this
paper. The next theorem claims that in certain cases such a name t as above can be chosen of nearly
the same definability level as the set Y itself.

Theorem 5. Assume that Q ∈ L is any forcing, F ⊆ Q is Q-generic over L , κ > ω is a cardinal in L[F]
(hence, in L , too), n ≥ 1 , H = (Hκ)L , H[F] = (Hκ)L[F] , and Y ∈ L[F] , Y ⊆ H . Then,

(i) If Y belongs to ΣH
n (hence to L ), then Y also belongs to Σ

H[F]
n ;

(ii) If Q ∈ H and Y belongs to Σn(H[F]) (meaning Σn in H[F] with arbitrary definability parameters
in H[F] allowed) then there exists a Σn(H) name t ∈ L , t ⊆ Q× H , such that Y = t[F] .

Proof. To prove (i) note that H = H[F] ∩ L . But the formula “ x is contructible” is Σ1 [31] (Part B,

5.4). It follows that H is Σ
H[F]
1 . Now the result is clear: We formally relativize, to the Σ

H[F]
1 set H ,

all quantifiers in the Σn definition of Y in H , getting a Σn definition of Y in H[F] .
To prove (ii), assume that Q ∈ H . We utilize a more complex system of representation of sets

in L[F] , affecting all these sets, not just subsets of sets in L . We take it from [36]. Inductively on the
∈-rank rk (a) , each set a is mapped to the set K(a) = {K(b) : ∃ q ∈ F (〈q, b〉 ∈ a)} (depends on F !).
The next lemma continues the proof of Theorem 5.

Lemma 5. H[F] = {K(a) : a ∈ H} .

Proof. From right to left, an elementary induction argument works. Prove it from left to right.
Induction by the ∈-rank rk (x) , for each x ∈ H[F] we define a set ax ∈ H such that x = K(ax) .
If x = ∅ , then ax = ∅ will do. Assume that rk (x) > 0 and ay is already defined for each y ∈ x .
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The set A = {ay : y ∈ x} ∈ L[F] , A ⊆ H has cardinality < κ in L[F] . Moreover, there is a set
B ∈ L , B ⊆ H , of cardinality ≤ κ in L , such that A ⊆ B . (Indeed, H ∈ L has cardinality κ in L .
Let {tα}α<κ be a constructible enumeration of elements of H . As card A < κ strictly, there is γ < κ
such that A ⊆ B = {tα : α < γ} . The set B is as required.)

According to the above, we have A = τ[F] for some τ ∈ L , τ ⊆ Q× B . Then τ ∈ H . On the
other hand, it is easy to check that x = {K(b) : b ∈ A} = K(τ) , that is, you can take ax = τ . This ends
the proof of the lemma.

In continuation of the proof of Theorem 5(ii), we introduce, following [36], the forcing relation
q  ϕ (where q ∈ Q ) by induction on the logical complexity of the formula ϕ (a closed formula with
parameters in H ); it corresponds to H[F] as a Q -generic extension of H . Below 6 is the partial order
on Q , and q 6 q′ means that q is a stronger condition.

(I) q  a ∈ b iff ∃ 〈q′, c〉 ∈ b (q 6 q′ ∧ q  a = c) ;

(II) q  a 6= b iff ∃ 〈q′, c〉 ∈ b (q 6 q′ ∧ q  c /∈ a) or ∃ 〈q′, c〉 ∈ a (q 6 q′ ∧ q  c /∈ b) ;

(III) q  ¬ ϕ iff ¬ ∃ q′ (q′ 6 q ∧ q′  ϕ) ;

(IV) q  ϕ ∨ ψ iff q  ϕ or q  ψ ;

(V) q  ∃ x ∈ b ϕ(x) iff ∃ 〈q′, c〉 ∈ b (q 6 q′ ∧ q  ϕ(c)) ;

(VI) q  ∃ x ϕ(x) iff ∃ c ∈ H (q  ϕ(c)) .

This definition assumes that some logical connectives are expressed in a certain way via other
connectives. For each parameter free formula ϕ(x1, . . . , xk) , define a set:

Fϕ = {(q, a1, . . . , ak) : a1, . . . , ak ∈ H ∧ q ∈ Q ∧ q  ϕ(a1, . . . , ak)}.

Lemma 6. If k > 1 and ϕ is a Σk formula, then Fϕ is ΣH
k ({Q}) ( Q is allowed as a sole parameter).

Proof. All quantifiers of definitions (I)–(V) are bounded either by the set Q ∈ H , or by a set of the form
Q× a , where still a ∈ H . Therefore it is not difficult to show that Fϕ ∈ ΣH

1 for any bounded formula
ϕ . (The sole unbounded quantifier will express the existence of a full description of all subformulas of
the form a ∈ b , a = b , that appear in accordance with (I)–(III).) Induction on k proves the result.

The next lemma is similar to the Truth Lemma as in [36], so the proof is omitted.

Lemma 7. Let Φ be a closed formula with parameters in H , and Φ′ obtained from Φ so that each a ∈ H is
replaced by K(a) . Then Φ′ is true in H[F] iff there exists q ∈ F such that q  Φ .

Let us finish the proof of Theorem 5(ii). Let Y ∈ Σn(H[F]) , Y ⊆ H . There is a parameter free Σn
formula ϕ(·, ·) , and a parameter y ∈ H[F] , such that X = {x ∈ H : ϕ(x, y) holds in H[F]} . For each
x ∈ H , we define the set x̆ ∈ H by induction, so that ∅̆ = ∅ , and if x 6= ∅ then x̆ = {〈q, z̆〉 :
q ∈ Q ∧ z ∈ x} . Then K(x̆) = x for all x . It follows by Lemma 7 that:

X = {x ∈ H : ∃ q ∈ F (q  ϕ(x̆, b))} = t[F] ,

where b ∈ H is such that y = K(b) (exists by Lemma 5), whereas:

t = {〈q, x〉 : q ∈ Q ∧ x ∈ H ∧ q  ϕ(x̆, b)} .

Finally, note that the function x 7−→ x̆ belongs to ∆H
1 ({Q}) . We conclude that t ∈ Σn(H) by Lemma 6,

as required. This completes the proof of Theorem 5.



Mathematics 2020, 8, 2214 13 of 36

2.7. Collapse Forcing

We conclude from Lemma 2 that the construction of any generic extension of L , in which
D1n ∈ D2n holds for some n ≥ 1, has to involve a collapse of ωL

1 down to ω , explicitly or implicitly.
To set up such a collapse in a technically convenient form, we let Ξ = P(ω) ∩ L be the set of all
constructible sets x ⊆ ω , and let C = Ξ<ω . Thus C ∈ L is the ordinary Cohen-style collapse forcing
that makes Ξ (and ωL

1 as well) countable in C -generic extensions. The choice of Ξ as the collapse
domain, instead of ωL

1 , is made by technical reasons that will be clear below. Note that C adjoins

generic maps ζ : ω
onto−→ Ξ to L . A map ζ ∈ Ξω is C-generic over L iff the set Gζ = {e ∈ C : e ⊂ ζ} is

C-generic in the usual sense.

Lemma 8 (Routine). If ζ ∈ Ξω is C -generic over L then ω
L[ζ]
ξ = ωL

ξ+1 for all ξ ∈ Ord .

The representation result, as in the beginning of Section 2.6, takes the following form: If ζ ∈ Ξω

is C -generic over L , X ∈ L , and Y ∈ L[ζ] , Y ⊆ X , then there is a set t ∈ L , t ⊆ C× X , such that:

Y = t[ζ] := {x ∈ X : ∃ e ∈ Gζ (〈e, x〉 ∈ t)} ;

such a t is called a C -name (for Y ).
Theorem 5 is applicable for Q = C and any L-cardinal κ ≥ ωL

2 , whereas if ξ ∈ Ord , ξ ≥ 1,
then Lemma 4 is applicable for Q = C , ϑ = ωL

ξ , 
 = ωL
ξ+1 , and any forcing P ∈ L , ϑ-complete in L .

3. Almost Disjoint Forcing, Uncountable Version

Here we introduce the main coding tool used in the proof of Theorem 2, an uncountable version
of almost disjoint forcing of Jensen–Solovay [23].

3.1. Introduction to almost Disjoint Forcing

Definition 2. Fix an uncountable successor L-cardinal 
 = ωL
µ+1 . The value of 
 will be specified in

Section 4.5 with respect to the integer M of Theorem 2, namely, 
 = ωL
M , but until then we will view 
 as an

arbitrary successor L-cardinal.
We put 
	 = ωL

µ and 
⊕ = ωL
µ+2 . Here ⊕ , resp., 	 mean the next, resp., previous L -cardinal,

which may not be true cardinals in generic extensions of L .
We finally put:

H = (H
⊕)L = {x ∈ L : card (TC (x)) < 
⊕ in L}. (5)

Moreover if L[G] is a generic extension of L then we define:

H[G] = (H
⊕)L[G] = {x ∈ L[G] : card (TC (x)) < 
⊕ in L[G]}. (6)

provided 
⊕ remains a cardinal in L[G] .

• Let Seq
 = (
<
r {Λ})∩ L , the set of all constructible non-empty sequences s of ordinals < 
 ,
of length lh s = dom s < 
 , called strings. We underline that Seq
 ∈ L , and Λ , the empty string,
does not belong to Seq
 ;

• Let Fun
 = 

 ∩ L = all constructible 
-sequences of ordinals < 
 ; Fun
 ∈ L ;

• If X ⊆ Fun
 then put X∨ = { f � ξ : f ∈ Fp ∧ 1 ≤ ξ < 
} , a tree in Seq
 , without terminal nodes;

• A set X ⊆ Fun
 is dense iff X∨ = Seq
 , i. e. for any s ∈ Seq
 there is f ∈ X such that s ⊂ f ;

• If S ⊆ Seq
 , f ∈ Fun
 then let S/ f = sup{ξ < 
 : f � ξ ∈ S} . If S/ f is unbounded in 
 then
say that S covers f , otherwise S does not cover f .
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Definition 3 (in L ). ∗P
 is the set of all pairs p = 〈Sp ; Fp〉 ∈ L of sets Fp ⊆ Fun
 , Sp ⊆ Seq
 of
cardinality strictly less than 
 in L . Elements of ∗P
 will be called (forcing) conditions.

If p, q ∈ ∗P
 then p ∧ q = 〈Sp ∪ Sq ; Fp ∪ Fq〉 ; a condition in ∗P
 .
Let p, q ∈ ∗P
 . Define q 6 p (q is stronger as a forcing condition) iff Sp ⊆ Sq , Fp ⊆ Fq , and the

difference Sq r Sp does not intersect F∨p , that is, Sq ∩ F∨p = Sp ∩ F∨p . Here F∨p = (Fp)∨ .

Lemma 9 (in L ). The sets Seq
 , Fun
 , ∗P
 belong to L and card (Seq
) = 
 while card (Fun
) =

card ∗P
 = 
⊕ in L .

Clearly q 6 p iff Sp ⊆ Sq , Fp ⊆ Fq , and Sq ∩ F∨p = Sp ∩ F∨p .

Lemma 10 (in L ). Conditions p, q ∈ ∗P
 are compatible in ∗P
 iff 1) Sq r Sp does not intersect F∨p , and 2)
Sp r Sq does not intersect F∨q . Therefore any p, q ∈ P∗ are compatible in P∗ iff p ∧ q 6 p and p ∧ q 6 q .

Proof. If (1), (2) hold then p ∧ q 6 p and p ∧ q 6 q , thus p, q are compatible.

If u ⊆ Fun
 then put P[u] = {p ∈ ∗P
 : Fp ⊆ u} . Thus if u ∈ L then P[u] ∈ L .
Any conditions p , q ∈ P[u] are compatible in P[u] iff they are compatible in ∗P
 iff p ∧ q =

〈Sp ∪ Sq ; Fp ∪ Fq〉 ∈ P[u] satisfies both (p ∧ q) 6 p and (p ∧ q) 6 q . Thus we say that conditions
p , q ∈ ∗P
 are compatible (or incompatible) without an indication which set P[u] containing p, q is
considered.

Lemma 11 (in L ). Let ∅ 6= u ⊆ Fun
 . Then it is true in L that card P[u] ≤ 
⊕ , and the forcing notion
P[u] satisfies 
⊕-CC, and is 
	-closed, hence 
	-distributive. Moreover P[u] satisfies 
⊕-CC in any generic
extension L[H] of L , in which 
⊕ remains a cardinal.

