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Abstract: The notion of ordinal definability and the related notions of ordinal definable sets (class
OD) and hereditarily ordinal definable sets (class HOD) belong to the key concepts of modern
set theory. Recent studies have discovered more general types of sets, still based on the notion of
ordinal definability, but in a more blurry way. In particular, Tzouvaras has recently introduced the
notion of sets nontypical in the Russell sense, so that a set x is nontypical if it belongs to a countable
ordinal definable set. Tzouvaras demonstrated that the class HNT of all hereditarily nontypical
sets satisfies all axioms of ZF and satisfies HOD ⊆ HNT. In view of this, Tzouvaras proposed a
problem—to find out whether the class HNT can be separated from HOD by the strict inclusion
HOD $ HNT, and whether it can also be separated from the universe V of all sets by the strict
inclusion HNT $ V, in suitable set theoretic models. Solving this problem, a generic extension
L[a, x] of the Gödel-constructible universe L, by two reals a, x, is presented in this paper, in which
the relation L = HOD $ L[a] = HNT $ L[a, x] = V is fulfilled, so that HNT is a model of ZFC
strictly between HOD and the universe. Our result proves that the class HNT is really a new rich
class of sets, which does not necessarily coincide with either the well-known class HOD or the whole
universe V. This opens new possibilities in the ongoing study of the consistency and independence
problems in modern set theory.

Keywords: forcing; HOD sets; countable sets; nontypical sets

MSC: 03E35

1. Introduction

We recall that a set X is ordinal definable if X can be defined by a formula with
ordinals as parameters in the universe of all sets. The class of all ordinal definable sets
is denoted by OD. Further, a set X is hereditarily ordinal definable if X itself, as well
as all elements of X , all elements of elements of X , etc., belong to OD. In other words,
it is required that TC(X) ⊆ OD, where TC(X), the transitive closure of X , is the least
transitive set containing X , and a set Y is transitive if x ∈ y ∈ Y =⇒ x ∈ Y. The class of
all hereditarily ordinal definable sets is denoted by HOD. To conclude,

OD = {x : x is ordinal definable}
HOD = {x : TC(x) ⊆ OD}

See more on these fundamental notions of modern set theory in [1] (Chapter 13) or [2]
(Section II.8), or [3] as the original reference. In particular, it is known that HOD is a
transitive class and a model of the set theory ZFC (with the axiom of choice AC). In
general, classes OD and HOD, as well as Gödel’s class L of all constructible sets, have
played a key role in modern set theory since its early days.
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Research in recent years has brought to the fore some other notions of definability, such
as algebraic definability studied in [4–6], blurry definability of [7], and finally nontypicality
in the sense of Russell, introduced by Tzouvaras [8,9]. Our paper is dedicated to this last
concept. By Tzouvaras, a set x is nontypical, for short x ∈ NT, if it belongs to a countable
ordinal definable set Y. A set x is hereditarily nontypical, for short x ∈ HNT, if it itself,
all its elements, elements of elements, and so on, are all nontypical—in other words, it is
required that the transitive closure TC(x) satisfy TC(x) ⊆ NT. To conclude,

NT = {x : ∃Y(Y is countable and ordinal definable, and x ∈ Y)}
HNT = {x : TC(x) ⊆ NT}

Tzouvaras [8,9] connected these notions with some philosophical and mathematical
ideas of Bertrand Russell and works of van Lambalgen [10] et al. on the concept of
randomness. They contribute to the ongoing study of important classes of sets in the set
theoretic universe V which themselves satisfy the axioms of set theory, similarly to Gödel’s
class L and the class HOD. The class HNT is transitive and, as shown in [9], satisfies all
axioms of ZF (the axiom of choice AC not included).

It is customary in modern set theory (see e.g., [1,2,11,12]) that any new class of sets is
checked in terms of relations with already known classes. In that respect, Tzouvaras [9]
established the non-strict inclusion HOD ⊆ HNT, and proposed a problem: to find out
whether the class HNT can be separated from HOD by the strict inclusion HOD $ HNT,
and can also be separated from the universe V of all sets by the strict inclusion HNT $ V,
in suitable set theoretic models.

Problem 1 (Tzouvaras [9], 2.15). Does there exist a model of ZFC in which the class HNT
satisfies the strict double inclusion HOD $ HNT $ V?

The following theorem answers this important problem in the affirmative.

Theorem 1. Let C = ω<ω be the Cohen forcing for adding a generic real x ∈ ωω to L. There
is a forcing notion P ∈ L, which consists of Silver trees, and such that if a pair of reals 〈a, x〉 is
(P×C)-generic over L then it is true in L[a, x] that

L = HOD $ L[a] = HNT $ V = L[a, x] . (1)

This is the main conclusion of this paper: the relation (1) provides the double sepa-
ration property required. Note that the class HNT = L[a] by (1) satisfies ZFC, not merely
ZF, in the model L[a, x] of the theorem, which is an additional advantage of our result.

To prove the theorem, we make use of a forcing notion P introduced in [13] in order to
define a generic real a ∈ 2ω whose E0-equivalence class [a]E0 is a lightface Π1

2 (hence OD)
set of reals with no OD element. (We recall that the equivalence relation E0 is defined on
2ω so that x E0 y iff x(k) = y(k) for all but finite k.) This property of P is responsible for a
P-generic real a to belong to HNT, and ultimately to L[a] ⊆ HNT, in L[a, x]. This will be
based on some results on Silver trees and Borel functions in Sections 2–4. The construction
of P in L is given in Sections 5 and 6. The proof that L[a] ⊆ HNT in L[a, x] follows in
Section 8.

The inverse inclusion HNT ⊆ L[a] in L[a, x] will be proved in Section 9 on the basis
of our earlier result [14] on countable OD sets in Cohen-generic extensions.

See flowchart of the proof of Theorem 1 on page 3, Figure 1.
The reader envisaged is assumed to have some knowledge of the pointset topology of

the Baire space ωω (we give [15] and [1] [Chapter 11] as references) along with some basic
knowledge of forcing and Gödel’s constructibility (we give [1,2,16] as references).
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Figure 1. Flowchart of the proof of Theorem 1.

2. Silver Trees

The proof of Theorem 1 in this paper will involve a forcing notion P which consists of
Silver trees. Here, we recall the relevant notation.

By 2<ω we denote the set of all tuples (finite sequences) of terms 0, 1, including the
empty tuple Λ. The length of a tuple s is denoted by lh s, and 2n = {s ∈ 2<ω : lh s = n}
(all tuples of length n). A tree ∅ 6= T ⊆ 2<ω is a perfect tree, symbolically T ∈ PT, if it has
no endpoints and isolated branches. In this case, the set

[T] = {a ∈ 2ω : ∀ n (a�n ∈ T)} (2)

of all branches of T is a perfect set in 2ω. If u ∈ T ∈ PT, then

T� u = {s ∈ T : u ⊂ s ∨ s ⊆ u} ∈ PT (3)

is a portion of T . A tree S ⊆ T is clopen in T iff it is equal to the union of a finite number of
portions of T . This is equivalent to [S] being clopen in [T] as a pointset in 2ω .

Definition 1. A tree T ∈ PT is a Silver tree, symbolically T ∈ ST, if there is an infinite sequence
of tuples uk = uk(T) ∈ 2<ω, such that T consists of all tuples of the form

s = u0
ai0au1

ai1au2
ai2a . . . aun

ain

and their sub-tuples, where n < ω and ik = 0, 1.