Proof. The closed/distributive claim is obvious on the base of the cardinality restrictions in Definition 3.
To prove the 
⊕-CC claim, argue in L[H] . If p 6= q belong to an antichain A ⊆ P[u] then Sp 6= Sq by
Lemma 10. Let M = {Sp : p ∈ ∗P
} = all subsets S ⊆ Seq
 , S ∈ L , with card S < 
 in L . Then M
is a set of cardinality 
 in L , hence in L[H] as well.

If u ⊆ Fun
 in L , and G ⊆ P[u] is a P[u]-generic set, then put SG =
⋃

p∈G Sp ; thus SG ⊆ Seq
 .
The next lemma witnesses that forcing notions of the form P[u] belong to the type of almost disjoint
(AD, for brevity) forcing, invented in [23] (§ 5).

Lemma 12. Suppose that, in L , u ⊆ Fun
 is dense. Let G ⊆ P[u] be a set P[u]-generic over L . Then:

(i) If f ∈ Fun
 in L then f ∈ u ⇐⇒ SG does not cover f ;

(ii) G = {p ∈ P[u] : Sp ⊆ SG ∧ (SG r Sp) ∩ F∨p = ∅} , hence L[G] = L[SG] .

Proof. (i) Let f ∈ u . The set D f = {p ∈ P[u] : f ∈ Fp} is dense in P[u] . (Let q ∈ P[u] . Define p ∈ P[u]
so that Sp = Sq and Fp = Fq ∪ { f } . Then p ∈ D f and p 6 q .) Therefore D f ∩ G 6= ∅ . Pick any
p ∈ D f ∩ G . Then f ∈ Fp . Now every r ∈ G is compatible with p , and hence Sr/ f ⊆ Sp/ f by
Lemma 10. Thus SG/ f = Sp/ f is bounded in 
 . Let f /∈ u . If ξ < 
 then the set D f ξ = {p ∈ P[u] :
sup(Sp/ f ) > ξ} is dense in P[u] . (If q ∈ P[u] then card (F∨q ) < 
 . As f /∈ u , there is η > ξ , η < 
 ,
with f �η /∈ F∨q . Define p so that Fp = Fq and Sp = Sq ∪ { f �η} . Then p ∈ D f ξ and p 6 q .) Let
p ∈ D f ξ ∩ G . Then sup(SG/ f ) > ξ . As ξ < 
 is arbitrary, SG/ f is unbounded.

(ii) Consider any p ∈ P[u] . Suppose p ∈ G . Then Sp ⊆ SG . If there exists s ∈ (SG r Sp) ∩ F∨p
then by definition we have s ∈ Sq for some q ∈ G . However, then p, q are incompatible by Lemma 10,
a contradiction. Now suppose p /∈ G . Then there exists q ∈ G incompatible with p . By Lemma 10,
there are two cases. First, there exists s ∈ (Sq r Sp) ∩ F∨p . Then s ∈ SG r Sp , so p is not compatible
with SG . Second, there exists s ∈ (Sp r Sq) ∩ F∨q . Then any condition r 6 q satisfies s /∈ Sr . Therefore
s /∈ SG , so Sp 6⊆ SG , and p is not compatible with SG .
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3.2. Product Almost Disjoint Forcing

Arguing under the assumptions and notation of Definition 2, we consider I = ω × ω ,
the cartesian product, as the index set for a product forcing.

Definition 4 (in L ). ∗P
 (note the boldface upright form) is the L-product of I copies of ∗P
 (Definition 3 in
Section 3.1), ordered componentwise: p 6 q ( p is stronger) iff p(n, i) 6 q(n, i) in ∗P
 for all n, i < ω .

That is, ∗P
 ∈ L and ∗P
 consists of all maps p ∈ L , p : I → ∗P
 . If p ∈ ∗P
 then put Fp(n, i) =
Fp(n,i) and Sp(n, i) = Sp(n,i) for all n, i < ω , so that p(n, i) = 〈Sp(n, i) ; Fp(n, i)〉 , where Sp : I →
P<
(Seq
) and Fp : I → P<
(Fun
) are arbitrary, and P<
 means all subsets of cardinality <
 strictly.

• Note that, unlike product almost-disjoint forcing notions developed in [4,5], ∗P
 is not a
finite-support product;

• If p ∈ ∗P
 then we define |p| = {〈n, i〉 : p(n, i) 6= 〈∅,∅〉} and

F∨p (n, i) = F∨p(n,i) = { f � ξ : f ∈ Fp(n, i) ∧ 1 ≤ ξ < 
};

• If p, q ∈ ∗P
 then define p∧ q ∈ ∗P
 by (p∧ q)(n, i) = p(n, i)∧ q(n, i) , in the sense of Definition 3
in Section 3.1, for all n, i < ω .

Lemma 13. Conditions p, q ∈ ∗P
 are compatible in ∗P
 iff (p ∧ q) 6 p and (p ∧ q) 6 q .

Let an 
-system be any map U ∈ L , U : I → P(Fun
) such that each set U(n, i) is empty or
dense in Fun
 . In this case, let |U| = {〈n, i〉 : U(n, i) 6= ∅}.

• If U is an 
-system then P[U] = {p ∈ ∗P
 : ∀ 〈n, i〉 ∈ |p| (Fp(n, i) ⊆ U(n, i))} is the L-product of
the sets P[U(n, i)] , n, i < ω .

Lemma 14 (in L ). Let U be an 
-system. Then it is true in L that cardP[U] = 
⊕ , and the forcing notion
P[U] is 
	-closed, hence 
	-distributive, and satisfies 
⊕-CC, and the product C× P[U] satisfies 
⊕-CC as
well. Moreover P[U] satisfies 
⊕-CC in any generic extension of L in which 
⊕ remains a cardinal.

Proof. The closed/distributive claims follow from Lemma 11. To prove the antichain claim we observe
that if p, q ∈ ∗P
 satisfy Sp = Sq then p, q are compatible. However the set ∆S = {Sp : p ∈ ∗P
} has
cardinality ≤ 
 < 
⊕ in L as it consists of all functions Sp : I → P<
(Seq
) . To extend the result to
the product C× P[U] , note that cardC = ωL

1 ≤ 
 .

Definition 5. Suppose that z ⊆ I . If p ∈ ∗P
 then define p′ = p� z to be the usual restriction, so that
dom (p� z) = z and p′(n, i) = p(n, i) for all 〈n, i〉 ∈ z . A special case: If n, i < ω then let p� 6=〈n,i〉 = p� z ,
where z = (I r {〈n, i〉}) . If U is an 
-system then define U � z to be the ordinary restriction as well.
Furthermore, if m < ω then define:

p�<m = p� z and U �<m = U � z, where z = {k : k < m} ×ω,

p�≥m = p� z and U �≥m = U � z, where z = {k : k ≥ m} ×ω,

p� m = p� z and U � m = U � z, where z = {m} ×ω.

Finally, if Q ⊆ ∗P
 then let Q� z = {p� z : p ∈ Q} ; Q� z ⊆ ∗P
 � z . This will be applied, e.g., in case
Q = P[U] , where U ∈ L is a 
-system, and then we get P[U]� z = {p� z : p ∈ P[U]} , P[U]� 6=〈n,i〉 ,
P[U]�≥m , etc.
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Remark 3. Suppose that z ∈ L in Definition 5. If p ∈ ∗P
 , then p� z can be identified with a condition
q ∈ ∗P
 such that q� z = p� z and q(n, i) = 〈∅ ; ∅〉 for all 〈n, i〉 ∈ I r z . For instance, this applies w. r. t.
p� 6=〈n,i〉 , p�≥m , p�<m , p� m .

With such an identification, we have ∗P
 � z ⊆ ∗P
 , and Q� z ⊆ ∗P
 for Q ⊆ ∗P
 (in case z ∈ L ).
However, if z /∈ L then such an identification fails. This is a consequence of our deviation from the

finite-support product approach taken in [4,5], which would not work in the setting of this paper.
The same applies for the restrictions U � z of 
-systems U .

3.3. Structure of Product almost Disjoint Generic Extensions

Arguing under the assumptions and notation of Definition 2, we let U be an 
-system in L .
Consider P[U] as a forcing notion. We will study P[U]-generic extensions L[G] of the ground universe
L . Define some elements of these extensions. Suppose that G ⊆ P[U] is a generic set. Let,

SG(n, i) = SG(n,i) =
⋃

p∈G Sp(n, i) for any n, i < ω ,

where G(n, i) = {p(n, i) : p ∈ G} ⊆ P[U(n, i)] ; thus SG(n, i) ⊆ Seq
 and G ⊆ P[U] splits into the
family of sets G(n, i) , n, i < ω . This defines a sequence ~SG = {SG(n, i)}n,i<ω of subsets of Seq
 .

If z ⊆ I then let G� z = {p� z : p ∈ G} . If z ∈ L then G� z can be identified with {p ∈ G :
|p| ⊆ z} .

Put G� 6=〈n,i〉 = {p ∈ G : 〈n, i〉 /∈ |p|} = G� (I r {〈n, i〉}) .

Lemma 15. Let U be an 
-system in L , and G ⊆ P[U] be a set P[U]-generic over L . Then :

(i) L[G] = L[~SG] ;

(ii) If n, i < ω then the set G(n, i) = {p(n, i) : p ∈ G} ∈ L[G] is P[U(n, i)]-generic over L , hence if
f ∈ Fun
 then f ∈ U(n, i) ⇐⇒ SG(n, i) does not cover f ;

(iii) If X ∈ L[G] , X ⊆ 
 is bounded, then X ∈ L ;

(iv) All L-cardinals are preserved in L[G] , and GCH holds in L[G] .

Proof. To prove (i) apply Lemma 12(ii).
The genericity in (ii) holds by the product forcing theorem, then use Lemma 12(i).
Claim (iii) follows from the 
	-closure claim of Lemma 14.
(iv) We conclude from (iii) that all L-cardinals ≤ 
 remain cardinals in L[G] , and GCH holds

for all L-cardinals < 
 strictly. It follows from the 
⊕-CC claim of Lemma 14 that all L-cardinals
≥ 
⊕ remain cardinals in L[G] , and since cardP[U] ≤ 
⊕ in L , GCH holds for all of them in L[G] .
And finally we still have exp(
) = 
⊕ in L[G] since by (i) the model L[G] is an extension of L by
adjoining a subset of 
 obtained by a suitable wrapping of ~SG .

The next lemma is useful in dealing with combined (C× P[U])-generic extensions L[ζ, G] of L ,
where, by the product forcing theorem, ζ ∈ Ξω is C-generic over L and G is P[U]-generic over L[ζ] ,
or equivalently, G is P[U]-generic over L and ζ is C-generic over L[G] .

Lemma 16. Let U be an 
-system in L , and a pair 〈ζ, G〉 is (C× P[U])-generic over L . Then :

(i) All L[ζ]-cardinals are preserved in L[ζ, G] , so that ω
L[ζ,G]
ξ = ω

L[ζ]
ξ = ωL

ξ+1 for all ξ ≥ 1 ;

(ii) GCH holds in L[ζ, G] ;

(iii) If 
 ≥ ωL
2 and X ∈ L[ζ, G] , X ⊆ 
 is bounded, then X ∈ L[ζ] ;

(iv) If 1 ≤ k < ω and ωL
k < 
 , then (H
)L[ζ,G] = (H
)L[ζ] and P k(ω) ∩ L[ζ, G] = P k(ω) ∩ L[ζ] .

Note that Claims (iii), (iv) are not applicable in case 
 = ωL
1 .
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Proof. To prove (i), (ii) recall that all L-cardinals remain cardinals in L[G] , and GCH holds in L[G] ,
by Lemma 15(iv). It remains to note that ζ is C-generic over L[G] and make use of Lemma 8. To prove
(iii) apply Lemma 4 with ϑ = 
	 , P = P[U] , Q = C . Note that cardC = ωL

1 ≤ 
	 in case 
 ≥ ωL
2 .

Finally Claim (iv) is a routine corollary of (i)–(iii).