Note that the stem stem(T) = u0(T) of any tree T ∈ ST is equal to the largest tuple s ∈ T
with T = T� s , and [T] consists of all infinite sequences a = u0

ai0au1
ai1au2

ai2a · · · ∈ 2ω ,
where ik = 0, 1, ∀ k. We further put

spln(T) = lh u0 + 1 + lh u1 + 1 + · · ·+ lh un−1 + 1 + lh un , (4)

the n-th splitting level of a Silver tree T . In particular, spl0(T) = lh u0 .

Action. Let σ ∈ 2<ω. If v ∈ 2<ω is another tuple of length lh v ≥ lh σ, then the
tuple v′ = σ qv of the same length lh v′ = lh v is defined by v′(i) = v(i) +2 σ(i) (addition
modulo 2) for all i < lh σ, but v′(i) = v(i) whenever lh σ ≤ i < lh v. If lh v < lh σ, then
we just define σ qv = (σ� lh v) qv.
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If a ∈ 2ω, then similarly a′ = σ q a ∈ 2ω, a′(i) = a(i) +2 σ(i) for i < lh σ, but
a′(i) = a(i) for i ≥ lh σ. If T ⊆ 2<ω , X ⊆ 2ω , then the sets

σ qT = {σ qv : v ∈ T} and σ qX = {σ qa : a ∈ X} (5)

are shifts of the tree T and the set X accordingly.
According to (ii) of the next lemma (Lemma 3.4 in [17]), all portions T� s , of the same

level, of any Silver tree T ∈ ST are shifts of each other, or saying it differently, T can be
recovered from any its portion. This is not true for arbitrary trees in PT, of course.

Lemma 1. (i) If s ∈ T ∈ ST and σ ∈ 2<ω, then σ qT ∈ ST and T� s ∈ ST.
(ii) If n < ω and u, v ∈ T ∩ 2n, then T� u = v qu q(T� v).

Refinements. Assume that T, S ∈ ST, S ⊆ T , n < ω . We define S ⊆n T (the tree S n-
refines T) if S ⊆ T and splk(T) = splk(S) for all k < n. This is equivalent to (S ⊆ T and)
uk(S) = uk(T) for all k < n, of course.

Then, S ⊆0 T is equivalent to S ⊆ T , and S ⊆n+1 T implies S ⊆n T (and S ⊆ T).
In addition, if n ≥ 1 then S ⊆n T is equivalent to spln−1(T) = spln−1(S).

Lemma 2. Assume that T, U ∈ ST , n < ω , h > spln−1(T) , v0 ∈ 2h ∩ T, and U ⊆ T� v0
.

Then, there is a unique tree S ∈ ST such that S ⊆n T and S� v0
= U.

If in addition U is clopen in T then S is clopen in T, as well.

Proof. Define a tree S so that S∩ 2h = T∩ 2h , and if v ∈ T∩ 2h then, following Lemma 1(ii),
S� v = (v qv0) qU ; in particular S� v0

= U . To check that S ∈ ST, we can easily compute the
according tuples uk(S) to fulfill Definition 1. Namely, as U ⊆ T� v0

, we have v0 ⊆ u0(U) =
stem(U), hence the length ` = lh (u0(U)) satisfies ` ≥ h > m = spln−1(T). Then, we
have

uk(S) =


uk(T) for all k < n,

u0(U)� [m, `) for k = n — thus un(S) ∈ 2`−m,
uk(U) for all k > n,

and Definition 1 for S is satisfied with these tuples uk(S). In addition, if U is clopen in T
(i.e., U is a finite union of portions in T), then clearly so is S.

Lemma 3 ([17], Lemma 4.4). Let . . . ⊆4 T3 ⊆3 T2 ⊆2 T1 ⊆1 T0 be a sequence of trees in ST.
Then, T =

⋂
n tn ∈ ST.

Proof (sketch). By definition, we have uk(Tn) = uk(Tn+1) for all k ≤ n. Then, one easily
computes that un(T) = un(Tn) for all n.

3. Reduction of Borel Maps to Continuous Ones

A classical theorem claims that in Polish spaces every Borel function is continuous on
a suitable dense Gδ set. It is also known that a Borel map defined on 2ω is continuous on a
suitable Silver tree. The next lemma combines these two results.

Our interest in Borel functions defined on 2ω×ωω is motivated by further applications
to reals in generic extensions of the form L[a, x], where a ∈ 2ω is a P-generic real for a
certain forcing notion P ⊆ ST, whereas x ∈ ωω is just a Cohen generic real. These
applications will be based on the fact that any real y ∈ 2ω in such an extension can be
represented in the form y = f (a, x), where f : 2ω ×ωω → 2ω is a Borel map coded in the
constructible universe L (Corollary 2 below in Section 5).

In the remainder, if v ∈ ω<ω (a tuple of natural numbers), then we define Nv =
{x ∈ ωω : v ⊂ x}, a clopen Baire interval in the Baire space ωω.
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Lemma 4. Let T ∈ ST and f : 2ω ×ωω → 2ω be a Borel map. Then, there is a Silver tree S ⊆ T
and a dense Gδ set D ⊆ ωω such that f is continuous on [S]× D.

Proof. By the abovementioned classical theorem (Theorem 8.38 in Kechris [15]), there exists
a dense Gδ set Z ⊆ [T]×ωω such that f is already continuous on Z. It remains to define a
Silver tree S ⊆ T and a dense Gδ set D ⊆ ωω such that [S]× D ⊆ Z. This will be our goal.

By the choice of Z we have Z =
⋂

n Zn , where each Zn ⊆ [T]×ωω is open dense.
Let us fix an enumeration ω × ω<ω = {〈Nk, vk〉 : k < ω} of the cartesian product

ω×ω<ω . We shall define a sequence of Silver trees Sk and tuples wk ∈ ω<ω satisfying the
following three conditions (a)–(c):

(a) . . . ⊆4 S3 ⊆3 S2 ⊆2 s1 ⊆1 S0 = T , as in Lemma 3;
(b) if k < ω then Sk+1 is clopen in Sk (see Section 2);
(c) vk ⊆ wk and [Sk+1]×Nwk ⊆ ZNk , for all k.

At step 0 we already have S0 = T by (a).
Assume that a tree Sk ∈ ST has already been defined. Let h = splk+1(Sk).
Consider any tuple t ∈ 2h ∩ Sk. As ZNk is open dense, there is a tuple u1 ∈ ω<ω and

a Silver tree A1 ⊆ Sk� t , clopen in Sk (for example, a portion in Sk ) such that vk ⊆ u1 and
[A1]×Nu1 ⊆ ZNk . According to Lemma 2, there exists a Silver tree U1 ⊆k+1 Sk , clopen in
Sk along with A, such that U1� t = A1 , so [U1� t]×Nu1 ⊆ ZNk by construction.

Now, take another tuple t′ ∈ 2h ∩ Sk, and similarly find u2 ∈ ω<ω and a Silver tree
A2 ⊆ U1� t′ , clopen in U1 , such that u1 ⊆ u2 and [A2]×Nu2 ⊆ ZNk . Once again, there is a
Silver tree U2 ⊆k+1 U1 , clopen in Sk and such that [U2� t′ ]×Nu2 ⊆ ZNk .

We iterate this construction over all tuples t ∈ 2h ∩ Sk, ⊆k+1-shrinking trees and
extending tuples in ω<ω. We obtain a Silver tree U ⊆k+1 Sk , clopen in Sk , and a tuple
w ∈ ω<ω, that vk ⊆ w and [U]×Nw ⊆ ZNk . Take wk = w , Sk+1 = U . This completes the
inductive step.

As a result we obtain a sequence . . . ⊆4 S3 ⊆3 S2 ⊆2 S1 ⊆1 S0 = T of Silver trees Sk ,
and tuples wk ∈ ω<ω (k < ω), which really satisfy conditions (a)–(c).