4. The Forcing Notion and the Model

In this Section, we prove Theorem 2 on the base of another result, Theorem 8, see Remark 4
on page 23. The proof of Theorem 8 will follow in the remainder of the paper. The structure of
the extension will be presented in Section 4.6, after the definition of the forcing notion involved in
Section 4.5. Recall that the L-cardinals:


	 = ωL
µ < 
 = ωL

µ+1 < 
⊕ = ωL
µ+2

were introduced by Definition 2 on page 13. They remain to be fixed until Section 4.5, where their
value will be specified in terms of the number M ≥ 1 we are dealing with in Theorem 2.

4.1. Systems, Definability Aspects

We argue in L under the assumptions and notation of Definition 2 on page 13.
In continuation of our notation related to 
-systems in Section 3.2, define the following.

• An 
-system U is small, if each U(n, i) has cardinality ≤ 
 in L ;

• An 
-system U is disjoint if U(n, i) ∩U(k, j) = ∅ whenever 〈n, i〉 6= 〈k, j〉 ;
• If U, V are 
-systems and U(n, i) ⊆ V(n, i) for all n, i , then V extends U , in symbol U 4 V ;

• If {Uξ }ξ<λ is a sequence of 
-systems then the limit 
-system U =
∨

ξ<λ Uξ is defined by
U(n, i) =

⋃
ξ<λ Uξ(n, i) , for all n, i .

Let DS
 (disjoint systems) be the set of all disjoint 
-systems, and let sDS
 (small disjoint
systems) be the set of all small disjoint 
-systems U ∈ DS
 .

Define sDS
 �≥m = {U �≥m : U ∈ sDS
} , and similarly sDS
 �<m etc. by Definition 5.
The sets DS
 , sDS
 , sDS
 �≥m , DS
 �<m etc., and the order relation 4 , belong to L , of course.

Recall that, by (5),
H = (H
⊕)L = {x ∈ L : card (TC (x)) ≤ 
 in L} .

Lemma 17 (in L ). The following sets belong to ∆H
1 ({
}) and to ∆H

3 : {
} , {Seq
} , Fun
 , ∗P
 , sDS
 ,
sDS
 �≥m , sDS
 �<m , the set {〈U, p〉 : U ∈ sDS
 ∧ p ∈ P[U]} , the relation 4 .

Proof. All these sets have rather straightforward ∆H
1 ({
}) definitions, with 
 ∈ H as the only

parameter. To eliminate 
 , it suffices to prove that {
} ∈ ∆H
3 . Note first of all that “ϑ is a cardinal

(initial ordinal)” is a Π1 formula:

ϑ ∈ Ord ∧ ∀ α < ϑ ∀ f ( f : α→ ϑ =⇒ ran f 6= ϑ) .

On the other hand, 
 is the largest cardinal in H , hence it holds in H that:

ϑ = 
 ⇐⇒ ∀κ (κ is a cardinal =⇒ κ ≤ 
) .

We conclude that {
} ∈ ΠH
2 ⊆ ∆H

3 . Finally, the conversion ∆H
1 ({
})→ ∆H

3 is routine.

4.2. Complete Sequences

We prove a major theorem (Theorem 6) in this Subsection. It deals with 4-increasing transfinite
sequences in sDS
 , satisfying some genericity/definability requirements. This is similar to some
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constructions in [4] and especially in [5] (Theorem 3). Yet there is a principal difference. Here the notion
of extension 4 is just the componentwise set theoretic extension, unlike [4,5], and originally [23],
where the extension method was designed so that increments had to be finitewise Cohen-style generic
over associated transitive models of a certain fragment of ZFC . Here the only restriction is that
extensions have to obey the disjointness condition as defined in Section 4.1. In other words, if U 4 V
are 
-systems in sDS
 , then, beside U(n, i) ⊆ V(n, i) , the increments ∆(n, i) = V(n, i)rU(n, i) have
to be pairwise disjoint and each ∆(n, i) to be disjoint with the union

⋃
〈k,j〉6=〈n,i〉U(k, j) .

Such a simplification is made possible here largely because the definability classes of the form
D1m depend only on the highest quantifier order and do not depend on the number and type of the
quantifiers involved in the definition of the set considered—unlike e.g., [5], where we dealt with the
definability classes ∆1

n , which obviously depend on the number of the quantifiers involved.
We begin with an auxiliary lemma.
Recall that, by (5), H = (H
⊕)L = {x ∈ L : card (TC (x)) ≤ 
 in L} = L
⊕ .

Lemma 18 (in L ). Under the assumptions and notation of Definition 2, for any α < 
⊕ there exist mα < ω ,
tα ∈ H , and Uα ∈ sDS
 such that the sequences {mα}α<
⊕ , {tα}α<
⊕ , {Uα}α<
⊕ belong to ∆H

3 and,
if m < ω , t ∈ H , and {Uα}α<
⊕ is a 4-increasing continuous sequence of 
-systems in sDS
 , then any
closed unbounded set C ⊆ 
⊕ contains an ordinal α ∈ C such that m = mα , t = tα , Uα = Uα .

Proof. We argue in L , that is, under the assumption of V = L , the axiom of constructibility. It is
known that the diamond principle ♦κ holds in L for any regular cardinal κ , in particular, for κ = 
⊕ ,
see, e.g., Theorem 13.21 and page 442 in [32]. The principle ♦κ asserts that there is a sequence
{Sα}α<
⊕ ∈ L of sets Sα ⊆ α , of definability class ∆H

1 , and such that:

(∗) If X ⊆ 
⊕ and C ⊆ 
⊕ is a closed unbounded set then there is α ∈ C such that X ∩ α = Sα .

Let h : 
⊕ onto−→ H be any ∆H
1 bijection. Put Yα = {h(ξ) : ξ ∈ Sα} . Clearly {Yα}α<
⊕ is still a ∆H

1
sequence. Moreover the following is true:

(†) If {Bα}α<
⊕ is a sequence of sets in H and C ⊆ 
⊕ is a closed unbounded set then there is α ∈ C
with {Bξ }ξ<α = Yα .

Using the sets Yα , we accomplish the proof of the lemma as follows. Assume that α < 
⊕ . If Yα is
a sequence of the form {yξ }ξ<α , such that each yξ is a triple 〈m, t, Uα

ξ 〉 , where both m ∈ ω and t ∈ H
do not depend on ξ whereas Uα

ξ ∈ sDS
 for each ξ and {Uα
ξ }ξ<α is a 4-increasing and continuous

sequence, then put mα = m , tα = t , and Uα =
∨

ξ<α Uα
ξ . Otherwise put mα = tα = 0 and let Uα

be the null 
-system, that is, Uα(n, i) = ∅ for all n, i . It follows from (†) (plus a routine analysis of
definability based on Lemma 17) that this construction leads to the result required.

Theorem 6 (in L ). Under the assumptions and notation of Definition 2, there is a 4-increasing sequence
{Uα}α<
⊕ of 
-systems in sDS
 , such that:

(i) The sequence is continuous, so that Uλ =
∨

α<λ Uα for all limit ordinals λ < 
⊕ ;

(ii) If n < ω then the “slice” {Uα � n}α<
⊕ is ∆H
n+4 ;

(iii) If m < ω then the “tail” {Uα �≥m}α<
⊕ is (m + 3)-complete, in the sense that for any Σm+3(H) set
D ⊆ sDS
 �≥m there is ξ < 
⊕ such that the 
-system Uξ �≥m m-solves D , i.e.,

− either Uξ �≥m ∈ D ;

− or there is no 
-system U ∈ D with Uξ �≥m 4 U ;

(iv) There is a recursive sequence of parameter free ∈-formulas χn(α, x) such that if α < 
⊕ and x ∈ H then
H |= χn(α, x) iff x = Uα � n .
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Here the “slice” U � n of a system U is essentially equal to the “column” {U(n, i)}i<ω of the
whole “matrix” U = {U(n, i)}n,i<ω , while the “tail” U �≥m can be viewed in the union of all columns
to the right of m inclusively, see Definition 5.

Proof. We argue in L. One of the difficulties here is that we have to account for different levels of
genericity and completeness for different slices of the construction. To cope with this issue, we make
use of Lemma 18. Let us fix the sequences of terms mα , tα , Uα such as in the lemma.

Let <L be Gödel’s wellordering of L , as in Section 2.2.
For any m < ω , let Θm ⊆ H×H be a fixed universal ΣH

m+3 set, that is, Θm itself is ΣH
m+3 , and if

X ⊆ H is Σm+3(H) (parameters in H allowed), then there is t ∈ H such that X = {x : 〈t, x〉 ∈ Θm} .
If m < ω and α < 
⊕ , then let Umα be the <L-least 
-system in sDS
 satisfying Um 4 Umα and:

(a) Umα �<m = Uα �<m , and

(b) The 
-system Umα �≥m m-solves the set Dα = {V ∈ sDS
 : 〈tα, V〉 ∈ Θm} .

Making use of 5◦ of Section 2.2, we conclude that the sequence {Umα}α<
⊕ is ∆H
m+4 .

Now we define a sequence of 
-systems Uξ , as required by Theorem 6, by induction.
Put U0(n, i) = ∅ for all n, i .
If λ < 
⊕ is the limit then by (i) define Uλ =

∨
α<λ Uα .

Suppose that a 
-system Uα is defined, and the goal is to define the next one Uα+1 . Fix n, i and
define the components Uα+1(n, i) . Note that this definition will depend on the components Uα(n, i)
(with the same n, i ) only, but not on the 
-system Uα as a whole.

If it is true that:
mα ≤ n and Uα(n, i) = Uα(n, i) (7)

(where Uα is the 
-system given by Lemma 18), then put m = mα and Uα+1(n, i) = Umα(n, i) .
Otherwise, i.e., if (7) fails, just keep it with Uα+1(n, i) = Uα(n, i) .

We assert that this inductive construction of 
-systems Uα leads to Theorem 6.
Requirement (i) of the theorem is satisfied by construction.
The definability requirement (ii) of the theorem is subject to routine verification on the base of

Lemma 17, which we leave to the reader.
To prove (iii), fix a number m and a Σm+3(H) set D ⊆ sDS
 �≥m . We have to find an index

ξ < 
⊕ such that the 
-system Uξ �≥m m-solves D . There is an element t ∈ H satisfying:

D = {V ∈ sDS
 �≥m : 〈t, V〉 ∈ Θm},

where Θm is the universal set as above. Pick, by Lemma 18, an ordinal α < 
⊕ satisfying m = mα ,
t = tα , Uα = Uα . Then (7) holds for all n ≥ m , and hence by definition we have Uα+1 �≥m = Umα �≥m .
Therefore the 
-system Uα+1 �≥m m-solves the set D by (b), as required.

(iv) Coming back to the choice of universal sets Θm in (b), it can be w. l.o.g. assumed that there
is a recursive sequence of parameter free ∈-formulas ϑn(t, x) such that each ϑn is a Σn+3 formula
and Θm = {〈t, x〉 ∈ H : H |= ϑn(t, x)} . This routinely leads to ∈-formulas χn(α, x) required. It can be
observed that in fact each χn is a Σn+4 formula (not important and will not be used).

This completes the proof of Theorem 6.

4.3. Preservation of the Completeness

The next lemma says that the completeness property (iii) of Theorem 6, of the sequence {Uξ }ξ<
⊕ ,
still holds, to some extent, in rather mild generic extensions of L .

Lemma 19. Under the assumptions and notation of Definition 2, suppose that {Uα}α<
⊕ ∈ L is a 4-
increasing sequence of 
-systems in sDS
 satisfying (i)–(iv) of Theorem 6.
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Let Q ∈ L be a forcing notion with cardQ ≤ 
 in L , e.g., Q = C . Let F ⊆ Q be a set Q-generic
over L .

Assume that m < ω , δ < 
⊕ , and a set D ∈ L[F] , D ⊆ sDS
 �≥m , belongs to Σm+3(H[F]) , and is
open in sDS
 �≥m so that any extension of a 
-system U ∈ D in sDS
 �≥m belongs to D itself.

Then there is an ordinal α , δ ≤ α < 
⊕ , such that Uα �≥m m-solves D , as in Theorem 6(iii).

We recall that H = (H
⊕)L and H[F] = (H
⊕)L[F] by (5), (6).

Proof. As obviously sDS
 �≥m ⊆ H , we conclude by Theorem 5(ii) that there is a Σm+3(H) name
t ∈ L , t ⊆ Q×H , such that D = t[F] .