We put S =
⋂

k Sk ; then S ∈ ST by (a) and Lemma 3, and S ⊆ T .
If n < ω then let Wn = {wk : Nk = n}. We claim that Dn =

⋃
w∈Wn Nw is an open

dense set in ωω. Indeed, let v ∈ ω<ω. Consider any k such that that vk = v and Nk = n.
By construction, we have v ⊆ wk ∈Wn . Thus the set D =

⋂
n Dn is dense and Gδ .

To check [S]× D ⊆ Z, let n < ω; we show that [S]× D ⊆ Zn . Let a ∈ [S] and x ∈ D,
in particular x ∈ Dn , so x ∈ Nwk for some k with Nk = n. However, [Sk+1]×Nwk ⊆ Zn
by (c), and at the same time obviously a ∈ [Sk+1]. Therefore, 〈a, x〉 ∈ Zn , as required.

Corollary 1. Suppose that T ∈ ST and f : 2ω → 2ω be a Borel map. Then there is a Silver tree
S ⊆ T such that f is continuous on [S].

We add the following result that belongs to the folklore of the Silver forcing. See
Corollary 5.4 in [18] for a proof.

Lemma 5. Assume that T ∈ ST and f : 2ω → 2ω is a continuous map. Then there is a Silver
tree S ⊆ T such that f is either a bijection or a constant on [S].

4. Normalization of Borel Maps

In this section, we continue studying the behavior of Borel maps defined on 2ω ×ωω

modulo restrictions on products of Silver trees and dense Gδ sets. We work in the context
of the following definition of normalization, and the following Lemma 6 will be of key
importance in the applications to the genetic extensions below in Section 6.

Definition 2. A map f : 2ω × ωω → 2ω is normalized on a tree T ∈ ST for a set of trees
U ⊆ ST if there exists a dense Gδ set X ⊆ ωω such that f is continuous on [T]× X and
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− either (I) there are tuples v ∈ ω<ω , σ ∈ 2<ω such that f (a, x) = σ qa for all a ∈ [T] and
x ∈ Nv ∩ X, where, we remind, Nv = {x ∈ ωω : v ⊂ x} ;

− or (II) f (a, x) 6∈ ⋃
σ∈2<ω∧S∈U σ q[S] for all a ∈ [T] and x ∈ X.

Lemma 6. Assume that U = {T0, T1, T2, . . .} ⊆ ST and f : 2ω × ωω → 2ω is a Borel map.
Then there exists a set of trees U′ = {S0, S1, S2, . . .} ⊆ ST, such that Sn ⊆ Tn for all n and f is
normalized on S0 for U′ .

Proof. First of all, according to Lemma 4, there is a Silver tree T′ ⊆ T0 and a dense Gδ

set W ⊆ ωω such that f is continuous on [T′]×W . Since any dense Gδ set X ⊆ ωω is
homeomorphic to ωω, we can w.l.o.g. assume that W = ωω and T′ = T0 . In other words,
we just suppose that f is already continuous on [T0]×ωω.

Assume that option (I) of Definition 2 does not take place, that is

(*) if X ⊆ ωω is a dense Gδ set, and v ∈ ω<ω , σ ∈ 2<ω , S ∈ ST , S ⊆ T0 , then there
exist reals a ∈ [S] and x ∈ Nv ∩ X such that f (a, x) 6= σ qa.

We shall construct Silver trees Sn ⊆ Tn and a dense Gδ set X ⊆ ωω satisfying (II) of
Definition 2, that is, in our context, the negative relation f (a, x) 6∈ ⋃

σ∈2<ω∧n<ω σ q[Sn] will
be fulfilled for all a ∈ [S0] and x ∈ X. To maintain the construction, let us fix an arbitrary
enumeration

ω× 2<ω ×ω<ω = {〈Nk, σk, vk〉 : k < ω}. (6)

Further, auxiliary Silver trees Sn
k (n, k < ω) and tuples wk ∈ ω<ω (k < ω) will be

defined, satisfying the following conditions (a)–(c).

(a) . . . ⊆4 Sn
3 ⊆3 Sn

2 ⊆2 Sn
1 ⊆1 Sn

0 = Tn as in Lemma 3, for each n < ω ;

(b) Sn
k+1 = Sn

k for all n > 0, n 6= Nk ;

(c) S0
k+1 ⊆k+1 S0

k , SNk
k+1 ⊆k+1 SNk

k , vk ⊆ wk , and f (a, x) 6∈ σk
q[SN

k+1] for all reals a ∈ [S0
k+1]

and x ∈ Nwk .

At step 0 of the construction, we input Sn
0 = Tn for all n, according to (a).

Assume that k < ω and all Silver trees Sn
k , n < ω are already defined. We input

Sn
k+1 = Sn

k for all n > 0, n 6= Nk , by (b). (The number Nk is defined by (6).)

To define the trees S0
k+1 and SNk

k+1 , we put h = splk+1(S
0
k), m = splk+1(S

N
k ).

Case 1: Nk > 0. Take any pair of tuples s ∈ 2h ∩ S0
k , t ∈ 2m ∩ SNk

k and any reals
a0 ∈ [S0

k � s] and x0 ∈ ωω. Consider any real b0 ∈ [SNk
k � t] not equal to σk

q f (a0, x0). Let us
say b0(`) = i 6= j = (σk

q f (a0, x0))(`), where i, j ≤ 1, ` < ω. As f is continuous, there
is a tuple u1 ∈ ω<ω and a Silver tree A ⊆ S0

k � s such that vk ⊆ u1 ⊂ x0 , a0 ∈ [A], and
(σk

q f (a, x))(`) = j for all x ∈ Nu1 and a ∈ [A]. It is also clear that

B = {τ ∈ SNk
k � t : lh τ ≤ ` ∨ τ(`) = i} (7)

is a Silver tree containing b0 , and b(`) = i for all b ∈ [B]. According to Lemma 2, there exist
Silver trees U1 ⊆k+1 S0

k and V1 ⊆k+1 SNk
k , such that U1� s = A and V1� t = B. It follows by

construction that σk
q f (a, x) 6∈ [V1� t] for all a ∈ [U1� s] and x ∈ Nu1 .

Now, consider another pair of tuples s′ ∈ 2h ∩ S0
k , t′ ∈ 2m ∩ SNk

k . We similarly obtain
Silver trees U2 ⊆k+1 U1 and V2 ⊆k+1 V1 , and a tuple u2 ∈ ω<ω, such that u1 ⊆ u2 and
σk

q f (a, x) 6∈ [V2(→ t′)] for all a ∈ [U2� s′ ] and x ∈ Nu2 . In this case, we have V2� t ⊆ V1� t
and U2� s ⊆ U1� s , so that what has already been achieved in the previous step (s, t) is
preserved.

We iterate over all pairs of s ∈ 2h ∩ S0
k , t ∈ 2m ∩ SNk

k , by ⊆k+1-shrinking trees and
extending tuples in ω<ω at each step. This results in a pair of Silver trees U ⊆k+1 S0

k ,
V ⊆k+1 SNk

k and a tuple w ∈ ω<ω such that vk ⊆ w and σk
q f (a, x) 6∈ [V] for all reals
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a ∈ [U] and x ∈ Nw . Now, to fulfill (c), take wk = w, S0
k+1 = U, and SNk

k+1 = V. Recall that
here Nk > 0.

Case 2: Nk = 0. Here, the construction somewhat changes, and hypothesis (*) will be
used. We claim that there exist:

(d) a tuple wk ∈ ω<ω and a Silver tree S0
k+1 ⊆k+1 S0

k such that vk ⊆ wk and f (a, x) 6∈
σk

q[S0
k+1] for all a ∈ [S0

k+1], x ∈ Nwk . (This is equivalent to (c) as Nk = 0.)