We argue in L . If q ∈ Q , U ∈ sDS
 �≥m , and there is such a condition h ∈ Q that h 6 q
(meaning h is stronger) and 〈h, U〉 ∈ t , then write A(q, U) . If b ∈ Q then we define:

D(b) = {U ∈ sDS
 �≥m : ∃ q ∈ Q(q 6 b ∧ A(q, U))} .

Each of the sets D(b) ⊆ H belongs to Σm+3(H) by virtue of Lemma 17 and the choice of t . Therefore,
by the choice of the sequence of 
-systems, for every b ∈ Q there is an ordinal α(b) , δ < α(b) < 
⊕ ,
such that the 
-system Uα(b) �

≥m m-solves the set D(b) .
Note that δ = supb∈Q α(b) < 
⊕ by the cardinality argument.
We claim that the 
-system Uδ �≥m m-solves D . It suffices to prove that if a 
-system U ∈ D

extends Uδ �≥m , then the 
-system Uδ �≥m itself belongs to D . Moreover, as D is open, it suffices to
find b ∈ Q , satisfying Uα(b) �

≥m ∈ D .
We argue in L . Consider the set B = {b ∈ Q : Uα(b) �

≥m ∈ D(b)} . If b ∈ B then pick a particular
q = q(b) ∈ Q such that q 6 b and A(q,Uα(b) �

≥m) holds. If b ∈ Q r B then put q(b) = b . The set
Q′ = {q(b) : b ∈ Q} is dense in Q . It follows that there is b ∈ Q′ ∩ F . On the other hand, as U ∈ D ,
there is a condition h ∈ Q with 〈h, U〉 ∈ t .

Then there exists some q ∈ F satisfying q 6 h and q 6 h(b) 6 b . This implies U ∈ D(b) .
It follows, by the choice of α(b) , that Uα(b) �

≥m ∈ D(b) , too. However then b ∈ B , and hence
we have A(q(b),Uα(b) �

≥m) . By definition there is a condition h′ ∈ Q with q(b) 6 h′ , such that
〈h′,Uα(b) �

≥m〉 ∈ t . However h′ ∈ F (since f (b) ∈ F ). We conclude that Uδ �≥m ∈ D , as required.

4.4. Key Definability Engine

We argue under the assumptions and notation of Definition 2 on page 13. In particular, a successor
L-cardinal 
 > ω is fixed. We make the following arrangements.

Definition 6 (in L ). We fix a 4-increasing sequence of 
-systems {U

ξ }ξ<
⊕ satisfying conditions (i)–(iv)

of Theorem 6 for the particular L-cardinal 
 introduced by Definition 2.
We define the limit 
-system U
 =

∨
ξ<
⊕ U



ξ , the basic forcing notion P
 = P[U
] , and the subforcings

P
γ = P[U

γ ] , γ < 
⊕ .

Define restrictions P
 � z , G� z (z ⊆ I , G ⊆ P
 ), P
 � 6=〈n,i〉 etc. as in Section 3.2.

Thus by construction P
 ∈ L is the L-product of sets P
(n, i) = P[U
(n, i)] , n, i ∈ ω . Lemma 14
implies some cardinal characterictics of P
 , namely:

(I) cardP
 = 
⊕ in L ,

(II) P
 satisfies 
⊕-CC in L ,

(III) P
 is 
	-closed and 
	-distributive in L .

Corollary 2. P
 does not adjoin new reals to L .

Proof. The result follows from (III) because 
	 ≥ ω by Definition 2.
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As for definability, the set U
 is not parameter free definable in H = (H
⊕)L , yet its slices are:

Lemma 20 (in L ). Let n < ω . Then the set U
 � n = {〈i, f 〉 : f ∈ U
(n, i)} belongs to ΣH
n+4 . In addition

there is a recursive sequence of parameter free ∈-formulas un(i, f ) such that, for any n < ω , if i < ω and
f ∈ Fun
 then f ∈ U
(n, i) iff H |= un(i, f ) .

Proof. To prove the first claim, apply (ii) of Theorem 6. To prove the additional claim define:

un(i, f ) := ∃ α ∃ x
(
χn(α, x) ∧ f ∈ x(n, i)

)
,

where χn are formulas given by (iv) of Theorem 6.

We further let formulas �
ni (n, i ∈ ω ) be defined as follows:

�
ni(S) :=def S ⊆ Seq
 ∧ ∀ f ∈ Fun

(

f ∈ U
(n, i) ⇐⇒ S does not cover f
)
.

The next theorem shows that any real in L and even in some generic extensions of L can be made
parameter free definable in appropriate subextensions of P
-generic extensions, basically by means of
the formulas �
ni(S) . We prove this result in a rather general form, which includes the case of a forcing
notion Q = C , actually used in this paper, as just a particular case. The proof of the particular case
Q = C would not be any simpler though.

Theorem 7. Assume that Q ∈ L is a forcing notion, cardQ ≤ 
 in L , a pair 〈W, G〉 is (Q× P
)-generic
over L , Y ∈ L[W] , and z ∈ L[Y] , z ⊆ I = ω×ω . Then,

(i) 
⊕ is a cardinal in L[Y, G] ;

(ii) If 〈n, i〉 ∈ z then SG(n, i) ∈ L[G� z] and �
ni(SG(n, i)) holds, but

(iii) If 〈n, i〉 ∈ I r z then SG(n, i) /∈ L[Y, G� z] ; and moreover there is no set S ⊆ Seq
 in L[Y, G� z]
such that �
ni(S) .

(iv) It follows that z = {〈n, i〉 : ∃ S ⊆ Seq
 �
ni(S)} in L[Y, G� z] ;

(v) If n < ω then the n-th slice (z)n = {i : 〈n, i〉 ∈ z} belongs to ΣT
n+6 , where T = H[Y, G� z] =

(H
⊕)L[Y,G � z] ;

(vi) If 1 ≤ ` < ω , 
⊕ = ω
L[Y,G � z]
` , and GCH holds in L[Y, G� z] for all cardinals ωk , k < `− 1 , then it

holds in L[Y, G� z] that (z)n ∈ D1` for all n < ω ;

(vii) Under the assumptions of (vi), it holds in L[Y, G� z] that the set z as a whole belongs to D1,`+1 .

Proof. (i) 
⊕ remains a cardinal in L[G] by Lemma 15(iv), hence Q still satisfies cardQ < 
⊕ in
L[G] . As W is Q-generic over L[G] , 
⊕ remains a cardinal in L[W, G] and in L[Y, G] ⊆ L[W, G] .

(ii) If 〈n, i〉 ∈ z then by construction:

G(n, i) := {p(n, i) : p ∈ G} = {p′(n, i) : p′ ∈ G� z} ∈ L[G� z] ,

and hence SG(n, i) ∈ L[G� z] as well. Now �
ni(SG(n, i)) follows from Lemma 15(ii).
(iii) We w. l.o.g. assume that z = I r {〈n, i〉} and Y = W . Then P
 � z = P
 � 6=〈n,i〉 can be

identified with {p ∈ P
 : p(n, i) = 〈∅,∅〉} , see Remark 3. Suppose towards the contrary that S ∈
L[W, G� 6=〈n,i〉] = L[W][G� 6=〈n,i〉] satisfies �
ni(S) . There is a name τ ∈ L[W] , τ ⊆ P
 � 6=〈n,i〉 × Seq
 ,
such that:

S = τ[G� 6=〈n,i〉] := {s ∈ Seq
 : ∃ p ∈ G� 6=〈n,i〉 (〈p, s〉 ∈ τ)} .

The forcing P
 remains 
⊕-CC in L[W] by Lemma 14. This allows us to w. l.o.g. assume that
card τ < 
⊕ in L[W] , and then τ ∈ H[W] = (H
⊕)L[W] .
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There is a condition p0 ∈ G which (P
 � 6=〈n,i〉)-forces �ni(τ[G� 6=〈n,i〉]) over L[W] . If s ∈ Seq

then put As = {p : 〈p, s〉 ∈ τ} ; As ⊆ P
 � 6=〈n,i〉 .

We argue in L . As card τ < 
⊕ , there is an ordinal γ < 
⊕ such that τ ⊆ (P
γ � 6=〈n,i〉)× Seq

and p0 ∈ P
γ � 6=〈n,i〉 . Consider the set D of all 
-systems U ∈ sDS
 extending U


γ and such that there

exists a condition p′ ∈ P[U]� 6=〈n,i〉 , p′ 6 p0 , an element f ∈ U{(n, i) =
⋃
〈k,j〉6=〈n,i〉U(k, j) , and an

ordinal µ < 
 , such that p′ contradicts to every p ∈ ⋃µ≤α<
 A f � α . Then D is ∆H
3 by Lemma 17

(and Theorem 5(i), to transfer the definability properties from H to H[W] ), with τ ∈ H[W] as a
parameter. Therefore, by Lemma 19, there is an ordinal η < 
⊕ such that the pair U


η 0-solves D as in
Theorem 6(iii). We have two cases.

Case 1: U

η ∈ D . Let this be witnessed by p′ , f , µ as indicated. Then f ∈ (U


η )
{(n, i) , therefore

f /∈ U
(n, i) . By definition U

γ 4 U


η , hence γ ≤ η . Furthermore, if s = f � ξ , µ ≤ ξ < ω1 ,
then the condition p′ (P
 � 6=〈n,i〉)-forces s /∈ τ[G� 6=〈n,i〉] over L[W] . We conclude that p′ forces
τ[G]/ f < µ < 
 over L[W] . Note that p0 forces τ[G� 6=〈n,i〉]/ f = 
 because f /∈ U(n, i) . However
p′ 6 p0 . This is a contradiction.

Case 2: There is no 
-system U ∈ D extending U

η . We can assume that γ ≤ η , since if

η < γ then the 
-system U

γ has the same property. Easily there exists δ , η < δ < ω1 , such that

U

δ (n, i)rU


η (n, i) 6= ∅ . (To prove this claim note that the set D′ of all 
-systems U ∈ sDS
 satisfying
U(n, i)rU


η (n, i) 6= ∅ is dense in sDS
 therefore, any U that 0-solves D′ belongs to D′ .)
Take any f ∈ U


δ (n, i)r U

η (n, i) . Then f ∈ U
(n, i) , and hence p0 forces τ[G]/ f < 
 over

L[W] by the choice of p0 . It follows that there exists a condition p′ ∈ P
 � 6=〈n,i〉 , p′ 6 p0 , and an
ordinal µ < ω1 , such that for any α ≥ µ , p′ forces s /∈ τ[G� 6=〈n,i〉] over L[W] , where s = f �α .
Thus p′ contradicts to each condition p ∈ ⋃µ≤α<
 A f � α . We may w. l.o.g. assume that p′ ∈ P
δ � 6=〈n,i〉
(otherwise increase δ appropriately). Under these assumptions, define a 
-system U so that:

U(n, i) = U

δ (n, i)r { f } , U(n, i + 1) = U


δ (n, i + 1) ∪ { f } ,

and U(k, j) = U

δ (k, j) for all pairs of indices 〈k, j〉 other than 〈n, i〉 and 〈n, i + 1〉 . Obviously U

extends U

η , and p′ ∈ P[U] . Therefore U ∈ D . But this contradicts the Case 2 hypothesis.

Claim (iv) is an immediate corollary of (ii) and (iii).
To prove (v), note that (*) (z)n = {i : ∃S ⊆ Seq
 �
ni(S)} by (iv). However with n fixed the

relation f ∈ U
(n, i) with i, f as arguments is ΣH
n+4 by Lemma 20, hence ΣT

n+4 by Theorem 5(i). Now
(z)n ∈ ΣT

n+6 follows by (*).
To prove (vi), make use of (v) and Theorem 3.
Let us finally prove (vii). Detalizing the proof of (v) and (vi) on the base of formulas un( f , i) of

Lemma 20, we obtain a recursive sequence of parameter free ∈-formulas ϕn(i) such that if n, i < ω

then i ∈ (z)n iff T |= ϕn(i) . The proof of Theorem 3 is obviously effective enough to obtain another
recursive sequence of parameter free type-theoretic formulas ψn(i) of order ≤ ` such that it holds in
L[Y, G� z] that: i ∈ (z)n iff ψn(i) , that is, z = {〈n, i〉 : ψn(i)} .