Take any pair of tuples s, t ∈ 2h ∩ S0
k , where h = splk+1(S

0
k) as above. Thus, S0

k � t =
t qs q(S0

k � s), by Lemma 1(ii). According to (*), there are reals x0 ∈ Nv and a0 ∈ [S0
k � s]

satisfying f (a0, x0) 6= σk
qs qt qa0 , or equivalently, σk

q f (a0, x0) 6= s qt qa0 .
Similarly to Case 1, we have (σk

q f (a0, x0))(`) = i 6= j = (s qt qa0)(`) for some ` < ω
and i, j ≤ 1. By the continuity of f , there is a tuple u1 ∈ ω<ω and a Silver tree A ⊆ S0

k � s ,
clopen in S0

k , such that vk ⊆ u1 ⊂ x0 , a0 ∈ [A], and (σk
q f (a, x))(`) = j but (s qt qa)(`) = j

for all x ∈ Nu1 and a ∈ [A]. Lemma 2 gives us a Silver tree U1 ⊆k+1 S0
k , clopen in S0

k as
well, such that U1� s = A — and then U1� t = s qt qA. Therefore, σk

q f (a, x) 6∈ [U1� t] holds
for all a ∈ [U1� s] and x ∈ Nu1 by construction.

Having considered all pairs of tuples s, t ∈ 2h ∩ S0
k , we obtain a Silver tree U ⊆k+1 S0

k
and a tuple w ∈ ω<ω, such that vk ⊆ w and σk

q f (a, x) 6∈ [U] for all a ∈ [U] and x ∈ Nw .
Now, to fulfill (d), take wk = w and S0

k+1 = U . This concludes Case 2.

To conclude, we have for each n a sequence . . . ⊆4 Sn
3 ⊆3 Sn

2 ⊆2 Sn
1 ⊆1 Sn

0 = Tn
of Silver trees Sn

k , along with tuples wk ∈ ω<ω (k < ω), and these sequences satisfy the
requirements (a)–(c) (equivalent to (d) in case Nk = 0).

We put Sn =
⋂

k Sn
k for all n. Then, Sn ∈ ST by Lemma 3, and Sn ⊆ Tn .

If n < ω and σ ∈ 2<ω , then let Wnσ = {wk : Nk = n ∧ σk = σ}. The set Xnσ =⋃
w∈Wnσ

Nw is then open dense in ωω. Indeed, if v ∈ ωω , then we take k such that vk = v ,
Nk = n , σk = σ; then v ⊆ wk ∈Wnσ by construction. Therefore, X =

⋂
n<ω , σ∈2<ω Xnσ is a

dense Gδ set. Now, to check property (II) of Definition 2, consider any n < ω , σ ∈ 2<ω ,
a ∈ [S0] , x ∈ X ; we claim that f (a, x) 6∈ σ q[Sn].

Indeed, by construction we have x ∈ Xnσ , i.e., x ∈ Nwk , where k ∈ Wnσ , so that
Nk = n , σk = σ. Now, f (a, x) 6∈ σ q[Sn] directly follows from (c) for this k, since S0 ⊆ S0

k+1
and Sn ⊆ Sn

k+1 .

5. The Forcing Notion for Theorem 1

In this section, we define a forcing notion P ∈ L, P ⊆ ST, involved in the proof of
Theorem 1. This will be a rather lengthy construction, and we begin with auxiliary material.

We use letters Σ and Π to denote effective (lightface) projective classes.
Using the standard encoding of Borel sets, as e.g., in [19], or [20] [§ 1D], we make use

of coding systems for Borel functions f : 2ω ×ωω → 2ω and g : 2ω → 2ω.

(A) We fix a coding system for Borel functions g : 2ω → 2ω, which includes a Π1
1-set of

codes BC ⊆ ωω , and for each code r ∈ BC, a certain Borel function Fr : 2ω → 2ω

coded by r. We assume that each Borel function has some code, and there is a Σ1
1

relation S(·, ·, ·) and a Π1
1 relation P(·, ·, ·) such that for all r ∈ BC and a, b ∈ 2ω it

holds Fr(a) = b ⇐⇒ S(r, a, b) ⇐⇒ P(r, a, b).

(B) We fix a coding system for Borel functions f : 2ω ×ωω → 2ω, that includes a Π1
1-set

of codes BC2 ⊆ ωω , and for each code r ∈ BC2 , a Borel function F2
r : 2ω ×ωω → 2ω

coded by r, such that each Borel function has some code, and there is a Σ1
1 relation

S2(·, ·, ·, ·) and a Π1
1 relation P2(·, ·, ·, ·) such that for all r ∈ BC2 , x ∈ ωω, and

a, b ∈ 2ω it holds F2
r (a, x) = b ⇐⇒ S2(r, a, x, b) ⇐⇒ P2(r, a, x, b).

If U ⊆ ST, then Clos(U) denotes the set of all trees of the form σ q(T� s), where
σ ∈ 2<ω and s ∈ T ∈ U, i.e., the closure of U w.r.t. both shifts and portions.

The following construction is maintained in L. We define a sequence of countable
sets Uα ⊆ ST , α < ω1 satisfying the following conditions 1◦–6◦.
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1◦. Each Uα ⊆ ST is countable, U0 consists of a single tree 2<ω.

We then define Pα = Clos(Uα), P<α =
⋃

ξ<α Pξ . These sets are obviously closed with
respect to shifts and portions, that is, Clos(Pα) = Pα and Clos(P<α) = P<α .

2◦. For every T ∈ P<α , there is a tree S ∈ Uα , S ⊆ T .

Let ZFC− be the sub-theory of ZFC, containing all axioms except the power set axiom (and
with the wellorderability principle instead of AC), and additionally containing an axiom
asserting the existence of the power set P(ω). This implies the existence of P(X) for any
countable X , the existence of ω1 and 2ω , as well as the existence of continual sets like 2ω

or ST.
By Mα we denote the smallest model of ZFC− of the form Lλ containing the sequence

〈Uξ〉ξ<α , in which α and all sets Uξ , ξ < α are countable.

3◦. If a set D ∈Mα , D ⊆ P<α is dense in P<α , and U ∈ Uα , then U ⊆fin ⋃
D, meaning

that there is a finite set D′ ⊆ D such that U ⊆ ⋃
D′ .

4◦. If a set D ∈ Mα , D ⊆ P<α × P<α is dense in P<α × P<α , and U 6= V belong to
Uα , then U × V ⊆fin ⋃

D, meaning that there is a finite set D′ ⊆ D such that
[U]× [V] ⊆ ⋃

〈U′ ,V′〉∈D′ [U′]× [V′].

Given that Clos(P<α) = P<α , this is automatically transferred to all trees U ∈ Pα , as well.
It follows that D remains pre-dense in P<α ∪ Pα .

To formulate the next property, we fix an enumeration

ST× BC× BC2 = {〈Tξ , bξ , cξ〉 : ξ < ω1} (8)

in L, which (1) is definable in Lω1 , and (2) involves each value in ST× BC× BC2 being
taken uncountably many times.

5◦. If Tα ∈ P<α , then there is a tree S ∈ Uα such that S ⊆ T and:

• F2
bα

is normalized for Uα on [S] in the sense of Definition 2, and
• Fcα is continuous and either a bijection or a constant on [S].

6◦. The sequence 〈Uα〉α<ω1 is ∈-definable in Lω1 .

The construction 1◦–6◦ goes on as follows. We work in L.
We first define U0 = {2<ω}, to obey 1◦.
Now, suppose that

(†) 0 < α < ω1 , the subsequence 〈Uξ〉ξ<α is defined and satisfies 1◦,2◦ below α, and the
sets Pξ = Clos(Uξ) (for ξ < α), P<α , Mα are defined as above.