However it is known that the truth of formulas of order ≤ ` can be uniformly expressed by a
suitable formula of order `+ 1, see e.g., [18]. In other words, there is a parameter free type theoretic
formula Ψ(n, i) of order ≤ ` + 1 such that it holds in L[Y, G� z] that: i ∈ (z)n iff Ψ(n, i) , that is,
z = {〈n, i〉 : Ψ(n, i)} . We conclude that z is definable in L[Y, G� z] by a type-theoretic formula of
order ≤ `+ 1. In other words, z ∈ D1,`+1 in L[Y, G� z] , as required.

4.5. We Specify 


We come back to Theorem 2. Now it is time to specify the value of the L-cardinal 
 , so far left
rather arbitrary by Definition 2 on page 13.

Definition 7 (in L ). Recall that 1 ≤ M < ω is a number considered in Theorem 2.



Mathematics 2020, 8, 2214 23 of 36

We let 
 = ωL
M , and accordingly define 
	 = ωL

M−1 , 
⊕ = ωL
M+1 ,

H = (H
⊕)L = (HωL
M+1)

L = {x ∈ L : card (TC (x)) < ωL
M+1 in L}

by Definition 2. Applying Definition 6 with 
 = ωL
M , we accordingly fix:

− A 4-increasing sequence of 
-systems {U

ξ }ξ<
⊕ satisfying (i), (ii), (iii), (iv) of Theorem 6 for the chosen

L-cardinal 
 = ωL
M ,

− The limit 
-system U
 =
∨

ξ<
⊕ U


ξ ,

− The basic forcing notion P
 = P[U
] , and the subforcings P
γ = P[U

γ ] , γ < 
⊕ ,

and define restrictions P
 � z (z ⊆ I ), P
 �≥n , P
 �<n , P
 � 6=〈n,i〉 etc. as in Section 3.2.

4.6. The Model

To prove Theorem 2 we make use of a certain submodel of a (C× P
)-generic extension of L .
First of all, if g : ω → P(ω) is any function then we put:

w[g] = {〈k, j〉 : k < ω ∧ j ∈ g(k)}. (8)

Now consider a pair 〈ζ, G〉 , (C× P
)-generic over L . Thus ζ : ω
onto−→ Ξ is a generic collapse function,

while the set G ⊆ P
 is P
-generic over L[ζ] . The set:

w[ζ] = {〈k, j〉 : k < ω ∧ j ∈ ζ(k)} ⊆ I = ω×ω (9)

obviously belongs to the model L[ζ] = L[w[ζ]] , but not to L . Therefore the restrictions P
 �w[ζ] ,
G�w[ζ] in the next theorem have to be understood in the sense of Definition 5 on page 15, ignoring
Remark 3 since, definitely w[ζ] /∈ L . Thus P
 �w[ζ] is a forcing notion in L[ζ] , not in L .

The following theorem describes the structure of such generic models.

Theorem 8. Under the assumptions of Definition 7, let a pair 〈ζ, G〉 be (C× P
)-generic over L . Then:

(i) G�w[ζ] is a set (P
 �w[ζ])-generic over L[ζ] ,

(ii) ω
L[ζ,G �w[ζ]]
γ = ωL

1+γ for all ordinals γ ≥ 1 , in particular, 
⊕ = ω
L[ζ,G �w[ζ]]
M ;

and it is true in the model L[ζ, G�w[ζ]] that

(iii) If M ≥ 2 then 
 = ωM−1 and 
⊕ = 
+ = ωM , whereas if M = 1 then ω < 
 = 
⊕ = ω1 ;

(iv) GCH holds ;

(v) Every constructible real belongs to D1M ,

(vi) If 1 ≤ m < ω and m 6= M then D1m /∈ D2m , and

(vii) every real in D1M is constructible.

Remark 4. Theorem 8 implies Theorem 2 via the model L[ζ, G�w[ζ]] , of course. As for Theorem 8 itself,
its proof follows below in this paper. Claims (i)–(vi) will be established right now, and Claim (vii) is accomplished
in Section 6.6, based on the substantial work in Sections 5 and 6.

Proof (Claims (i)–(vi) of Theorem 8). To prove that G�w[ζ] is (P
 �w[ζ])-generic over L[ζ] , note that
G ⊆ P
 is P
-generic over L[ζ] by the product forcing theorem w.r. t. the product C× P
 . However
P
 can be naturally identified with the product (P
 �w[ζ])× (P
 � z) in L[ζ] , where z = I r w[ζ] .
This implies the result by another application of the product forcing theorem.

To establish (ii), (iii), and (iv), it suffices to apply Lemma 16, as L[ζ] ⊆ L[ζ, G�w[ζ]] ⊆ L[ζ, G] .
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To prove Claim (v), let x ∈ L , x ⊆ ω . By the genericity of ζ , there is a number n0 < ω such that
x = ζ(n0) . Then, for any i , we have 〈n0, i〉 ∈ w[ζ] iff i ∈ x . By Theorem 7(vi) (with Q = C , z = w[ζ] ,
Y = ζ , ` = M ), it is true in L[ζ, G�w[ζ]] that x belongs to D1M , as required.

To prove Claim (vi), assume that 1 ≤ m < ω and m 6= M ; we have to show that D1m /∈ D2m in
L[ζ, G�w[ζ]] . We have two cases.

Case 1: m > M . Consider the set z = w[ζ] defined by (9) in Section 4.6. By definition z ⊆ ω×ω ,
z ∈ L[ζ] . It follows from Theorem 7(vii) (with Q = C , z = w[ζ] , Y = ζ , ` = M ), that z ∈ D1,M+1 ,
hence z ∈ D1,M+1 as M+ 1 ≤ m . Now suppose to the contrary that D1m ∈ D2m in L[ζ, G� z] . As

ω
L[z]
1 = ω

L[ζ,G � z]
1 = ωL

2 , there exist real x ∈ L[z] , x ⊆ ω , which do not belong to D1m ; let x0 be the
least of them in the sense of the Gödel well ordering of L[z] . Then x0 itself belongs to D1m by 5◦ of
Section 2.2, since so does z by the above, which is a contradiction.

Case 2: 1 ≤ m < M . It suffices to apply Lemma 2 on page 8 because m < M and D1M = P(ω)∩ L
holds in L[ζ, G�w[ζ]] by Claims (v) and (vii). We may note that this short argument refers to Claim (vii)
that will be conclusively established only in Section 6.6.

An independent proof is as follows. If 1 ≤ m < M , then M ≥ 2, and hence Theorem 8(iii) implies:

Pm(ω) ∩ L[ζ] = Pm(ω) ∩ L[ζ, G�w] = Pm(ω) ∩ L[ζ, G].

We conclude that the sets D1m and D2m are the same in these models, and hence it suffices to prove
that D1m /∈ D2m in the C-generic extension L[ζ] . Now we apply the fact that collapse forcing notions
similar to C are homogeneous enough for any parameter free formula either be forced by every
condition, or be negated by every condition. In our case, it follows that (D1m)

L[ζ] ∈ L and (D1m)
L[ζ]

is countable in L . Therefore if, to the contrary, D1m ∈ D2m in L[ζ] , then taking the Gödel-least
x ∈ (P(ω) ∩ L) r D1m in L[ζ] , we routinely get x ∈ D1m in L[ζ] via 5◦ of Section 2.2, with a
contradiction.

This completes the proof of Claims (i)–(vi) of Theorem 8.

5. Forcing Approximation

We argue under the assumptions and notation of Definition 7 on page 22.
Beginning here a lengthy proof of Claim (vii) of Theorem 8, our plan will be to establish the

following, somewhat unexpected result. Recall that, by Theorem 8(ii), it is true in L[ζ, G�w[ζ]] that

 = ωM−1 and 
⊕ = 
+ = ωM in case M ≥ 2, whereas ω < 
 = 
⊕ = ω1 in case M = 1.

Theorem 9. Assume that a pair 〈ζ, G〉 is (C× P
)-generic over L , and a ∈ L[ζ, G�w[ζ]] , a ⊆ ω , and it is
true in L[ζ, G�w[ζ]] that:

either M ≥ 2 and a is ∈-definable in 〈P(
) ; ∈,p〉 (see Section 2.4);
or M = 1 and a is ∈-definable in 〈P(ω) ; ∈〉 .

Then a ∈ L[G] .

Remark 5. Theorem 9 implies Claim (vii) of Theorem 8.
Indeed, arguing in L[ζ, G�w[ζ]] , suppose that a ⊆ ω , a ∈ D1M . If M = 1 then we immediately have

the “or” case of Theorem 9. Thus suppose that M ≥ 2 . Theorem 3 is applicable by Theorem 8(iv), therefore x
is ∈-definable in HωM , that is, in H
⊕ by Theorem 8(iii). Then Theorem 4 is applicable as well, and hence
we have the “either” case of Theorem 9. We conclude that a ∈ L[G] by Theorem 9. However, by Lemma 14,
the forcing notion P is 
	-closed in L , and this property is sufficient for P-generic sets not to add new subsets
of ω , so a ∈ L , as required by (vii) of Theorem 8.

Thus Theorem 9 completes the proof of Theorem 8 as a whole because other claims of Theorem 8 have been
already established, see Section 4.6.
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To prove Theorem 9, we are going to define a forcing-like relation forc similar to approximate
forcing relations considered in [4,5], and earlier in [3] and some other papers on the base of forcing
notions not of an almost-disjoint type. Then we exploit certain symmetries of objects related to forc .

Definition 8. Extending Definition 7 on page 22, let us fix a pair 〈ζ, G〉 , (C× P
)-generic over L for the
remainder of the text. We consider generic extensions:

L[ζ] ⊆ L[ζ, G�w[ζ]] ⊆ L[ζ, G] .

We shall assume that M ≥ 2 (the “either” case of Theorem 9). The “or” case M = 1 is pretty similar: 
 is
changed to ω during the course of the proof.

5.1. Language

We argue under the assumptions and notation of Definitions 7 and 8.

• Assume that z ∈ L[ζ] , z ⊆ I = ω × ω . Then let Namz
ζ ∈ L[ζ] be the set of all sets τ ∈ L[ζ] ,

τ ⊆ (∗P
 � z)× 
 , with card τ < 
⊕ in L[ζ] .

Note that ∗P
 , a bigger forcing notion, is used instead of P
 in this definition. One of the advantages
is that ∗P
 is ∈-definable in H by Lemma 17.

If τ ∈ Namz
ζ and G ⊆ ∗P
 � z then put τ[G] = {α < 
 : ∃ p ∈ G (〈p, α〉 ∈ τ)} .

Lemma 21. P(
) ∩ L[ζ, G�w[ζ]] = {τ[G�w[ζ]] : τ ∈ Namw[ζ]
ζ } .

Proof. Let X ∈ L[ζ, G�w[ζ]] , X ⊆ 
 . The set G�w[ζ] is (P
 �w[ζ])-generic over L[ζ] by the product
forcing theory. Therefore, by a well-known property of generic extensions (see, e.g., [32]), there is a
name t ∈ L[ζ] , t ⊆ (P
 �w[ζ])× 
 , such that X = t[G�w[ζ]] . To reduce t to a name τ with the same
property, satisfying card τ < 
⊕ , apply Lemma 14.

Now, arguing in L[ζ] , we introduce a language that will help us to study analytic definability in
the generic extensions considered. We argue under the assumptions and notation of Definition 8.

Let L be the 2nd order language, with variables α, β, . . . , assumed to vary over ordinals < 
 ,
and X, Y, . . . , varying over the subsets of 
 . Atomic formulas of the following types are allowed:

α < β , α = β , α ∈ X , p(α, β) = γ .

(See Section 2.4 on p .) Only the connectives ∧ and ¬ and quantifiers ∃ α and ∃X are allowed,
the other connectives and ∀ are treated as shortcuts, and, to reduce the number of cases, the equality
X = Y will be treated as a shortcut for ∀ α(α ∈ X ⇐⇒ α ∈ Y) .

The complexity #(ϕ) of an L-formula ϕ is defined by induction so that:

• #(ϕ) = 0 for all atomic formulas,

• #(ϕ ∧ ψ) = max{#(ϕ), #(ψ)} ,

• #(∃ α ϕ(α)) = #(ϕ(α)) and #(∃X ϕ(X)) = #(ϕ(X)) ,

• Finally, #(¬ ϕ) = #(ϕ) + 1.