The induction step of the construction is based on the following lemma.

Lemma 7 (in L, see the proof in Section 6). Under the assumptions of (†), there is a countable
set Uα ⊆ ST satisfying conditions 2◦, 3◦, 4◦, 5◦.

To accomplish the construction on the base of the lemma, we take Uα to be the smallest,
in the sense of the Gödel wellordering of L, of those sets that exist by Lemma 7. Since the
whole construction is relativized to Lω1 , requirement 6◦ is also met.

We put Pα = Clos(Uα) for all α < ω1 , and P =
⋃

α<ω1
Pα .

The next result, in part related to the countable chain condition, or CCC for brevity,
is a fairly standard consequence of 3◦ and 4◦, see for example [13] (6.5), [18] (12.4), or [21]
(Lemma 6); we will omit the proof. Recall that a forcing notion Q satisfies CCC iff every
antichain A ⊆ Q is finite or countable.

Lemma 8 (in L). The forcing notion P belongs to L, satisfies P = Clos(P) and satisfies CCC in
L. The product P× P satisfies CCC in L, as well.
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Corollary 2. (i) If a real a ∈ 2ω is P-generic over L and y ∈ 2ω ∩ L[a], then there is a Borel
map g = Fb : 2ω → 2ω with a code b ∈ L ∩ BC such that y = f (a).

(ii) If a pair 〈a, x〉 ∈ 2ω ×ωω is (P×C)-generic over L and y ∈ 2ω ∩ L[a, x] then there is a
Borel map f = F2

b : 2ω ×ωω → 2ω with a code b ∈ L ∩ BC2 such that y = f (a, x).

Proof. (i) By the Gödel constructibility theory, there is an ordinal ξ < ω
L[a]
1 such that y is

the ξ th element of L[a] ∩ 2ω in the sense of the canonical wellordering of L[a]. However,
the forcing notion P preserves cardinals by Lemma 8, and hence ξ < ωL

1 = ω
L[a]
1 . Finally,

as ξ < ωL
1 , it is known that the map

a 7−→ ( the ξ th element of L[a] ∩ 2ω ) (9)

is ∆1
1(p) with a parameter p ∈ L ∩ 2ω by [20], Theorem 2.6(ii), and, hence, the map (9) is

Borel with a code in L, as required.
The proof of (ii) is similar. The forcing notion P×C satisfies CCC since so does P,

whereas C is countable.

Lemma 9 (in L). Assume that T ∈ P. If g : 2ω → 2ω is a Borel map then there is a tree S ∈ Uα ,
S ⊆ T, such that g is either a bijection or a constant on [S].

If f : 2ω × ωω → 2ω is a Borel map, then there is an ordinal α < ω1 and a tree S ∈ Uα ,
S ⊆ T, such that f is normalized for Uα on [S].

Proof. By the choice of the enumeration (8) of triples in ST×BC×BC2, there is an ordinal
α < ω1 such that T ∈ P<α and T = Tα , f = F2

bα
, g = Fbα

. Now, we refer to 5◦.

6. Proof of the Extension Lemma

Proof (proof of Lemma 7). This section is entirely devoted to the proof of Lemma 7.
We work in L under the assumptions of (†) above.
We first define a set U = {Un : n < ω} of Silver trees Un ⊆ 2ω satisfying 2◦, 3◦ 4◦;

then further narrowing of the trees will be performed to also satisfy 5◦. This involves a
splitting/fusion construction known from our earlier papers, see [13] (§ 4), [17] (§ 9–10), [18]
(§ 10), and to some extent from the proof of Lemma 6 above.

We fix a bijection β : ω
onto−→ ω4 . We also fix enumerations

D = {D(j) : j < ω} and D2 = {D2(j) : j < ω} (10)

of the set D of all sets D ∈ Mα , D ⊆ P<α open dense in P<α , and the set D2 of all sets
D ∈Mα , D ⊆ P<α × P<α open dense in P<α × P<α .

The construction of the trees Un is organized in the form Un =
⋃

k Un
k , where the Silver

trees Un
k satisfy the following requirements (a)–(d):

(a) We have . . . ⊆4 Un
3 ⊆3 Un

2 ⊆2 Un
1 ⊆1 Un

0 as in Lemma 3 for each n < ω ;
(b) if T ∈ P<α then T = Un

0 for some n;
(c) each Un

k is a k-collage over P<α .

Here, a Silver tree T is a k-collage over P<α [17,18] when T� s ∈ P<α for each tuple s ∈ T∩ 2h,
where h = splk(T). Then 0-collages are just trees in P<α , and every k-collage is a k + 1-
collage as well, since Clos(P<α) = P<α .

(d) If k ≥ 1, β(k) = 〈j, j′, M, N〉, µ = splk(U
M
k ), ν = splk(U

N
k ) (integers), s ∈ UM

k ∩ 2µ ,
t ∈ UN

k ∩ 2ν (tuples of length, resp., µ, ν), M 6= N , then the tree UM
k � s belongs to D(j)

and the pair 〈UM
k � s, UN

k � t〉 belongs to D2(j′). — It follows that UM
k ⊆

fin ⋃
D(j) and

〈UM
k , UN

k 〉 ⊆
fin ⋃

D2(j′) in the sense of 3◦, 4◦ of Section 5.

To begin the inductive construction of the trees Un
k , we assign Un

0 ∈ P<α so that
{Un

0 : n < ω} = P<α , to obtain (b). Now, let us maintain the step k → k + 1; it continues
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simultaneously for all n. Thus, suppose that k < ω, and all Silver trees Un
k , n < ω are

defined and are k-collages over P<α .
Let β(k) = 〈j, j′, M, N〉. If N = M, then put Un

k+1 = Un
k for all n.

Now, assume that M 6= N. Put Un
k+1 = Un

k for all n 6∈ {M, N}.
It takes more effort to define UM

k+1 and UN
k+1 . Let µ = splk+1(U

M
k ), ν = splk+1(U

N
k ).

To begin with, we input UM
k+1 := UM

k and UN
k+1 := UN

k . These k + 1-collages are the initial
values for the trees UM

k+1 and UN
k+1 , to be ⊆k+1-shrunk in a finite number of substeps

(within the step k → k + 1), each substep corresponding to a pair of tuples s ∈ UM
k ∩ 2µ

and t ∈ UN
k ∩ 2ν .

Namely, let s ∈ UM
k+1 ∩ 2µ , t ∈ UN

k+1 ∩ 2ν be the first such pair. The trees UM
k+1� s ,

UN
k+1� t belong to P<α as UM

k+1 , UN
k+1 are k + 1-collages over P<α . Therefore, by the open

density there exist trees A, B ∈ D(j) such that the pair 〈UM
k+1� s, UN

k+1� t〉 belongs to D2(j′)
and A ⊆ UM

k+1� s , B ⊆ UN
k+1� t . Now, Lemma 2 gives us Silver trees S ⊆k+1 UM

k and
T ⊆k+1 UN

k satisfying S� s ⊆ A, T� t ⊆ B. Moreover, by Lemma 1, S and T still are k + 1-
collages over P<α since P<α is closed under shifts by construction. To conclude, we have
defined k + 1-collages S, T over P<α , satisfying S ⊆k+1 UM

k+1 , T ⊆k+1 UN
k+1 , S� s ∈ D(j),

T� t ∈ D(j), and 〈S� s, T� t〉 ∈ D2(j′). We reassign the “new” UM
k+1 and UN

k+1 to be equal to
resp. S, T .