Note that the complexity of quantifier-free formulas can be as high as one wants.
If z ∈ L[ζ] , z ⊆ ω×ω , then let L(z) be the extension of L by:

− Ordinals α < 
 to substitute variables over 
 ,

− Names in Namz
ζ to substitute variables X, Y, . . . over P(
) .



Mathematics 2020, 8, 2214 26 of 36

If G ⊆ ∗PM � z , then the valuation ϕ[G] of such a formula ϕ is defined by substitution of τ[G] for any
name τ ∈ Namz

ζ that occurs in ϕ , and relativizing each quantifier ∃ α or ∃X to resp. 
 , P(
) . Thus
ϕ[G] is a formula of L with parameters in P(
) ∩ L[ζ, G] and quantifiers relativized as above, that is,
to 
 and to P(
) , and ϕ[G] can contain p interpreted as p� (
× 
) . (See Section 2.4 on p .)

5.2. Forcing Approximation

We still argue under the assumptions and notation of Definitions 7 and 8.
Our next goal is to define, in L[ζ] , a forcing-style relation p forcz

U ϕ . In case z = w[ζ] and U =

U
 , the relation forcz
U will be compatible with the truth in the model L[ζ, G�w[ζ]] = L[ζ][G�w[ζ]] ,

viewed as a (P
 �w[ζ])-generic extension of L[ζ] . But, perhaps unlike the true forcing relation
associated with P
 �w[ζ] , the relation forcz

U will be invariant under certain transformations.
The definition goes on in L[ζ] by induction on the complexity of ϕ .

(F1) When writing p forcz
U ϕ , it will always be assumed that U ∈ sDS
 , z ∈ L[ζ] , z ⊆ ω × ω ,

p ∈ P[U]� z , ϕ is a closed formula in Lz .

(F2) If U ∈ sDS
 , z ∈ L[ζ] , z ⊆ ω×ω , p ∈ P[U]� z , and α, β, γ < 
 , then: p forcz
U α + β = γ iff in

fact x0 + y0 = z0 , and the same for the formulas α + β = γ and p(α, β) = γ .

(F3) If U, p, z are as above, α < 
 , Y ∈ Namz
ζ , then: p forcz

U α ∈ Y iff there exists a condition
q ∈ P[U]� z such that 〈q, α〉 ∈ Y and p 6 q .

(F4) If U, p, z are as above, then: p forcz
U (ϕ ∧ ψ) iff p forcz

U ϕ and p forcz
U ψ .

(F5) If U, p, z are as above, then p forcz
U ∃ α ϕ(α) iff there is α < 
 such that p forcz

U ϕ(α) .

(F6) If U, p, z are as above, then p forcz
U ∃Y ϕ(Y) iff there exists a name τ ∈ Namz

ζ such that p forcz
U

ϕ(Y) .

We precede the last item with another definition. If n < ω then let sDS[n] be the set of all 
-systems
U ∈ sDS
 such that U �<n = U


ξ �
<n for some ξ < 
⊕ . Thus sDS[0] = sDS
 .

(F8) If U, p, z are as in (F1), ϕ is a closed Lz formula, n = #(ϕ) , then p forcz
U ¬ ϕ iff there is no 
-

system U′ ∈ sDS[n] extending U , and no q ∈ P[U′]� z , q 6 p , such that q forcz
U′ ϕ .

Lemma 22 (in L[ζ] ). Let U , p , z , ϕ satisfy (F1) above. Then :

(i) If p forcz
U ϕ , U′ ∈ sDS
 extends U , and q ∈ P[U′]� z , q 6 p , then q forcz

U′ ϕ ;

(ii) If U ∈ sDS[n] , #(ϕ) ≤ n, and p forcz
U ϕ , then p forcz

U ¬ ϕ fails.

Proof. The proof of (i) by straightforward induction is elementary. As for (ii), make use of (F8).

Now let us evaluate the complexity of the relation forc . Given a parameter free L -formula
ϕ(α, β, . . . , X, Y, . . . ) with any set of free variables allowed in L , we define, in L[ζ] , the set:

Forc(ϕ) = {〈z, U, p, α, β, . . . , τX , τY, . . . 〉 : U ∈ sDS
 ∧ z ⊆ ω×ω

∧ p ∈ P[U]� z ∧ α, β, · · · < 
 ∧ τX , τY, · · · ∈ Namz
ζ

∧ p forcz
U ϕ(α, β, . . . , τX , τY, . . . ) } .

Lemma 23 (in L[ζ] ). If ϕ is a parameter free L -formula and n = #(ϕ) , then Forc(ϕ) is Σ
H[ζ]
n+3 .

Proof. The set sDS
 is ∆H
3 by Lemma 17, and hence ∆

H[ζ]
3 as well by Theorem 5(i) in Section 2.6.

The relations p ∈ P[U]� z , α < 
 , τ ∈ Namz
ζ , with arguments resp. p, U, z; α; τ, z , are routinely

checked to be ∆
H[ζ]
3 , too. (Note that bounded quantifiers preserve ∆

H[ζ]
3 .) After this remark, prove the

lemma by induction on the structure of ϕ .
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The case of atomic formulas of type (F2) is immediately clear. (The pairing function p� (
× 
)
in (F2) is ∆H

1 by Lemma 3.) The result for atomic formulas of type (F3) amounts to the formula

∃ q ∈ ∗P
 � z (〈q, α〉 ∈ Y ∧ p 6 q) , which is Σ
H[ζ]
3 by the above. The step (F4) amounts to the

intersection of two sets is quite obvious. And so are steps (F5) and (F6) (a ∃-quantification on the top
of a given Σ

H[ζ]
#(ϕ)+3 ).

To carry out the step (F8), note that sDS[n] is ΣH
n+3 by Lemma 20, therefore Σ

H[ζ]
n+3 by Theorem 5(i)

in Section 2.6. This if Forc(ϕ) is Σ
H[ζ]
n+3 then Forc(¬ ϕ) is Π

H[ζ]
n+3 , hence Σ

H[ζ]
n+4 , as required.

5.3. Consequences for the Complete Forcing Notions

We continue to argue under the assumptions and notation of Definitions 7 on page 22 and 8 on
page 25. Coming back to the sequence of 
-systems U


ξ ∈ sDS
 given by Definition 7, we note that
every 
-system U


ξ belongs to
⋂

m sDS[m] .
Let forcz

ξ be forcz
U


ξ
, and let p forcz

∞ ϕ mean: ∃ ξ < 
⊕ (p forcz
ξ ϕ) . Note that p forcz

ξ ϕ implies

p ∈ P
ξ � z , whereas p forcz
∞ ϕ implies p ∈ P
 � z . Lemma 22 takes the following form:

Lemma 24 (in L[ζ] ). Assume that z ⊆ ω×ω , ϕ is a closed Lz formula, p ∈ P
 � z . Then :

(i) If p forcz
ξ ϕ and ξ ≤ η < 
⊕ , q ∈ P
η � z , q 6 p , then q forcz

η ϕ , and accordingly,
if p forcz

∞ ϕ and q ∈ P
 � z , q 6 p , then q forcz
∞ ϕ ;

(ii) p forcz
∞ ϕ and p forcz

∞ ¬ ϕ contradict to each other.

The following result will be very important.

Lemma 25 (in L[ζ] ). If z ⊆ ω × ω , ϕ is a closed Lz formula, p ∈ P
 � z , then there is a condition
q ∈ P
 � z , q 6 p , such that either q forcz

∞ ϕ , or q forcz
∞ ¬ ϕ .

Proof. Let n = #(ϕ) . There is an ordinal η < 
⊕ such that p ∈ P
η � z . Consider the set D of all

-systems U′ ∈ sDS
 �≥n such that there is a 
-system U ∈ sDS[n] that extends U


η and satisfies
U �≥n = U′ , and there is also a condition q ∈ P[U]� z , q 6 p , satisfying q forcz

U ϕ . The set D belongs
to Σn+3(H[ζ]) (with U


η , V
η , p as definability parameters) by Lemma 23. Therefore by Lemma 19
there is an ordinal ξ , η ≤ ξ < 
⊕ , such that the 
-system U


ξ �
≥n n -solves D . We have two cases.

Case 1: U

ζ �
≥m ∈ D . Then there exist: a 
-system U ∈ sDS[n] extending U


η and satisfying
U �≥n = U


ζ �
≥n , and a condition q ∈ P[U]� z , q 6 p , with q forcz

U ϕ . By definition there is an ordinal
ϑ < 
⊕ such that U �<n = U


ϑ �
<n . Now let µ = max{ξ, ϑ} . Then U 4 U


µ , hence q forcz
µ ϕ and

q forcz
∞ ϕ .

Case 2: There is no 
-system U ∈ D that extends U

ξ �
≥n . Prove that p forcz

ξ ¬ ϕ . Suppose
towards the contrary that this fails. Then, by (F8) in Section 5.2, there exists a 
-system U ∈ sDS[n]
extending U


ξ , and a condition q ∈ P[U] , q 6 p , such that q forcz
U ϕ . Define U′ = U �≥n . Then

by definition the 
-system U′ belongs to sDS
 �≥n , and moreover the 
-system U witnesses that
U′ ∈ D . But this contradicts the Case 2 assumption.

5.4. Truth Lemma

According to the next theorem (“the truth lemma”), the truth in the generic extensions considered
is connected in the usual way with the relation forc∞ . We continue to argue under the assumptions
and notation of Definitions 7 on page 22 and 8 on page 25.

Theorem 10. Assume that z = w[ζ] and ϕ is a Lz -formula. Then ϕ[G� z] is true in L[ζ, G� z] iff there is
a condition p ∈ G� z such that p forcz

∞ ϕ .
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Proof. We proceed by induction. Suppose that ϕ is an atomic formula of type (F3) of Section 5.2.
(The case of formulas as in (F2) is pretty elementary.) To prove the implication ⇐= , assume that
p ∈ G� z and p forcz

∞ α ∈ τ , where α < 
 and τ ∈ Namz
ζ . Then by definition ((F3) in Section 5.2)

there exists a condition q ∈ P
 � z satisfying p 6 q and 〈q, α〉 ∈ τ . There are conditions p′, q′ ∈ P


such that p = p′ � z and q = q′ � z , but not necessarily p′ 6 q′ . We only know that p′(n, i) 6 q′(n, i)
for all 〈n, i〉 ∈ z . Therefore z ⊆ Z = {〈n, i〉 : p′(n, i) 6 q′(n, i)} . The set Z belongs to L since so do
p′, q′ as elements of P
 ∈ L (whereas about z we only assert that z ∈ L[ζ] ). Therefore a condition
q′′ ∈ P
 can be defined by:

q′′(n, i) =

{
q(n, i) , in case 〈n, i〉 ∈ Z ,

p(n, i) , in case 〈n, i〉 /∈ Z ,

and we still have q′′ � z = q′ � z and p′ 6 q′′ . It follows that q′′ ∈ G by genericity, hence q′′ � z =

q′ � z ∈ G� z . But then α ∈ τ[G� z] , as required.
To prove the converse, assume that α ∈ τ[G� z] . There exists a condition p ∈ G� z such that

〈q, α〉 ∈ τ , and we have p forcz
∞ α ∈ τ , as required.

Rather simple inductive steps (F4), (F5) of Section 5.2 are left for the reader.
Let us carry out step (F6). Let ϕ := ∃X ψ(X) . Suppose that p ∈ G� z and p forcz

∞ ϕ .
By definition there exists a name τ ∈ Namz

ζ such that p forcz
∞ ψ(τ) . The formula ψ(τ)[G� z] is

then true in L[ζ, G� z] by the inductive hypothesis. But ψ(τ)[G� z] coincides with ψ[G� z](Y) ,
where Y = τ[G� z] ∈ L[ζ, G� z] , Y ⊆ 
 . We conclude that ∃X ψ(X)[G� z] is true in L[ζ, G� z] ,
as required.

To prove the converse, let ϕ[G� z] , that is, ∃X ψ(X)[G� z] , be true in L[ζ, G� z] . As X is
relativized to P(
) , there is a set X ∈ P(
) in L[ζ, G� z] satisfying ϕ(X)[G� z] in L[ζ, G� z] .
By Lemma 21, there is a name τ ∈ Namz

ζ with X = τ[G� z] , so ψ(τ)[G� z] holds in L[ζ, G� z] .
The inductive hypothesis implies that some p ∈ G� z satisfies p forcz

∞ ψ(τ) , hence p forcz
∞ ϕ ,

as required.
Finally, let us carry out step (F8), which is somewhat less trivial. Prove the lemma for a Lz

formula ¬ ϕ , assuming that the result holds for ϕ . If ¬ ϕ[G� z] is false in L[ζ, G] then ϕ[G� z] is true.
Thus by the inductive hypothesis, there is a condition p ∈ G� z such that p forcz

∞ ϕ . Then q forcz
∞ ¬ ϕ

for any q ∈ G� z is impossible by Lemma 24 above.
Conversely suppose that p forcz

∞ ¬ ϕ holds for no p ∈ G� z . Then by Lemma 25 there exists q ∈
G� z such that q forcz

∞ ϕ . It follows that ϕ[G� z] is true by the inductive hypothesis, therefore ϕ[G� z]
is false.

6. Invariance

The goal of this section is to prove Theorem 9 on page 24, and thereby accomplish the proof of
Theorem 8, and the proof of Theorem 2 (the main theorem) itself. The proof makes use of the relation
forc introduced in Section 5, and exploits certain symmetries in forc , investigated in Section 6.5.

6.1. Hidden Invariance

Theorem 9 belongs to a wide group of results on the structure of generic models which assert
that such-and-such elements of a given generic extension belong to a smaller and/or better shaped
extension. One of possible methods to prove such results is to exploit the homogeneity of the
forcing notion considered, or in different words, its invariance w.r. t. a sufficiently large system
of order-preserving transformations. In particular, for a straightforward proof of Theorem 11 below,
which is our key technical step in the proof of Theorem 9, the invariance of the forcing notion P


under permutations of indices in I = ω×ω (to permute areas z and ẑ ) would be naturally required,
whereas P
 is definitely not invariant w.r. t. permutations.
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On the other hand, the auxiliary forcing relation forc is invariant w.r. t. permutations. Theorem 10
in Section 5.4 conveniently binds the relation forc with the truth in P
 -generic extensions by means
of a forcing-style association. This principal association was based on the M -completeness property
(Definition 7 on page 22 and Theorem 6). Basically it occurs that some transformations, that is,
permutations, are hidden in construction of P
 , so that they do not act explicitly, but their influence is
preserved and can be recovered via the relation forc .

This method of hidden invariance, that is, invariance properties (of an auxiliary forcing-type relation
like forc ) hidden in P
 by a suitable generic-style construction of P
 , was introduced in Harrington’s
notes [22] in in the context of the almost disjoint forcing (in a somewhat different terminology from
what is used here). It was introduced independently by one of the authors in [37] in the context of
the Sacks forcing and its Jensen’s modification in [38]; see e.g., [3,28,39] for further research in this
direction based on product and iterated versions of the Sacks and Jensen forcing earlier studied in
detail in [40–47].

6.2. The Invariance Theorem

We still argue under the assumptions and notation of Definitions 7 on page 22 and 8 on page 25.
Let Π be the group of all finite permutations of ω , that is, all bijections π : ω

onto−→ ω since the
set |π| = {k : π(k) 6= k} is finite. If m < ω then the subgroup Πm consists of all π ∈ Π satisfying
π(k) = k for all k < m . If π ∈ Π , and z ⊆ ω×ω then put πz = {〈π(n), i〉 : 〈n, i〉 ∈ z} .

If in addition g : ω → Ξ then define πg : ω → Ξ by πg(π(n)) = g(n) , all n .
Similarly if e ∈ C and |π| ⊆ lh e , then define e′ = πe ∈ C such that lh e′ = lh e and e′(π(n)) =

e(n) for all n < lh e . The following is the invariance theorem.

Theorem 11 (in L[ζ] ). Assume that z = w[ζ] , π ∈ Πm , z′ = πz , ϕ is a closed parameter free formula of
Lz , #(ϕ) ≤ m, and p0 ∈ P
 . Then p0 � z forcz

∞ ¬ ϕ iff p0 � z′ forcz′
∞ ¬ ϕ .

A lengthy proof of Theorem 11 follows below in this Section.

6.3. Proof of Theorem 9 from the Invariance Theorem

Under the assumptions of Theorem 9, consider an arbitrary set a ∈ L[ζ, G�w[ζ]] , a ⊆ ω ,
and assume that M ≥ 2 (see Definition 8) and it is true in L[ζ, G�w[ζ]] that a is parameter free
definable in 〈P(
) ; ∈,p〉 , i.e., a = { j < ω : ¬ ϕ(j)} , where ϕ(·) is a parameter free Lz -formula. Let
m = #(ϕ) and w = w[ζ] . The goal is to prove that a ∈ L[G] . This is based on the next lemma.

Lemma 26. The set T = {〈p, j〉 : p ∈ P
 ∧ p�w forcw
∞ ¬ ϕ(j)} belongs to L .

Proof. Note that, by Lemma 23, the set:

K = {〈z, p, j〉 : p ∈ P
 ∧ z ∈ L[ζ] ∧ z ⊆ ω×ω ∧ j < ω ∧ p� z forcz
∞ ¬ ϕ(j)}

is definable in L[ζ] by a formula with sets in L as parameters, say K = {〈z, p, j〉 : ϑ(z, p, j, S)} in L[ζ] ,
where S ∈ L is a sole parameter. Recall that ζ ∈ Ξω is C-generic over L , and w = w[ζ] = {〈n, j〉 :
j ∈ ζ(n)} . Let ζ̆ be a canonical C-name for ζ , and  be the C-forcing relation over L . We claim that:

ϑ(w, p, j, S) holds in L[ζ] iff ζ �m  ϑ(w[ζ̆], p, j, S) ; (10)

ζ �m belongs to C , of course. The direction ⇐= is obvious.
To establish =⇒ , assume that the right-hand side fails. Then there is a condition e0 ∈ C such

that ζ �m ⊆ e0 and e0  ¬ ϑ(w[ζ̆], p, j, S) . We note that the set:

D = {e ∈ C : ζ �m ⊆ e ∧ ∃π ∈ Πm (|π| ⊆ dom e ∧ e0 ⊆ πe)}
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is dense in C over ζ �m . Therefore, by the genericity of ζ , there exists a number k > m such that
e = ζ � k ∈ D . Accordingly, there is a permutation π ∈ Πm satisfying |π| ⊆ k and e0 ⊆ πe .

We put ζ′ = πζ ; this is still a C-generic element of Ξω , with L[ζ′] = L[ζ] since π ∈ L , and we
have e0 ⊆ πe ⊂ ζ′ . It follows, by the choice of e0 , that ϑ(w[ζ′], p, j, S) fails in L[ζ′] = L[ζ] , and hence
〈w[ζ′], p, j〉 /∈ K by the choice of ϑ . However w[ζ′] = π ·w[ζ] = πw , thus we have 〈πw, p, j〉 /∈ K .

We conclude that p�πw forcπw
∞ ¬ ϕ(j) fails by the definition of K . Therefore p�w forcw

∞ ¬ ϕ(j)
fails as well by Theorem 11, so we have 〈w, p, j〉 /∈ K , and hence ϑ(w, p, j, S) fails in L[ζ′] = L[ζ] ,
as required. This completes the proof of (10). Now, coming back to the lemma, we deduce the equality
T = {〈p, j〉 ∈ L : ζ �m  ϑ(w[ζ̆], p, j, S)} from (10). This implies T ∈ L .

It remains to notice that, by Theorem 10,

j ∈ a ⇐⇒ L[ζ, G�w[ζ]] |= ¬ ϕ(j) ⇐⇒ ∃ p ∈ G�w(p forcw
∞ ¬ ϕ(j))

⇐⇒ ∃ p ∈ G (p�w forcw
∞ ¬ ϕ(j)) .

Therefore j ∈ a ⇐⇒ ∃ p ∈ G (〈p, j〉 ∈ T) . But T ∈ L by Lemma 26. We conclude that a ∈ L[G] ,
as required.

This completes the proof of Theorem 9 from Theorem 11.

6.4. The Invariance Theorem: Setup

We still argue under the assumptions and notation of Definitions 7 on page 22 and 8 on page 25.
Here we begin the proof of Theorem 11. It will be completed in Section 6.6.
We fix m , π ∈ Πm , p0 , z = w[ζ] , ẑ = πz , and ϕ with #(ϕ) ≤ m , as in Theorem 11. Suppose

towards the contrary that p0 � ẑ forcẑ
∞ ¬ ϕ , but p0 � z forcz

∞ ¬ ϕ fails. By definition there is an ordinal
µ < 
⊕ such that p0 � ẑ forcẑ

µ ¬ ϕ , but p0 � z forcz
µ ¬ ϕ fails. Then we have:

(A) a 
-system U1 ∈ sDS[m] with U

µ 4 U1 , and a condition p1 ∈ P[U1] , p1 6 p0 , such that

p1 � z forcz
U1 ϕ , but p1 � ẑ forcẑ

U1 ¬ ϕ still holds by Lemma 22.

We now recall that any condition p ∈ ∗P
 is a map p ∈ L , defined on I = ω × ω , and
each value p(n, i) = 〈Sp(n, i) ; Fp(n, i)〉 is a pair of a set Sp(n, i) ⊆ Seq
 and Fp(n, i) ⊆ Fun
 ,
with card (Sp(n, i) ∪ Fp(n, i)) < 
 strictly, in L . We define the support:

||p|| =
⋃

n,i<ω

||p||ni , where ||p||ni = {s(0) : s ∈ Sp(n, i)} ∪ { f (0) : f ∈ Fp(n, i)} ;

then ||p|| ∈ L , ||p|| ⊆ 
 , and card ||p|| < 
 strictly, so that ||p|| is a bounded subset of 
 . In particular,
||p1|| is a bounded subset of 
 in L . Therefore there is:

(B) A bijection b ∈ L , b : 
 onto−→ 
 , such that ||p1|| ∩ (b ” ||p1||) = ∅ and b = b−1 .

Furthermore, as U1 ∈ sDS[m] , the 
-system U1 is 
-size, and hence the set J =
⋃

n,i<ω U1(n, i) ∈
L satisfies card J ≤ 
 in L . It follows that there exists:

(C) A sequence {Fα}α<
 ∈ L of bijections Fα : 
 onto−→ 
 , such that F0 = b (see above), Fα = Fα
−1 ,

and if f , g ∈ J then there is an ordinal α < 
 such that f (α) 6= Fα(g(α)) .

6.5. Transformation

In continuation of the proof of Theorem 11, we now define an automorphism acting on several
different domains in L . It will be based on π and Fα of Section 6.4 and its action will be denoted by ̂ .
Along the way we will formulate properties (D)–(H) of the automorphism, a routine check of which is
left to the reader.

We argue under the assumptions and notation of Definitions 7 on page 22 and 8 on page 25.
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If α ≤ 
 and f : α→ 
 then f̂ : α→ 
 is defined by f̂ (γ) = Fγ( f (γ)) for all γ < α . In particular,
f̂ (0) = F0( f (0)) = b( f (0)) . This defines ŝ ∈ Seq
 and f̂ ∈ Fun
 for all s ∈ Seq
 and f ∈ Fun
 .

(D) f 7−→ f̂ is a bijection Seq

onto−→ Seq
 and Fun


onto−→ Fun
 , and if f , g ∈ J =
⋃

n,i<ω U1(n, i)
then f̂ 6= g by (C).

If u ⊆ Fun
 then let û = { f̂ : f ∈ u} . If S ⊆ Seq
 then let Ŝ = { ŝ : s ∈ S} .
If U is a 
-system then define a 
-system Û , such that:

Û(n, i) = U(n, i) , in case n < m ;

Û(π(n), i) = Û(n, i) = { f̂ : f ∈ U(n, i)} , in case n ≥ m .

If p ∈ ∗P
 then let p̂ ∈ ∗P
 be defined so that:

p̂(n, i) = p(n, i) , in case n < m ;

p̂(π(n), i) = 〈Ŝp(n, i) ; F̂p(n, i)〉 , in case n ≥ m ;

where Ŝp(n, i) = { ŝ : s ∈ Sp(n, i)} and F̂p(n, i) = { ŝ : s ∈ Fp(n, i)} by the above. These are consistent
definitions because π ∈ Πm .

(E) Û �<m = U �<m for any 
-system U . The map U 7−→ Û is a bijection of sDS
 onto itself and
sDS[k] onto itself for any k ≤ m .