Applying this ⊆k+1-shrinking procedure consecutively for all pairs of tuples
s ∈ UM

k ∩ 2µ and t ∈ UN
k ∩ 2ν , we eventually (after finitely many substeps according to the

number of all such pairs) obtain a pair of k + 1-collages UM
k+1 ⊆k+1 UM

k and UN
k+1 ⊆k+1 UN

k
over P<α , such that for every pair of tuples s ∈ UM

k ∩ 2µ and t ∈ UN
k ∩ 2ν , we have

UM
k+1� s ∈ D(j) and 〈UM

k+1� s, UN
k+1� t〉 ∈ D2(j′), so conditions (c) and (d) are satisfied.

Having defined, in L, a system of Silver trees Un
k satisfying (a)–(d), we then put

Un =
⋂

k UN
k for all n. Those are Silver trees by Lemma 3. The collection Uα := {Un :

n < ω} satisfies 2◦ of Section 5 by (b).
To check condition 3◦ of Section 5, let D ∈ Mα , D ⊆ P<α be dense in P<α , and

U ∈ Uα . We can w.l.o.g. assume that D is open dense; if not, then replace T by D′ =
{S ∈ P<α : ∃ T ∈ D (S ⊆ T)}. Then, D = D(j) for some j, and U = UM for some M by
construction. Now, consider any index k such that β(k) = 〈M, N, j, j′〉 for M, j as above
and any N, j′ . Then, we have U = UM ⊆ UM

k by construction, and UM
k ⊆

fin ⋃
D by (d),

thus, U ⊆fin ⋃
D, as required.

Condition 4◦ is verified similarly.
It remains to somewhat shrink all trees Un to also fulfill 5◦. We still work in L.
Recall that an enumeration ST× BC× BC2 = {〈Tξ , bξ , cξ〉 : ξ < ω1}, parameter-free

definable in Lω1 , is fixed by (8) in Section 5. We suppose that the tree Tα belongs to P<α . (If
not, then we are not concerned about 5◦.) Consider, according to 2◦, a tree U = UM ∈ Uα

satisfying T ⊆ Tα . Using Corollary 1 and Lemma 5 in Section 3, and Lemma 6, we shrink
each tree Un ∈ Uα to a tree U′n ∈ ST , U′ ⊆ U , so that the function F2

bα
is normalized on

U′M for U′ = {U′n : n < ω} and Fcα is continuous and either a bijection or a constant on
[U′M]. Take U′ as the final Uα and T′ as U′M to fulfill 5◦.

7. The Model, Part I

We use the product P × C of the forcing notion P ∈ L defined in Section 5 and
satisfying conditions 1◦–6◦ as above, and the Cohen forcing, here in the form of C = ω<ω ,
to prove the following more explicit form of Theorem 1.

Theorem 2. Let a pair of reals 〈a0, x0〉 be P×C-generic over L. Then,

(i) a0 is not OD, and, moreover, HOD = L in L[a0, x0] ;
(ii) a0 belongs to HNT, and, moreover, L[a0] ⊆ HNT in L[a0, x0] ;
(iii) x0 does not belong to HNT, and, moreover, HNT ⊆ L[a0] in L[a0, x0] .
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We prove Claim (i) of the Theorem 2 in this section. The proof is based on several
lemmas. According to the next lemma, it suffices to prove that HOD = L in L[a0].

Lemma 10. (HOD)L[a0,x0] ⊆ (HOD)L[a0] .

Proof. By the product forcing theorem, x0 is a Cohen generic real over L[a0]. It follows by a
standard argument based on the full homogeneity of the Cohen forcing C that if H ⊆ Ord
is OD in L[a0, x0], then H ∈ L[a0] and H is OD in L[a0].

Now, prove the implication Y ∈ (HOD)L[a0,x0] =⇒ Y ∈ L ∧ Y ∈ (HOD)L[a0] by
induction on the set-theoretic rank rk x of x ∈ L[a0, x0]. Since each set consists only
of sets of strictly lower rank, it is sufficient to check that if a set H ∈ L[a0, x0] satisfies
H ⊆ (HOD)L[a0] and H ∈ HOD in L[a0, x0], then H ∈ L[a0 and H ∈ (OD)L[a0] . Here, we
can assume that, in fact, H ⊆ Ord, since HOD allows an OD wellordering and hence an
OD bijection onto Ord. However, in this case, H ∈ L[a0] and H is OD in L[a0] by the
above, as required.

Lemma 11 (Lemma 7.5 in [13]). a0 is not OD in L[a0].

Proof. Suppose towards the contrary that a0 is OD in L[a0]. Yet, a0 is a P-generic real
over L, so the contrary assumption is forced. In other words, there is a tree T ∈ P with
a0 ∈ [T] and a formula ϑ(x) with ordinal parameters, such that if a ∈ [T] is P-generic over
L then a is the only real in L[a] satisfying ϑ(a). Let s = stem(T). Then, the tuples sa0 and
sa1 belong to T , and either sa0 ⊂ a0 or sa1 ⊂ a0 . Let, say, sa0 ⊂ a0 . Let n = lh(s) and
σ = 0na1, so that all three strings sa0, sa1, σ belong to 2n+1, and sa0 = σ q(sa1). As the
forcing P is invariant under the action of σ, the real a1 = σ qa0 is P-generic over L, and
σ qT = T . We conclude that it is true in L[a1] = L[a0] that a1 is still the only real in L[a1]
satisfying ϑ(a1). However, it is clear that a1 6= a0 !

Lemma 12. If b ∈ L[a0]r L is a real, then b is not OD in L[a0].

Proof. It follows from Corollary 2(i) that b = g(a0) for some Borel function g = Fr : 2ω →
2ω with a code r ∈ BC ∩ L. Now, by Lemma 9, there is a tree S ∈ P such that a0 ∈ [S]
and h = g� [S] is a bijection of a constant. If h is a bijection, then b 6∈ OD in L[a0] since
otherwise a0 = h−1(b) ∈ OD, contrary to Lemma 11. If h is a constant, so that there is a
real b0 ∈ L ∩ 2ω such that h(a) = b0 for all a ∈ [S], then b = h(a0) = c ∈ L, contrary to the
choice of b.

Lemma 13. If X ⊆ Ord , X ∈ L[a0]r L, then X is not OD in L[a0].

Proof. Suppose to the contrary that X ⊆ Ord, X ∈ L[a0]r L, and X is OD in L[a0]. Let t
be a P-name for X . Then a condition T0 ∈ P (a Silver tree) P-forces

t ∈ L[a0]r L ∧ t ∈ OD (11)

over L. Say that t splits conditions S, T ∈ P if there is an ordinal γ such that S forces γ ∈ t
but T forces γ 6∈ t or vice versa; let γST be the least such ordinal γ.

We claim that the set

D = {〈S, T〉 : S, T ∈ P∧ S ∪ T ⊆ T0 ∧ t splits S, T} ∈ L (12)

is dense in P× P above 〈T0, T0〉. Indeed, let S, T ∈ P be subtrees of T0 . If t splits no
stronger pair of trees S′ ⊆ S, T′ ⊆ T in P, then easily both S and T decide γ ∈ t for every
ordinal γ, a contradiction with the choice of T0 . Thus, D is indeed dense.

Let, in L, A ⊆ D be a maximal antichain; A is countable in L by Lemma 8, and hence
the set W = {γST : 〈S, T〉 ∈ A} ∈ L is countable in L. We claim that
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(‡) the intersection b = X ∩W does not belong to L.

Indeed, otherwise, there is a tree T1 ∈ P , T1 ⊆ T0 , which P-forces that t ∩W = b. (The sets
W, b ∈ L are identified with their names.)

By the countability of A, W there is an ordinal α < ωL
1 such that A ⊆ P<α × P<α ,

T1 ∈ P<α , and W ⊆ α. We can w.l.o.g. assume that A ∈ Mα , for if not then we further
increase α below ωL

1 accordingly. Let u = stem(T1). The trees T10 = T1� ua0 and T11 =
T1� ua1 belong to P<α along with T1 , and hence there are trees U , V ∈ Uα with U ⊆ T10
and V ⊆ T11 . Clearly, U 6= V , so that we have [U]× [V] ⊆ ⋃

〈U′ ,V′〉∈A′ [U′]× [V′] for a
finite set A′ ⊆ A by 4◦ of Section 5. Now, take reals a′ ∈ [U] and a′′ ∈ [V] both P-generic
over L. Then, there is a pair of trees 〈U′, V′〉 ∈ A′ such that a′ ∈ [U′] and a′′ ∈ [V′]. The
interpretations X′ = t[a′] and X′′ = t[a′′] are then different on the ordinal γ = γU′U′′ ∈W
since A′ ⊆ A ⊆ D. Thus, the restricted sets b′ = X′�W and b′′ = X′′�W differ from
each other. In particular, at least one of b′, b′′ is not equal to b. However, a′, a′′ ∈ [T1] by
construction, hence this contradicts the choice of T1 and completes the proof of (‡).

Recall that b ⊆W, and W ∈ L is countable in L. It follows that b can be considered as
a real, so we conclude that b is not OD in L[a0] by Lemma 12 and (‡).

However, b = X ∩W, where X is OD and W ∈ L, hence W is OD in L[a0] and b is
OD in L[a0]. The contradiction obtained ends the proof. (Lemma 13)

Now, Theorem 2(i) immediately follows from Lemma 10 and Lemma 13.

8. The Model, Part II

Here, we establish Claim (ii) of Theorem 2. To prove L[a0] ⊆ HNT, it suffices to
show that a0 itself belongs to HNT, and then make use of the fact that by Gödel every set
z ∈ L[a0] has the form x = F(a0), where F is an OD function.

Further, to prove a0 ∈ HNT, it suffices to check that the set

Ea0 = {b ∈ 2ω : ∃ σ ∈ 2<ω(b = σ qa0)} (13)

(which is a countable set) is an OD set in L[a0, x0]. According to 6◦, it suffices to establish
the equality

Ea0 =
⋂

ξ<ω1

⋃
T∈Pξ

[T] . (14)

Note that every set Pξ is pre-dense in P; this follows from 3◦ and 5◦, see, for example,
Lemma 6.3 in [13]. This immediately implies a0 ∈

⋃
T∈Pξ

[T] for each ξ . Yet, all sets Pξ are
invariant w.r.t. shifts by construction. Thus, we have the relation ⊆ in (14).

To prove the inverse inclusion, assume that a real b ∈ 2ω belongs to the right-hand
side of (14) in L[a0, x0]. It follows from Corollary 2(ii) that b = g(a0, x0) for some Borel
function g = Fq : 2ω ×ωω → 2ω with a code q ∈ BC ∩ L.

Assume to the contrary that b = g(a0, x0) 6∈ Ea0 .
Since x0 ∈ ωω is a C-generic real over L[a0] by the forcing product theorem, this

assumption is forced, so that there is a tuple u ∈ C = ω<ω such that

f (a0, x) ∈ ⋂
ξ<ω1

⋃
T∈Pξ

[T]r Ea0 , (15)

whenever a real x ∈ Nu is C-generic over L[a0]. (Recall that Nu = {y ∈ ωω : u ⊂ y}.)
Let H be the canonical homomorphism of ωω onto Nu . We input f (a, x) = g(a, H(x)) for
a ∈ 2ω , x ∈ ωω. Note that H preserves the C-genericity, and hence

f (a0, x) ∈ ⋂
ξ<ω1

⋃
T∈Pξ

[T]r Ea0 , (16)

whenever x ∈ ωω is C-generic over L[a0]. Note that f also has a Borel code r ∈ BC in L,
so that f = Fr .

It follows from Lemma 9 that there is an ordinal γ < ω1 and a tree S ∈ Uγ , on which
f is normalized for Uγ , and which satisfies a0 ∈ [S]. Normalization means that, in L,
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there is a dense Gδ set X ⊆ ωω satisfying one of the two options of Definition 2. Consider
a real z ∈ ωω ∩ L (a Gδ -code for X in L) such that X = Xz =

⋂
k
⋃

z(2k ·3j)=1 Nwj , where
2<ω = {wj : j < ω} is a fixed recursive enumeration of tuples.

Case 1: there are tuples v ∈ ω<ω , σ ∈ 2<ω, such that f (a, x) = σ qa for all points
a ∈ [S] and x ∈ Nv ∩ X . In other words, it is true in L that

∀ a ∈ [S] ∀ x ∈ Nv ∩ Xz ( f (a, x) = σ qa) . (17)

However, this formula is absolute by the Shoenfield theorem, so it is also true in L[a0, x0].
Take a = a0 (recall: a0 ∈ [S]) and any real x ∈ Nv , C-generic over L[a0]. Then, x ∈ Xz ,
because Xz is a dense Gδ set with a code from L. Thus f (a0, x) = σ qa0 ∈ Ea0 , which
contradicts (16).

Case 2: f (a, x) 6∈ ⋃
σ∈2<ω∧U∈Uγ

σ q[U] for all a ∈ [S] and x ∈ X. By the definition of Pγ ,
this implies f (a, x) 6∈ ⋃

T∈Pγ
[T] for all a ∈ [S] and x ∈ X, and this again contradicts (16)

for a = a0 .

The resulting contradiction in both cases refutes the contrary assumption above and
completes the proof of Claim (ii) of Theorem 2.

9. The Model, Part III

Here, we prove Claim (iii) of Theorem 2. We make use of the following result that
belongs to a series of results on countable and Borel OD sets in Cohen and some other
generic extensions in [14].

Lemma 14. Let x ∈ ωω be Cohen-generic over a set universe V. Then, it holds in V[x] that if
Z ⊆ 2ω is a countable OD set then Z ∈ V. More generally, if q ∈ 2ω in V, then it holds in V[x]
that if Z ⊆ 2ω is a countable OD(q) set then Z ∈ V.

Proof. The pure OD case is Theorem 1.1 in [14]. The proof of the general case does not
differ, q is present in the flow of arguments as a passive parameter.

Lemma 14 admits the following extension for the case V = L[a]. Here, OD(a) natu-
rally means sets definable by a formula containing a and ordinals as parameters.

Corollary 3. Assume that a ∈ 2ω, and a real x ∈ ωω is Cohen-generic over L[a]. Then, it holds
in L[a, x] that if X ∈ L[a] and A ⊆ 2X is a countable OD(a) set then A ⊆ L.

Proof. As the Cohen forcing C = ω<ω is countable, there is a set Y ⊆ X , Y ∈ L[a],
countable in L[a] and such that if f 6= g belong to 2X , then f (x) 6= g(x) for some x ∈ Y.
Then, Y is countable and OD(a) in L[a, x], so the projection B = { f �Y : f ∈ A} of the set A
will also be countable and OD(a) in L[a, x]. We have B ∈ L[a] by Lemma 14. (The set Y
here can be identified with ω .) Hence, each w ∈ B is OD(a) in L[a, x].

However, if f ∈ A and w = f �Y, then w ∈ B, hence w is OD(a) in L[a, x] by the
above. Moreover, by the choice of Y, it holds in L[a, x] that f is the only element in A
satisfying f �Y = w. Therefore, f ∈ OD(a) in L[a, x]. We conclude that f ∈ L[a].