(F) p̂�<m = p�<m for any p ∈ ∗P
 . The map p 7−→ p̂ is a 6-preserving bijection of P[U] onto P[Û] .

If in addition z ⊆ ω × ω (not necessarily z ∈ L ), then if conditions p, q ∈ ∗P
 satisfy p� z = q� z ,
then easily p̂ � ẑ = q̂ � ẑ , where ẑ = π ·z = {〈π(n), i〉 : 〈n, i〉 ∈ z} . This allows us to define r̂ = p̂ � ẑ
for every r ∈ ∗P
 � z , where p ∈ ∗P
 is any condition satisfying r = p� z .

(G) If z ⊆ ω×ω then p 7−→ p̂ is a 6-preserving bijection of P[U]� z onto P[Û] � ẑ .

If z ⊆ ω × ω and τ ∈ Namz
ζ (see Section 5.1) then we define τ̂ = {〈 p̂, α〉 : 〈p, α〉 ∈ τ} , and

accordingly if ϕ is a Lz -formula then ϕ̂ is obtained by substituting τ̂ for each name τ in ϕ .

(H) If z ⊆ ω × ω , z ∈ L[ζ] , then the mapping τ 7−→ τ̂ is a bijection of Namz
ζ onto Namẑ

ζ and a
bijection of Lz -formulas onto Lẑ -formulas.

Remark 6. The action of ̂ is idempotent, so that e.g., ̂̂f = f for any f ∈ Fun
 etc. This is because we require
that b−1 = b and F−1

α = Fα for all α < 
 .
The action of ̂ is constructible on Seq
 , Fun
 , 
-systems, ∗P
 , since both π and the sequence of maps

Fα belong to L by (B), (C).
If z ∈ L[ζ] then the action of ̂ on ∗P
 � z and names in Namz

ζ belongs to L[ζ] , since the extra parameter
z ∈ L[ζ] does not necessarily belong to L .

It is not unusual that transformations of a forcing notion considered lead to this or another
invariance. The next lemma is exactly of this type.

Lemma 27 (in L[ζ] ). Assume that U ∈ sDS
 , z = w[ζ] , π ∈ Πm , ẑ = πz , p ∈ P[U]� z , and ϕ is a
closed formula of Lz , #(ϕ) ≤ m + 1 . Then p forcz

U Φ iff p̂ forc ẑ
Û Φ̂ .

Proof. We argue by induction on the structure of Φ . Routine cases of atomic formulas (F2) and steps
(F4) and (F5) of Section 5.2 by means of (D)–(H) are left to the reader. Thus we concentrate on atomic
formulas of type (F3) and steps (F6) and (F8) in Section 5.2. In all cases we take care of only one
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direction of the equivalence of the lemma, as the other direction is entirely similar via Remark 6
just above.

Formulas of type (F3). Let Φ be α ∈ τ , where α < 
 and τ ∈ Namz
ζ . Assume that p forcz

U α ∈ τ .
Then by definition there is a condition q ∈ P[U]� z such that p 6 q and 〈q, α〉 ∈ τ . Then q̂ and p̂
belong to P[Û]� ẑ , p̂ 6 q̂ , and 〈q̂, α〉 ∈ τ̂ , so we have p̂ forcẑ

Û α ∈ τ̂ , as required.
Step (F6). Let Φ := ∃X Ψ(X) . Suppose that p forcz

U Φ . By definition there exists a name

τ ∈ Namz
ζ such that p forcz

∞ Ψ(τ) , Then we have p̂ forcẑ
Û Ψ̂(τ) by the inductive hypothesis. But Ψ̂(τ)

coincides with Ψ̂(τ̂) , where τ̂ ∈ Namẑ
ζ by (H) above. We conclude that p̂ forcẑ

Û ∃X Ψ̂(X) , that is,

p̂ forcẑ
Û Φ̂ , as required.

Step (F8). Prove the lemma for a Lz formula Φ := ¬ Ψ , assuming that the result holds for Ψ .
Note that #(Φ) 6 m + 1, hence #(Ψ) 6 m . Suppose that p forcz

U ¬Ψ fails. By definition there is
a 
-system U′ ∈ sDS[m] extending U′ , and a condition q ∈ P[U′]� z , q 6 p , such that q forcz

U′ Ψ .
Then q̂ forcẑ

Û′
Ψ̂ by the inductive hypothesis. Yet Û′ belongs to sDS
 , extends Û , and satisfies

Û′ �<m = U′ �<m by (E), hence belonging even to sDS[m] by the choice of U′ , and in addition
q̂ ∈ P[Û′]� ẑ and q̂ 6 p̂ by (F). We conclude, by definition, that p̂ forcẑ

Û ¬ Ψ̂ fails too, as required.

6.6. Finalization

We continue to argue under the assumptions and notation of Definitions 6 on page 20 and 8 on
page 25. The goal of this Section is to accomplish the proof of Theorem 11 in Section 6.2 that was
started in Section 6.4. We return to objects introduced in (A), (B), (C) of Section 6.2.

Let q1 = p1 � z , so that q1 ∈ P[U1]� z and q1 forcz
U1 ϕ by (A). We have:

Û1 ∈ sDS[m] ∧ p̂1 ∈ P[Û1] ∧ q̂1 = p̂1 � ẑ ∈ P[Û1]� ẑ ∧ q̂1 forcẑ
Û1

ϕ (11)

by Lemma 27. (Here ϕ , as a parameter free formula, coincides with ϕ̂ .) Let a 
-system U be defined
by U(n, i) = U1(n, i) ∪ Û1(n, i) .

Lemma 28. The 
-system U belongs to sDS[m] and extends both U1 and Û1 .
Conditions p1 and p̂1 belong to P[U] and are compatible in P[U] .

Proof (Lemma). It follows by (D) (last claim) that U is a disjoint 
-system. It follows by (E) that
U �<m = U1 �<m = Û1 �<m . Therefore U belongs to sDS[m] because so does U1 .

To prove compatibility, it suffices to check that if n, i < ω then either p1(n, i) = p̂1(n, i) or
||p1||ni ∩ || p̂1||ni = ∅ . If n < m then we have the ‘either’ case because by definition p1 �<m = p̂1 �<m .
Suppose that n ≥ m . Let k = π−1(n) ; thus still k ≥ m (as π ∈ Πm ), n = π(k) , and p̂1(n, i) =

〈Ŝp(k, i) ; F̂p(k, i)〉 . It follows that || p̂1||ni is the F0 -image, hence the b -image of the set ||p1||ki . However
||p1||ki ∪ ||p1||ni ⊆ ||p1|| . We conclude that ||p1||ni ∩ || p̂1||ni = ∅ by Claim (B) of Section 6.4, as
required.

To finalize the proof of Theorem 11, let, by Lemma 28, r ∈ P[U]� ẑ satisfy both r 6 p1 � ẑ
and r 6 p̂1 � ẑ = q̂1 . However q̂1 forcẑ

Û1
ϕ by (11). We conclude that r forcẑ

U ϕ by Lemma 28 and

Lemma 22. On the other hand, p1 � ẑ forcẑ
U1 ¬ ϕ by (A) of Section 6.4, therefore we have r forcẑ

U ¬ ϕ .
It remains to remind that #(ϕ) ≤ m and U ∈ sDS[m] by Lemma 28—and we still get a contradiction
by Lemma 22(ii). The contradiction completes the proof of Theorem 11.

Finalization.
Theorem 11 just proved implies Theorem 9, see Section 6.3.
Theorem 9 ends the proof of Theorem 8 of Section 4.6, see Remark 5 on page 24.
This completes the proof of Theorem 2, the main result of this paper, see Remark 4 on page 23.
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7. Conclusions and Discussion

In this study, the method of almost-disjoint forcing was employed to the problem of getting a
model of ZFC in which the set D1m of all reals, definable by a parameter free type-theoretic formula
with the highest quantifier order not exceeding a given natural number M ≥ 1, belongs to D2M , that is,
it is itself definable by a formula of the same quantifier order. Moreover, we have D1M = L∩ R in the
model, that is, the set D1M is equal to the set of all Gödel-constructible reals.

The problem of getting a model for D1M ∈ D2M was posed in Alfred Tarski’s article [18].
Its particular case M = 1 (analytical definability), that is, the problem of getting models for D11 ∈ D21 ,
or stronger, D11 = L ∩ R , has been known since the early years of forcing, see e.g., problem 87 in
Harvey Friedman’s survey [21], and problems 3110, 3111, and 3112 in another early survey [20] by
A. Mathias. As mentioned in [20,21], the particular case M = 1 was solved by Leo Harrington, and
a sketch of the proof, related to a model for ∆1

3 = L ∩ R , can be found in Harrington’s handwritten
notes [22]. Our paper presents a full proof of the comprehensive result (Theorem 2) that finally solves
the Tarski problem.

From this study, it is concluded that the hidden invariance technique (as outlined in Section 6.1)
allows one to solve the problem by providing a generic extension of L in which the constructible reals
are precisely the D1M reals, for a chosen value M ≥ 1. The hidden invariance technique has also been
applied in recent papers [3–5,28] for the problem of getting a set theoretic structure of this or another
kind at a preselected projective level. We finish with a short list of related problems.

1. If x ⊆ ω then let Dpm(x) be the set of all objects of order p , definable by a formula with x as
the only parameter, whose all quantified variables are over orders ≤ m . (Compare to Definition 1 on
page 2.) One may be interested in getting a model for:

∀ x ⊆ ω (D1m(x) ∈ D2m(x), or stronger, D1m(x) = P(ω) ∩ L). (12)

This is somewhat similar to Problem 87 ′ in [21]: Find a model of:

ZFC + “ for any reals x, y , we have: x ∈ L[y] =⇒ x is ∆1
3 in y”. (13)

Problem (13) was known in the early years of forcing, see, e.g., problem 3111 in [20] or (3) in [23]
(Section 6.1). Problem (13) was positively solved by René David [48,49], where the question is
attributed to Harrington. The proof makes use of a tool known as David’s trick, see S. D. Friedman
[27] (Chapters 6, 8).

So far it is unknown whether the result of David [48] generalizes to higher projective classes ∆1
n ,

n ≥ 4, or ∆1
ω , whether it can be strengthened towards ⇐⇒ instead of =⇒ , and whether it can lead

to an even partial solution of (12). This is a very interesting and perhaps difficult question.

2. Coming back to Harvey Friedman’s ∆1
n problem of getting a model for the sentence:

the set dn = P(ω) ∩∆1
n is equal to P(ω) ∩ L , (14)

(Section 1.2), it is clear that, unlike D1m ∈ D2m , if (14) holds for some n ≥ 3 then it definitely fails for
any n′ 6= n . But we can try to weaken (14) to just:

dn ∈ Π1
n , (15)

and then ask whether there is a generic extension of L satisfying ∀n (dn ∈ Π1
n) . It holds by rather

routine estimations that d1 ∈ Π1
1 r Σ1

1 , d2 ∈ Σ1
2 r Π1

2 , and if all reals are constructible then dn ∈
Σ1

n r Π1
n for all n ≥ 3 as well, so Π1

n looks rather suitable in (15).

3. Recall that Theorem 2 implies the consistency of D1m ∈ D2m for each particular m ≥ 1.
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But what about the consistency of the sentence “D1m ∈ D2m holds for all m ≥ 1”? Perhaps a
method developed in [50] can be useful to solve this problem.

4. It would be interesting to define a generic extension of L in which, for instance, D1m ∈ D2m
holds for all even m ≥ 1 but fails for all odd m ≥ 1, or vice versa.

Lemma 2 on page 8 presents a possible difficulty: If we have D1n ∈ D2n for some n ≥ 1 by means
of the equality D1n = P(ω) ∩ L , then D1m ∈ D2m definitely fails for all m < n .

5. Another question considered by Tarski in [18] is related to the sets Dk =
⋃

m Dkm (all elements
of order k , definable by a formula of any order). Tarski proves that Dk /∈ Dk+1 for all k ≥ 2, and leaves
open the question whether D1 ∈ D2 . Similarly to the problem D1m ∈ D2m in Section 1.1, the negative
answer D1 /∈ D2 follows from the axiom of constructibility V = L , and hence is consistent with ZFC .

Prove the consistency of the sentences D1 ∈ D2 and D1 = P(ω) ∩ L .
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