Proof (Claim (iii) of Theorem 2). We prove an even stronger claim

x ∈ HNT(a0) =⇒ x ∈ L[a0] (18)

in L[a0, x0] by induction on the set-theoretic rank rk x of sets x ∈ L[a0, x0]. Here, HNT(a0)
naturally means all sets hereditarily NT(a0), the latter means all elements of countable sets
in OD(a0).

Since each set consists only of sets of strictly lower rank, to prove (18), it is sufficient
to check that if a set H ∈ L[a0, x0] satisfies H ⊆ L[a0] and H ∈ HNT(a0) in L[a0, x0], then
H ∈ L[a0]. Here, we can assume that in fact H ⊆ Ord, since L[a0] allows an OD(a0)
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wellordering. Thus, let H ⊆ λ ∈ Ord. Additionally, since H ∈ HNT(a0), we have,
in L[a0, x0], a countable OD(a0) set A ⊆ P(λ) containing H . However, A ∈ L[a0] by
Corollary 3. This implies H ∈ L[a0] as required.

This ends the proof of Theorem 2 as a whole and the proof of Theorem 1.

10. Conclusions and Discussion

In this study, different descriptive set theoretic and forcing tools are employed to define
a generic extension of L in which the class HNT of all hereditarily nontypical sets is a
model of ZFC (not merely ZF), separated from the class HOD of all hereditarily nontypical
sets and from the universe V of all sets by the strict double inequality HOD $ HNT $ V.
This is the content of our main result, Theorem 1, and this solves a problem proposed
in [9]. This result demonstrates that the class HNT has its own merits and deserves further
special study.

As for possible applications, this research can facilitate the ongoing research of different
aspects of definability in modern set theory. Let us briefly present three such lines of
research.

1. Tzouvaras [9] and Fuchs [7] (in terms of blurry definability) pursued a more general
approach to nontypical sets. Namely, if κ is a cardinal, then let NTκ (κ-nontypical sets)
contain all sets x which belong to ordinal definable sets Y of cardinality cardY < κ .
Accordingly, let HNTκ (hereditarily κ-nontypical sets) contain all sets x satisfying TC(x) ⊆
NTκ , as usual. Then, HNT = HNTω1 , of course, whereas HNTω coincides with the
class HOA of hereditarily algebraically definable sets in [6] and HNT2 coincides with
hereditarily ordinal definable sets as in Section 1 above. All classes HNTξ satisfy ZF, and
we obviously have

HOD = HNT2 ⊆ HOA = HNTω ⊆ HNT = HNTω1 ⊆ HNTκ ⊆ HNTλ (19)

for ω1 < κ < λ. This naturally leads to the following questions considered in [7,9]:

(1) characterize cardinals λ satisfying
⋃

κ<λ HNTκ $ HNTλ strictly;
(2) find out what forms of the axiom of choice are true in HNTκ for different κ ;
(3) investigate the nature of classes HNTκ in different generic models and large cardinal

models.

2. Another model, in which HNT is strictly between HOD and the universe but does
not satisfy the axiom of choice unlike the model if Theorem 1, was introduced in [22]. It
was briefly considered in [7,9] in the context of nontypical sets. This model extends L
by an infinite sequence b = 〈bn〉n<ω of reals an ∈ 2ω generic in the sense of the Jensen
forcing [21], so that it is true in L[b] that the whole countable set B = {bn : n < ω} of
those reals is a lightface Π1

2 , hence OD, set that has no OD elements. In particular, as
noted in [9], each bn belongs to HNT r HOD, thus HOD $ HNT in such a model L[b].
On the other hand, the generic sequence b itself does not belong to HNT in L[b] [7], so
that HNT is a prover subclass of the set universe in L[b]. Yet the principal flaw of such a
model L[b] is that its class HNTL[b] fails to satisfy the axiom of choice AC (unlike the class
HNTL[a,x] = L[a] of the model defined for Theorem 1). Thus, L[b] is a less worthy solution
of Problem 1 in the Introduction.

3. Recall that if x is a Cohen real over L, then HNT = L in L[x] by Lemma 14. The
following problem highlights another aspect of non-typicality in Cohen extensions.

Problem 2. Is it true in generic extensions of L by a single Cohen generic real that a countable
OD set of any kind necessarily consists only of OD elements, and hence NT = OD holds?

This is open even for finite OD sets. A more advanced techniques for studying Cohen
extensions as in this paper (Section 9) or in [23] could be useful here.
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Furthermore, it is not that obvious to expect the positive answer. Indeed, the problem
solves in the negative for Sacks and some other generic extensions even for pairs. For
instance, if x is a Sacks-generic real over L then it is true in L[x] that there is an OD
unordered pair {X, Y} of sets of reals X, Y ⊆ P(2ω) such that X, Y themselves are non-
OD sets. See [24] for a proof of this rather surprising result originally by Solovay.

4. It would be interesting to give any substantial treatment of topics related to defin-
ability (including ordinal definable and nontypical sets) in the frameworks of alternative set
theories like recently introduced finitely supported mathematics FSM [25] or more classical
and well-known ZFA with atoms [16] (Chapter 7), [26] (Chapter 7).

Author Contributions: Conceptualization, V.K. and V.L.; methodology, V.K. and V.L.; validation,
V.K.; formal analysis, V.K. and V.L.; investigation, V.K. and V.L.; writing original draft preparation,
V.K.; writing review and editing, V.K. and V.L.; project administration, V.L.; funding acquisition, V.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable. The study did not report any data.

Acknowledgments: We thank the anonymous reviewers for their thorough review and highly
appreciate the comments and suggestions, which significantly contributed to improving the quality
of the publication.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jech, T. Set Theory, The Third Millennium Revised and Expanded ed.; Springer: Berlin/Heidelberg, Germany; New York, NY,

USA, 2003; pp. xiii + 769. [CrossRef]
2. Kunen, K. Set Theory; Studies in Logic: Mathematical Logic and Foundations; College Publications: London, UK, 2011; Volume 34,

pp. viii + 401.
3. Myhill, J.; Scott, D. Ordinal definability. In Axiomatic Set Theory Proceedings Symposium Pure Mathematics Part I; American

Mathematical Society: Providence, RI, USA, 1971; Volume 13, pp. 271–278.
4. Fuchs, G.; Gitman, V.; Hamkins, J.D. Ehrenfeucht’s lemma in set theory. Notre Dame J. Formal Logic 2018, 59, 355–370. [CrossRef]
5. Groszek, M.J.; Hamkins, J.D. The implicitly constructible universe. J. Symb. Log. 2019, 84, 1403–1421. [CrossRef]
6. Hamkins, J.D.; Leahy, C. Algebraicity and implicit definability in set theory. Notre Dame J. Formal Logic 2016, 57, 431–439.

[CrossRef]
7. Fuchs, G. Blurry definability. Mathematics 2021, preprint. [CrossRef]
8. Tzouvaras, A. Russell’s typicality as another randomness notion. Math. Log. Q. 2020, 66, 355–365. [CrossRef]
9. Tzouvaras, A. Typicality á la Russell in Set Theory. ResearchGate Preprint. To appear in Notre Dame J. Form. Logic. May 2021,

p. 14. Available online: https://www.researchgate.net/publication/351358980_Typicality_a_la_Russell_in_set_theory (accessed
on 23 December 2021).

10. Lambalgen, M. The axiomatization of randomness. J. Symb. Log. 1990, 55, 1143–1167. [CrossRef]
11. Antos, C.; Friedman, S.D.; Honzik, R.; Ternullo, C. (Eds.) The Hyperuniverse Project and Maximality; Birkhäuser: Cham, Switzerland,

2018; pp. xi + 270.
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